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Preface

Network Function Virtualization (NFV) has transformed network services by

shifting from dedicated hardware to virtualized functionalities, thus elimi-

nating the constraints and expenses of traditional systems. Through NFV,

computational resources can be pooled, offering enhanced scalability, flexibil-

ity, and cost-efficiency. Traditional network functions like firewalls and load

balancers are virtualized for deployment on virtual machines and containers.

Efficient resource allocation is vital for optimizing network performance, en-

suring availability, and meeting agreements. Properly managing resources can

enhance the overall efficiency and responsiveness of the service, and maintain

uninterrupted functionality. Node failures and resource backups impact service

reliability and continuity. Resource backups, such as cold and hot backups,

enable recovery and minimize downtime. However, challenges arise from many

factors like backup strategies, utilization ratio, failure probabilities, recovery

strategies, and shared protection, necessitating innovative approaches to bal-

ance resource sharing, recovery time, and availability.

This doctoral thesis addresses a series of unique resource allocation chal-

lenges in the context of improving service quality. To tackle these issues, the re-

search introduces optimization models and algorithms. Numerical experiments

and analysis are conducted to evaluate the performance and effectiveness of

the proposed methodologies. More specifically, by considering approximation

of the workload-dependent unavailability, recovery priority, expected recovery

time guarantees, fault-tolerance, load balance, uncertainty sets, and unsuc-

cessful recovery under shared protection, this thesis offers insights into the

trade-offs, and performance improvements achievable through the proposed

methodologies. Moreover, this thesis not only focuses on theoretical advance-

ments but also addresses the practical implementation of resource allocation
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in containerized environment. By exploring and implementing real-world ap-

plications, this thesis aims to bridge the gap between theoretical concepts and

their practical realization.

Firstly, this thesis proposes an optimization model to derive a primary

and single backup resource allocation considering a workload-dependent fail-

ure probability to minimize the maximum expected unavailable time (MEUT).

The workload-dependent failure probability is a non-decreasing function which

reveals the relationship between the workload and the failure probability. The

proposed model adopts hot backup and cold backup strategies to provide pro-

tection. The cold backup strategy is a protection strategy, in which the re-

quested loads of backup resources are not activated before failures occur to

reduce resource utilization with the cost of longer recovery time. The hot

backup strategy is a protection strategy, in which the backup resources are

activated and synchronized with the primary resources to recover promptly

with the cost of higher workload. The optimization problem is formulated

as a mixed integer linear programming (MILP) problem. This work proves

that MEUT of the proposed model is equal to the smaller value between the

two MEUTs obtained by applying only hot backup and cold backup strate-

gies with the same total requested load. A heuristic algorithm inspired by

the water-filling algorithm is developed with the proved theorem. The numer-

ical results show that the proposed model suppresses MEUT compared with

the conventional model which does not consider the workload-dependent fail-

ure probability. The developed heuristic algorithm is approximately 105 times

faster than the MILP approach with 10−2 performance penalty on MEUT.

Secondly, this thesis proposes a multiple backup resource allocation model

to minimize MEUT under a protection priority policy with a workload-dependent

failure probability. The proposed model adopts hot backup and cold backup

strategies to provide multiple protection. For protection of each function with

multiple backup resources, it is required to adopt a suitable priority policy to

determine the expected unavailable time. This work analyzes the superiority

of the protection priority policy for multiple backup resources in the proposed

model and provide the theorems that clarify the influence of policies on MEUT.

The optimization problem is formulated as an MILP problem. This work pro-

vides a lower bound of the optimal objective value in the proposed model. This
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work proves that the decision version of the multiple resource allocation prob-

lem in the proposed model is NP-complete. A heuristic algorithm inspired by

the water-filling algorithm is developed with providing an upper bound of the

expected unavailable time obtained by the algorithm. The numerical results

show that the proposed model reduces MEUT compared to baselines. The pri-

ority policy adopted in the proposed model suppresses MEUT compared with

other priority policies. The developed heuristic algorithm is approximately

106 times faster than the MILP approach with 10−4 performance penalty on

MEUT.

Thirdly, this thesis proposes a primary and backup resource allocation

model under preventive recovery priority setting to minimize a weighted value

of unavailable probability (W-UP) against multiple failures with workload-

dependent failure probability. W-UP considers the probability of unsuccessful

recovery and the maximum unavailable probability after recovery among phys-

ical nodes. This work introduces a recovery strategy to handle the workload

variation which is determined at the operation start time and can be applied

for each failure pattern. Once a failure pattern occurs, the recoveries are oper-

ated according to the priority setting to promptly recover the functions hosted

by failed nodes. This work also discusses an approach to obtain unsuccessful

recovery probability with considering the maximum number of arbitrary recov-

erable functions by a set of available nodes without the priority setting. The

optimization problem is formulated as an MILP problem. This work develops

a heuristic algorithm to solve larger size problems in a practical time. The de-

veloped heuristic algorithm is approximately 729 times faster than the MILP

approach with 1.6% performance penalty on W-UP. The numerical results

observe that the proposed model reduces W-UP compared with baselines.

Fourthly, this thesis proposes a robust function deployment model against

uncertain recovery time with satisfying an expected recovery time guarantee

in a cost-efficient manner. The preventively deployed backup resources can re-

cover an unavailable function hosted by a failed node in a period of time, which

is related to the backup strategies and protection types. Multiple functions

protected by a node can share the backup resources to reduce the number of

active nodes to save cost, which also affects the recovery time if the number

of unavailable functions is so large that the remaining capacity cannot recover
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them and causes a waiting procedure of an unavailable function before being

recovered. This work introduces an uncertainty set that considers the upper

and lower bounds of the recovery time of a function protected by each node

and the upper bound of the average recovery time among nodes. This work

considers the expected remaining capacity of a node and the expected number

of unavailable functions hosted by the node to approximate the waiting time

in the shared protection. The robust optimization technique is applied to ob-

tain the worst-case expected recovery time under an uncertain recovery time

set. With this technique, the model is formulated as an MILP problem. To

solve the problem in a practical time, a heuristic algorithm is developed. It

reduces the number of active nodes while decreasing the worst-case expected

recovery time within the uncertainty set by converting the linear programming

problem to a graph problem. The numerical results reveal the superiority of

the proposed model by considering the recovery time guarantee, uncertainty

set, and shared protection.

Fifthly, this thesis proposes a primary and backup resource allocation

model under reliability guarantees to minimize the deployment cost with con-

sidering the effect of the assigned workload on recovery time. Backup resources

are allocated for recovery of an unavailable function in a period, where the time

relates to different backup modes and assigned recovery workload. This work

considers multiple states of pre-configuration for each function with different

degrees of instantiation, initialization, and synchronization and different re-

covery times. This work considers that the extra-assigned recovery workload

can be adopted, which means that the recovery workload can be scaled, to

speed up the recovery, while improving the resource efficiency to fully utilize

the idle capacity for faster recovery. On the other aspect, the extra-assigned

recovery workload may lead to unsuccessful recovery in a specific failure con-

figuration. This work considers two reliability indicators, which are recovery

time and the total unsuccessful recovery probability; each reliability indicator

is restricted under guarantee while minimizing the number of activated nodes

as deployment cost. The numerical results indicate that the deployment cost is

saved on average 19% and 9% with considering the proposed model compared

to two baselines that do not consider flexible backup modes and extra-assigned

recovery workload, respectively.
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Sixthly, this thesis designs and implements a custom resource and the cor-

responding controller in Kubernetes to manage the primary and backup re-

sources. The custom resource is a set of Pods with different types, which

includes primary, hot backup, and cold backup Pods. The controller man-

ages the set of Pods and maintains the current state of the different types

of Pods to keep the current state consistent with the desired state of each

type of Pod. Demonstration validates that the controller automatically man-

ages the primary and backups resources correctly. Moreover, Prompt function

deployment and management is a key role to improve the continuity and relia-

bility of network services. Kubernetes is a system to deploy and manage func-

tions automatically. Existing tools in Kubernetes do not provide automatic

function deployment and management in a real-time and optimal manner. It

does not provide a resource type to manage the migratable resource, either.

This thesis designs and implements a two-layer controller structure in Kuber-

netes to achieve the function deployment in a limited computation time with

considering resource migration for allocation optimality. A controller in the

lower layer manages the Pods for an intermediate allocation with a model or a

heuristic algorithm to respond to requests promptly. A controller in the upper

layer manages instances by optimizing resource allocations with considering

resource migration; it maintains the Pods by keeping the current state (in-

termediate allocation) consistent with the desired state (optimal allocation).

The demonstration validates that the controller automatically manages the

resources promptly and correctly.

This thesis is organized as follows. Chapter 1 introduces the background

of resource allocation for higher availability and fault tolerance with workload-

dependent unavailability. Chapter 2 investigates the related works in liter-

ature. Chapter 3 presents the single backup resource allocation model with

workload-dependent failure probability. Chapter 4 presents the multiple back-

ups resource allocation with workload-dependent failure probability and intro-

duces the priority policy. Chapter 5 presents a resource allocation model and

recovery priority setting against multiple failures for load balancing and fault

tolerance with workload-dependent failure probability. Chapter 6 presents

the resource allocation with considering the uncertainty of the recovery time.

Chapter 7 presents the resource allocation with considering the effect of the as-
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signed workload on the recovery time. Chapter 8 presents two implementations

for backup resource allocation and fast implementation. Finally, Chapter 9

concludes this thesis.
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Chapter 1

Introduction

1.1 Backgrounds of network function manage-

ment and orchestration (NFMO)

Network Function Virtualization (NFV) has revolutionized the networking field

by enabling the virtualization of network services and functions. Traditionally,

functions were tightly coupled with dedicated hardware, resulting in inflexi-

bility for scaling on demand and high costs for updates. Traditional functions

also led to idle resources on each dedicated hardware, increasing deployment

and maintenance expenses. With NFV technology, computational resources

provided by hardware can be shared among different functions, offering in-

creased flexibility, scalability, and cost efficiency. This transformation involves

virtualizing traditional network functions such as firewalls, load balancers, and

network address translators, which can be softwarized and deployed on virtual

machines and containers. The adoption of NFV brings numerous benefits to

network management and resource utilization, empowering organizations to

meet the evolving demands of modern networking environments.

Network function management and orchestration is a pivotal consideration

for efficiently managing, coordinating, and operating diverse virtualized func-

tionalities, enabling smooth service delivery and resource use. It plays a vital

role in cloud computing and cloud-native settings, aiding service providers

in achieving agile, scalable, and automated networks. In cloud computing,

NFMO lets users swiftly create, configure, and manage network functions,
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like firewalls and load balancers which simplifies network admin, enhancing

resource efficiency and flexibility. In cloud-native development, NFMO seam-

lessly coordinates and optimizes network resources, ensuring high availability

and scalability. By integrating functionalities into service development and

deployment, it achieves continuous delivery and rapid deployment.

Efficient resource allocation is a crucial aspect for network function man-

agement and orchestration that plays a vital role in optimizing service perfor-

mance, ensuring high availability, and meeting service-level agreements. Node

failures and resource backups are crucial considerations in resource allocation

due to their significant impact on service reliability and continuity. Node fail-

ures can disrupt the operation of virtualized functionalities, leading to service

interruptions and degraded performance. Resource backups, such as cold and

hot backups, provide mechanisms to recover from node failures and minimize

service downtime. By considering these aspects, service providers can optimize

resource utilization, enhance service availability, and maintain uninterrupted

service delivery, making node failures and resource backups essential factors in

resource allocation.

The recovery time of a failed virtualized network function (VNF) hosted

by a node is influenced by backup strategies and protection types, while the

failure probability of a node is dependent on its workload. These dynamic

factors pose challenges in developing robust resource allocation models that

can ensure an expected recovery time and costs. Moreover, the introduction

of shared protection, where multiple functions are protected by a node with

oversubscribed resources, presents another technical hurdle. The main issue

arises from insufficient resources to successfully recover all protected functions,

resulting in delays and potential unsuccessful recovery. Effectively managing

shared backup for recovery against failures becomes challenging due to the

intricate balance required between resource sharing, recovery time, and avail-

ability, making it crucial to devise innovative approaches to address these

complexities.
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1.1.1 Workload-dependent unavailable probability

The stability and reliability of large-scale cluster computing systems hold

paramount importance, ensuring uninterrupted service and optimal perfor-

mance. These systems operate within intricate and dynamic computing land-

scapes, where the inevitability of system failures and malfunctions can lead to

service disruptions and performance deterioration. To address this challenge,

harnessing historical fault data, existing system information, and reliability

models is essential. Employing techniques like statistical analysis and machine

learning allows for the exploration of the intricate relationship between work-

load patterns and system failures. This exploration, in turn, paves the way for

effective system failure prediction and potential maintenance strategies.

In the context of datacenters, applications generate diverse workloads en-

compassing computing resources such as central processing units (CPUs) and

memory [1]. Facebook’s data centers exemplify this diversity, hosting an ar-

ray of applications, including web serving, caching, database management,

video and image processing, and messaging routing. Each application cate-

gory necessitates varying quantities of processor cores and memory capacity

[2]. Termed as workload, these resource demands can be equated to the likes of

CPU and memory. Workload characterization entails two principal methodolo-

gies: trace-based and model-based approaches [3][4][5]. These methodologies

contribute to understanding workload behavior, enabling efficient allocation

and management of computing resources for optimal system operation.

Higher workload levels are associated with increased performance degrada-

tion and node failure probability, highlighting the significant connection be-

tween workload intensity and failure likelihood. The works in [6,7] studied that

a higher level of workload often leads to more performance degradation. For

instance, augmented CPU utilization can result in an unstable packet process-

ing performance, leading to an increased likelihood of packet loss due to the

potential inability to process arriving packets within the requisite timeframe,

subsequently resulting in packet drops. In a physical node, surpassing a spe-

cific CPU utilization threshold [8] may instigate performance degradation, each

node could be allocated an assigned threshold indicative of the initiation of

performance degradation. Rather than confining workload assessment to mere
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Failure 
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Figure 1.1: Approximation of the workload-dependent unavailable probability.

characterization (e.g., utilization ratio and types), it is imperative to contem-

plate the connection between workload and the node’s failure probability [2].

Numerous studies have scrutinized the influence of workload attributes, in-

cluding CPU utilization, memory usage, and application type, on node failure

rates. For example, Sahoo et al. [9] established a correlation between work-

load type and failure probability, while Iyer et al. [10] disclosed a direct rela-

tionship between workload intensity and the likelihood of failure. The study

in [11] introduced the observation that the failure probabilities of dynamic

random-access memory (DRAM) modules in servers experiencing intensified

utilization, as measured by CPU utilization and allocated memory, tend to be,

on average, 4-10 times higher compared to servers operating at lower utiliza-

tion levels. The workload-related unavailable characteristics of each server can

emanate from various factors, such as machine properties and aging dynamics.

Every workload-dependent probability of failure unveils an empirical correla-

tion between workload and failure probability; workload characterization can

be performed by collecting and analyzing the workload-related failure charac-

teristics of each server. Therefore, the unavailable probability of any node can

be assumed to be a non-decreasing function of the node workload.

