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1 Introduction 

The Kontsevich invariant is a invariant of knots which is universal among all quantum 
invariants and Vassiliev invariants of knots. The LMO invariant is a invariant of 3-
manifolds derived from the Kontsevich invariant, and it is universal among all perturbative 
invariants and finite type invariants of 3-manifolds. These two invariants are very strong 
invariants, but their images are presented by infinite sums of some types of graphs, and it 
is very hard to determine all terms of them. It must be important problems to determine 
the images of these strong invariants in order to clarify the set of all knots or 3-manifolds. 
The Kontsevich invariant has a special expansion, called the "loop expansion", and it 
can be one approach to investigate the image of the Kontsevich invariant [5, 7]. In [17], 
the author define the 3-loop invariant (or, the 3-loop polynomial) which present the 3-loop 
part of the loop expansion of the Kontsevich invariant, and perform some calculations for 
the 3-loop polynomial. Also, in [6], Garoufalidis and Kricker found a formula for the LMO 
invariant of cyclic branched covers of knots by using the loop expansion of the Kontsevich 
invariant. By using this formula and the result in [17], the author calculate the degree 2 
part of the LMO invariant of cyclic branched covers of knots in [18]. 
This report is a rough explanation of these results. 

2 Preliminaries 

2.1 The Kontsevich invariant and its loop expansion 

In this section, we review the Kontsevich invariant and its loop expansion, and we 
define the 3-loop invariant. For details, see [5, 7, 11, 17]. 
An open Jacobi diagram is an uni-trivalent graphs such that a cyclic order of the three 
edges around each trivalent vertex is fixed, in other words, each trivalent vertex is ve廿ex-
oriented. When we draw a Jacobi diagram on 0, each trivalent vertex is vertex-oriented 
in the counterclockwise order. Furthermore, we define the degree of a Jacobi diagram to 
be half the number of all vertices of the graph of the Jacobi diagram. We define B to be 
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the quotient vector space spanned by Jacobi diagrams subject to the AS, IHX relations. 

the AS relation :)c戸=->-

the IHX relation :>/=)-(-X 
B forms a commutative algebra whose product is given by disjoint union. 
The Kontsevich invariant x―1 Z(K) of a knot K is defined to be in B (Strictly speaking, 
it is defined to be in the completion of B with respect to the degree). Note that x―1Z(K) 
is group-like, which means that it is exponential of series of connected diagrams. The 
loop expansion of the Kontsevich invari皿 tof a 0-framed knot K is a presentation of the 
following form [5, 7], 

½Jog（弓茫）― ½Jog △K位） P;,1（砂）／ふ（沙）

log(x―1Z(K)） ＝二十fi豆

finite finite 

＋こ +E 

+ (terms of(> 3)-loop part), 

where△瓜t)denotes the Alexander polynomial, and Pi,j（沙），qi,j（沙），r9,J（沙） arepolyno-
mials in e士h_Here, a labeling of J(h) = c0 + c1h + c訳＋ c沢＋・ •.implies that, 

}(h) = co)十Cl }-＋ C2 ：十硲〗＋
Note that 

f(h> }(-h) 
， 
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by the AS relation. Then, we define the 3-loop invariant of K by 

紐 (t1,t2,t凸）

＝ど
如（t需t~了）qi,2(t需t~了）qi,3(t貫悶噂~T)qi,4(t言t~-（了）qi,5(t需t~了）qi,6(t需tT言）

△叫心）ふ(t2t41）ふ(t西りふ(t外］）ふ(t3炉）ふ(t1t21)
TE64 

sgnr_,_-sgnr¥_ r_,_sgnr_,_-sgnT¥_ r_,_sgnr_,_-sgnr¥_ r_,_sgnr_,_-sgnT¥_ r_,_sgnr_,_-sgnr 

＋こい(tT(1)tT(4)兄，2（tT(2)tT(4)）rt,3(tT(3) tT(4)）rt,5(tT(3) tT(1)）rt,6(tT(1) tT(2)) 
，△K(tr(l)t心）2△K(tr(2)tふ）△K(tr(3)tふ）△K(tr(3)tふ）△K(tT(1)tふ）
元釦

E _;__. 
△2 
Q[t庁，t戸，t肘，tデl/（包，t山tぬ＝ 1),

where we put 

A=△瓜tit；り△瓜t2t；り△瓜t3t41瓜K(t外31瓜K(t3tけ）△K(t1t2り．

In particular, ifふ (t)= 1, then紐 (t1,t2,tい） isa polynomial, so in this case, we 
call it the 3-loop polynomial. For details about the 3-loop invariant, see [17]. The 3-loop 
invariant is a rational form presenting the 3-loop part of the Kontsevich invariant of knots. 

