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Abstract
Purpose  To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) 
images of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph 
node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance 
to radiologists.
Methods  We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage 
information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity 
projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of 
the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as 
well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, includ-
ing accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times 
were recorded.
Results  In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. 
With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the 
accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with 
the median reduction ratio 38.0%.
Conclusion  The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increas-
ing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations 
using MIP images.
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Introduction

Lung cancer is the leading cause of cancer-related death 
in the United States, with 237,000 new cases and 130,000 
estimated deaths in 2022 [1]. Non-small cell lung cancer 
(NSCLC) is the most common type of lung cancer, including 
more specific types, such as adenocarcinoma and squamous 
cell carcinoma [2]. Accurate diagnosis of hilar or mediasti-
nal lymph node metastasis is essential to determine the treat-
ment strategy for NSCLC, which includes surgery, radiation 
therapy, and chemotherapy [3]. The American College of 
Chest Physicians guidelines recommend positron emission 
tomography (PET) with 2-deoxy-2-[F-18]fluoro-d-glucose 
(FDG) for staging NSCLC [4]. However, the diagnostic 
performance of FDG-PET for hilar or mediastinal lymph 
node metastasis of NSCLC varied among reports, and the 
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sensitivity and the specificity were not very high even with 
FDG-PET. According to Schimmer et al., FDG PET with 
or without integrated CT had a sensitivity of 58–94% and a 
specificity of 76–96% in detecting mediastinal lymph node 
metastasis [5]. Subsequently, low sensitivities and high spe-
cificities of FDG PET/CT in surgical cases were reported: 
Billé et al. reported a sensitivity of 54.2% and specificity of 
91.9% [6], and Ose et al. reported a sensitivity of 50.0% and 
specificity of 94.5% [7]. Improving the diagnostic perfor-
mance of FDG-PET in predicting lymph node metastasis is 
clinically important. For example, if the absence of lymph 
node metastasis could be accurately diagnosed using pre-
operative FDG PET scans, surgeons could select sublobar 
resection, such as segmentectomy and wedge resection with 
or without selective lymph node dissection, which may be 
associated with fewer postoperative complications [8, 9]. In 
contrast, if hilar or mediastinal lymph node metastasis was 
detected on preoperative FDG PET scans, induction chemo-
therapy or other therapies would be considered.

In recent years, machine learning methods have been 
introduced for oncologic FDG PET imaging [10]. More 
recently, deep learning methods using convolutional neural 
network (CNN) were introduced to analyze medical images, 
as well as to predict lymph node metastasis of NSCLC 
[11–13]. In this study, we focused on the use of maximum 
intensity projection (MIP) images from FDG PET. This 
may address the class imbalance problem of simply pro-
viding 2D slices of FDG PET to the CNN, that is, because 
most 2D slices of FDG PET do not include abnormal find-
ings, CNN tends to classify more 2D slices as normal than 
actual. Kawauchi et al. developed a CNN-based system to 
classify FDG PET/CT examinations into benign, malignant, 
or equivocal FDG PET images, and reported accuracies of 
99.4, 99.4, and 87.5% for benign, malignant, and equivocal 
images, respectively [14]. They preferred MIP images to 
2D slices regarding the class imbalance problem, because 
most MIP images of malignant patients contain FDG accu-
mulation. We also focused on diagnostic assistance for 
radiologists using the CNN. The frequent use of FDG-PET 
to examine malignant tumors has increased the burden on 
radiologists. Approximately two million PET scans are 
performed annually in the United States according to the 
Lawrence Berkeley National Laboratory [15]. In Japan, the 
total number of FDG PET studies in 2017 was 630 570, a 
24.5% increase compared to the result in 2012 [16]. Machine 
learning methods are expected to assist radiologists beyond 
simply making diagnoses, as their workload increases [17].