Given the workload-dependent unavailable probability, which is assumed
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to be a non-decreasing function, an (-step function can be used, as shown

in Fig. 1.1.1, to conservatively approximate it. Adopting step functions is

a common approach for approximating a given curve. Let 5 (|) be a given

non-decreasing unavailable probability, which shows the practical relation-

ship between the unavailable probability and the workload; let B(|) denote

an (-step function; | is the pysical machine (PM) workload. Given the step

number ( with considering the accuracy of fitting the non-decreasing func-

tion 5 (|) in an (-step function and the computation time to solve the pro-

posed model, the unavailable probability can be designed with the threshold of

)B, B ∈ S, and corresponding unavailable probability %B. To fit the given curve

as accurately as possible, the conservative approximation can have different

goals while keeping B(|) ≥ 5 (|), such as minimizing
∫ �8

0
(B(|) − 5 (|)) d| or

maxB∈S

{∫ ) B
8

) B−1
8

(B(|) − 5 (|)) d|
}
.

1.1.2 Backup strategies in terms of reliability and re-

covery time

Unavailability affects the service quality and user experience [12]. A failure of

network function stops users’ services unexpectedly when it occurs; prevention

and protection strategies are required. Service providers can use backup re-

sources to improve the availability of functions confronting failures and to avoid

the interruption of services [13]. Prevention and protection strategies are com-

mon approaches to improve the availability of functions confronting failures,

which can be generally classified into dedicated protection and shared protec-

tion [14]. Dedicated protection has a one-to-one correspondence between the

working and each backup function to ensure higher recovery efficiency. Backup

resources are shared by multiple functions in shared protection, which makes

the resource efficiency higher than dedicated protection at the cost of a higher

risk of unsuccessful recovery and longer recovery time due to the concurrent

failures of functions.

One of the key challenges in backup resource allocation is striking the

balance between resource availability and cost-efficiency. Allocating exces-

sive backup resources can lead to resource wastage and unnecessary expenses,

while insufficient allocation may compromise system reliability and recovery
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capabilities. Therefore, it is crucial to develop robust models and algorithms

that can optimize the allocation of backup resources based on factors such as

system dependencies, failure probabilities, recovery time objectives, and cost

considerations.

In dedicated protection, there are two backup strategies to provide protec-

tion to network systems: cold backup (CB) and hot backup (HB). The recovery

is performed on the trigger basis of failure detection. The CB strategy pro-

vides protection to corresponding functions, where the backup resources are

only reserved without being active. When a function monitoring function that

checks the status of every function periodically detects the failure, the lat-

est snapshot of each function is used to re-establish the failed function in the

corresponding backup resource [15]. The HB strategy takes place while the

system is still processing before a failure occurs. During the implementation

of a service, the backup resource in the corresponding node is always activated.

The first returned results of interrupted services caused by failed nodes will

be adopted by the backup resource to ensure the successful implementation

of service composition [16]. The workload may exceed the threshold caused

by higher resource utilization; the CB strategy can be adopted to reduce the

workload with the cost of longer recovery time. Since a failed function is re-

placed with the backup resource immediately, HB reduces the recovery time

compared with CB. However, a backup resource is activated and synchronized

with the primary resource at the same time, which may cause to increase the

failure probabilities of the nodes due to the increased workloads.

1.1.3 Resource sharing

Resource sharing enables multiple functions to share a pool of computing re-

sources, such as storage, processing power, and memory, through virtualization

technologies. This allows for efficient resource allocation and scalability, cater-

ing to dynamic demands. Shared resources, such as network links or routers,

can be dynamically allocated based on traffic patterns and quality of service

requirements, ensuring optimal network performance. However, resource shar-

ing can lead to resource contention and competition, which can impact system

performance and response time. When multiple tasks or services share the

6



Section 1.1

same resources, resource bottlenecks, and congestion may occur, resulting in

performance degradation.

To increase availability, multiple functions protected by a node can share

the backup resources to reduce the number of active nodes to save cost, which

also affects the recovery time if the number of unavailable functions is so large

that the remaining capacity cannot recover them. In shared protection, backup

resources are shared by several primary functions. Different from dedicated

protection, where each backup resource is specifically allocated and reserved

for a primary function. If a primary function fails, it can be recovered by

any one of the backup resources as long as it is available, with considering the

resource sharing for higher efficiency, the capacity for recovery of each function

is not reserved in advance, which indicates that an unavailable function may

not be recovered if there are not sufficient computing resources. Resource

sharing can increase resource efficiency at the cost of unsuccessful recovery and

a longer recovery time. When an unavailable function cannot be recovered by

the remaining capacity among available nodes, a waiting procedure is required

to be considered. For example, the work in [17] introduced an unavailability-

aware backup allocation model with considering the waiting time and repairing

time of the failed function in the shared protection.

The advantages and disadvantages of resource sharing manifest in resource

utilization and failure recovery. For instance, idle resources can be scaled up

to improve processing speed, resulting in higher resource utilization. However,

when failures occur, insufficient overall capacity may hinder the recovery pro-

cess or prolong the recovery time. In cases where a function is protected by

multiple nodes, careful consideration must be given to selecting the node that

can recover the failed function with minimal resource contention. It is impor-

tant to strike a balance between resource optimization and failure recovery to

achieve efficient and resilient system operation. While resource sharing en-

hances utilization and scalability, resource allocation and recovery activation

during failure scenarios require careful planning to minimize the impact on

overall system performance.

Striking a balance between optimizing resources and ensuring effective re-

covery is crucial for achieving efficient and robust service delivery. While re-

source sharing improves resource usage and scalability, careful allocation and
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coordinated recovery planning in case of failures are essential to minimize any

impacts on overall service performance.

1.1.4 Approaches for solving considered problems

In resource allocation models, both mixed integer linear programming (MILP)

and heuristic algorithms are commonly used methods. MILP is an optimiza-

tion technique that formulates resource allocation problems as linear program-

ming problems with integer variables, aiming to maximize or minimize specific

objective functions. For example, minimizing unavailability time, minimizing

deployment cost, maximizing resource utilization, etc. MILP methods can

provide globally optimal solutions but may face challenges of computational

and time complexity when dealing with large-scale problems. It ensures pre-

cise constraint satisfaction, accommodating resource limitations and quality of

service requirements.

On the other aspect, heuristic algorithms offer efficient solutions, particu-

larly in large-scale resource allocation problems where MILP may face compu-

tational complexities. Heuristic algorithms are approximate solution methods

based on experience and rules. By leveraging problem-specific heuristic in-

formation and rules, heuristic algorithms iteratively search the solution space

to find suboptimal solutions that satisfy the constraints. Heuristic algorithms

are often applied in resource allocation models for large-scale problems or real-

time decision-making scenarios due to their lower computational complexity

and faster solution times. These algorithms provide approximate solutions that

satisfy constraints within a reasonable timeframe. The considered problem can

be solved with a greedy approach or different randomized heuristic algorithms.

A greedy approach is rapid since it makes only one greedy local optimal de-

cision at each step and does not revisit previous decisions. A randomized

heuristic algorithm tries to avoid falling into a local optimal solution as much

as possible and improve the accuracy of the solution at the cost of longer com-

putation time. The allocation problem can be solved by randomized heuristic

algorithms such as simulated annealing [18–22], a generic algorithm [23, 24],

and tabu search [25]. Simulated annealing randomly explores a neighborhood

solution and accepts a worse solution with a certain probability. A genetic

8
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algorithm [26] is an iterative optimization algorithm that uses a population-

based approach to search for solutions by evolving a population of candidate

solutions through selection, crossover, and mutation. In tabu search [25], an

initial solution is randomly generated and iteratively improved by exploring

the neighborhood solutions while keeping track of previously visited solutions

using a tabu list, and the process continues until a stopping criterion is met.

MILP methods excel in small-scale problems by providing optimal solutions

and strict constraint satisfaction; heuristic algorithms are well-suited for large-

scale problems and real-time decision-making, offering faster solution times and

scalability, albeit without guaranteed optimality.

1.1.5 Network function management and orchestration

Network function management and orchestration is a framework that focuses

on managing and orchestrating VNFs within a software-defined networking

environment. It aims to streamline the deployment, scaling, and management

of network functions by leveraging automation and centralized control.

VNF deployment can take two approaches: containerized deployment and

virtual machine deployment. In containerized deployment, VNFs are pack-

aged as separate container instances using technologies like Docker, offering

lightweight and flexible deployment. Containers include all necessary com-

ponents and dependencies, ensuring easy management and efficient resource

usage; they offer quick startup and shutdown, and low resource usage. On

the other hand, virtual machine deployment provides enhanced isolation and

security by running each VNF in its own virtual machine. This emulation of

complete OS and hardware environments enables the execution of various VNF

types and supports different operating systems and application stacks. Virtual

machines enable multiple VNFs to run on a single physical server, optimizing

resource utilization and ensuring compatibility.

Kubernetes, as an open-source system, offers comprehensive features and

functionalities that are specifically tailored for the deployment and manage-

ment of containerized functions, making it an ideal platform for VNFs. One of

the key components in Kubernetes is the Pod, which serves as the fundamental

unit of deployment. A Pod encapsulates one or more containers and associated

9
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resources required for the execution of a VNF.

Furthermore, Kubernetes acts as a powerful orchestration framework for

VNFs, providing advanced capabilities for managing and controlling their life-

cycle. It offers robust mechanisms for load balancing, fault tolerance, and

automatic scaling, ensuring the reliability and availability of VNFs in dynamic

network environments. Kubernetes controllers play a crucial role in maintain-

ing the desired state of VNFs by continuously monitoring their health, making

necessary adjustments, and ensuring adherence to defined policies.

1.2 Problem statements

This thesis studies six specific problems about resource allocation with workload-

dependent failure probability in network virtualization, each of which includes

one or several questions that have not been addressed and are answered in this

thesis.

1.2.1 Resource allocation model with single backup against

workload-dependent failure probability

Failures affect the service quality and user experience [12]. A failure of network

function stops users’ services unexpectedly when it occurs; prevention and

protection strategies are required. Service providers can use backup resources

to improve the availability of functions confronting failures and to avoid the

interruption of services [13]. The recovery is performed on the trigger basis

of failure detection. The CB strategy provides protection to corresponding

functions, where the backup resources are only reserved without being active.

The HB strategy takes place while the system is still processing before a failure

occurs. During the implementation of a service, the backup resource in the

corresponding node is always activated.

For each function, a shorter unavailable time for recovery can improve the

user experience [12]. This thesis takes the maximum expected unavailable time

(MEUT) among all functions as an evaluation metric, which is determined

by different protection strategies and allocations. Questions arise: how to

approximate a workload-dependent failure probability and what is the primary
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and backup resource allocation with different protection strategies to minimize

MEUT with a workload-dependent failure probability? These question has not

been addressed, which is studied in Chapter 3.

1.2.2 Resource allocation model with multiple backups

against workload-dependent failure probability

The allocation of multiple backup servers offers potential benefits in enhancing

function reliability, but introduces the challenge of optimizing protection poli-

cies to manage anticipated unavailable time while considering varying backup

strategies. Several unavailability-aware works on the assignment of multiple

backup servers have been studied in [27–32]. The works in [31, 32] focused

on the reliability of services which consist of both function and link reliabil-

ity. The works in [27–30] focused on function reliability and allocated backup

servers for the functions. The above works mainly considered the reliability

based on the failure probabilities regardless of considering the effects of backup

strategies on the workload and the recovery time. This thesis takes MEUT

as a metric and considers a workload-dependent failure probability. Further,

compared with a single backup model in Chapter 3, where each function is pro-

tected by only one server, multiple backup servers can be assigned to protect

a function with different strategies in the proposed model. Adopting multiple

backup resources may increase the reliability of a function. In order to cope

with the expected unavailable time for each function with multiple backup

servers, adopting a suitable protection policy, which prioritizes available re-

maining servers protected with the different backup strategies, is required.

A question arises: is there any model that allocates backup resources for

middleboxes under a suitable protection priority policy to minimize MEUT

with the workload-dependent failure probability and different backup strate-

gies? This question has not been addressed, which is studied in Chapter 4.
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1.2.3 Resource allocation model against multiple fail-

ures with workload-dependent failure probability

Fault tolerance and load balancing are two key roles in resource allocation

against failures. The unsuccessful recovery is related to the protection ap-

proaches. The works in Chapters 3 and 4 only considered dedicated protec-

tion, where each backup resource is specifically allocated and reserved for a

primary function. If a primary function fails, it can be recovered by any one

of the backup resources as long as it is available. On the other hand, resource

sharing is usually considered in backup resource allocation to utilize backup

resources more efficiently, which is named shared protection. In shared protec-

tion, backup resources are shared by several primary functions. If a primary

function fails, it may not be able to be recovered by an available backup re-

source due to the concurrent failures of other functions sharing the backup

resources.

A question arises: is there any resource allocation model for both dedicated

and shared protection considering the unsuccessful recovery probability and

the maximum unavailable probability after recovery among nodes with the

workload-dependent failure probability? This question has not been addressed,

which is studied in Chapter 5.

1.2.4 Robust resource allocation model against uncer-

tain recovery time in different protection types

with workload-dependent failure probability

The shared protection benefits in maximizing resource utilization and effi-

ciency, yet the challenge lies in balancing the complexity of resource sharing

and function recovery to ensure overall system performance and service avail-

ability.

The one-to-one protection correspondence in dedicated protection may not

always exist due to the insufficient computing capacity of a physical node in

practical scenarios; the collected traces for the recovery time of each unavail-

able function by a node is not limited to the nodes protected with the dedicated

protection. The recovery time in the shared protection is larger than that of
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the dedicated protection. This is because the dedicated protection assumes

that all unavailable functions can be recovered without a waiting procedure,

which is caused by resource sharing when other unavailable functions occupy

exclusive computing resources for recovery. Combining these two recovery

times in different protection types as one and considering the upper bound of

the two recovery times in the collected trace brings too conservative resource

usage, which leads to less resource efficiency.

Service providers aim to provide reliable function deployment in a cost-

efficient manner with considering robustness against uncertain recovery time

caused by resource sharing. The unavailable time of a function for recovery

can be adopted to estimate the reliability of a function [12]. A recovery time

guarantee is defined as that, for any function that is protected with either

dedicated or shared protection, the worst-case expected recovery time under

an uncertain recovery time set is guaranteed with no greater than a given

value.

To manage the primary and backup resources and recovery of the VNFs to

improve the service performance is required. A question arises: is there any

function deployment model considering uncertain recovery time in both dedi-

cated and shared protection to minimize the deployment cost while satisfying

the expected recovery time guarantee with workload-dependent failure proba-

bility? These question has not been addressed, which is studied in Chapter 6.

1.2.5 Resource allocation strategies for accelerating re-

covery under reliability guarantee with workload-

dependent failure probability

Shared protection sparks our imagination regarding resource efficiency, prompt-

ing the question of how to further optimize the utilization of these resources

to enhance recovery efficiency.