Remark 1. The 2-loop part of the Kontsevich invariant of knots is presented by the 
2-loop polynomial. The 2-loop polynomial 8瓜t1,t2,t3)is defined by 

釦 (t1,t2も）＝こ四1(t~(l))Pi,2(t~(2))Pi,3(t~(3)) E Q[t戸，t翌t釘／（釣 xZ/2Z, tit山＝ 1).
t 

€＝士1
i7El53 

There are examples of calculations of the 2-loop polynomial, for example, see [4, 12, 13]. 

2.2 The LMO invariant and the formula of Garoufalidis and Kricker 

In this section, we review the LMO invariant. 
A Jacobi diagram on 0 is a trivalent graph such that each trivalent vertex is vertex-
oriented. We define A(0) to be the quotient vector space spanned by Jacobi diagrams on 
0 subject to the AS, IHX relations. 
The LMO invariant zLMO(M) of a closed 3-manifold M is defined to be in A(0) 
(Strictly speaking, it is defined to be in the completion of A(0) with respect to the 
degree). The LMO invariant is presented by 

zLMO(M) = exp（釘（M)口賃(M)□＋ （terms of connected diagrams of degree> 2)), 
where c; (M) is a scalar invariant of M. Note that c1 (M) is equal to (-1)h1 (M)入(M)/2,
where入(M)is the Casson-Walker-Lescop invariant and b1(M) is thc first Bctti numbcr 
of M. For details, see for example [8, 10]. 
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Let K be a knot in S叫andlet喜 isthe p-fold cyclic branched covers of K. We call 
a knot K p-regular if ~ん is a rational homology sphere, and we call a knot K regular 
if it is p--regular for all p. It is known that a knot K is p--regular if and only if its 
Alexander polynomial△K(t) has no complex pth root of unity. In [6], Garoufalidis and 
Kricker found the formula which present zLMO（況） byusing the loop expansion of the 
Kontsevich invariant of K. 

3 Results about the 3-loop invariant 

In this section, we state the results about the 3-loop invariant obtained in [17]. 

3.1 The 3-loop polynomial of D(K, K') 

Let K be a 0-framed knot, and let K'be a k-framed knot (k E Z). Let D, D'be 
I-tangles whose closures are K, K', respectively, noting that isotopy classes of D and D' 
are uniquely determined by K and K'. 

k＝ロ
(0-framing) 

K'= /
[
 

(1) 

We define D(K, K') to be the following knot, 

where n(2l and D1(2l are the doubles of D and D', respectively. We can obtain D(K, K') 
by plumbing of the doubles of K and K', noting that D(K, K') is a genus 1 knot with 
trivial Alexander polynomial. 
For a knot K, we denote the low degree Vassiliev invariants as follows. Let Cn be the 
coefficient of the Conway polynomial▽瓜z)＝LCn砂， andlet知 bethe coefficient of 
the Jones polynomial J訊叫＝区J五t匹 Notethat the Conway polynomial is defined by 
▽訊t1-t ＿る） ＝ふ(t).Then, we denote 

1 1 1 
a2 = -§c2, %＝一攣， 釘＝ "it(-12c4+碍ー伶） （2) 

We put Um,n = tm％ーl+t；；；1tn-2 and Vm,n = tmt:;;,1 -t;;;1わ (m,nE {1,2,3,4}). 
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Theorem 2. The 3-loop polynomial of D(K, K') is presented by 

AD(K,K1)(t1, t2, t凸）

= (-16叫— k2a2 ー 8ka3)(u1,2 + u1,3 + u1,4 +匹，3+ U2,4 + U3,4) 
k加

+(-~+4k国）（U1,4匹，4+ 妬，4四，4+ 匹孔3,4 + U1,3匹，3+附，3四，3+匹，3四，3
12 

十町呼3,2+ U1,2四，2+四，2四，2+四，直3,1+匹，1四，1+ U3,1四1)

+24k国（附，2四，4+妬，3匹，4+叫4匹，3)

+8k喝（出＋ら＋叱＋出＋出＋ u~,4)
k泌
-~ (V1,4砂，4+ V1,4V3,4 + V2,4V3,4 + V1,3砂，3+ V1,3V4,3 + V2,3V4,3 
4 

+v硬 3,2+ V1,2V4,2 + V3,2V4,2 + V2,1V3,1 + V2,1V4,1 + V3,1V4,1) 

E IQ[t戸，ttl,t乳ずl/（包，t山t3れ＝ 1).

In particular, we can get the 3-loop polynomial of untwisted Whitehead double of K. 
We denote it by Wh土(K).

Wh+(K) = Wh-(K)= 

Here, D is a 1-tangle whose closure is K as shown in (1). 

