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1 Hyperbolic L-space knots 

(Masakazu Teragaito) 

A knot is called an L-space knot if it admits a positive Dehn surgery yielding an 
L-space. It is not too much to say that L-space knots provide an important class 
of knots from the perspective of Heegaard Floer theory. 

We are interested in concordances from knots to L-space knots or among L-
space knots. There are several precedent works on this topic. Zemke [35] gives 
an obstruction derived from knot Floer complex, and shows that T(4, 5)#T(4, 5), 
T(4, 5)#T(6, 7), T(6, 7)#T(6, 7), -T(3, 4)# -T(4, 5)#T(5, 6) (and others) are not 
concordant to an L-space knot or the mirror image of an L-space knot. This was 
extend by Livingston [22] to show that no connected sum of at least two positive 
torus knots is concordant to an L-space knot. Moreover, Allen [2] showed that if 
T(p,q) and T(r,s) are positive torus knots and mT(p,q)#nT(r,s) (m,n E Z) is 
concordant to an L-space knot, then (m, n) = (1, 0) or (0, 1). 

Question 1.1 (M. Teragaito). Do there exist distinct hyperbolic L-space knots which 
are concordant? 

Dunfield determines 632 hyperbolic L-space knots whose complements consist of at 
most 9 ideal tetrahedra. The list can be found in [3], and Baker and Kegel [5] give 
the braid words for these 632 knots. By Krcatovich [20], the Alexander polynomial 
is a concordance invariant for L---space knots. That is, if two L-space knots K1 and 
K2 are concordant, then they share the same Alexander polynomial. I confirmed 
that there is no duplication of Alexander polynomials in Dunfield's list of hyperbolic 
L-space knots. This is the reason why I am skeptical about Question 1.1. 

As Motegi informed me, it is known that any L-space knot is tight fibered. Re-
cently, Abe and Tagami [1] show that all tight fibered knots are minimal with respect 
to ribbon concordance. Hence, Question 1.1 is negative if we replace'concordant' 
with'ribbon concordant'. 

Question 1.2 (M. Teragaito). Does there exist a hyperbolic L-space knot which is 
concordant to a torus knot? 

Again, I have checked that there is no example in Dunfield's list. 

2 Vanising of twisted Alexander polynomials of knots 

(Masaaki Suzuki) 

Let K be a knot and G(K) the knot group. For a finite group G and for a 
homomorphism f : G (K)→G, we can consider the twisted Alexander polynomial 

△炉(t),where p : G →GL(IGI, Z) is the regular representation of G. In this 
situation, Friedl and Vidussi showed the following. 

Theorem ([9]) A knot K is non-fibered if and only if there exists a finite group G 
and a surjective homomorphism f : G(K)→G such that the twisted Alexander 
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polynomial△炉(t)is zero. 

Then in [26] we define the minimal order O(K) of a knot K as the smallest order 
of a finite group G such that there exists a surjective homorphism f : G(K)→ G 

with△炉(t)= 0. By the above theorem, O(K) is finite for any non-fibered knot 
K. On the other hand, we define O(K) = +oo for a fibered knot K. 

Question 2.1 (T. Morifuji and M. Suzuki). For a non-fibered knot K, how can 

we find a finite group such that△炉(t)= O? Moreover, can we determine O(K) 
explicitly for a given knot K? In particular, what is a finite group G such that 
△百(t)= O? We have an inequality 125 ~ 0（む）~ 2520, then what is 0(52) 
precisely? 

We see that the twisted Alexander polynomial is not zero for any abelian group. 
Then it is natural to ask another class of finite groups. 

Question 2.2 (T. Morifuji and M. Suzuki). Can we characterize finite groups such 

that△炉(t)-/=0 for any Kand f? 

We are not sure the minimal order O(K) is unbounded or not. 

Question 2.3 (T. Morifuji, Y. Nozaki, and M. Suzuki). Is the minimal order O(K) 
unbounded? 