The work in Chapter 5 addressed a resource allocation model to minimize

unavailability with considering a deterministic recovery rate with cold backup

for recovery. In contrast to the approach in Chapter 5, which did not account

for the influence of diverse backup modes and the allocated computing capacity

of backup resources on function recovery time, this chapter advances resource
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efficiency by considering assigning a more active workload for pre-configuration

to a backup resource enables faster takeover of tasks from the primary function,

leveraging pre-configuration advantages albeit with a trade-off of increased

workload. Similarly, allocating additional computing capacity to a backup

resource for recovery expedites the recovery process, at the cost of higher

deployment expenses [19].

Service providers intend to cost-efficiently deploy reliable functions with

considering reliability guarantees. This work considers a recovery time guar-

antee as the expected recovery time for any function is assured not to exceed

a particular value. An unsuccessful recovery probability guarantee is consid-

ered as the unsuccessful recovery probability of any function is assured not to

exceed a particular value.

The workload for pre-configuration of backup instances in different modes

and the allocated workload of backup resources for recovery affect the recovery

time, workload-dependent failure probability, and cost. A question arises: is

there any resource allocation model satisfying the reliability guarantees aiming

to minimize the deployment cost with workload-dependent failure probability?

These question has not been addressed, which is studied in Chapter 7.

1.2.6 Implementation of backup resource management

controller for reliable function allocation in Ku-

bernetes

The costs for resource management and maintenance account for a large part

of the entire life cycle of network software. Considering that a shorter ex-

pected unavailable time for recovery can improve the user experience, the

works in Chapters 3 and 4 adopted the two strategies for primary and backup

resource allocation. The resource allocation model can be extended to handle

the dynamic reconfiguration based on the requirement. Taking a dynamic re-

configuration triggered by a failure as an example, one of the backup resources

protecting the failed function needs to be activated for recovery. A new backup

resource needs to be allocated to replace the activated one which is used for

the recovery of the failed primary function for higher availability. To adapt to

the dynamic reconfiguration requirement, backup resource management con-
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sidering the dynamic reconfiguration is required.

However, Kubernetes does not provide a resource type to define the backup

Pods with considering the different backup strategies. In addition, it does not

provide automatic resource management based on user requests for the backup

Pods.

1.2.7 Implementation of real-time function deployment

with resource migration in Kubernetes

Several studies addressed reliable function allocation models with considering

different objectives for the continuity of network services such as unavailable

time of functions [33] and continuous servable time [34]. The models are solved

by different optimization solvers and heuristic algorithms. The work in [35]

introduced an allocation-model-based scheduler in Kubernetes to connect mul-

tiple optimization models with the platform. However, the computation for

solving an optimization model and deploying the functions with an allocation-

model-based scheduler [35] is time-consuming.

In a dynamic scenario of arrivals and releases of requests, resources of arriv-

ing functions need to be allocated; function deployment is required to respond

to the requests promptly and continuously [36]. Similarly, the deployment

after request releasing loses the optimality so that re-allocation of functions

for optimality is required to be considered. Function migration is a common

approach for handling real-time requests by adjusting the resource allocation

to avoid service performance degradation or constraint violations, where sim-

ple migration schemes inevitably affect the continuity of the network service

and lead to massive reconfiguration costs and service degradation. However,

Kubernetes does not provide a tool to deploy the functions in a real-time and

optimal manner. In addition, it does not provide automatic resource migration

management of functions to maintain the optimal deployment and continuous

services for the dynamic scenario.
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1.3 Overview and contributions of this thesis

Figure 1.2 shows the chapter overview of this thesis. Chapter 1 introduces the

background and the problem statements of this thesis. Chapter 2 surveys the

related works in literature.

Chapters 3–7 center around the modeling and optimization of high avail-

ability and fault-tolerant resource allocation, categorized into two primary as-

pects: availability-oriented resource allocation and recovery-oriented resource

allocation. This exploration encompasses two primary protection strategies:

dedicated protection and shared protection. In the realm of dedicated protec-

tion, Chapters 3 and 4 explore the effect of resource allocation on availability

by considering the workload-dependent failure probability and different backup

modes. Transitioning to the realm of shared protection, which introduces ad-

ditional complexities in the recovery process, Chapter 6 delves into the impact

of uncertain recovery times stemming from shared protection. Chapters 5

and 7 concentrate on specific aspects, including resilience, load balancing, and

recovery speed, all intimately related to the recovery process.

To be more specific, Chapters 3 and 4 focus on the dedicated protec-

tion; each function is protected by one and multiple nodes in each chapter,

respectively. Chapter 3 examines single protection cases and approximates

workload-dependent failure probability through a step function. It investi-

gates the numerical relationship between workload-dependent failure proba-

bility and Maximum Expected Unavailable Time (MEUT). Chapter 4 focuses

on the case that multiple backup servers can be assigned to protect a func-

tion with different strategies by adopting a suitable protection policy, which

prioritizes available servers protected with the different backup strategies, is

discussed. Chapters 5–7 consider the backup resource allocation and recov-

ery in terms of both dedicated and shared protection. Chapter 6 focuses on

the high available protection aspect. It considers an uncertain recovery time

due to several reasons, such as waiting time due to shared protection; node

and function characteristics that lead to different initiation times for hardware

and applications, and restoration times for data and process states, etc. It

considers an uncertainty set of recovery time and calculates the worst-case re-

covery time under the uncertainty set. Chapters 5 and 7 concentrate on the
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fast recovery aspect, delving into strategies aimed at expediting the recovery

process. Chapter 5 considers a deterministic recovery time and focuses on the

resilience and load balance after failure. It considers preventive recovery pri-

ority setting to minimize a weighted value of the probability of unsuccessful

recovery and the maximum unavailable probability after recovery among phys-

ical nodes. Chapter 7 considers that the extra-assigned recovery workload can

be adopted, which means that the recovery workload can be scaled, to speed

up the recovery, while improving the resource efficiency to fully utilize the idle

capacity for faster recovery. On the other aspect, the extra-assigned recovery

workload may lead to unsuccessful recovery in a specific failure configuration.

Chapter 7 handles the availability guarantee with minimizing deployment cost.

All the resource allocation models introduced in Chapters 3–7 are solved by

both the MILP approach for optimal resource allocation and by the heuristic

algorithm to tackle the larger size resource allocation scenarios. Chapters 3–7

focus on the analysis of the theoretical optimization model; Chapter 8 focuses

on the implementation of function deployment; it also encompasses two as-

pects, availability-oriented and recovery-oriented for implementation. It solves

the backup resource definition and transformation of different types of the

backup resource by controller; it also solves the real-time function deployment

by considering resource migration with a two-layer controller. The detail of

each chapter is described as follows.

Chapter 3 proposes an optimization model to derive a primary and backup

resource allocation considering a workload-dependent failure probability to

minimize MEUT. Each node is able to offer capacity for both primary and

backup resource allocation. The proposed model adopts both HB and CB

strategies, which may lead to different failure probabilities of nodes depend-

ing on the workloads and have different recovery time. The workloads de-

termined by different primary and backup resource allocations and different

strategies affect the failure probability of node. The proposed model handles

the balance between the workload and the recovery time caused by different

strategies. This model can conservatively approximate different relationships

between the failure probability and the workload by using a non-decreasing

step function with an increase of the number of steps. With a step function as

a tool, the workload-dependent failure probability can be linearized for simpli-
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fication. This work formulates the optimization problem as an MILP problem.

Numerical results show that the proposed model reduces MEUT compared

with the conventional model which does not consider the workload-dependent

failure probability.

Chapter 4 proposes an optimization model to derive a multiple backup

resource allocation with the workload-dependent failure probability to min-

imize MEUT under a priority policy. The proposed model adopts the HB

and CB strategies, which require different workloads and recovery time. The

workloads determined by different backup resource allocations and different

strategies affect the failure probabilities of servers. This chapter derives the

theorems that clarify the influence of protection policies on MEUT. This chap-

ter formulates the optimization problem as an MILP problem. The numerical

results show that the proposed model reduces MEUT compared with the sin-

gle backup model [37] in which each function is protected by only one server

without protection priority of servers and the conventional model without the

workload-dependent failure probability. The priority policy adopted in the

proposed model specifying that the server which adopts the HB strategy has

higher priority than that with the CB strategy for multiple backup resources

suppresses MEUT compared with other priority policies.

Chapter 5 proposes a primary and backup resource allocation model with

preventive recovery priority setting (RAM-P) against multiple failures to min-

imize a weighted value of unavailable probability (W-UP) for both dedicated

and shared protection. W-UP consists of two parts of unavailable probabilities;

it considers the probability of unsuccessful recovery and the weighted maxi-

mum unavailable probability after recovery among nodes. Each node fails with

different workload-dependent failure probabilities which are related to the ma-

chine property; each failure pattern occurs with a probability. The model

considers the unsuccessful recovery probability against multiple failures and

the weighted maximum unavailable probability after recovery with the failure

probability related to the workload variation after activating the backup re-

source against failures. This chapter introduces a recovery strategy which is

determined at the operation start time. Once failures are detected, the recov-

eries are operated with the workload variation based on the priority setting.

This chapter also discusses an approach to obtain unsuccessful recovery prob-
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ability without priority setting for a special case that focuses on unsuccessful

recovery at the operation start time and handles the load balancing against

failures at run time. This chapter formulates the optimization problem as an

MILP problem. This chapter develops a heuristic algorithm to solve larger size

problems in a practical time. The numerical results observe that the proposed

model, which jointly considers the unsuccessful recovery and load balancing

against failures, outperforms the baseline models which consider each type of

unavailability separately. The developed heuristic algorithm is approximately

729 times faster than the MILP approach with 1.6% performance penalty on

W-UP.

Chapter 6 proposes a robust function deployment model against uncertain

recovery time with satisfying an expected recovery time guarantee to mini-

mize the number of active nodes. This chapter considers that each node fails

with a workload-dependent failure probability; both HB and CB strategies are

considered to provide protection against failures, which have different recovery

times and may lead to different failure probabilities of nodes depending on

the workloads. The proposed model handles the balance among the workload,

deployment cost, and recovery time caused by different strategies and different

protection types. Multiple functions protected by a node can share the backup

resources to reduce the number of active nodes for cost-efficiency, which also

affects the recovery time if the number of unavailable functions is so large that

the remaining capacity cannot recover them. The considered problem aims to

minimize the number of active nodes to determine the protection types and

strategies with satisfying an expected recovery time guarantee. The uncertain

recovery time can be represented by an uncertainty set considering the upper

bound of the average recovery time among the nodes protecting it and the

upper and lower bounds of each recovery time protected by a node collected in

each protection type. The model is formulated as an MILP problem with han-

dling the worst-case expected recovery time under an uncertain recovery time.

To solve the problem in a practical time, a heuristic algorithm is developed. It

reduces the number of active nodes while decreasing the worst-case expected

recovery time. The numerical results reveal the superiority of the proposed

model with the recovery time guarantee, uncertainty set, and shared protec-

tion; This chapter investigates the dependency on the bounds of uncertain
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recovery time.

Chapter 7 proposes a resource allocation model under reliability guarantees

to minimize the number of activated nodes. The model considers that backup

resources can recover an unavailable function in a period of time, which relates

to the backup modes and assigned recovery workload. The backup resource of

each function has multiple modes with different degrees of pre-configuration

and different recovery times. This chapter further considers that the extra-

assigned recovery workload can be adopted to speed up the recovery while

improving the resource efficiency to fully utilize the idle capacity for faster re-

covery. On the other hand, the extra-assigned recovery workload may lead to

unsuccessful recovery in a specific failure configuration. This chapter considers

two reliability indicators, which are recovery time and the total unsuccessful

recovery probability; each reliability indicator is restricted under guarantee

while minimizing the number of activated nodes. The numerical results re-

veal that the number of activated nodes is reduced compared to baselines by

considering the proposed model.

Chapter 8.1 designs and implements a controller to manage the primary

and backup resources of network functions. This chapter introduces a new

resource type called backup Pod set (BPS), which is a custom resource in Ku-

bernetes [38]. BPS includes a certain number of different types of Pods which

are the primary, HB, and CB Pods. The transitions of different types of Pods

can be customized by cooperating with the allocation-model-based scheduler

introduced in [35] or randomly. Demonstrations validate the effectiveness of

the controller. Chapter 8.2 designs and implements controllers to deploy net-

work functions in a real-time and reliable manner. This chapter introduces

two new resource types called migratable Pod set (MPS) and global optimizer

(GO), each of which is custom resource in Kubernetes [38]. To achieve the

function deployment in a limited computation time, this chapter introduces

two controllers in Kubernetes for a two-stage function deployment. The MPS

controller manages the Pods for an intermediate allocation with a model or a

heuristic algorithm to respond to the requests promptly. The GO controller

manages the MPS instances by optimizing Pod allocations with considering

resource migration of network functions to maintain the current state of the

Pods to keep the current state consistent with the desired state.
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Related works

2.1 Resource allocation problems in different

fields

The work in [39] realized the collaborative resource allocation optimization

of mobile edge computing to reduce the delay of edge servers in the trans-

mission process. The work in [40] addressed both node and path resource

allocation and introduced a backup computing and transmission resource al-

location model for virtual networks with providing a probabilistic protection

against multiple facility node failures. The work in [41] investigated a task,

spectrum, and transmit power allocation problem for a wireless network to

jointly provide computation and communication services to users. The work

in [42] introduced distributed resource allocation approaches with jointly con-

sidering power allocation, interference management, power and rate allocation,

resource allocation, and pricing policies. The work in [43] studied spectrum

management for each user to determine the optimal allocation of their trans-

mission power in each one of the bands, where users are offered the option to

transmit via licensed and unlicensed bands.

This thesis focuses on resource allocation in the field of virtual function de-

ployment with considering the effect of high workload on the failure probabil-

ities of nodes. Allocating virtual function, such as network services and appli-

cations, to suitable physical or virtual resources can yield cost savings, height-

ened elasticity and adaptability, enhanced fault tolerance, and optimization
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of performance parameters encompassing response time, resource utilization,

scalability, stability, and dependability. The proposed models in this thesis

jointly considered two aspects, which are availability-oriented and recovery-

oriented, for resource allocation. This consideration not only offers promising

avenues for cost reduction, but also amplifies reliability and stability, fortifying

its resilience in the face of potential failures.

2.2 Failure scenarios in NFV and workload-

dependent failure probability

VNF operations are susceptible to various failure scenarios. These include

VNF crashes due to resource constraints or software bugs, network disruptions

causing delays or failures between VNFs, load imbalances, cascading failures,

resource exhaustion, dependency issues, data integrity concerns, configuration

drift, and the significant impact of physical node failures, rendering all hosted

functions unavailable. Addressing these scenarios through monitoring, recov-

ery mechanisms, and resilient resource allocation design ensures reliable VNF

performance.