We hypothesized that a CNN-based system analyzing 
MIP images of FDG-PET would improve the diagnos-
tic performance for lymph node metastasis in NSCLC. 
In addition, we expected that the system would reduce 

the reading time of the radiologists. This study aimed to 
develop a CNN-based program analyzing MIP images of 
FDG PET to predict lymph node metastasis of NSCLC and 
to evaluate whether it could provide diagnostic assistance 
to radiologists.

Materials and methods

Patients

This study used FDG PET images obtained from The Can-
cer Imaging Archive (TCIA) [18], a public database of 
medical images. Due to the anonymous and public nature 
of the TCIA, ethics committee approval was not required 
under the regulations of our country.

We obtained data from six databases in TCIA: ACRIN-
NSCLC-FDG-PET (n = 232), NSCLC Radiogenomics 
(n = 153), CPTAC-LSCC (n = 7), CPTAC-LUAD (n = 3), 
TCGA-LUSC (n = 23), and TCGA-LUAD (n = 17). The 
details of these databases are described elsewhere [19–26]. 
The inclusion criteria were as follows: (1) available FDG 
PET images obtained using dedicated PET scanners or 
combined PET/CT scanners and (2) available N stage 
information. The N stage diagnostic criteria were accord-
ing to AJCC 5th Edition (n = 232), 6th Edition (n = 16), 
7th Edition (n = 16), 8th Edition (n = 5), or unavailable 
(n = 166). This study focused on whether lymph node 
metastasis was present (N0 or N1–3). Therefore, it was 
unaffected by the differences among the diagnostic cri-
teria. Regarding ACRIN-NSCLC-FDG-PET, the proto-
col for nodal metastasis diagnosis was based on clinical 
information including conventional imaging. The other 
five databases provided the pathological N stage.

The cohort was randomly divided into a training set 
(70%) and test set (30%).

A schematic representation of the patient selection pro-
tocol is illustrated in Fig. 1.

Data preprocessing

For each patient, we generated MIP images of the thoracic 
region from the PET images at increments of 10º rotations 
up to 360° (0°, 10°, …, 350°). The thoracic regions were 
identified by a board-certified radiologist with 7 years of 
experience. The SUV range of 0–5 was converted linearly 
to greyscale of 0–1 for every patient. The MIP images 
were resized to (224, 224) pixels and converted from grey-
scale to RGB to match the input shape of the pre-trained 
base model described below.

For each patient, the N stage was reclassified into two 
categories: N0 and N1–3.
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Architecture of the CNN

We used the pre-trained ResNet-50 [27] as the base model. 
ResNet-50 is a 50-layer CNN using “residual” blocks to 
solve the gradient disappearance problem and has an 
input shape of (224, 224, 3) and 1000 output classes. We 
removed the original output layer and appended a fully 
connected layer comprising 256 neurons and an output 
layer of two categories corresponding to N0 and N1–3 
(Fig. 2a). We also used the transfer-learning technique 
because of the relatively small size of the dataset. That 
is, the layers from the original ResNet-50 were initialized 
and frozen with weights from pre-training on ImageNet, 
and only the appended layers were trained on our data-
set. Fivefold cross-validation was used to optimize hyper-
parameters, such as batch size and epochs.

To confirm that ResNet-50 was an appropriate base model 
for this study, we compared it to VGG-16 and DenseNet, 
which were used in previous studies dealing with NSCLC 
and FDG PET [11, 28]. The mean accuracy of fivefold cross-
validation in the training set was 0.721, 0.715, and 0.716 for 
ResNet-50, VGG-16, and DenseNet, respectively. Because 
the differences were small and ResNet-50 was already used 
in a previous study dealing with MIP images of FDG PET 
[14], we selected ResNet-50 as the base model.

We applied Grad-CAM and guided Grad-CAM [29] to 
the CNN to identify which part of the MIP image the CNN 
focused on (Supplementary Fig. 1).

