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Masakazu Teragaito 

International Institute for Sustainability with Knotted Chiral 
Meta Matter, Hiroshima University 

1 Introduction 

This is a survey of two recent papers [25] and [26], where we examine Upsilon and sec-
ondary Upsilon invariants for L---space knots. 

1. 1 Upsilon invariants 

In 2017, Ozsvath, Stipsicz and Szabo [23] introduced the Upsilon invariant for any knot in 
the 3-sphere S> For a knot K, the Upsilon invariant Y瓜t)is a piecewise linear function 
defined on the interval [O, 2]. As the simplest example, let K be the right handed trefoil. 
Then YK(t) = -t (0 :s; t :s; 1), t -2 (1 :s; t :s; 2) (see Figure 1). 

Figure 1: The Upsilon invariant of the right handed trefoil. 

The Upsilon invariant has various good properties: 

1. Y K(t) is a (smooth) concordance invariant. 

2. Y K(t) = Y K(2 -t) for t E [O, 2]. That is, it is symmetric about t = 1. 

3. YK(O) = 0. 

4. Y'(O) = -T(K), where T(K) is the Ozsvath-Szab6 T-invariant. 

5. y K#L(t) = y叫） ＋ ℃（t). 

6. y_K(t) = -Y訊t),where -K is the mirror image with reversed orientation. 

7. If K is smoothly slice, then Y瓜t)= 0. 
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8. y瓜t)gives lower bounds for the genus, the 4-genus, and the concordance genus. 

9. IT瓜1)一び(K)/21:::;宜(K),where 14(K) is the smooth 4-dimensional crosscap 
number. 

By using the Upsilon invariants, Ozsvath, Stipsicz and Szabo [23] show that the sub-
group of topologically slice knots in the concordance group contains a summand of infinite 
rank. 

For some classes of knots, the Upsilon invariants can be explicitly computed. Let K 
be an alternating knot (or, more generally, a quasi-alternating knot). Then Y瓜t)= 
(1-lt-11)・ び（!Jl,where a(K) is the signature of K [23]. For (positive) torus knots, there 
is an inductive formula [10]. For L---space knots, defined below, there is a description in 
terms of some integer sequence extracted from the Alexander polynomial [23]. 

Although the Upsilon invariant was originally defined by using at-modified knot Floer 
complex in [23], Livingston [20] later proposed an alternative way on the usual knot Floer 
complex CFK00(K). Since then, it seems that most authors adopt Livingston's definition 
of Upsilon invariant in their research. There is also a grid diagram approach to the Upsilon 
invariant in [11]. 

The (full) knot Floer complex CFK00(K) is a Z① Z-filtered graded chain complex 
over the polynomial ring lF[U, u-1], where lF = Z2 and U is a formal variable, with 
Maslov (homological) grading and two filtrations called the algebraic (abbreviated as 
"alg") and Alexander ("Alex") filtrations. The action of U commutes with differential, 
lowers gradings by 2, and lowers algebraic and Alexander filtrations by 1. It is known 
that CFK00(K) is a knot invariant up to graded chain homotopy equivalence. There is 
a diagrammatic description of CFK00(K) on a coordinate plane, but we will give it only 
for L--space knots later (see 1.4). If two knots K1 and K2 are concordant, then their knot 
Floer complexes are stably equivalent. For -K, CFK00(-K) is the dual of CFK00(K), 
whose diagrammatic description is simply obtained by rotating that of CFK00(K) by 180 
degree and reversing all maps. There is the global triviality, that is, Hn(CFK00(K)) = lF 
if n is even, and O otherwise. 

1.2 L-space knots 

A knot K is called an L-space knot if it admits a positive Dehn surgery yielding an 
L---space. An L-space Y is a rational homology 3-sphere whose (hat) Heegaard Floer ho-
mology has the possible smallest rank, which is equal to H1(Y). This gives an importance 
to clarify what an L-space is. The famous L-space conjecture [8] is such an attempt to 

characterize an L--space in terms of left-ordering or taut foliation. Lens spaces, more gen-
erally, Seifert fibered manifolds with finite fundamental groups are L--spaces. We remark 
that if a knot admits such a negative surgery, then take the mirror image, and that the 
unknot is the only one that admits both of positive and negative Dehn surgeries yielding 
L---spaces. Typical examples of L---space knots are torus knots, Berge knots. Among alter-
nating knots, T(2, 2n + 1) (n ~ 1) are the only L-space knots [22]. All L-space pretzel 
knots are determined by Lidman and Moore [19]. It is known that any L-space knot 
is prime and the Alexander polynomial is a concordance invariant among L---space knots 
[16]. Notice that any non-trivial L-space knot is not slice. 
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It is further known that any ~space knot is fibered, and its Alexander polynomial has 
a form of 