Several studies addressed fault-torelance and tackled the resource allocation

problem with different objectives and approaches. The work in [44] minimizes

the required total capacity for primary physical machines in a cloud provider

by providing probabilistic protection. The work in [28] maximizes the proba-

bility for a full recovery or maximizes the expected number of functions that

can be recovered simultaneously by providing several properties of an opti-

mal assignment of backups servers to functions. The work in [34] maximizes

the continuous available time of service function chains by allocating func-

tions to virtual machines (VMs) in a sequence of time slots. The work in [45]

minimizes resource consumption while providing specific latency to ensure the

required quality of services based on a flexible resource allocation approach.

The resource allocation models presented in the above works determine the

allocations without considering a workload-dependent failure probability and

different protection strategies; this thesis jointly considers different protection

strategies and the relationship between the workload and the failure probabil-

24



Section 2.3

ity.

Several studies addressed the analysis of failure characteristics with com-

puting and storage (workload) in datacenters. The increase of workload af-

fects both CPU utilization and computation time [46], which further causes

degradation of cloud service availability [47]. The work in [9] reported a cor-

relation between the type of workload and the failure probability; the work

in [10] reported a correlation between the workload intensity and the fail-

ure probability. Cloud computing workload characteristics have been studied

in [48]. They presented a large-scale analysis of workload resource utilization

and a characterization of a cloud datacenter using tracelogs made available

by Google. The work in [49] conducted further research on modeling the re-

liability of cloud datacenters, presenting an analysis of failure patterns and

repair time of a large-scale production system. Based on the relationship be-

tween the workload and the failure probability, the work in [8] introduced a

migration policy which is aware of service level agreements and availability

violations at the PM and VM caused by high workload when CPU utilization

exceeds a certain threshold. The work in [50] presented a dynamic replication

scheduling based on workload statistics, which does not trigger replication

if the available CPU usage does not exceed the threshold value. The above

works in [2,6,7,9–11,46,47] considered the relationship between the workload

and the failure probability without approximating it as a numerical function

and jointly considering the influence of different protection strategies on the

workload. This thesis adopts an (-step function which can conservatively ap-

proximate a non-decreasing function to approximately present the relationship

between the workload and the failure probability. This thesis presents resource

allocation models based on workload-dependent failure probability.

2.3 NFV resilience and backup strategies

Resilience is a critical quality-of-service (QoS) metric in NFV, determining the

ability of a service to withstand failures. When a node or link within a ser-

vice fails, the entire service becomes inoperable, necessitating its cessation. To

address this challenge, a common approach is to deploy redundant services, dis-

tributing requested VNFs across different nodes (referred to as node-disjoint)
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to mitigate node failures and selecting paths that avoid traversing the same

link (known as link-disjoint) to mitigate link failures. This redundancy strat-

egy ensures continuous service availability and enhances fault tolerance in the

event of failures. Beck et al. [51] propose a recursive heuristic for survivable

VNF placement to guarantee an end-to-end VNF protection. Han et al. [52]

explore resilient respects of the individual VNF in terms of fault management

(e.g., failure detection and automated recovery) or state management. They

also discuss existing solutions for these aspects. Herker et al. [53] formulate

how to calculate the VNF placement availability in data center topology. They

also present an efficient heuristic on how to place VNFs and their backups to

satisfy the requested availability. Fan et al. [54] consider how to compute one

backup service function chain (SFC) when the primary SFC is given such that

the overall availability is satisfied.

To ensure the reliability of network services, it is essential to have recovery

strategies in place to address network failures. Protection mechanisms reserves

backup resources in advance and reassign traffic to these resources upon fail-

ure, enabling prompt recovery. Several works addressed to suppress the effect

of unavailability by using backup resources to improve the survival rate of

function confronting network failures. Taking this direction, the work in [55]

studied several approaches to provide backup and recovery including the HB

and CB strategies. The work in [30] presented a backup resource allocation

model which adopts the HB strategy for middleboxes to minimize the worst

weighted unavailability. The work in [56] studied a virtual network embed-

ding problem by adopting the CB strategy. Different from the above works,

this thesis takes the unavailable time as an evaluation metric and considers

the different workload and recovery time of different backup strategies. The

resource allocation problem introduced in [57] minimizes the latency between

the pair of primary and backup functions with considering the redundancy

to be used for recovering the failed functions. The work in [58] introduced

a cost-efficient redundancy algorithm to enhance the network resilience with

less backup cost and operation expenditure while maintaining high requests

acceptance ratio by using the importance measure in the context of VNF for-

warding graph to decide the backup candidate and the PN hardware it works

on. The introduced methods in [59] considers the number of active services as
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the system state, estimates the state of idle resources based on it, and treats

the number of admitted services as the action. The Viterbi-based Reliable

Static Service Placement algorithm evaluates each action, and the VRSSP-

based Value Iteration algorithm determines the optimal policy using the value

iteration method.

The recovery time against failures relates to different backup modes [60];

the modes have different workloads to provide different pre-configuration states

for recovery [61]. If the backup resources are only deployed without being acti-

vated as an instance, the recovery time of an unavailable function relates to the

activation and instantiation time; the backup mode is called cold backup (CB).

If a backup instance is activated and synchronized with the primary function so

that the backup instance can take over the task running on the function imme-

diately, the recovery time is only affected by the monitoring mechanism of the

availability of physical nodes [62]; the backup mode is called hot backup (HB).

In addition to the two typical backup modes, warm backup (WB) is also com-

monly used for cost-efficient prompt failure recovery [63]. In the warm backup,

a backup instance of the function is already resident in memory; it is partially

or fully initialized for standby; the backup instance synchronizes the state of

services from the processing primary function periodically. When the primary

function fails, the backup instance can take over the tasks running on the

primary function faster than CB based on the pre-configuration. Compared

with the HB mode, where the backup instance is fully pre-configured, backup

resources with different degrees of pre-configuration in WB recover the un-

available primary function in a longer or equal time. In other words, the more

sufficient pre-configuration (including the instantiation, initialization, and syn-

chronization) a backup instance provides, the faster the recovery procedure can

be. This thesis considers that there exist multiple states of pre-configuration

for different types of service, i.e., stateful and stateless services [64] with dif-

ferent degrees of instantiation, initialization, and synchronization.

2.3.1 Reliability-aware resource allocation

Several reliability-aware works [31, 32, 65] consider both VNF and link avail-

abilities in SFC provisioning. The work in [31] addressed a server selection
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problem to jointly minimize the cost of resources and maximize the reliability

of the service. It assumed that the cost of using a server is linearly propor-

tional to the amount of resources utilized. The work in [32] introduced a VNF

placement and traffic routing policy that jointly maximizes the achieved respec-

tive reliabilities of supported network services and minimizes their respective

end-to-end delays. Different from the above works, this thesis focuses on the

availability of functions, but not the availability of links to estimate the service

availability. Similar to [31], this thesis also considers the resource utilization in

the proposed model. Different from taking resource utilization as a part of cost,

this thesis takes it as a factor which affects the failure probability. Secondly, fo-

cusing on function-level placement, there are mainly two types in terms of the

assumptions taken by these works. In one type, the works in[27–29] addressed

how to allocate the backup resources with different objectives assuming that

the backup servers not to fail [27–29]; only the failures of functions were con-

sidered. The other type of assumption was considered in [30], which studied

unavailability caused by failures of functions and all the corresponding backup

servers. Taking the design goals of these works, the work in [27] presented a

model to maximize the survival probability of functions. The work in [28] pre-

sented models to maximize the recovery probability of failed functions and the

expected number of functions that can be recovered simultaneously. The work

in [29] analyzed the maximum number of failed functions which can be fully

recovered and the minimum number of backup servers required to guarantee

a full recovery. Compared to the assignment aspect studied in their works,

this thesis has three main differences. First, multiple failures may occur to

the servers, which is diffident from [27–29]. Second, different from focusing

on unavailable probability by calculating the product of failure probability of

servers [30], our work focuses on the expected unavailable time of the function.

We consider each situation of different available remaining servers to protect

the function by applying different backup strategies, HB or CB. Third, this

thesis adopts a policy-based approach to prioritize available remaining servers

among multiple backup resources.

Several works investigated reliable resource allocation and load balancing

against failures. Taking the aspect of reliable resource allocation, the work in

[40] addressed the resource allocation with guaranteeing that the probability
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that the protection from a backup facility node fails due to the insufficient

reserved backup computing capacity is within a given value. The work in [66]

presented an approach to determine the allocations of VNFs in service func-

tion chains (SFCs) aiming to minimize the number of affected SFCs upon a

node failure. The work in [67] introduced an optimization model to derive the

resilient resource allocation aiming to reduce the recovery time. The addressed

allocation satisfies a fault-tolerance assurance. The work in [68] presented a

fault-tolerant virtual machine placement method for enhancing service relia-

bility in a cloud environment. The work in [69] presented a backup server

assignment to maximize the survival probability of network functions of mid-

dleboxes. Compared with the existing studies in [40, 66–68], the proposed

model addresses the fault tolerance performance by considering the unsuccess-

ful recovery probability against each failure pattern. Instead of taking the fault

tolerance assurance as a constraint, the proposed model in the thesis consid-

ers the probability of each failure pattern with the workload-dependent failure

probabilities of nodes and takes the weighted unsuccessful recovery probability

as a part of the objective value.

2.4 Load balancing against failures

Taking the aspect of load balancing against failures, some literature studied

load balancing considering the workload variation against failures. The work

in [70] addressed how to allocate slave controllers for switches to minimize the

load variance difference after a single controller failure. The work in [71] in-

troduced a preventive priority setting model to handle load balancing against

multiple failures. The priority for recovery that can be applied to different

failure patterns is determined at the operation start time to minimize the

maximum utilization ratio in the worst-case of failure patterns. Once nodes

fail, the recovery is operated according to the priority setting for prompt re-

covery. However, the works in [70,71] merely considered reducing the workload

variation or the utilization ratio to avoid unevenly overloading without taking

the workload-dependent failure probability into account.

Several works introduced resource allocations considering workload varia-

tion in load balancing. One type of workload variation is caused by the service
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requests. The work in [72] addressed a VNF placement model, where the vari-

ation in the load is handled by dynamically instantiating services. As the load

of the request types changes, the number of instantiated services changes. The

work in [73] introduced an algorithm to balance the load across multiple types

of defined resources, i.e., CPU, storage, and bandwidth, by maximizing the

resource utilization. Another type of workload variation is caused by failures.

The work in [71] addressed how to allocate slave controllers for switches to min-

imize the maximum resource utilization against controller failures. The work

in [74] introduced an optimization model to preventively minimize the worst

network congestion among situations with all possible single link failures at

the operation start time by determining link weights. Different from the load

balancing models presented in the above works, our work minimizes the max-

imum unavailable probability with considering a workload-dependent failure

probability for each node to reveal the relationship between failure probability

and workload.

2.5 Water-filling algorithm

The water filling algorithm is one of the classical algorithms in wireless com-

munications to improve the throughput by power allocation, which can be

considered as a greedy algorithm to evenly distribute the resource. A tradi-

tional physical understanding is to use the analogy of pouring water over a

pool with fluctuating bottom. Taking this direction, the work in [75] adopted

the Lagrangian multiplier method [76] to obtain the expression of the optimum

power allocation. They developed a low-complexity iterative approximate wa-

ter filling algorithm, which reduces the number of iterations for convergence

compared with the traditional iteratively greedy algorithm, to maximize the

spectrum efficiency of the system. The water filling approach not only has

applications in communication systems to maximize spectrum efficiency by

adjusting the transmitting power but also plays an important role in achiev-

ing the load balancing in the network [77] and power grid systems [78]. Since

a network puts great emphasis on providing low latency services which nat-

urally require using fast-timescale load balancing, the work in [79] reported

distributed water-filling algorithm for load balancing to avoid excessive delay
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resulted from overloading any particular network node. This thesis adopts the

water-filling algorithm to solve the resource allocation effectively with consid-

ering the (-step function to approximate the given non-decreasing workload-

dependent failure probability. By dividing the capacity into different ranges

by thresholds, our developed water-filling algorithm determines the resource

allocation by allocating functions on pysical node iteratively until the workload

exceeds each threshold.

2.6 Resource sharing and deployment cost

To reduce the cost of utilizing functions, function sharing was studied [17,

80, 81]. Sharing function instances through multiple service chains and shar-

ing backup resources on a node to protect multiple functions are effective ap-

proaches to reduce costs. A dynamic backup scheme introduced in [80] reduces

resource consumption with sharing backup resources. A dynamic and flexible

approach in [81] addresses rate coordination between the upstream and down-

stream functions as well as the resource allocation for function sharing. An

unavailability-aware backup allocation model with the shared protection intro-

duced in [17] minimizes the maximum unavailability among functions which

considers a distribution of recovery following the queuing approach. Compared

with shared protection models in [17], our work considers the uncertainty of

the recovery time caused by resource sharing, instead of focusing on each recov-

ery procedure of a function by a node that provides shared protection. With

multiple concurrent unavailable functions, our work judges whether a waiting

procedure occurs by considering the expected number of unavailable functions

and expected remaining capacity when a function is protected by a node.

The deployment cost also has several measurements. The VNF placement

problem for service chains was studied in [82] for minimizing deployment cost

and network traffic cost; the traffic cost of each physical link is calculated with

the hop distance and the total allocated bandwidth of virtual links embedded

in that physical link. It addressed energy consumption as one of the key

sources of deployment costs for the service provider and tackled suppressing

the cost by reducing the number of unused nodes. The VNF sharing problem

in [83] focuses on deployment cost and introduced an incurred cost, which
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consists of a fixed cost paid if the VM is activated and a proportional cost

paid for each unit of computational capability. The resource allocation model

in [36, 84] minimizes the utilization ratio of nodes and increases the number

of acceptable requests while satisfying :-fault-tolerance guarantee. Our work

focuses on deployment cost; it considers the active number of nodes as the

deployment cost and combines the proportional cost into the expected recovery

time with considering the workload-dependent failure probability. Our work

considers to minimize the deployment cost while satisfying the recovery time

guarantee.

2.7 Robust optimization and uncertain recov-

ery time

Robust optimization is one of the commonly used approaches to handle the

uncertainty of parameters. A hose model introduced in [85] represents the

uncertainty of the traffic matrix. A probabilistic protection model against fail-

ure uncertainty and demand uncertainty was introduced in [86]. The resource

allocation problem in [23] considered the uncertainty set of the start time and

period of unavailability on each node in the availability schedule.

Uncertainty of parameters commonly exists in an optimization problem

and can be tackled by robust techniques. The implementation introduced

in [62] demonstrates the HB and CB resources and investigated the recovery

time against failures. The recovery time depends on the recovery mechanism,

such as the types of failures, the time for failure detection and distinction,

the initiation time for hardware and applications, and the restoration time for

data and process state [87]. It also relates to the size of the function and the

activation time for it, which leads to the uncertainty of the recovery time.