Corollary 3. The 3-loop polynomial of Wh士(K)is presented by 

Awh判K)(t1,t2, t3占）

= (-a2土8a3)(u1,2+ U1,3 + U1,4 + U2,3 + U2,4 + U3,4) 

+ （—胃＋如）（U1,4U2,4 + U1,4四，4+ U2,4U3,4 + U1,3四，3+ U1,3四，3+ U2,3四，3
+ U1,2U3,2 + U1,2四，2+ U3,2U4,2 + U2,1四，1+ U2,1四，1+ U3,1四，1)

+ 24四(U1,2U3,4+ U1,3四，4+ U1,4U2,3) 

+8吟(u『,2+ Ui,3 +出＋uむ＋u恥＋u恥）
a2 
-=f (V1,4 V2,4 + V1，心3,4+ V2，籾3,4+ V1,3V2,3 + V1,3V4,3 + V2,3凶，3
4 

+v1砂3,2+ V1,2凶，2+ V3,2四，2+ V2,1 V3,1 + V2,1 V4,1 + V3,1 V4,1) 

E Q[t戸，t戸酎，t戸l/（立，t山t山＝ 1).
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Remark 4. The 2-loop polynomial of W炉(K)is presented by [4, 13] 

8wい(K)(t1,t2，朽） ＝士4a2佑＋tll十わ＋ゲ＋朽＋tg1-6).

Moreover, the 2-loop polynomial of genus 1 knots are calculated in [13]. 

We can prove Theorem 2 by using the rational version of the Aarhus integral. For 
the Aarhus integral, see [l, 2, 3]. By considering the doubles of knots one of which is 0 
framing, the 3-loop polynomial of D(K, K') is relatively easy to calculate, see [17]. This 
and Remark 4 are some of reasons why we consider D(K, K'). 

3.2 A connected sum formula for the 3-loop invariant 

Let K1, K2 be 0-framing knots, and let K嘩応 betheir connected sum. 

Proposition 5. We get the 3-loop invariant of K嘩応 asfollows, 

A氏＃K2(t1,t2,t3山） ＝AK, (t1, t2, t3占）＋AK2(t1, t2, t3占）

tT(l)tT(2)t;-（畠△公,(tT(l)t;-（闊）△＇~l(tT(2)t；（ら） tT(l)t互ぶtT(3)t;-（切△'~l (tT(3)t；（ら）△~l(tT(l)t；ふ）
＋区 ＋区
"(24△叫tT(l)tふ）△K1(tT(2)tふ） "(24△叫tT(3)tふ）△叫tT(l)tふ）
TE64 TE64 

E~·Q[t戸， t戸 tt1,tt1J/(64, t1t2t山＝ 1),

In pa仕icular,if△K1 (t)＝△K2(t) = 1, then 

A凡＃K2(t1,t2, t3, t4) = AK, (t1, t2, tふい） ＋AK,(t1, t2, t3, t4) E Q[t戸，tデ，t炉，tずり／（64,t1t2位t4= 1). 

Remark 6. The 1-loop part of the Kontsevich invariant (that is, log知 (t))of K沸K2
and the 2-loop polynomial of K品K2are presented by 

log△氏＃K2(t)= log△K, (t) + log△K2 (t), 
e凡＃K2(t1,t2占） ＝8K1 (t1, t2心） ＋8K,(t1, t2，朽）．

This shows that up to 2-loop parts behave additively for the connected sum of knots. 
However, more than 2-loop parts do not behave additively, and the 3-loop part behaves 
as Proposition 5. 
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3.3 The 3-loop part of the colored Jones polynomial 

The colored Jones polynomial ln(K; t) is the polynomial invariant of knots, which is 
obtained by 

み(K;t)= 
Vn(K; t) tl/2 -t-1/2 

V (the unknot; t) ＝ tn/2 _ t-n/2 
・ Vn(K; t), 

n 

where Vn(K;t) is obtained by見(K;e-h)＝ Ws[2:V”(Z(K)）， and w由，v”denotestheweight
system derived from the Lie algebra sb and its irreducible representation Vn. For details, 
see [11, 10, 9]. It is known, see Conjecture 1.2 of [15], Theorem 1.2 of [16], Proposition 
3.1 of [14], that ln(K; t) can be presented in the following form, 

Jn(K；砂）＝区hl区如(nh)K＝区hl 月(enh)

l：：：：゚ k：：：：O l>O 
紐 (enh)2l+l

for some Pz(t) E (Q)[t土1].This is called the loop expansion of the colored Jones polynomial. 
杓(enh)

The 3-loop part of the colored Jones polynomial is given by 
△瓜已）が

1 1 

For a knot K,位（d,tぅ，t方，t―1)is a symmetric rational form in t土1divisible by t -1 
(since AK(l, 1, 1, 1) = 0) and, hence, divisible by (t -1)2. We define the reduced 3-loop 
invariant by 

心(t)= 
紐(t½,t½,t― i ，パ） 1
匹— t-1/2)2

€ 
ふ (t)4
. (Q)[t土1],

which is symmetric! int土1.If知 (t)= 1, then this is a polynomial, so we call it the reduced 

3-loop polynomial. We denote the reduced 2-loop polynomial by匂(t)= 
8K(t, t―1,1) 
(tl/2 _ t-1/2)2 

defined in [12]. 