3 Calculation of the 3-loop invariant of knots 

(Kouki Yamaguchi) 

The Kontsevich invariant x―1 Z(K) of knots is a powerful invariant which is uni-
versal among all quantum invariants of knots and Vassiliev invariants of knots, and 
it is expected that the Kontsevich invariant would classify knots. The Kontsevich 
invariant of a (0-framed) knot K can be presented in the following form, which is 
called the loop expansion, 

log(x―1z(K)) = 

がog（弓茫）―½ logふ（砂）

二
finite 

＋ど

Pい（砂）／△K（砂）
/~ ＼ 

Pi,2（砂）／△K（砂）

finite 

＋と
finite 

＋ど

+ (terms of(> 3)-loop part), 
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where△訊t)denotes the Alexander polynomial, and Pi,J（砂），qi,j（砂），ri,j（砂） are
polynomials in e士h_ Here, a labeling of J(h) = c。+c1h+ c訳＋ c訳＋．．． im-
plies that, 

f(h) 
= Co 十 C1 十C2／十 C3/+ 

For details, see [11, 21, 27]. The 1-loop part is presented by the Alexander polyno-
mial. The 2-loop part is presented by the 2-loop polynomial叫 (ti,t公屁）， whichis 
given by 

釘 (t1,t2心） ＝ L Pm,i(tDPm,2信）Pm,3ば） E(Q[t戸，t戸閏／（邑xZ/2Z,t山朽＝ 1).
m 

€＝土1
{ i,j,k }={1,2,3} 

Further, the 3-loop part is presented by the 3-loop invariant (or, the 3-loop polyno-

mial) AK(ti, t2, t3，れ）， whichis given by 

紐 (t1,t2, t3山）

＝区
qi,1 (t:？悶后悶~T)qi,2(t:？悶tT-(Sぷ7)qi,3(t貫悶后悶~T)qi,4(t貫悶t;t喜~T)qi,5(t:？悶t;t1i門qi,6(t雷］に言り

△K(tlt]1)△K(t2t]り△瓜朽t4り△瓜むt31)△瓜朽tけ）△K(t1t21)
TE釘

＋こ 八1(t貫悶t;t:inT 兄，2(t閂貫t~-（悶近い，3(t:？悶互ぷ囁i,5(t閂悶t~-（胃面兄，6(t閂誓に雷り
△K(tr(l)応切）2△訊tr(2)仁ふ）△K(tr(3)にん）△K(tr(3)にふ）△K(tr(l)t;(ぶ）

TE64 

E h・Q[t戸，t戸 t乳t杓I（釣，t山t山 ＝ 1),

where we put 

A=△K(t1t4り△K（むt；り△K仇tiり△K伍t3り△K（柘t［り△K仇t21).

In particular, if△K(t) = 1, then AK(t1, t2, t3, t4) is a polynomial, so in this case, we 
call it the 3-loop polynomial. For details, see [34]. In general, for an arbitrarily given 
knot K, it is not easy to calculate the 2-loop polynomial and the 3-loop invariant 
of K concretely. 

For the 2-loop polynomial, some clasper surgery formulas are concretely presented 
in [28], which describe the changes of the 2-loop polynomial under clasper surgeries. 
Such formulas are useful to calculate the 2-loop polynomial for some classes of knots. 
However, such clasper surgery formulas have not been presented concretely yet for 
the 3-loop invariant so far. 

Problem 3.1 (K. Yamaguchi). Present clasper surgery formulas concretely for the 
3-loop invariant for clasper surgeries along claspers such as 

パ and :・  
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From the viewpoint of the classification problem of knots, it is an important 
problem to determine the image of the Kontsevich invariant. When we restrict this 
problem to the（:S 3)-loop part, it is a problem to determine the set of possible 
values of the triple（△x(t), 8x(t1, t2, t3), Ax(ti, t2, tふね））． We consider a further 
simplified case of this problem in the following problem. 

Problem 3.2 (K. Yamaguchi). For a (0-framed) knot K withふ (t)= 1 and 
8x(t1, t2，朽） ＝ 0, determine the set of possible values of the 3-loop polynomial 
Ax(t1, t2, t3, t4). 

4 An embedding of the Kauffman bracket skein algebra of 

a surface into a localized quantum torus 

(Ramanujan Santharoubane) 

For E a compact connected oriented surface with genus at least one without 
boundary component, we denote by S(E) the skein algebra of E x [O, 1], we see it 
as a Z[A土1]-algebra.For a given pants decomposition P of E, a localized quantum 
torus A(P) is defined in [7]. Recall that we need first to consider the quantum 
torus T(P) over Z[A士1]with variables {Ee, Qe I e E P} where all variables commute 
except Q e and尻 (forall e E P) that satisfy Qe尻＝ AE心e.Viewed as a ring, the 
quantum torus T(P) is an integral domain so we can define A(P) to be a Z[A士1]-
algebra containing T(P) where A宜—A-k叩 is invertible for all e E P and k E Z. 
One of the main result in [7] was to build an embedding 

咋： S(E)→A(P).