Except for the parameters in the previous studies [23, 85, 86] mentioned

above, the recovery time may change in diffident situations and float in a cer-

tain range. The recovery time has its uncertainty due to several reasons, which

include the node and function characteristics that lead to different initiation

times for hardware and applications and restoration times for data and process

states. This thesis introduces an uncertainty set that considers the upper and
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lower bounds of the recovery time of a function protected by each node and

the upper bound of the average recovery time among the nodes. The uncer-

tainty of the recovery time is also affected by the protection types; waiting

time due to the concurrent failures of functions needs to be considered. This

is because, if a primary function fails, it may not be able to be recovered by

an available backup resource due to the concurrent failures of other functions

sharing the backup resources; the recovery time also depends on the availabil-

ity of other functions protected by the same set of nodes. Taking the average

value for estimating the recovery time in a different situation may lead to a

reliability guarantee violation. In other words, the reliability indicators satisfy

each reliability guarantee in the average cases; however, they may not satisfy

the reliability guarantee when we consider the worst case among changeable

recovery times and probabilities. Thus, to satisfy the reliability guarantees in

any recovery time distributions, the uncertainty of recovery time needs to be

involved in the considered problem, which is addressed in this thesis.
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Single backup resource

allocation with

workload-dependent failure

probability

This chapter proposes an optimization model to derive a primary and backup

resource allocation considering a workload-dependent failure probability to

minimize the maximum expected unavailable time (MEUT) [37,88].

The remainder of the chapter is organized as follows. Section 3.1 describes

the proposed model. Section 3.2 discusses different values of MEUT corre-

sponding to different parameters. Section 3.3 presents a heuristic algorithm.

Section 3.4 presents the numerical results. Section 3.5 discusses the approxi-

mation of non-decreasing function. Section 3.6 summarizes this chapter.

3.1 Optimization Model

3.1.1 Primary and backup resource allocation

This chapter builds a primary and backup resource allocation model with

consideration of the workload-dependent failure probabilities. The model con-

siders two backup strategies to provide protection. Each PM has its failure
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probability affected by the resource allocation and backup strategies. The

model focuses on the primary and backup resource allocation and the backup

strategies to minimize MEUT among VMs by balancing the workload and the

recovery time of the two strategies. Consider a set of PMs and a set of VMs,

which are denoted by  and + , respectively. Each PM is able to offer capacity

for both primary allocation and backup resource allocation. When failures

occur in some PMs, the workloads in the failed PMs are transferred to the cor-

responding PMs which provide protection. Note that the primary and backup

resources of a VM are allocated in two different PMs.

Consider two backup strategies 1 ∈ � = {0, 1}. 1 = 0 denotes the CB

strategy and 1 = 1 denotes the HB strategy. When a PM fails, the backup

resource corresponding to each VM allocated in the failed PM provides either

HB or CB to recover the VM. In the CB strategy, a VM is allocated and

operated in the primary resource of PM while it is protected by the backup

resource of another PM. The reserved idle capacity is not taken into account

as an active workload in the backup resource allocation. In the HB strategy,

the VM protected by the corresponding backup resource which is operated

with the VM allocated in the primary resource simultaneously is counted as

the active workload, and the active workload affects the failure probability of

PM.

Let G:1
8 9

, 8 ∈  , : ∈  \{8}, 9 ∈ +, 1 ∈ �, denote a binary decision variable;

G:1
8 9

is set to one if VM 9 ∈ + is allocated at PM 8 ∈  and is protected

by PM : ∈  \{8} with strategy 1 ∈ �, and zero otherwise. ;R
9

denotes the

requested load of VM 9 ∈ + , which denotes the computing resources requested

by the VM. The failure probability of each VM is related to the workload of

corresponding PM. Let ,8 denote the workload of PM 8 ∈  , which contains

the primary resources and hot backup resources. Let '8 denote the requested

load of PM 8 ∈  , which contains the primary resources and both HB and CB

backup resources. ,8 and '8, 8 ∈  are expressed by:

,8 =
∑
9∈+

∑
1∈�

∑
:∈ \{8}

;R9 G
:1
8 9 +

∑
8′∈ \{8}

∑
9∈+

;R9 G
81
8′ 9 ,∀8 ∈  , (3.1a)

'8 =
∑
9∈+

∑
1∈�

∑
:∈ \{8}

;R9 G
:1
8 9 +

∑
1∈�

∑
8′∈ \{8}

∑
9∈+

;R9 G
81
8′ 9 ,∀8 ∈  . (3.1b)
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Let �8 denote the upper bound of computing capacity which PM 8 ∈  
can provide for primary and backup allocation. The computing resources in-

clude multiple types of resources, such as CPU and memory; the workload is

one of the computing resources. The units are changed when the measured

computing resources are changed. For example, if the CPU usage is measured

as a computing resource, the unit can be CPU cores; if the memory usage is

measured as a computing resource, the unit can be Byte. Therefore, this work

assumes that ,8, '8, �8, 8 ∈  , and ;R
9
, 9 ∈ + , are unitless.

3.1.2 Unavailability with workload-dependent failure prob-

ability

This work considers that multiple simultaneous failures occur in PMs. This

work assumes that each PM fails independently. This work assumes that

backup resources in PM : ∈  can recover all VMs which are protected by

PM : simultaneously.

Given the workload-dependent failure probability, which is assumed to

be a non-decreasing function, an (-step function can be used, as shown in

Fig. 3.1(b), to conservatively approximate it. Adopting step functions is a

common approach for approximating a given curve. Let 5 (|) be a given non-

decreasing failure probability, which shows the practical relationship between

the failure probability and the workload; let B(|) denote an (-step function;

| is the PM workload. Given the step number ( with considering the ac-

curacy of fitting the non-decreasing function 5 (|) in an (-step function and

the computation time to solve the proposed model, the failure probability can

be designed with the threshold of )B, B ∈ S, and corresponding failure prob-

ability %B. To fit the given curve as accurately as possible, the conservative

approximation can have different goals while keeping B(|) ≥ 5 (|), such as

minimizing
∫ �8

0
(B(|) − 5 (|)) d| or maxB∈(

{∫ ) B
8

) B−1
8

(B(|) − 5 (|)) d|
}
, as shown

in Fig. 3.1(a).

This work considers that the failure probability of PM 8 ∈  according to

the PM workload is denoted by PS
8

. P(
8

is expressed by the following (-step

function, which relates the PM workload to the failure probability of the PM.

Let B ∈ S = [1, (] denote the Bth step in the (-step workload-dependent failure
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Figure 3.1: Workload-dependent failure probability is expressed by a non-

decreasing step function.
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probability; ( denotes the number of steps in a step function:

PS
8 =


%1, )0

8
≤ ,8 ≤ )1

8

%2, )1
8
< ,8 ≤ )2

8

· · · · · ·
%(, ) (−1

8
< ,8 ≤ ) (8 ,

(3.2)

where )0
8
= 0 and ) (

8
= �8, 8 ∈  .

When the workload of a PM increases from the range of () B−1
8

, ) B
8
] to

() B
8
, ) B+1
8
], the failure probability increases from %B−1 to %B. As the work-

load increases, even though the PM has remaining capacity, the PM becomes

fragile, and has a higher failure probability to handle the extra workload.

When a PM fails, it is not able to handle the corresponding computing

resources for VMs hosting on it. Each VM hosted on the failed PM needs to be

reallocated to another available PM. A 9 denotes the expected unavailable time

for VM 9 ∈ + . When a VM becomes unavailable, two situations may hold.

One is that VM 9 ∈ + fails and becomes unavailable before it is recovered

by an available PM hosting its backup resources. Once a failure occurs to

a PM, the recovery time C1 or C0 which depends on the backup strategies is

required to recover the unavailable VM hosted on the failed PM. Let C1 be

a given parameter that denotes the recovery time for the HB strategy. Let

C0 be a given parameter that denotes the recovery time for the CB strategy.

The backup resource protecting a VM with the HB strategy is activated and

synchronized with the VM, while the backup resource with the CB strategy

requires time for activation and information synchronization. The recovery

time C1 for VM is equal to or smaller than C0. The other one is that both two

PMs hosting primary and backup resources of VM fail simultaneously. When

the VM is protected by an unavailable PM, there is no available PM that is

determined in advance to provide protection to the VM, where the unavailable

time of C3 is required. This work assumes C3 ≥ C0 ≥ C1.

Once a failure of the PM hosting the primary resource of a VM is detected,

the hot backup resource of the VM takes over the tasks operating on the

primary resource immediately. C1 is determined by the availability monitoring

mechanism of PMs. The backup resource with CB is activated and attached to

the virtual storage volume to obtain the latest snapshot of the failed primary
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resource [15]. C0 is determined by multiple factors including the availability

monitoring mechanism, the time for activating the backup resource, and the

time for attaching the volume. The situation that the two PMs hosting the

primary and backup resources of a VM fail simultaneously corresponds to the

unavailable time of C3. There are several maintenance systems to maintain

this situation with the unavailable time of C3 [87,89,90]. VMware vCenter Site

Recovery Manager delivers automated orchestration of fail-over and fail-back

to minimize downtime [89]. The works in [87,90] introduced the maintenance

mechanisms that can be applied for the systems. The maintenance process

may include monitoring and updating the standby system, and initiating the

emergency operation. C3 can be influenced by the interplay of several factors of

the maintenance mechanisms, such as the types of failures, the time for failure

detection and distinction, the initiation time for hardware and applications,

the restoration time for data and process state, and the Internet Protocol (IP)

switching time [87].

3.1.3 MILP problem formulation

In order to get the optimal solution of the proposed primary and backup

resource allocation problem with the step function that approximates the given

workload-dependent failure probability, this work introduces a mathematical

model as follows:

min A (3.3a)

B.C.
∑
8∈ 

∑
1∈�

∑
:∈ \{8}

G:18 9 = 1,∀ 9 ∈ +, (3.3b)∑
1∈�

∑
:∈ \{8}

∑
9∈+

;R9 G
:1
8 9 +

∑
1∈�

∑
8′∈ \{8}

∑
9∈+

;R9 G
81
8′ 9 ≤ �8,∀8 ∈  , (3.3c)

A 9 = C1

∑
8∈ 

∑
:∈ \{8}

G:18 9 PS
8 (1 − PS

: ) + C0
∑
8∈ 

∑
:∈ \{8}

G:08 9 PS
8 (1 − PS

: )+

C3

∑
8∈ 

∑
1∈�

∑
:∈ \{8}

G:18 9 PS
8 PS

: ,∀ 9 ∈ +,

(3.3d)

A ≥ A 9 ,∀ 9 ∈ +, (3.3e)
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G:18 9 ∈ {0, 1},∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �. (3.3f)

Equation (3.3a) minimizes A, which denotes MEUT among A 9 , 9 ∈ + . Equa-

tion (3.3b) ensures that each VM 9 ∈ + is allocated into only one PM and

protected by another PM with selecting one of the protection strategies. Equa-

tion (3.3c) imposes the capacity constraint that the requested load for the

primary and backup resources on each PM does not exceed its maximum com-

puting capacity. The first term in the right side of (3.3d) is the expected

unavailable time for VM 9 ∈ + by applying the HB strategy. This term con-

siders a case that VM 9 ∈ + fails and is protected by its corresponding available

backup resource whose non-failure probability is 1− PS
:

with the HB strategy.

The second term in the right side of (3.3d) is the expected unavailable time for

VM 9 ∈ + by applying the CB strategy. This term considers a case that VM

9 ∈ + fails and is protected by its corresponding available backup resource in

PM : ∈  \{8} whose non-failure probability is 1 − PS
:

with the CB strategy.

The third term in the right side of (3.3d) is the expected unavailable time of

a VM in the situation that both two PMs hosting the primary and backup

resources of the VM fail simultaneously.

The proposed model can be solved by an MILP approach, where the (-

step function in (3.2) can be linearized, as described in Appendix A. A service

provider can choose a suitable ( considering the accuracy of fitting the practical

relationship between the failure probability and the workload in an (-step

function, and the computation time to solve the proposed model. To simplify

the discussion and demonstration of the basic idea of the proposed model, this

work considers the case with ( = 2 in the following discussions, unless otherwise

stated. Section 3.4.4 discusses the effect of different ( for approximating a given

workload-dependent failure probability in the proposed model.

In the case with ( = 2, this work uses @8 and )8 as simple forms of P2
8

and

) B
8
, respectively. Equation (3.2) in the case with ( = 2 can be simplified as

follows:

@8 =

{
%L 0 ≤ ,8 ≤ )8
%H )8 < ,8 ≤ �8,

(3.4)

where %L denotes the given failure probability of each PM 8 ∈  with 0 ≤
,8 ≤ )8, and %H denotes the given failure probability of each PM 8 ∈  with
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)8 < ,8 ≤ �8, as shown in Fig. 3.1(c).

Equation (3.4) can be linearized to (3.5)-(3.8) by introducing binary vari-

able ~8, 8 ∈  . ~8 is set to one if 0 ≤ ,8 ≤ )8, and zero otherwise, (3.4) can be

expressed by:

@8 = %L~8 + %H(1 − ~8),∀8 ∈  , (3.5)

,8 ≤ )8~8 + �8 (1 − ~8),∀8 ∈  , (3.6)

,8 ≥ )8 (1 − ~8),∀8 ∈  , (3.7)

~8 ∈ {0, 1},∀8 ∈  . (3.8)

In order to linearize (3.3d), this work introduces binary variables q:1
8 9
= ~8G

:1
8 9
, c:1

8 9
=

~8~:G
:1
8 9
, and \:1

8 9
= ~:G

:1
8 9

. Since q:1
8 9
, c:1

8 9
, \:1
8 9
, q:0

8 9
, c:0

8 9
, \:0
8 9
, X:1
8 9
, Z :1
8 9
, [:1
8 9
∈ {0, 1},

∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.3d) can be linearized as:

A 9 = C1

∑
8∈ 

∑
:∈ \{8}

{(%L − %H) (1 − %H)q:18 9 −

(%L − %H)2c:18 9 + %H(%H − %L)\:18 9 + %H(1 − %H)G:18 9 }+

C0

∑
8∈ 

∑
:∈ \{8}

{(%L − %H) (1 − %H)q:08 9 −

(%L − %H)2c:08 9 + %H(%H − %L)\:08 9 + %H(1 − %H)G:08 9 }+

C3

∑
8∈ 

∑
1∈�

∑
:∈ \{8}

{%H(%L − %H)q:18 9 + (%L − %H)2c:18 9 +

%H(%L − %H)\:18 9 + (%H)2 G:18 9 },∀ 9 ∈ +, (3.9)

q:18 9 ≤~8,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.10)

q:18 9 ≤G:18 9 ,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.11)

q:18 9 ≥~8 + G:18 9 − 1,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.12)

c:18 9 ≤~8,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.13)

c:18 9 ≤~: ,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.14)

c:18 9 ≤G:18 9 ,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.15)

c:18 9 ≥~8 + ~: + G:18 9 − 2,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.16)

\:18 9 ≤~: ,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.17)
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\:18 9 ≤G:18 9 ,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �, (3.18)

\:18 9 ≥~: + G:18 9 − 1,∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �. (3.19)

From the above, this work formulates the problem as an MILP problem, which

is expressed by:

min A (3.20a)

B.C.(3.1a), (3.3b)-(3.3c), (3.3e), (3.5) − (3.19), (3.20b)

~8 ∈ {0, 1},∀8 ∈  , (3.20c)

G:18 9 , q
:1
8 9 , c

:1
8 9 , \

:1
8 9 ∈ {0, 1},∀8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈ �. (3.20d)

The proposed model is designed to preventively determine the initial allo-

cations of VMs in PMs before services run by considering the unavailable time

of PMs caused by the workload-dependent failures and different strategies.