Prediction by the CNN

We trained the CNN using MIP images of patients in the 
training set to predict N0 or N1–3 for each MIP image. It 
should be noted that MIP images of 180° to 350° rotations 
were horizontal flips of MIP images of 0° to 170° rotations 
and could be considered data augmentation. To predict 
N0 or N1–3 for each patient, we introduced weighting of 
the MIP angles. For each patient, the CNN returned 36 
values, representing the probabilities of N1–3 for 36 MIP 
angles (0°, 10°, …, 350°). The probability of N1–3 for 
the patient was calculated as a weighted average of the 
probabilities of N1–3 for 36 MIP angles with optimized 
weights. The optimized weights were identical through-
out this study and calculated as follows: (1) out-of-fold 
predictions were obtained for all the MIP images in the 
training set using fivefold cross-validation, and a correla-
tion matrix of probabilities of N1–3 for 36 MIP angles 
was created; (2) weights were optimized by minimizing 
the mean squared error (MSE) of the patient-based pre-
dictions defined above on the training set. The MSE was 
defined as 1

n

∑n

i=1

�

P
i
− T

i

�2 where Pi is the probability of 
N1–3 calculated as a weighted average, and Ti = 0 for N0 
and 1 for N1–3 for the ith patient.

After training the CNN and optimizing the weights 
using the training set, we predicted N0 or N1–3 for 
patients in the test set. A probability of N1–3 greater than 
0.5 was considered a positive prediction.

Prediction by the radiologists

For each patient in the test set, four board-certified diag-
nostic radiologists (Exp1, Exp2, Exp3 and Exp4, with 13, 
10, 20 and 13 years of experience, respectively) and three 
2nd-year residents (Res1, Res2 and Res3) predicted N0 or 
N1–3 using the 36 MIP images. Screenshots of the soft-
ware used in the experiments are shown in Supplementary 
Fig. 2. First, the radiologists examined the MIP images and 
predicted the probability of lymph node metastasis, which 
was entered using a slider with values ranging from 0 to 
100 (Supplementary Fig. 2a). The 2D slices of PET, CT, 
and fusion were not used. The time required for prediction 
was also recorded. The time required to move the slider 
was not included to accurately measure the prediction 
time. Subsequently, the radiologists predicted N0 or N1–3 
for each patient with CNN assistance, that is, referring 
to the CNN prediction for each patient (Supplementary 
Fig. 2b). The initial value of the slider is the probability 
that the radiologist predicted in the first step. Figure 2b 
illustrates the process diagram showing how the CNN and 
radiologists predicted N0 or N1–3 for each patient.

1932 patients from 6 datasets in TCIA
- ACRIN-NSCLC-FDG-PET
- NSCLC Radiogenomics
- CPTAC-LSCC
- CPTAC-LUAD
- TCGA-LUSC
- TCGA-LUAD

No PET images (n=1491)

435 patients
N0 (n=212), N1–3 (n=223)

No N stage available (n=6)

Randomization

<Test set>
131 patients
N0 (n=64), N1–3 (n=67)

<Training set>
304 patients
N0 (n=148), N1–3 (n=156)

70% 30%

Fig. 1   Flow chart showing the patient selection protocol
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Statistical analysis

Accuracy, sensitivity, and specificity in the prediction of 
N0 or N1–3 for the test set were calculated for the CNN 
and the radiologists with and without the assistance of the 
CNN. For each radiologist, the accuracies were compared 
between the predictions with and without the assistance of 

the CNN using the binominal test, and the prediction errors 
and times were compared using the Wilcoxon signed-rank 
test. The prediction error was defined as |

|

P
i
− T

i
|

|

 where 
Pi is the predicted probability of N1–3, and Ti = 0 for N0 
and 1 for N1–3 for the ith patient. It should be noted that 
a decrease of the prediction error can be interpreted as an 
increase of the diagnostic confidence.
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Fig. 2   a Functional architecture of the CNN. b Process diagram showing how the CNN and the radiologists predicted N0 or N1–3 for each 
patient
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Hardware/software environments

Training and testing of the CNN were performed under the 
following conditions: operating system, Windows 10 64bit; 
CPU, AMD Ryzen 7 3700X; RAM, DDR4-2666 32 GB; 
GPU, NVIDIA GeForce RTX 2070 SUPER 8 GB; frame-
work, TensorFlow 2.4; language, Python 3.8. Statistical 
analysis was performed using R version 4.1 (R Foundation 
for Statistical Computing, Vienna, Austria).