△(t) = 1ー炉十炉ー...+t竺

where 1 =釘＜四<..．＜ an= 2g(K). For example, the right handed trefoil and the 
(-2, 3, 7)-pretzel knot are L--space knots, and their Alexander polynomials are 1 -t + t2 
and 1-t+校-t4+t5＿秒＋t7＿炉＋t10,respectively. The fact that a1 = 1 is highly non-

trivial [12]. For ~space knots, the distribution of powers a1, a公... is still mysterious, so 
its further exploration is expected. 

1.3 Raising the problems and results 

In this paper, we focus on L-space knots due to the following reasons. 

1. For an L--space knot K, the Upsilon invariant Y K(t) is the Legendre-Fenchel trans-
form (or, convex conjugate) of a certain function, called the gap function G(x), which 
has the same information as the Alexander polynomial. 

2. The knot Floer complex of an L---space knot has a very special form that is completely 
determined by the Alexander polynomial. 

The first fact was proved by Borodzik and Hedden [7]. As an immediate consequence, 
we know that the Upsilon invariant of an L-space knot is convex. Since the Legendre-

Fenchel transform depends only on the convex hull of the gap function G(x), we come up 
with the following problems. 

1. Find two L-space knots whose gap functions share the same convex full. Then their 

Upsilon invariants coincide. 

2. Find an L--space knot whose Alexander polynomial can be restored from the Upsilon 
invariant through the Legendre-Fenchel transformation. 

Of course, the Upsilon invariant is not strong to distinguish knots, because it is a 
concordance invariant. All slice knots share the same Upsilon invariant, which is the zero 
map. On the other hand, we see that there is no duplication of Upsilon invariant among 
torus knots. 

Our first result is an answer to the first problem. 

Theorem 1.1 There are infinitely many pairs of hyperbolic L-space knots K1 and K2 
such that K1 and K2 have distinct Alexander polynomials, but share the same (non-zero) 
Upsilon invariants. 

For the second problem, we have an answer, which is not satisfactory. 

Theorem 1.2 Let K be the hyperbolic L-space knot t0984-7 or 112871 in the SnapPy cen-

sus. Then the Alexander polynomialふ (t)of K is restorable from the Upsilon invariant 
YK(t). That is, the equation YK(t) = YK,(t) implies△K(t)＝△K,(t) (up to units) for 
any other L-space knot K'. 
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Thus, the remaining problem is to find an infinite family of such hyperbolic L--space 
knots. It is not hard to give an infinite family of (potentially, Alexander) polynomials, 
whose gap function is restorable from the convex hull as follows. 

Proposition 1.3 Let m ~ 3 be an integer, and let△(t) = 1 -t + tm -tm+l + tm+2 -
t2m+l + t2m+2. Then its gap function, defined formally, is uniquely determined from the 
convex hull. 

The polynomial△(t) in Proposition 1.3 satisfies the condition of [17], but it is open 
whether△(t) is realized as the Alexander polynomial of a hyperbolic L-space knot or 
not. (When m = 3,△（t) is the Alexander polynomial of T(3, 5).) 

1.4 Secondary Up 
.... 
silon invariants 

To recover a lost information in the Upsilon inv紅 iant,Kim and Livingston [15] introduced 
the secondary Upsilon inv江 iantT知(s)fort E (0, 2) ands E [O, 2]. The derivative T~(t) 
has finitely many isolated singular points. For example, T~(t) has singularity at t = 1 
in Figure 1. The secondary Upsilon inv紅 iantis essentially defined at each singularity of 
立(t).It is al . It is also a concordance invariant. 