The proposed model can be applied to other scenarios, where failures occur

in PMs, and requests for a set of VMs arrive and some of existing VMs are

released. The primary and backup resource allocation of existing VMs are

collected and can be used as the given parameters for each computation after

any change of given conditions, such as failures, arriving VMs, and releasing

VMs. After each change of given conditions, the proposed model recomputes

the primary and backup resource allocation with the collected primary and

backup resource allocation and the updated information of the workloads and

requested loads caused by the change of given conditions.

3.2 Problem analysis

In this section, this work analyze a special case for the proposed model with

( = 2. From (3.3d), we observe that multiple values of MEUT in the proposed

model exist, each of which corresponds to a situation. In the case with ( = 2,

@8 and @: denote the failure probabilities of PMs, each of which is either %L or

%H, respectively. Either the first term or the second term in the right hand side

of (3.3d) is chosen to calculate the values of the expected unavailable time since

each VM is allowed to adopt either HB or CB to provide protection. Different

situations have different allocations and strategies, which are determined by

43



Chapter 3

Table 3.1: Rank of MEUTs among five values in different conditions.

Condition Rank of MEUT among the five values

C1 ≤ {1 C1%L(1 − %L) + C3%L%L < C1%L(1 − %H) + C3%L%H < C1%H(1 −
%H)+C3%H%H ≤ C0%L(1−%L)+C3%L%L < C0%H(1−%L)+C3%H%L.

{1 < C1 ≤ {2 C1%L(1−%L)+C3%L%L < C1%L(1−%H)+C3%L%H ≤ C0%L(1−%L)+
C3%L%L < C1%H(1 − %H) + C3%H%H ≤ C0%H(1 − %L) + C3%H%L.

{2 < C1 C1%L(1−%L)+C3%L%L < C0%L(1−%L)+C3%L%L < C1%L(1−%H)+
C3%L%H < C0%H(1 − %L) + C3%H%L < C1%H(1 − %H) + C3%H%H.

the given parameters. With considering the given workload-dependent failure

probability, MEUT has eight possible values: C1%L(1− %L) + C3%L%L, C1%L(1−
%H) + C3%L%H, C1%H(1 − %L) + C3%L%H, C1%H(1 − %H) + C3%H%H, C0%L(1 − %L) +
C3%L%L, C0%L(1 − %H) + C3%L%H, C0%H(1 − %L) + C3%L%H, and C0%H(1 − %H) +
C3%H%H.

This work considers that the optimal solution of the proposed model is ob-

tained with considering the step function for approximating the non-decreasing

failure probability. Following the analysis in Appendix B.1, several values of

the above eight values do not exist when MEUT is minimized. This model

has five feasible values with optimal consideration left: C1%L(1− %L) + C3%L%L,

C1%L(1 − %H) + C3%L%H, C0%L(1 − %L) + C3%L%L, C0%H(1 − %L) + C3%L%H, and

C1%H(1 − %H) + C3%H%H.

The relationship among these five feasible values with optimal consideration

depends on the values of C1, C0, and C3. When the total requested load is fixed,

the proposed model chooses the HB strategy or the CB strategy due to the

different relationships among C1, C0, C3, %L, and %H. Appendix B.2 clarifies two

boundary values, which are: {1 =
%L (1−%L)
%H (1−%H) C0 +

%2
L
−%2

H
%H (1−%H) C3 and {2 =

1−%L
1−%H C0 +

%L−%H
1−%H C3, where {1 < {2.

This work lists the rank of MEUT among the five values in different condi-

tions with two boundary values {1 and {2 in Table 3.1. The protection strate-

gies can be switched according to the total requested load so that the larger

value of MEUT does not exist when MEUT is minimized. This work analyzes
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each value of MEUT as the total requested load increases in different condi-

tions in Appendix B.3. Similar to the analysis in Appendix B, this work can

list the possible values of MEUT under the (-step function and list the rank

of MEUT among the possible values in different conditions with calculated

boundary values.

In order to verify the five feasible possible values of MEUT under the

optimal consideration for the proposed model, this work considers comparing

several cases with the two approaches which adopt only the HB strategy and

only the CB strategy, respectively. Approaches 1 and 2 obtain the primary and

backup resource allocation of each VM by minimizing MEUT among VMs with

adopting only the HB strategy and only the CB strategy to provide protection,

respectively.

Both approaches can be formulated as optimization problems similar to

(3.3a)-(3.3c) and (3.3e)-(3.3f). A 9 in (3.3d) can be rewritten as (3.21) and

(3.22) for approaches 1 and 2, respectively. The optimization problems of

approaches 1 and 2 are formulated as MILP problems by fixing G:0
8 9
= 0 and

G:1
8 9
= 0, respectively.

A 9 = C1

∑
8∈ 

∑
:∈ \{8}

G:18 9 @8 (1 − @: ) + C3
∑
8∈ 

∑
:∈ \{8}

G:18 9 @8@: ,∀ 9 ∈ +. (3.21)

A 9 = C0

∑
8∈ 

∑
:∈ \{8}

G:08 9 @8 (1 − @: ) + C3
∑
8∈ 

∑
:∈ \{8}

G:08 9 @8@: ,∀ 9 ∈ +. (3.22)

Theorem 3.1 MEUT of the proposed model with the two-step function is equal

to the smaller value between the two MEUTs obtained by approaches 1 and 2

with the same total requested load.

%A>> 5 :There are five ranges for MEUT of the proposed model with an increase

of the total requested load in each case. In the first range, MEUT is C1%L(1 −
%L) + C3%L%L, which is the smallest value among the five feasible values. It

corresponds to the situation that the total requested load is so low that all VMs

are protected with the HB strategy with failure probability %L. Approach 1

can achieve the same MEUT of C1%L(1 − %L) + C3%L%L by the same allocation

in the optimal solution of the proposed model, where all VMs are protected

with the HB strategy.
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In the second range, when C1 ≤ {2, MEUT in the proposed model is equal

to C1%L(1 − %H) + C3%L%H. Note that some VMs may adopt the HB strategy,

where the expected unavailable time is C1%L(1 − %L) + C3%L%L. Since, based

on the optimal allocation of the proposed model, selecting the HB strategy

for all backup resources does not change the value of MEUT, approach 1 can

achieve this optimal value of C1%L(1 − %H) + C3%L%H. When C1 > {2, MEUT in

the proposed model is equal to C0%L(1 − %L) + C3%L%L. Based on the optimal

allocation of the proposed model, selecting the CB strategy for all backup

resources does not change the value of MEUT. Thus, approach 2 can achieve

this optimal value of C0%L(1 − %L) + C3%L%L.

In the third range, when C1 ≤ {1, MEUT in the proposed model is equal to

C1%H(1 − %H) + C3%H%H. Similar to the second range, some VMs may adopt

the HB strategy, where the expected unavailable time is either C1%L(1 − %L) +
C3%L%L or C1%L(1 − %H) + C3%L%H. Since, based on the optimal allocation of

the proposed model, selecting the HB strategy for all backup resources does

not change the value of MEUT, approach 1 can achieve this optimal value of

C1%H(1 − %H) + C3%H%H. When C1 > {1, MEUT in the proposed model is equal

to C0%L(1 − %L) + C3%L%L. The expected unavailable time of other VMs in

the proposed model is either C1%L(1− %L) + C3%L%L or C1%L(1− %H) + C3%L%H.

Similar to the condition of C1 ≤ {1, based on the optimal allocation of the

proposed model, selecting the CB strategy for all VMs obtains two values of

expected unavailable time: C0%L(1− %L) + C3%L%L and C0%L(1− %H) + C3%L%H.

If the second value exists, there is at least one VM whose backup resource

is allocated in a PM with %H. Since the primary resources of all VMs are

protected with the CB strategy, this PM with %H hosts the primary resource

for at least one VM. It contradicts the condition that MEUT in the proposed

model is equal to C0%L(1−%L) + C3%L%L and the failure probabilities of all PMs

hosting the primary resources are %L. Hence, the second value does not exist.

Selecting the CB strategy for all backup resources does not change the value

of MEUT, approach 2 can achieve this optimal value of C0%L(1−%L) + C3%L%L.

In the fourth range, the total requested load for primary resource is larger

than the sum of thresholds of all PMs. As a result, the failure probability of

the primary resource which is protected with the CB strategy is %H. When

C1 ≤ {2, MEUT in the proposed model is equal to C1%H(1−%H) + C3%H%H. With
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the same reason in the third range, approach 1 can achieve this optimal value

of C1%H(1 − %H) + C3%H%H. When C1 > {2, MEUT in the proposed model is

equal to C0%H(1−%L) + C3%H%L. Note that each of other VMs may adopt either

CB or HB, where the expected unavailable time is C0%L(1 − %L) + C3%L%L and

either C1%L(1 − %L) + C3%L%L or C1%L(1 − %H) + C3%L%H, respectively. Similar

to the reason in the second and third ranges, based on the optimal allocation

of the proposed model, selecting the CB strategy for all backup resources does

not change the value of MEUT, approach 2 can achieve this optimal value of

C0%H(1 − %L) + C3%H%L.

In the fifth range, the total requested load is so large that the failure proba-

bilities of both primary and backup resources which are protected with the CB

strategy are %H. No matter the relationship between C1, C0, C3, %L, and %H, the

proposed model adopts the HB strategy instead of the CB strategy to reduce

MEUT, which is equal to C1%H(1−%H) + C3%H%H. Approach 1 can achieve this

lower optimal value of C1%H(1−%H)+C3%H%H, instead of C0%H(1−%H)+C3%H%H.

Note that each of other VMs may adopt either CB or HB, where the expected

unavailable time is either C0%H(1 − %L) + C3%H%L or C1%L(1 − %H) + C3%L%H,

respectively. Similar to the reason in the second and third ranges, based on

the optimal allocation of the proposed model, selecting the HB strategy for all

backup resources does not change the value of MEUT, approach 1 can achieve

the optimal value of C1%H(1 − %H) + C3%H%H. �

By adopting Theorem 1, this work can reduce the computation time by

adopting approaches 1 and 2 to obtain resource allocations and then finding

out the minimum value of MEUT calculated based on the resource alloca-

tions. Compared to the proposed model, which directly solving (20a)-(20d),

separating the primary and backup resource allocation problem to the two

sub-problems can reduce the problem size of each. Here, this work defines an

HB sub-problem and a CB sub-problem as the primary and backup resource

allocation problem by only adopting approaches 1 and 2, respectively.

3.3 Heuristic algorithm

As clarified in [44], the decision version of primary and backup allocation

problem is an NP-complete problem by reducing the number partition problem,
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which is a well-known NP-complete problem. It indicates that the primary and

backup resource allocation problem becomes difficult to solve as the problem

size increases. As clarified in section 3.2, the primary and backup resource

allocation problem can be simplified by adopting approaches 1 and 2. However,

even the two sub-problems remain to be NP-complete. Without the different

strategies among the VMs to balance the workload and the recovery time, the

problem size of each sub-problem is reduced by only considering the primary

and backup resource allocation problem.

This section presents a main idea of heuristic algorithm design which ob-

tains an approximate solution of the resource allocation to minimize MEUT

with considering the workload to reduce the computation time. Thus, this

work can solve a problem with a faster algorithm than the MILP approach by

sacrificing proper optimality.

Gallager et al. in [91] introduced the idea of water filling, which has been

applied to various areas in communications and signal processing. The water-

filling algorithm is a pseudo-polynomial [92] algorithm to approximately solve

the problem. Inspired by the work in [77], which adopts the water-filling algo-

rithm for load balancing to minimize the maximum load of links and nodes, the

developed heuristic algorithm determines the resource allocation by allocating

VMs on PM 8 ∈  iteratively until the workload for the PM exceeds threshold

)8 with the allocation of the next VM. Then, this work continues to allocate

VMs to the next PM until the workload exceeds the corresponding threshold

with the allocation of the next VM. When the allocation of the next VM causes

the workload of every PM to exceed its corresponding threshold, the algorithm

allocates VMs to the first visited PM iteratively until the requested load for

the PM exceeds the corresponding capacity with allocation of the next VM.

Then, this work continues to allocate VMs to the next PM until the requested

load for the PM exceeds the corresponding capacity with the allocation of the

next VM. If there is any PM with the requested load larger than the capacity,

the developed algorithm takes the two sub-problems with given parameters as

infeasible.

Let ,1
8

and '1
8

denote the workload and the requested load of PM when it

is protected and it protects other PMs with strategy 1 ∈ {0, 1}, respectively.

By fixing G:0
8 9
= 0 and G:1

8 9
= 0, respectively, the workload and the requested
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load of PM in the HB and CB sub-problems can be expressed by:

,1
8 =

∑
9∈+

∑
:∈ \{8}

;R9 G
:1
8 9 +

∑
8′∈ \{8}

∑
9∈+

;R9 G
81
8′ 9 ,∀8 ∈  , (3.23a)

'1
8 =

∑
9∈+

∑
:∈ \{8}

;R9 G
:1
8 9 +

∑
8′∈ \{8}

∑
9∈+

;R9 G
81
8′ 9 ,∀8 ∈  , (3.23b)

,0
8 =

∑
9∈+

∑
:∈ \{8}

;R9 G
:0
8 9 ,∀8 ∈  , (3.23c)

'0
8 =

∑
9∈+

∑
:∈ \{8}

;R9 G
:0
8 9 +

∑
8′∈ \{8}

∑
9∈+

;R9 G
80
8′ 9 ,∀8 ∈  . (3.23d)

Algorithm 3.1 solves both HB and CB sub-problems by fixing 1 = 1 and

1 = 0, respectively, and it sorts 8 and 9 by )8 and ;R
9

decreasingly, respectively,

in advance (line 2). Algorithm 3.1 handles two situations. In the first situation,

the total requested load is lower than
∑
8∈ )8/2 (lines 2-12). A VM is allocated

to PM 8 = : mod | | +1 and protected by PM : = 8 mod | | +1, if,1
8
+;R

9
≤ )8,

,1
:
+ ;R

9
≤ ): , '18 + ;R9 ≤ �8, and '1

:
+ ;R

9
≤ �: (lines 4-10). Algorithm 3.1

processes until all VMs are allocated and protected. If the next VM causes

every PM to exceed the threshold, Algorithm 3.1 traverses the PMs to search

for PMs whose remaining capacities are equal to or larger than the requested

load of the VM (line 12). Algorithm 3.1 deals with the allocation and backup

protection of each VM individually by adopting different PMs in the first

situation.

The second situation is when
∑
9 ′∈+ ;

R
9 ′ ≥

∑
8∈ )8/2 (lines 13-41). VMs are

allocated to PM 8 and protected by PM : = (8 + 1+ b 8| | c) mod | |, iteratively,

if ,1
8
+ ;R

9
≤ )8, ,1

:
+ ;R

9
≤ ): ,'18 + ;R9 ≤ �8, and '1

:
+ ;R

9
≤ �: (lines 14-26).