Proposition 7. The 3-loop part of the colored Jones polynomial 
乃（enh)

△K(enh戸
is presented 

by 

A(t) /,l/2,-1/2,2AK(t), (t1l2-t―1/2)4 ^ 

△瓜t)5
= (tl/2 -t―1/2戸＋

凶 (t)'2ふ (t)5
釦 (t)2

＋ 
△~(t)柱△~(t)柱△~(t)平
3(t -1)ふ (t)2+6ふ (t)2―3ふ (t)3.

Po(enh) 
Remark 8. The 1-loop part of the colored Jones polynomial ~ and the 2-loop 

△K(enh) 
片（enh)

part of the colored Jones polynomial ~ are presented by 
△K(enh)3 

Po(enh) = l P1い） ＝ー（t1/2-t-1/2)2 
ふ (enh) △瓜t)' ふ (enh料（ふ(t)3)

釦(t).
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For details, see [12]. 

4 Results about the degree 2 part of the LMO invariant 

In this section, we state the results about the degree 2 part of the LMO invariant 
obtained in [18]. 

Proposition 9. For all p and p-regular knot K, we have 

伶 (I:~)
3 1 1 1 3 1 1 1 3 1 1 1 - -- -- -- - -- -- -- - -- -- -- K 

48p2 " ~録(W[W2 4W3 4,W1 4叫W34,W1 4W2 4碍，W14W2 4W3 4) ＋ lp • 
wf=W~=W~=l 

ー

Here, lJf is a scaler invariant of a knot K, which can be calculated by an equivariant 

linking matrix of a surgery link in S八K.For details, see [6]. 

Remark 10. For all p and p-regular knot K, we have 

(co（滉）＝）間（喜）I=Illふ(w)I,
wP=l 

叫喜）
1'°"'8K(w1,w2,(w1四）ー1)'1
＝面区心（叫ふ（叫ふ((W図）一1)＋元咋(K),
wf=w炉1

where <Yp(K) is p-signature of K. 

Let K be a regular knot. For i = 0, 1, 2, we can regard｛叫喜）｝p=l,2,---as families of 
invariants of K. Proposition 9 and Remark 10 show that i-loop part (i-loop polynomial) 
of the Kontsevich invariant of K is an universal invariant among { ci（葛t)}p=l,2，・・・・

For D(K, K'), we can show that z{;(K,K') = 0. Therefore, we obtain the following 
theorem and corollary. 

Theorem 11. For all p > 2, we have 

C2（喝（K,K'))
1 

48p2 " ~" -A 

3 1 1 1 3 1 1 1 3 1 1 1 
(wt ―z -1 ―•wJ ―可―1 ― •wf ― 1 ― I ― ZD(K,K’)叫吟吟，W1 吟叫，W1 吟 W3,Wl吟ら）

w『＝碍＝w[=l

= （→ ＋ ［五＋2如＋ 10k国＋6k喝）p.
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Corollary 12. For all p > 2, we have 

叫喝圧(K))
1 

区
3 1 1 1 3 1 1 1 3 1 1 1 

48p2 
Aw尼(K)（W{w24W3 4,W1 4碍W34,W1 •w2 4碍，W14W2 4W3 4) 

w『=W炉哨＝1

= （］四干2a3+ 10四十 6a~) p. 

5 Future directions 

Lastly, we consider some problems about the calculation of AK and c2 for future direc-
tions. 
For the 2-loop polynomial, some clasper surgery formulas are concretely presented in 
[13]. Clasper surgery formulas are useful to calculate them for some classes of knots. 
However, such clasper surgery formulas have not been presented concretely for the 3-loop 
invariant so far. Thus, it is one problem to present clasper surgery formulas concretely 
for the 3-loop invariant for clasper surgery along some (simple) claspers. 
Further, it is another problem to determine the set of possible values of triple 

（ふ(t),8K(t1, t凸），知(t1,t2,t3山））． Thisproblem would be hard to solve in general, 
so it may be good to consider some further simplified cases, for example, to determine the 
set of possible values of the 3-loop polynomial of K withふ (t)= 1 and 8叫 1,t2ん） ＝0. 
Moreover it is good to find some useful formula or method to calculate 2-loop polynomial 
and 3-loop invariant concretely. 
For a closed 3-manifold M, the invariant c1(M) is equivalent to the Casson-Walker-
Lescop invariant of M, and it is well-studied. However, not much is known about位(M)
so far. Thus, it is good to calculate c2(M) for other examples, or to find some formula or 
method to calculate it. 
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