Results

From six datasets in TCIA, we included 435 patients (men: 
290, women: 145; mean age ± SD: 66.5 ± 9.5 years; range 
37–87 years). The N stages were N0 (n = 212); N1 (n = 37); 
N2 (n = 83); and N3 (n = 103). The stages were stage I 
(n = 136); stage II (n = 39); stage III (n = 246); stage IV 
(n = 6); not available (n = 8). Table 1 presents the character-
istics of the patients in the training and test sets. In the test 
set, 67 patients (51%) exhibited nodal metastasis (N1–3).

We trained the CNN and optimized its weights using the 
training set. Figure 3 shows the correlation matrix of the 
out-of-fold predictions for different MIP angles. The cor-
relations between two angles which differed by nearly 90° 
were relatively low. Using the trained CNN and optimized 
weights, we predicted N0 or N1–3 for patients in the test set.

Table 2 shows the metrics for the predictions on the 
test set by CNN and the radiologists with and without the 
assistance of the CNN. The accuracy of CNN was 0.748. 
With the assistance of the CNN, the accuracies of the radi-
ologists did not change significantly. The prediction error 
was reduced for all the seven radiologists and reduced with 

Table 1   Patient characteristics 
of the training and test sets

For continuous variables, data are presented as medians (IQR) and compared using Wilcoxon rank-sum test
For categorical variables, data are presented as n (%) and compared using Fisher’s exact test

Training set (n = 304) Test set (n = 131) p value

Age, median (IQR) 68.0 (62.0–74.0) 67.0 (59.0–72.0) 0.065
Gender 0.18
 Male, n (%) 209 (69%) 81 (62%)
 Female, n (%) 95 (31%) 50 (38%)

N-stage, n (%) 0.53
 N0 148 (49%) 64 (49%)
 N1 25 (8.2%) 12 (9.2%)
 N2 54 (18%) 29 (22%)
 N3 77 (25%) 26 (20%)

Stage, n (%) 0.72
 I 93 (31%) 43 (33%)
 II 30 (10%) 9 (7.0%)
 III 170 (57%) 76 (59%)
 IV 5 (1.7%) 1 (0.8%)
 Unknown 6 2

Histology, n (%) 0.17
 Adenocarcinoma 98 (63%) 40 (61%)
 Squamous cell carcinoma 47 (30%) 25 (38%)
 Other 11 (7.1%) 1 (1.5%)
 Unknown 148 65
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Fig. 3   Correlation matrix of out-of-fold predictions for different MIP 
angles
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Table 2   Performance metrics of the predictions on the test set by the CNN and the radiologists with and without CNN assistance

Bold font indicates statistical significance (p < 0.05)

Accuracy Sensitivity Specificity Error (mean) Time (mean [second])

CNN  
assistance

No Yes p No Yes No Yes No Yes p No Yes p

CNN 0.748 0.731 0.766 0.292
Exp1 0.718 0.740 0.615 0.821 0.836 0.609 0.641 0.294 0.276 0.116 11.2 6.9 < 0.001
Exp2 0.679 0.733 0.733 0.821 0.806 0.531 0.656 0.370 0.322 < 0.001 6.3 3.2 < 0.001
Exp3 0.779 0.763 0.375 0.791 0.836 0.766 0.688 0.312 0.292 0.034 10.3 7.8 0.002
Exp4 0.756 0.748 0.471 0.731 0.791 0.781 0.703 0.323 0.300 0.027 9.4 12.0 < 0.001
Res1 0.710 0.763 0.630 0.821 0.776 0.594 0.750 0.418 0.344 < 0.001 27.2 11.9 < 0.001
Res2 0.802 0.771 0.357 0.731 0.731 0.875 0.813 0.377 0.357 0.033 8.7 5.3 0.001
Res3 0.687 0.756 0.629 0.657 0.746 0.719 0.766 0.402 0.339 0.001 28.6 35.5 0.009