Algorithm 3.1 does not change primary and backup resource allocation until

the allocation of next VM 9 causes ,1
8
+ ;R

9
> )8, ,

1
:
+ ;R

9
> ): , ,

1
:
+ ;R

9
≤ ): ,

or '1
:
+ ;R

9
≤ �: (lines 32-34).

Since C1%L(1 − %H) + C3%L%H < C1%H(1 − %L) + C3%L%H, if the next VM

causes the workload of every PM to exceed the corresponding threshold, the

algorithm allocates the VM to a PM whose capacity is only used to allocate

backup resources. This PM works as a backup PM with failure probability %H

because of the backup allocation of the VM (line 14). The PM 8 = 2, which is
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only used as backup resource for VMs which are allocated to the PM 8 = 1, is

used to accept the backup resource of the VMs in the last PM 8 = | |. As a

result, Algorithm 3.1 may avoid the larger MEUT.

Algorithm 3.1 Developed heuristic algorithm

Input:  ,+,)8, �8, ;
R
9
,∀8 ∈  , 9 ∈ +, B

Output: G:1
8 9

, 5flag

1: G:1
8 9
= 0, 5flag = 1, : = 0, 9 = 9stop1 = 9stop2 = 1

2: Sort 8 and 9 by )8 and ;R
9

decreasingly, respectively

3: if
∑
9 ′∈+ ;

R
9 ′ <

∑
8∈ )8/2 then

4: repeat

5: 8 = : mod | | + 1

6: : = 8 mod | | + 1

7: Calculate ,1
8

, ,1
:
, '1

8
, and '1

:

8: if ,1
8
+ ;R

9
≤ )8 and ,1

:
+ ;R

9
≤ ): and '1

8
+ ;R

9

≤ �8 and '1
:
+ ;R

9
≤ �: then

9: G:1
8 9
← 1, 9stop1, 9 ← 9 + 1

10: end if

11: until 9 = |+ | or ,1
8
+ ;R

9
> )8,∀8 ∈  

12: Transverse( 9stop1, | |)
13: else

14: for 8 = 1→ | | do

15: : = (8 + 1 + b 8| | c) mod | |
16: for 9 = 9stop2 → |+ | do

17: Calculate ,1
8

, ,1
:
, '1

8
, and '1

:

18: if ,1
8
+ ;R

9
> )8 or '1

8
+ ;R

9
> �8 or ,1

:
+ ;R

9
>

)8 or '1
:
+ ;R

9
> �8 then

19: Break

20: end if

21: G:1
8 9
← 1, 9stop2 ← 9 + 1

22: if 9 = |+ | then

23: Exit

24: end if

25: end for

26: end for
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27: Reallocation( 9stop2, | |)
28: for 8 = 1→ | | − 1 do

29: : = 8 + 1

30: for 9 = 9stop2 → |+ | do

31: Calculate '1
8

32: if '1
8
+ ;R

9
> �8 or '1

:
+ ;R

9
> �: then

33: Break

34: end if

35: G:1
8 9
← 1, 9stop2 ← 9 + 1

36: if 9 = |+ | then

37: Exit

38: end if

39: end for

40: end for

41: Transverse( 9stop2, | |)
42: end if

Algorithm 3.2 Reallocation

1: function Reallocation( 9stop,  )

2:  E ← set of PMs with even numbers in  in an increasing order by

their labels

3:  ′E ← set of PMs with even numbers in  in a decreasing order by

their labels

4: for :′ ∈  ′E do

5: Define #′ as the set of backuped VMs in PM :′,

9 ′stop ← 1

6: for : ∈ {: |: ∈  E, : < :
′} do

7: for 9 ′ = 9 ′stop → |#′| do

8: if ,: + ;R9 ′ > �: then

9: Break

10: end if

11: VM 9 ′ which is protected by PM :′

moves from PM :′ to PM :,

12: ,: ← ,: + ;R9 ′, 9 ′stop ← 9 ′ + 1

13: if ,: + ;R9stop > �: then
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14: Break

15: end if

16: G:1
: ′ 9stop

← 1, 9stop ← 9stop + 1

17: end for

18: end for

19: end for

20: return G:1
8 9

, 9stop

21: end function

Algorithm 3.3 Transverse

1: function Transverse( 9stop, | |)
2: for 8 = 1→ | | − 1 do

3: for : = 8 + 1→ | | do

4: if �8 − '18 ≥ ;R9stop and �: − '1: ≥ ;
R
9stop

then

5: G:1
8 9stop

← 1, 9stop ← 9stop + 1

6: end if

7: end for

8: end for

9: if 9stop ≠ |+ | + 1 then

10: 5flag = 0

11: end if

12: return G:1
8 9
, 5flag

13: end function

When the allocation of a VM causes the workload of every PM to exceed

its threshold and further leads to failure probability %H of a PM, allocating the

VM to a PM whose capacity is only used to allocate backup resources is better

than allocating the VM to a PM whose capacity is used to allocate both backup

and primary resources since C1%H(1−%L) + C3%L%H > C1%L(1−%H) + C3%L%H. It

is hard for the developed water-filling algorithm to preset PMs with a suitable

number to allocate only backup resources, so this work defines Algorithm 3.2

as a reallocation function and define a set of PMs 8 = 2=, = ∈ [1, b| |/2c],
which are PMs with even numbers in  . Let  E and  ′E denote sets of even

numbers in  in an increasing order and a decreasing order by their labels,

respectively (lines 2-3). Algorithm 3.2 moves the VMs protected by PM in  ′E
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PM 1 PM  2 PM 3 PM 4

VM7
VM3

VM4

VM8

VM1
VM2 VM9

VM8

VM5

PM 5

VM6VM1

Hot backup resource Primary resourceRemaining resource

VM3

VM2

VM4
VM7
VM6

VM9

VM5

(a) Example for sub-problem only adopting HB strategy.

PM 1 PM  2 PM 3 PM 4 PM 5

Cold backup resourceRemaining resource Primary resource

VM8

VM1

VM4 VM7
VM5
VM6

VM9

VM2

VM3

VM4
VM5

VM6

VM3

VM1
VM2

VM9
VM7
VM8

(b) Example for sub-problem only adopting CB strategy.

Figure 3.2: Examples of developed heuristic algorithm.

to PMs in  E when the allocation of the next VM causes the workload of each

PM to exceed the threshold (lines 4-12). After the reallocation, PM :′ ∈  ′E
has enough capacity for primary resource allocation of new VMs, VMs are

allocated for the primary and backup resources on PMs :′ ∈  ′E and : ∈  E,

respectively (lines 13-17). As a result, the VMs can be protected iteractively

by the PM with failure probability %H while primary resources can be allocated

to the PM with failure probability %L.

Similar to lines 14-26 in Algorithm 3.1, if the next VM causes the workload

of every PM to exceed the corresponding threshold, Algorithm 3.1 allocates

the primary and backup resources of each VM iteratively on the same PMs

until the allocation of the next VM 9 causes '1
8
+ ;R

9
> �8 or '1

:
+ ;R

9
> �: (lines

28-40).

If remaining VMs are waiting to be allocated after iterations of allocation,

Algorithm 3.3 traverses PMs for all remaining VMs to search for PMs, each

remaining capacity of which is equal to or larger than the requested load of
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a remaining VM until there is a VM that cannot find a feasible allocation

(lines 2-8). If at least a VM cannot find a feasible allocation, the solution of

sub-problem is infeasible (lines 9-11).

The computation time complexities of sorting | | PMs and sorting |+ | VMs

are $ ( | | log | |) and $ ( |+ | log |+ |), respectively. The computation time com-

plexities of Algorithms 3.2 and 3.3 are $ ( |+ | | |2) and $ ( | |2), respectively.

The computation time complexities of lines 14-26 and lines 28-40 in Algo-

rithm 3.1 are $ ( | |2) and $ ( |+ | | |), respectively. Calling Algorithms 3.2 and

3.3 in Algorithm 3.1, the overall computation time complexity is $ ( |+ | | |2 +
|+ | log |+ |).

Figure 3.3 shows examples of the developed heuristic algorithm by focus-

ing both HB and CB sub-problems with five PMs sorted by )8 decreasingly.

Figure 3.2(a) shows the example for the HB sub-problem. VMs 1, 2, and 3 are

allocated to PM 1 until VM 4 causes the exceeding of )1. VMs 1 and 2 are

protected by PM 2 until VM 3 causes the exceeding of C0. For PM 3, VM 3

is protected by PM 3 because of the limited threshold for PM 2; VMs 4 and

5 are allocated to PM 3 until VM 4 causes the exceeding of )4. VMs 4 and 5

are protected by PM 4 until VM 6 causes the exceeding of )4. VMs 6 and 7

are allocated by PM 5 and protected by PM 2 until VM 8 causes the exceed-

ing of )5. When the allocation of VM 8 causes the workload of every PM to

exceed its threshold, Algorithm 2 moves VMs 4 and 5, which are protected by

PM 4 originally, to PM 2. As the result of the reallocation, VMs 8 and 9 are

allocated for the primary and backup resources on PMs 4 and 2, respectively.

Similarly, Fig. 3.2(b) shows the example for the CB sub-problem. VMs 1,

2, and 3 are allocated to PM 1 until VM 4 causes the exceeding of )1. Since

resources for CB strategy are not being activated, PM 2 still has remaining

resource for primary resources. VMs 4, 5, and 6 are allocated to PM 2, itera-

tively, until VM 7 causes the exceeding of C0. For PM 3, VMs 4, 5, and 6 are

protected by PM 3; VMs 7 and 8 are allocated to PM 3 until the allocation

of VM 9 causes the exceeding of �3. For PM 4, VM 7 and 8 is protected by

PM 4; VM 9 is allocated to PM 4 while protected by PM 5.

Algorithm 3.1 consider the case with ( = 2 to simply the clarifications.

In order to increase the accuracy of the step function to approximate the

given workload-dependent failure probability, an (-step function, where ( > 2,
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Table 3.2: Expected unavailable time and primary backup resource allocation

of each VM.
VM1 VM2 VM3 VM4

A 9 [s] 0.01725 0.01725 0.01725 0.0754

(8, :, 1) (3,1,1) (3,1,1) (2,1,1) (3,2,0)

VM5 VM6 VM7 VM8

A 9 [s] 0.0754 0.0754 0.01725 0.01725

(8, :, 1) (2,3,0) (2,3,0) (3,1,1) (3,1,1)

can be extended from the two-step workload-dependent failure probability to

conservatively approximate a non-decreasing function of the workload. By

processing lines 27-41 in Algorithm 3.1 repeatedly for ( times, the heuristic

algorithm can be extended to solve the proposed model with an (-step failure

probability.

3.4 Numerical evaluations

First, this work shows a demonstration of the proposed model to observe the

basic characteristics. Second, this work investigates the dependency of MEUT

on the recovery time. Third, this work evaluates the computation time of

the MILP approach and the heuristic algorithm and the accuracy of the lat-

ter. Fourth, this work investigates the effect of the different numbers of steps

for approximating a given workload-dependent failure probability. The MILP

problems are solved by the IBM(R) ILOG(R) CPLEX(R) Interactive Opti-

mizer with version 12.7.1 [93]. Both MILP problems and heuristic algorithm

are coded by Python 3.7, using Intel Core i7-7700 3.60 GHz 4-core CPU with

32 GB memory.

3.4.1 Demonstration

This work presents a demonstration of the proposed model to observe the basic

characteristics. As shown in Fig. 3.4.1, this work has three PMs whose capac-

ities are 15, 20, and 25, and whose thresholds are 9, 12, and 15, respectively.

This work considers eight VMs, with requested loads of 2, 2, 3, 3, 4, 4, 4, and
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Figure 3.3: Demonstration of primary and backup resource allocation.

4, respectively. This work sets %L and %H to 0.0025 and 0.02, and unavailable

time C1, C0, and C3 to 5 [s], 30 [s], and 100 [s], respectively.

Table 3.2 shows the expected unavailable time and the primary and backup

resource allocation yielded by the proposed model. Triplet (8, :, 1) of each VM

9 ∈ + denotes the resource allocation result obtained by the proposed model.

It represents that VM 9 ∈ + is allocated at PM 8 ∈  and protected by PM

: ∈  \{8} with strategy 1 ∈ �. Expected unavailable time A 9 for each VM

9 ∈ + is shown in Table 3.2 and MEUT is 0.0754 [s]. Figure 3 shows the

primary and backup resource allocation for three PMs with !1 = 15, !2 = 11,

and !3 = 15. The primary and backup resources are allocated into three PMs

and protected with either the CB or the HB strategy. The computation time

to solve the MILP problem in (3.20b)- (3.20d) is 0.65 [s].

Then, this work shows the effectiveness of proposed model by comparing

it with the conventional model. Each backup resource of a VM is allowed

to adopt either HB or CB to provide protection in the conventional model.

Regardless of a workload-dependent failure probability, failure probability in

the conventional model is set to %C since this work cannot judge the failure

probabilities with different workloads. With the constant failure probability,

(3.3b)-(3.3f) are in the linear forms. The optimization problem of conventional
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model is formulated as an MILP problem:

min A (3.24a)

B.C. @8 = %C,∀8 ∈  , (3.24b)

(3.3b)-(3.3f). (3.24c)

In the conventional model, adopting the CB strategy increases unavailable

time without decreasing of the failure probability. Therefore, the conventional

model adopts the HB strategy no matter what the exact value of %C is. Solving

the MILP problem in (3.24a)-(3.24c), the workloads of PMs obtained by the

conventional model are !1 = 9, !2 = 19, and !3 = 24 and MEUT is 0.137

[s]. Compared with the conventional model, the proposed model balances the

recovery time and the workload by considering the workload-dependent failure

probability.

3.4.2 Dependency of MEUT on recovery time

As shown in (3.3d), C1, C0, and C3 affect MEUT. In this subsection, this work

evaluates the dependency of MEUT on the recovery time and present a detailed

analysis of the results.

As described in Appendix B.2, there are two boundary values revealing

the relationship of C1, C0, and C3 and MEUT. Each boundary value divides

the rank of MEUTs into different situations, as shown in Table II. There

are two boundary values for C3, l1=%H (1−%H)
%2
L
−%2

H

C1 − %L (1−%L)
%2
L
−%2

H

C0, l2 =
1−%H
%L−%H C1 +

1−%L
%L−%H C0. When C3 ≤ l1, this work calls the situation Case 1. Similarly, Case 2

corresponds to the situation with l1 < C3 ≤ l2; Case 3 corresponds to the

situation with l2 < C3.

This work shows the relationship among C1, C0, and C3 on MEUT in different

cases; %H and %L are set to 0.0175 and 0.0025, respectively, as an example.