The first natural question is to know what happens when we change the pants 
decomposition. It is known that we can go from one pant decomposition to another 
via a finite number of elementary moves. 

Question 4.1 (R. Santharoubane). Given two pants decompositions P，戸 ofE, 
can we find a Z[A±1 ]-algebra homomorphism咋，P':A(P)→A(P')such that咋＝

咋，P'oびp?

A positive answer to this question would allow us to define an universal localized 
quantum torus in which S(E) would embed. 

Another problem concerns Aut(A(P), S(E)) which is the group of automorphisms 
of A(P) being the identity onびp(S(E)).

Question 4.2 (R. Santharoubane). What is Aut(A(P), S(E))? 

In [10], Frohman and Gelca built an embedding of the skein algebra of the torus 
into a quantum torus (not localized) and they proved that the image of the skein 
algebra of the torus (by the embedding) is exactly the invariant set of certain auto-
morphisms of the quantum torus. This allowed them to get a beautiful formula for 
the product of simple curves in the skein algebra of the torus. Hence we can raise 
the following vague question. 
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Question 4.3 (R. Santharoubane). Can we get from the knowledge of (Yp and 
Aut(A(P), S(I;)), a formula a la Frnhman-Gelca for the product of two curves in 
S岱）？

5 The distance on Teichmu istance on Teichmiiller space via renormalized vol-

ume 

(Hidetoshi Masai)2 

Let S be a closed surface of genus g 2: 2, and T(S) the Teichmiiller space of 
S. The space of quasi-Fuchsian manifolds is parameterized by T(S) x T(S). Let 
qf(X, Y) denote the quasi-Fuchsian manifold corresponding to (X, Y) E T(S) x 
T(S). We denote by VR(X, Y) the renormalized volume of the quasi-Fuchsian man-
ifold qf(X, Y). The map VR : T(S) x T(S) is not a distance. In fact, it is known 
([23, Theorem 7.2]) that the function VR: T(S) x T(S)→民 doesNOT satisfy the 
triangle ineq叫 ity.

In [23], we define a distance dR on T(S) via the renormalized volume, and demon-
strate that the distance dR is natural to the volume of hyperbolic 3-manifolds. Given 
X, Y E T(S), let 

心(X,Y) := sup VR(X, Z) -VR(Y, Z). 
ZET(S) 

One important feature of dR is the following. 

Theorem ([23]) Let心EMCG(S) be a pseudo-Anosov mapping class and M（心） ＝ 
SxI/(x, I)~（心(x),0) denote the mapping torus of心． Thenthe translation distance 
of心withrespect to dR is equal to the hyperbolic volume of M（心）， thatis, for any 
XE  T(S), we have 

1 
lim -d瓜X，炉X)= vol(M（い））．
n→oo n 

In the proof, we utilize some ergodic theory, which is inspired by Karlsson-Ledrappier 
[14, Proof of Theorem 1.1], see [23, Theorem 7.10] for the proofs. 

The distance dR is still very mysterious. Similarly to the case of Weil-Petersson 
(WP) metric, as (T(S), d叫isnot complete, we may not use Hopf-Rinow Theorem 
to find geodesics. 

Question 5.1 (H. Masai). Is (T(S), d叫ageodesic space? 

As dパ・，・）:::::;3✓召］二汀dwµ(·, ・) ・, •), one easily sees that T(S) is contained in the 
completion of (T(S), d砂

Question 5.2 (H. Masai). What is the metric completion of (T(S)，心）？

2Department of Mathematics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo. 152-8551. 
Japan. 

Email: masaicmath.titech.ac.jp 
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Also it is interesting to understand the action of pseudo-Anosov maps. Let 心€
MCG(S) be pseudo-Anosov. Then the axis of心shouldbe a geodesic of dR invariant 
under似

Question 5.3 (H. Masai). Does every pseudo-Anosov map have a (unique?) geodesic 
axis? 

The distance dR is quasi-isometric to dwp [23], and (T(S), dwp) is CAT(O) [33]. 
Although CAT(O)-ness is not invariant under quasi-isometry, we might expect: 

Question 5.4 (H. Masai). Is (T(S)心） aCAT(O) space? 

The horoboundaries may be used to identify isometry groups (see e.g. [31]). In 
似1],except for some sporadic cases, Walsh identified the isometry group of the 
Thurston metric with the so-called extended mapping class groups (see [31] for the 
definition). 