(1)

a b

(1)
(2)

(1)

(2)

(3)

(3)

CNN assistance
no yes

Truth 0 (N0)
0.69CNN

Exp1 0.30 * 0.30 *
Exp2 0.31 * 0.31 *
Exp3 0.35 * 0.35 *
Exp4 0.23 * 0.23 *
Res1 0.60 0.60
Res2 0.38 * 0.66
Res3 0.32 * 0.56

CNN assistance
no yes

Truth 1 (N1–3)
0.73 *CNN

Exp1 0.60 * 0.70 *
Exp2 0.92 * 0.92 *
Exp3 0.70 * 0.70 *
Exp4 0.45 0.60 *
Res1 0.60 * 0.60 *
Res2 0.36 0.66 *
Res3 0.31 0.54 *

(1)

(2)

(1)

(2)

(3)

(3)

(3)

Fig. 4   Representative images with the predictions by the CNN and 
the radiologists with and without the assistance of the CNN. a The 
CNN and four of the seven radiologists classified the patient as N1–3 
correctly. The other three radiologists misclassified the patient as N0 
but corrected the prediction with the CNN assistance. b The CNN 
misclassified the patient as N1–3 but all the board-certified radiolo-
gists (Exp1–4) correctly classified the patient as N0 without being 

influenced by the CNN. They determined that the FDG uptake foci 
were rib fractures from their knowledge and experience. On the other 
hand, one of the residents (Res1) misclassified the patient as N1–3, 
and the other two residents (Res2,3) mistakenly changed the predic-
tion from N0 to N1–3 with the CNN assistance. The stage of the 
patient was IA, confirming the absence of bone metastases. *Accurate 
prediction
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statistical significance for six of the seven radiologists. The 
prediction time was significantly reduced for five of the 
seven radiologists, and the median reduction ratio of the 
prediction time of all seven radiologists was 38.0%. Figure 4 
depicts the representative images. 

Discussion

We successfully developed a CNN-based program to predict 
lymph node metastasis in NSCLC. In addition, the predic-
tion error was significantly reduced for six of the seven radi-
ologists and the prediction time was significantly reduced for 
five of the seven radiologist with CNN assistance. Although 
no statistical significance was demonstrated for the accu-
racy, the significant reduction in the prediction error, which 
means the increase of the diagnostic confidence, could have 
another clinical value. Our results suggest that the CNN-
based program could be a promising tool to support radi-
ologists in predicting lymph node metastasis in NSCLC. In 
particular, improved diagnostic performance may contribute 
to individualized surgical management of clinical stage I 
NSCLC, such as lobectomy versus sublobar resection and 
systematic lymph node dissection versus selective lymph 
node dissection.

In this study, we used MIP images rather than 2D or 3D 
images. Since none of the six datasets from TCIA included 
annotations, that is, data were unavailable regarding which 
lymph nodes were involved by the tumor. Hence, we could 
not label 2D slices as positive or negative. Even if annota-
tions had been provided, MIP images might have been better 
than 2D images in addressing the class imbalance problem, 
as discussed by Kawashima et al. [14]. Furthermore, we con-
sidered MIP images superior to 2D images in that each MIP 
image contained information about lesion distribution, for 
example, unilateral or bilateral. We did not use 3D images 
for three reasons. First, because our dataset was too small 
(n = 304) for a large number of 3D model parameters, over-
fitting was inevitable. Second, 3D models require excessive 
memory and can only be executed in a limited environment. 
Third, pre-trained 3D models are less readily available than 
pre-trained 2D models, such as ResNet pre-trained with Ima-
geNet. Girum et al. used MIP images instead of 3D images 
for the same reasons as our former two reasons. They suc-
cessfully developed an artificial intelligence (AI) based 
on the CNN estimating total metabolic tumor volume and 
tumor dissemination of diffuse large B cell lymphoma from 
MIP images of FDG PET/CT and confirmed those values 
as prognostic biomarkers [30]. Finally, we chose ResNet-50 
as the base 2D model for two reasons. First, for ResNet-50, 
weights pre-trained with ImageNet were available. Sec-
ond, Kawauchi et al. successfully classified MIP images of 
FDG PET to benign, malignant and equivocal ones with a 