Although the secondary Upsilon invariant can be defined for any knot, we restrict 
ourselves to L---space knots again. To define it, we now need to give the diagrammatic 
description of the knot Floer complex. The knot Floer complex CFK00(K) of an L---space 
knot has a restricted form. We are going to explain the description by using an example. 

Let K be the torus knot T(3, 7). The Alexander polynomial is 1 -t + t3 -t4 + t6 -t8 -
伊＋t11-t12. We record the gaps between the powers as the sequence [1, 2, 1, 2, 2, 1, 2, 1]. 
Obviously, the symmetry of this sequence is derived from that of the Alexander polyno-
mial. On the (alg,Alex)-plane, put the first black vertex at (O,g), where g = 6 is the 
genus of K. That is, the filtration level of this vertex is alg = 0 and Alex= g. According 
to the sequence, we go right or down. Hence, go one right step and put a white vertex, 
and go down two steps and put a black vertex. Repeat this process until we reach (g, 0). 
Finally, draw arrows from each white vertex to adjacent black vertices. This is called the 
staircase diagram. Figure 2 shows the staircase diagram for K = T(3, 7). Each black 
vertex has Maslov grading 0, but white one has grading 1, and the紅 rowsshow boundary 
maps. Thus each black vertex is a 0-cycle, and represents a generator of JI,。(CFK00(K)).
All black vertices紅 ehomologous. In fact, the full complex is obtained by taking all 
integer diagonal translates of the staircase diagram. That is, the action of the variable U 
shifts the vertices a distance of one down and to the left. However, we do not need this 
structure. 

SnapPy [9] can exhibit the knot Floer complex. For example, the input 

K=Link(braid_closure=[1,2,1,2,1,2,1,2,1,2,1,2,1,2]) 
K.knot_floer_homology(complex=True} 

returns 9 generators 

Xo=(-2,-7) X1=(-3,-8) 四＝ （ー5,-11) 
X3 = (-6, -12) 四＝ （0, -4) 窃＝ （5, -1) 
X5 = (3, -2) 巧＝ （2, -3) 窃＝ （6, 0) 
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Figure 2: The staircase diagram of the torus knot T(3, 7). The corresponding sequence is 
[1, 2, 1, 2, 2, 1, 2, l]. 

and differentials 

Xo→ X1 Xo→ X4 四→ X1 四→ X3 窃→ X6 
窃→ X8 巧→ X4 巧→ X6 

for K = T(3, 7). (SnapPy returns only horizontal and vertical differentials. For non-£-
space knots, pay attention to this omission.) For the generators, the first entry is the 
Alexander grading, but the second is the Maslov grading. All have algebraic grading 0. 
Thus put these generators on the j-axis. To draw the knot Floer complex, shift x0,..., x8 
into the first quadrant by the action of U as follows: 

u-4Xo = (2, 1) u-4X1 = (1, 0) u-5四 ＝ （1, 1) 
u-6玲＝ （o, o) u-2四＝ （2, o) u-1窃 ＝ （6, 1) 
u-1x5 = (4, o) u-2巧＝ （4, 1) 四＝ （6,0) 

Then u-4x1, u-6x3, u-2x4, u-1x5 and Xs are black vertices. 

4
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Figure 3: The Upsilon invariant of T(3, 7). Y'(t) is singular at t = 2/3 and 4/3. 

Figure 3 illustrates'YK(t). Hence Y~(t) is singular at t = 2/3 and 4/3. 
Fix t。=2/3.On the (alg, Alex)-plane, consider the line L with slope 1 -2/t。=-2. 

Move L upwards from south-west, and stop at the first touch with the staircase. Then L 
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contains three black vertices. Among them, the top most p―= （0, 6) is called the negative 
pivot point, and the bottom most p+ = (2, 2) is called the positive pivot point. In general, 
if咋 (t)is singular at t, then the corresponding pivot points are different. 

Next, consider the part § of the staircase diagram between two pivot points. For 
s E [O, 2], let L8 be the line with slope 1 -2/ s touching§ from north-east. (In particular, 

L。isvertical.) Let ~ be the intercept of L8 when s -/c 0. Then set 

T2 -s~-T叫o) (s # 0), 
k,to(s) ={-2alg(P+)-T叫 o) （s = 0)， 

where alg(p打denotesthe algebraic filtration of p+. This is the secondary Upsilon in-
variant at the singularity t。.（The original definition is different, but our definition is 
equivalent to it for L---space knots.) For any non-singular t, T知(s)is set to be oo. 