Question 5.5 (H. Masai). Is Isom(T(S), d叫 equalto the extended mapping class 
group? What about self-maps on T(S) preserving Vj砂

Since we are taking supremum in the definition of dR, several properties of VR 
(say, smoothness) is not a priori inherited to dR. Let us finish the paper with the 
following question. 

Question 5.6 (H. Masai). Is there a Riemannian or a Finster metric on T(S) 
which defines d冦

6 Invariants of 3-manifolds obtained from the Heisenberg 

doubles of Hopf algebras 

(Sakie Suzuki) 

The Heisenberg double of a finite-dimensional Hopf algebra H has a canonical 
element that satisfies a pentagon relation [17]. By associating the canonical element 
with ideal tetrahedra, we constructed in [24, 25] an invariant Z(M, f; H) for framed 
closed 3-manifolds (M, f) with vanishing first Betti number b1(M). 

Let us take H =叫叩） thesmall quantum Borel subalgebra with q the n-th 
primitive root of unity. In this case we have 

Z(S叫f；四（Sけ）） ＝ q―1' 

where f is the framing extending the combing induced by the Hopf fibering, and we 
have 

Z(L(2, 1), f⑳ q(s(t)) = 2q―1 9 

l-q―l吋月

1-q-1 

where £(2, 1) is the lens space and f is the framing extending the canonical combing 
induced by its Seifert fibered structure. When q is a primitive root of unity of odd 
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order N, the above values match, up to multiplication by q, the S0(3) Witten-

Reshetikhin-Turaev (WRT) invariant心0(3¥M)[19, 29, 32] times the cardinality 
間 (M)Iof the first homology group. 

Question 6.1 (S. M. Mihalache, S. Suzuki, Y. Terashima [25]). Let M be a closed 
oriented framed 3-manifold with b1(M) = 0. For a primitive root of unity q of odd 
order N, is it true that 

Z(M,f；四（.sl!))= qk ・ IH1(M)I ・ T!0(3)(M) 

for some integer k ? 

Recall that the WRT invariant is an invariant of 2-framed 3-manifold, where 
one usually chooses canonical 2-framing to compute it. Since framing f induces a 
2-framing v2, it is natural to ask the following question. 

Question 6.2 (S. M. Mihalache, S. Suzuki, Y. Terashima [25]). Under the same 
assumption in Question 6.1, does the following equation hold? 

Z(M,f⑳ q(.slt)) = IH1(M)I ・ Ti゚(3)（M,v2)．

The Turaev-Viro invariant [6, 30] is defined as a state sum invariant using tri-
angulations and 6j-symbols. In particular, we can obtain the invariant TV,.(M) 
associated with the quantum group Uq国）， whereq112 is a 4r-th primitive root of 
unity. It is known that the Turaev-Viro invariant is equal to the absolute square of 
the WRT invariant. 

Problem 6.3 (S. M. Mihalache, S. Suzuki, Y. Terashima). Reconstruct TV,.(M) 
from Z(M,f；叫叫）） byestablishing a relation between the canonical element and 
the 6j-symbol. 

Problem 6.4 (S. M. Mihalache, S. Suzuki, Y. Terashima). More generally, construct 
6j-symbols from the canonical elements of the Heisenberg doubles. 

For the quantum Borel subalgebra Un(.sl!) (n-adic ver.) of.s(2, the pentagon 
equation of the canonical element of Heisenberg double turns out to be essentially 
the Fadeev-Kashaev's pentagon identity for the quantum dilogarithm [8, 17]. The 
pentagon identity for the quantum dilogarithm was the crucial result sitting behind a 
sequence of important works [4, 12, 13, 15, 16, 18] related to the Kashaev invariant of 
links, the volume conjecture, and investigation of 3-manifolds invariants and TQFT 
using the quantum dilogarithm and quantum Teichmiiller Theory. 

Problem 6.5 (S. M. Mihalache, S. Suzuki, Y. Terashima). Define Z(M, f; H) for 
the infinite dimensional Hopf algebra H = Un(.sl2), which realizes an invariant asso-
ciating the quantum dilogarithm with ideal tetrahedra. Generalize it to TQFT and 
establish a relation with the quantum Teichmiiller Theory. 

Problem 6.6 (S. M. Mihalache, S. Suzuki, Y. Terashima). Formulate a volume 
conjecture using the anticipated invariant Z(M, f;瓜（sら）） inProblem 6. 5 (or using 
the family Z(M, f; uq(.sl!)) for roots of unity) by specifying a relation between the 
canonical element of the Heisenberg double and the volume of ideal tetrahedra. 
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