model based on ResNet-50 [14]. To match the input shape 
of ResNet-50, (224, 224, 3), we converted greyscale MIP 
images to RGB images with 224 × 224 pixels.

We introduced 36 MIP angles instead of one or a few MIP 
angles, and weighting of MIP angles for the following two 
reasons. First, due to the small size of our dataset (n = 435) 
for the CNN, it was needed to increase the number of input 
data. Second, we hypothesized that different MIP angles 
would yield different diagnostic performances. For exam-
ple, in lateral views (90° and 270°), uptake in mediastinal 
lymph nodes might be less distinguishable from primary 
tumors or physiological mediastinal uptake than in frontal 
views (0° and 180°), whereas hilar lymph nodes might be 
easier to distinguish from medially located primary tumors. 
In the correlation matrix of out-of-fold predictions for dif-
ferent MIP angles (Fig. 3), it was observed that the correla-
tions between the two angles that differed by nearly 90° were 
relatively low.

We reclassified the N stage into two classes: N0 and 
N1–3. It is clinically important to distinguish not only 
between N0 and N1, but also between N1 and N2, and 
between N2 and N3. However, due to the small size of our 
dataset (n = 435) and the especially small number of N1 
cases (n = 37, 8.5%), the class imbalance problem would 
have been inevitable if we used four classes. Therefore, we 
reduced the number of classes from four to two in this study, 
but a study with a larger dataset and four classes is needed 
in future.

Several studies have analyzed FDG PET images with 
CNN to predict lymph node metastasis in NSCLC. Tau 
et al. used 2D-CNN to analyze segmented primary tumors 
in FDG PET images of 264 patients with newly diagnosed 
NSCLC and achieved a sensitivity of 0.74, specificity of 
0.84, and accuracy of 0.80 in fivefold partitioning of 223 
patients with histopathologic N category available [11]. It 
is noteworthy that they achieved equivalent or better results 
than our results without analyzing the lymph nodes them-
selves, but it should also be noted that their results were 
achieved by cross-validation in a single cohort, whereas our 
results were achieved in a pre-split test cohort. Further, they 
used a single PET/CT scanner while we collected data from 
various PET scanners with or without CT. Ouyang et al. ana-
lyzed FDG PET/CT images with a 2D-CNN to predict occult 
lymph node metastasis in patients with clinical N0 adeno-
carcinoma [12]. Their PET-alone model yielded a sensitivity 
of 0.75, specificity of 0.63, and accuracy of 0.65; their PET/
CT combined model yielded a sensitivity of 0.88, specific-
ity of 0.80, and accuracy of 0.81 in the internal validation 
set (n = 60). We could not simply compare their results with 
ours because they focused on clinical N0 adenocarcinoma 
only. Nevertheless, their PET-alone model performed worse 
than ours in terms of specificity and accuracy, whereas their 
PET/CT combined model performed better than ours. It is 
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reasonable to conclude that using both PET and CT data led 
to better results than using PET data only. However, we did 
not use CT data because our study design focused on MIP 
images of FDG PET, and because our datasets included data 
from dedicated PET scanners. Wallis et al. used 3D-CNN to 
analyze mediastinal lymph nodes in FDG PET/CT images of 
134 NSCLC patients from one scanner and reported a sensi-
tivity of 0.87 and a false-positive rate per patient of 0.41 in 
the test set (n = 29), using the classifications of one experi-
enced radiologist as reference [13]. They also validated the 
model in a second cohort (n = 71) from another scanner, and 
the corresponding results were 0.53 and 0.24, respectively, 
without transfer learning, and 0.88 and 0.69, respectively, 
with transfer learning. They achieved a high sensitivity at the 
cost of a high false-positive rate in their first cohort, but the 
reference standard was a single radiologist, while five of the 
six datasets we used provided pathological N categories. The 
low sensitivity without transfer learning and the high false-
positive rate with transfer learning in their second cohort 
might suggest insufficient robustness of their model.