In our case, T K(t0) = 1(2/3) = -4. Hence it is easy to see that 

乳，to(s)＝｛-2s (O三S三2/3)，
-5s + 2 (2/3さsさ2).

We have a simple observation that the secondary Upsilon invariant is a concave con-
jugate of a certain restriction of the gap function. 

Define <I>:配→配 by<I> (x, y) = (x -y, 2x). For p E記 let仰 p)denote the first 
coordinate of的(p).

Theorem 1.4 Let K be an L-space knot and T叫） itsUpsilon invariant. Let t0 E (0, 2) 
be a singularity of T~(t), and let p― and p+ be the corresponding negative and positive 
pivot points on the staircase diagram. Then the secondary Upsilon invariant冗，to(s) at 
t。isgiven by 

乳，to(s)= G*(s) -Y叫 o),

where G*(s) is the concave conjugate of the restriction of the gap function G(x) on the 

inte切 alI=閏（P―)，叱(p打].

Here, G*(s) = minxEI{sx -G(x)}. Since s E [O, 2]皿 dG(x) is bounded on I, the 
minimum value exists. 

2 Our construction 

In this section, we sketch the construction of pairs of hyperbolic £-space knots for The-
orem 1.1. 

For each n 2: 1, consider the closures of 4-braids: 

K1:（亨1a四）（m叩 3)4nゲ (a2a3)6,

応：（び2位 3叫（び位2aa)4nゲ（年3)り

Since both are transformed into the closures of positive braids, they are fibered, and have 
genus 6n+6. We remark that when n = l, K1 and K2 are m240 and t10496, respectively, 
in the SnapPy census. 
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(1) (2) 

Figure 4: The knots K1 (left) and K2 (right). After performing -1/n-surgery on C1 and -1/2-surgery 
on C2, K will be our knots. 

p roposition 2.1 For n：：：：： L柘叩d幻額応灼珈屈加呻

(1) They are hyperbolic. 

(2) (16n + 21)-surgery on K1, (l6n + 20)-surgery on K2 yield L-spaces. 

(3) Their Alexander polynomials are distinct. 

(4) Their Upsilon invariants coincide. 

We will sketch the outline of the proof. 
As seen from Figure 4, both knots are strongly invertible. The Montesinos trick [21] 

reveals that the above surgeries yield L-spaces. In fact, (16n + 21)-surgery on K1 yields 
the Seifert fibered manifold M(O; -3/7, -1/3, -1/n), which is shown to be an L--space 
by a well known criterion. On the other hand, (16n + 20)-surgery on K2 seems to be not 
a Seifert fibered manifold. By using resolutions, it will be shown to be an L-space. 

Next, we calculate the multivariable Alexander polynomials of the 3-component links 
KU  01 U 02 as shown in Figure 4. Perform the surgeries on 01 and 02. Then the Torres 
condition [27] gives the desired Alexander polynomials of K1 and K2, which are seen to 
be distinct. 

From the Alexander polynomials, we can determine the formal semigroups of K1 and 
K2. In general, the formal semigroup is defined for any L--space knot K [28]. Letふ (t)
be the Alexander polynomial of the form△(t) = 1ー炉＋炉ー・・.+ tan. Then expand 
the Alexander function into a formal power series as 

△瓜t)
1-t 

= Lts. 
sES 

The set Sis a subset of non-negative integers, which is called the formal semigroup of K. 
For example, the formal semigroup of a positive torus knot T(p, q) is an actual semigroup 
ゅ，q〉＝ ｛ap+ bq I a,b：：：：：〇｝・ Forhyperbolic L-space knots, it is hardly a semigroup. 
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For our knots K1 and K2, their formal semigroups are not semigroups. This immedi-
ately implies that neither is a torus knot. For example, the formal semigroup of凡 with
n = l is 

S = {O, 4, 7, 10, 11, 14, 15, 17, 18, 20, 21, 22} U {24, 25, 26,... }. 

Hence 4 ES, but 4 + 4 = 8,/_ S. Similarly, the formal semigroup of応 withn = l is 

S = {O, 4, 7, 10, 12, 14, 15, 17, 18, 20, 21, 22} U {24, 25, 26,... }. 