The accuracy of our CNN-based program was higher than 
that of four of the seven radiologists (Table 2). However, 
this result did not mean that the CNN could outperform the 
radiologists; only one of the seven radiologists showed lower 
sensitivities than the CNN, which meant that the radiolo-
gists could detect more lymph node metastases. In addition, 
radiologists might be able to confidently negate lymph node 
metastasis using their knowledge and experience in some 
situations, as illustrated in Fig. 4b.

Our CNN-based program significantly reduced the read-
ing time for five of the radiologists with the median reduction 
radio of 38.0% for all the seven radiologists. Rodríguez-Ruiz 
et al. reported the breast cancer detection performance of 
radiologists with mammography unaided versus supported 
by an AI system based on a CNN [31]. With AI support, the 
overall reading time did not change significantly, but the 
reading time in low-suspicion examinations decreased by 
11%, whereas that in high-suspicion examinations increased 
by 2%, which indicated that the reading time would decrease 
by 4.5%, assuming a real screening scenario. CNN-based 
programs can improve diagnostic performance and reduce 
reading time by optimizing the readings of radiologists.

This study had several limitations. Some of these were 
derived from the nature of the datasets. First, for one of 
our datasets (ACRIN-NSCLC-FDG-PET), the N stage was 
determined by clinical information, including conventional 
imaging, and not by histopathology. However, the “ground 
truth” issue is not limited to our research [32]. Kelly et al. 
reported in their meta-analysis that only 9% (46/535) of 
studies of AI in radiology determined the ground truth 
from pathologic reports [33]. Even when limited to FDG 
PET and CNN studies, several studies have used radiologic 

reports as the ground truth for malignancy of different 
organs (lung [13], head and neck [34], breast [35]). With 
regard to patients with NSCLC, not all patients undergo 
systematic lymph node dissection, and biopsy of all lymph 
nodes is impractical. Therefore, imaging findings can be a 
reasonable alternative to the ground truth. The other five 
datasets provided the pathological N stage. Second, we 
could not utilize the positions of the lymph node metas-
tases because none of the datasets provided annotations. 
Therefore, we could not investigate the reasons of misclas-
sification of the CNN or the radiologists. A study with 
datasets providing annotations will be needed in future. 
Third, the datasets included FDG-PET images from vari-
ous PET scanners with or without combined CT, and 
detailed imaging protocols were unavailable. However, 
the accuracy of 0.748 yielded from such heterogeneous 
images might imply the robustness of our model, although 
we did not perform external validation due to the small 
size of the datasets. Fourth, this was a retrospective study 
with a limited number of patients using a public dataset. A 
prospective, multi-institutional study with a larger cohort 
is required to confirm our results.

Finally, we should emphasize that in the clinical practice 
of FDG PET, radiologists do not only make diagnoses from 
MIP images but also from PET 2D slices, CT, and fusion 
images. However, impressions from MIP images, which 
summarize the 3D distribution of FDG, can help radiolo-
gists diagnose and avoid oversight and misdiagnoses.

Conclusion

The CNN-based program could potentially improve the 
diagnostic performance of radiologists for lymph node 
metastasis in NSCLC by increasing the diagnostic con-
fidence and reducing the reading time without affecting 
the diagnostic accuracy, at least in the limited situations 
using MIP images. The CNN-based program could be a 
promising tool to support radiologists in predicting lymph 
node metastasis in NSCLC.
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