This is not a semigroup either. 
To confirm their hyperbolicity, suppose that Ki is a satellite knot. Since Ki has bridge 

number 4, the companion is a 2-bridge knot and the pattern has wrapping number 2. 
Also, the companion knot and the pattern knot are £-space knots [14, 3]. In addition, 
the pattern knot is braided [3]. Thus, we can conclude that the companion is a 2-bridge 
torus knot and Ki is its 2-cable. By [28], the formal semigroup of an iterated torus 
L---space knot is a semigroup, which is a contradiction. 

Finally, to confirm that K1 and K2 share the Upsilon invariants, we need to determine 
their gap functions, and verify that their convex hull coincide. 

Here is the definition of gap function. Let K be an L---space knot with formal semigroup 
S. Put g = Z -S, which is called the gap set. In facf, g = Z<o U {b1, b2,..., b9}, where 
g = g(K) and O < b1 < b2 < • • • < b9. The sequence b1, b2,..., b9 is called a gap sequence. 

Then the Alexander polynomial is restored as 

ふ (t)= 1 + (t -1)（秒＋炉＋・・・＋凸）．

By using the gap set g, we define a function I: Z→Z:::,o by 

I(m) = #{i E g Ii~ m}, 

and let J(m) = I(m + g). Next, we extend J(m) linearly to a piecewise linear function 
on恥 andset G(x) = 21(-x). This is the gap function of K by [7]. (See Figure 5 for an 
example.) Borodzik and Hedden show that Y叫） isthe Legendre-Fenchel transform of 
G(x), that is 

YK(t) = ml.l:2{{tx -G(x)}. 
XE股

From the gap sets of K1 and K2, we can confirm that their gap functions share the 
same convex hull. 

3 Restorable Alexander polynomials 

Here are the braid words of our knots mentioned in Theorem 1.2. Both knots are the 
closures of positive 4-braids. 

t09847:（可1CJ叩）知元の）外

v2871:（び四1び西）3（び四伍）吋．

Their Alex皿 derpolynomials are 1 -t + 4 5 t4 -t5 +が—柱＋ tlD _ t13 + t14皿 dl-t+
t4 炉＋ t7 柱＋ tg 庄＋ t12_ t15 -t15 + t16, respectively, Hence the formal semigroups 
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are {O, 4, 7, 8, 10, 11, 12} U Z::,14 and {O, 4, 7, 9, 10, 12, 13, 14} U Zを16. By using them, we 
can determine the gap functions and verify that they are uniquely determined from the 
convex hulls. 

4 Secondary Upsilon invariants 

Figure 5 shows the gap function G(x) of T(3, 7). 
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Figure 5: The gap function G(x) of T(3, 7), where g = 6. 

The key observation to prove Theorem 1.4 is the fact that the graph of G(x) restricted 
on [-g, g], where g = g(K), is the image of the staircase diagram under the map <I> defined 
in Subsection 1.4. (Compare Figures 2 and 5.) 

In Figure 5, the graph of the gap function G(x) consists of segments with slope 0 
or 2. Let a = (1, 2) and b = (1, 0) be the vectors. Starts at the point (-6, 0), where 
g(T(3, 7)) = 6. According to the sequence [1, 2, 1, 2, 2, 1, 2, 1], which records the gaps of 
powers of the Alexander polynomial, we use a and b. Thus the structure of the graph of 
G(x) coincides with that of the staircase diagram. 

5 Comments 

Recently, some generalizations of Upsilon invariant emerged. 

• Use a south-west region on the plane [1]. 

• Sato's invariant g。[24].

• Extend Upsilon-type invariants to null-homologous knots in rational homology 3-
spheres, in particular, cyclic branched covers of knots [2]. 

• Use involutive Heegaard Floer homology [13]. 
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• Extend to balanced spatial graphs by using grid homology [18]. 

In this note, we restricted ourselves to L---space knots, but Baldwin and Sivek [4] 
introduce almost £-space knots which can yield almost L--spaces by Dehn surgery. Also, 
Binns [5, 6] examines their knot Floer complexes. It might be interesting to study their 
Upsilon invariants. 
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