First, the two boundary values of C3 are related to C1 and C0, for example, when

C0 = 10C1, l1 ≈ 2.5C0 and l2 ≈ 60C0. Second, with the assumption of C3 ≥ C0,

the existence of Case 1 is also related to C0
C1

. If C0
C1
<

%H (1−%H)
%L−%2H

, Case 1 does not

exist. Similar to that, if C3 <
(1−%L)C0−(1−%H)C1

%H−%L , Case 3 does not exist. Inserting

the values of %H and %L into the boundary values, we observe that, unless C0
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is at least 7.84 times larger than C1, Case 1 does not exist with the assumption

of C3 ≥ C0; unless C3 is larger than 65.5(C0 − C1), Case 3 does not exist.

This work considers three PMs whose capacities and thresholds are set

to 20 and 8, respectively. Both models are adopted with eight VMs, whose

requested loads are uniformly distributed over the range of [1, 4]. This work

sets %H = 0.0175 and %L = 0.0025 for all cases. Cases 1, 2, and 3 have the

same unavailable time C1 and C0, which are set to 0.1 [s] and 5 [s], respectively.

C3 in each case is set to two values which are in the range of [5, 35.8] [s], (35.8,

3259.5] [s], and (3259.5,10000] [s] for cases 1, 2, and 3, respectively.

Figure 3.4 shows MEUTs obtained by the proposed model and the two

approaches for different values of the total requested load in the three cases

corresponding to the two boundary values with different C3. Figure 3.4 ob-

serves that MEUT yielded by the proposed model is equal to the smaller value

between the two MEUTs obtained by approaches 1 and 2 in each case. We

observe that there are several values of MEUT for the proposed model. As

shown in Figs. 3.4, when the total requested load is smaller than 12, MEUT

is C1%L(1 − %L) + C3%L%L, which is the smallest value among the five feasible

values described in Appendix. B.1. In the second range, there are two values of

MEUT in the proposed model, which are C1%L(1−%H) + C3%L%H in Figs. 3.4(a)

and (b) and C0%L(1− %L) + C3%L%L in Fig. 3.4(c). In the third range, there are

two values of MEUT in the proposed model, which are C1%H(1−%H)+C3%H%H in

Figs. 3.4(a) and (c) and C0%L(1−%L)+C3%L%L in Fig. 3.4(c). In the fourth range,

the total requested load for primary resource is larger than the threshold. As a

result, the failure probability of the primary resource which is protected with

the CB strategy is %H. The values of MEUT in Figs. 3.4(a) and (c) do not

change, which are the same with those in the third range, respectively. The

value of MEUT in Fig. 3.4(b) is C0%H(1 − %L) + C3%H%L.

MEUTs derived by the larger value of C3 are on average 104.80%, 49.44%,

and 24.38% larger than those of the smaller value of C3 in the three cases

among all the total requested loads, respectively. In Fig. 3.4(a), the difference

of MEUTs obtained by the larger and smaller values of C3 in the third range is

larger than those of the first and the second ranges. This is because coefficient

of C3 in the third range is %H%H, while those in the first and second ranges are

%L%H and %L%H, respectively. Similar to that, in Fig. 3.4(b), the difference
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Table 3.3: MEUTs and computation time of MILP approach and heuristic

algorithm.

Situation Test

MEUT (s) Computation time (s)
gMILP gsub

MILP Heuristic MILP (multiple strategies) MILP (HB-sub) MILP (CB-sub) Heuristic

C1 ≤ {1

1 0.00025 0.00025 13.41 4.76 3.64 0.001 1.34 × 104 8.40 × 103

2 0.00099 0.00099 120.15 39.81 8.03 0.002 6.01 × 104 2.39 × 104

3 0.00690 0.00690 250.31 149.15 10.04 0.004 6.26 × 105 3.98 × 104

4 0.00099 0.0069 2234.53 1584.07 14.19 0.008 2.79 × 106 1.99 × 105

5 0.00690 0.00690 489654.61 332687.67 25.10 0.010 4.89 × 107 3.32 × 107

{1 < C1 ≤ {2

1 0.00137 0.00137 18.83 3.52 3.69 0.001 1.88 × 104 7.21 × 103

2 0.00210 0.00210 210.47 107.07 7.28 0.002 1.05 × 105 5.71 × 104

3 0.01470 0.01470 6431.36 836.86 16.55 0.004 1.60 × 106 2.13 × 105

4 0.00761 0.00761 79495.58 20279.01 58.50 0.006 1.32 × 107 3.39 × 106

5 0.00761 0.00761 603793.13 120655.24 133.68 0.010 6.04 × 107 1.21 × 107

{2 < C1

1 0.00710 0.00710 7.87 1.17 5.31 0.001 7.87 × 103 6.48 × 103

2 0.00761 0.00761 84.81 15.99 5.44 0.003 2.82 × 104 7.14 × 103

3 0.00761 0.00761 193.35 64.22 9.84 0.005 3.87 × 104 1.48 × 104

4 0.00761 0.00761 310.32 120.18 11.88 0.008 3.88 × 104 1.65 × 104

5 0.00761 0.00761 681.58 139.25 26.18 0.010 4.87 × 104 1.66 × 104

of MEUTs obtained by the larger and smaller values of C3 in the fourth range

is larger than those of the first, second, and third ranges. In Fig. 3.4(c), the

difference of MEUTs obtained by the larger and smaller values of C3 in the

third range is larger than those of the first and second ranges.

3.4.3 Computation time and accuracy

This work shows the comparison on MEUT and computation time between

the MILP approach and the heuristic algorithm among all the total requested

loads and for different numbers of VMs.

Consider three PMs whose capacities and thresholds are set to 20 and 8, re-

spectively. The proposed models are adopted with VMs whose requested loads

are randomly distributed over the range of [1, 4]. This work sets %H = 0.0175

and %L = 0.0025 for all cases. Cases 4, 5, and 6 have the same unavailable

time C0 and C3, which are set to 3 and 20, respectively. C1 is set to 0.05 [s],

0.5 [s], and 2.8 [s] for Cases 4, 5, and 6, respectively. This work solves the

MILP problem in (3.20b)-(3.20d) and solve the two sub-problems by minimiz-

ing (3.21) and (3.22), separately. This work also solves the same problem by
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using Algorithm 3.1. We observe that with different computation time, the

results from the heuristic algorithm are equal to those from the MILP ap-

proach, approximately. We observe that the heuristic algorithm reduces the

computation time by 95.35% compared with the MILP approach on average.

Consider that the primary and backup resource allocation solved by the

MILP approach introduced in (3.20b)-(3.20d) cannot be solved in a practi-

cal time when the number of PMs and VMs become large. This evaluation

performs the tests for different sizes of VMs to investigate the computation

time for the heuristic algorithm compared with the MILP approach to solve

the proposed model by applying multiple strategies, only the HB strategy, and

only the CB strategy, respectively.

C1 is set to 0.05 [s], 0.5 [s], and 2.8 [s] for the three situations, respectively.

Tests 1-5 for each situation corresponds to 10 VMs, 20 VMs, 30 VMs, 40 VMs,

50 VMs, respectively. The requested loads of VMs are randomly distributed

over the range of [1, 4]. This evaluation considers six PMs whose capacities

and thresholds are set to 20 and 8, 40 and 16, 60 and 24, 80 and 32, and 100

and 40, respectively, in each test.

Table 3.3 shows the average computation time for the MILP approach and

the heuristic algorithm for each situation. There are four columns in compu-

tation time which indicate those to solve the proposed model by applying the

MILP approach and the heuristic algorithm. The first column is the compu-

tation time to solve (3.20b)-(3.20d) with multiple strategies; the second and

third columns are the computation time to solve (3.20b)-(3.20d), by fixing

G:0
8 9
= 0 and G:1

8 9
= 0, respectively. A 9 in (3.3d) can be rewritten as (3.21) and

(3.22) for the HB and CB sub-problems, respectively. The fourth column is the

computation time to solve the proposed model with the heuristic algorithm.

gMILP denotes the ratio of the computation time of the proposed model with

the MILP approach to that of the heuristic algorithm; gsub denotes the ratio

of the sum of computation time to solve the HB and CB sub-problems with

the MILP approach to that of the heuristic algorithm.

We observe that the total computation time to solve the HB and CB sub-

problems by the MILP approach separately is smaller than that with applying

multiple strategies to solve (3.20b)-(3.20d). We observe that the computation

time of the heuristic algorithm is 2.69 × 10−5 times smaller than that of the
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Figure 3.5: Dependency of MEUT on resource utilization.

MILP approach on average; as the problem size increases, the computation

time of the MILP approach increases significantly. The larger the problem

size is, the more the computation time of the heuristic algorithm is reduced

compared with that of the MILP approach. MEUT calculated by the MILP

approach ia 5.71% smaller than the result derived by the heuristic algorithm

on average among 15 tests.

In order to evaluate the performance of the heuristic algorithm for a larger-

size problem, this evaluation considers that there are 200 PMs hosting 1000

VMs. The capacity of 200 PMs are randomly distributed over the range of

[50, 100]. The ratios of the threshold to the capacity of a PM are randomly

distributed over the range of [0.4, 0.8]. The requested loads of 1000 VMs are

randomly distributed over the range of [1, 20].

Resource utilization denotes the ratio of the total requested load of VMs

to the total capacity for all PMs. Figure 3.5 shows the relationship between

MEUTs and resource utilization under three situations by applying the heuris-

tic algorithm. The computation time to solve the problem by the heuristic al-

gorithm among different resource capacities and thresholds utilizations under

different situations are almost the same and are approximately 105 [s].
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3.4.4 (-step failure probability

The step function can be extended to be an (-step function, where ( ≥ 2,

to conservatively approximate a non-decreasing function of the workload with

higher accuracy. This evaluation investigates the difference between the two-

step and the (-step failure probabilities, where ( > 2.

Given a workload-dependent failure probability, this work uses step func-

tions with different numbers of steps to approximate it. To conservatively

approximate with the workload-dependent failure probability with the two-

step failure probability, the capacities and thresholds of PMs in the proposed

model are 50 and 25, respectively. The failure probabilities corresponding to

the two ranges of capacity are 0.0025 and 0.0175. To improve the accuracy of

fitting the given workload-dependent failure probability with the step function,

this evaluation sets ( = 4 and 8 for the (-step failure probabilities in addition

to ( = 2 so that a failure probability with (1 can conservatively approximate

that of (2, where (1 < (2. To approximate the workload-dependent failure

probability by a four-step failure probability, )1
8

to )4
8

of PMs in the proposed

model are set to 12, 25, 37, and 50, respectively; each range corresponds to the

failure probability of 0.00125, 0.0025, 0.01, and 0.0175, respectively. To ap-

proximate the workload-dependent failure probability by a eight-step function

failure probability, )1
8

to )8
8

of PMs in the proposed model are set to 6, 12,

18, 25, 31, 37, 43, and 50, respectively; each range corresponds to the failure

probability of 0.000625, 0.00125, 0.001875, 0.0025, 0.00625, 0.01, 0.01375, and

0.0175, respectively. This work considers that there are 20 PMs hosting 100

VMs. The requested loads of 100 VMs are randomly distributed over the range

of [1, 20]. Figure 3.6 shows the comparison of MEUTs between a two-step fail-

ure probability with an (-step failure probability, where (=4 and 8. We observe

a more detailed and smooth increasing tendency of MEUT with an increase of

resource utilization since PMs have more ranges of capacity which corresponds

to different failure probabilities to allocate the primary and backup resources

with the (-step workload-dependent failure probability. MEUTs obtained by

the proposed model based on the workload-dependent failure probability with

(=4 and (=8 are on average 42.38% and 59.77%, respectively, smaller than

those of (=2, among the values of resource utilization. By adjusting the width
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failure probabilities, where (= 2, 4, and 8.

of the (-step failure probability, the proposed model can modify different fail-

ure patterns to meet the requirement of service providers with comprehensively

considering the influence of system resource utilization, accumulation of errors

on failure probability and other factors which affect the failure patterns.

3.5 Discussion on impact of approximation of

non-decreasing function

3.5.1 Baseline model

Given the non-decreasing workload-dependent failure probability 5 (|), which

can be performed by collecting and analyzing the workload-related failure char-

acteristics of each server, this work considers that step function B(|) fits the

curve of 5 (|) with minimizing
∫ �8

0
(B(|) − 5 (|)) d|.

The proposed model obtains the resource allocation and MEUT with con-

sidering step function B(|). This section considers that MEUT of the proposed

model is recalculated with 5 (|) based on the obtained allocation, instead of

the objective value of the proposed model with consdiering B(|), unless oth-

erwise stated. The baseline model directly obtains the resource allocation and

MEUT with 5 (|), regardless of the step function.
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3.5.2 Solving approaches for baseline model

The proposed model adopts a step function to approximate the non-decreasing

workload-dependent failure probability so that the considered problem can be

simplified and solved by an MILP approach. Since the failure probability in the

baseline model may not be in a linear form, the model cannot be formulated

as an MILP problem. Brute-force search (BFS) can be adopted for a smaller

size problem of the baseline model to obtain the optimal solution by listing

all possible resource allocations and calculating each corresponding MEUT.

Algorithm 3.4 shows the procedure of BFS to solve the baseline model; the

optimal solution of the baseline corresponds to the minimum MEUT among

all possible resource allocations.

Algorithm 3.4 Brute-force search

Input:  ,+, 5 (|), �8, ;R9 , C1, C0, C3
Output: G:1

8 9
, minimum MEUT among all possible resource allocations

1: List all the possible resource allocations for all 8 ∈  , 9 ∈ +, : ∈  \{8}, 1 ∈
{0, 1}.

2: Calculate ,8 and '8, 8 ∈  in each allocation pattern.

3: Remove the allocation patterns if any node satisfies '8 > �8 in the pattern.

4: Substitute,8 into 5 (|) and calculate the corresponding failure probability

for all nodes in each allocation pattern.

5: Calculate MEUT by (3d) and (3e) based on the failure probability 5 (|)
for each possible resource allocation.

6: Return the minimum MEUT among all possible resource allocations

As the problem size increases, both MILP approach to solve the proposed

model and BFS to solve the baseline model become difficult in a practical

time. The developed water-filling algorithm with considering a step function

is introduced to solve the proposed model. Similarly, a heuristic algorithm can

be adopted for the baseline model. This work provides two heuristic algorithms

to solve it.

Algorithm 3.5 Workload-ordered greedy algorithm (WOGA)

Input:  ,+, 5 (|), �8, ;R9 , C1, C0, C3
Output: G:1

8 9
, MEUT
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1: Sort 9 by ;R
9

decreasingly.

2: for 1 = 0→ 1 do

3: ,8 ← 0, @8 ← 0

4: for 9 = 1→ |+ | do

5: Sort 8 by @8 increasingly as a set  ′.

6: Delete node 8 from  ′ if '8 + ;R9 > �8.
7: if  ′ = ∅ then

8: Return infeasible

9: else

10: Allocate 9 to the first node in  ′ as primary resource and the

second node in  ′ as backup resource.

11: Update ,8 and calculate @8 with 5 (|).
12: end if

13: end for

14: end for

15: Select the smaller value between two MEUTs obtained with 1 = 0 and 1;

the corresponding resource allocation is the solution.

16: Return G:1
8 9

, MEUT

Algorithm 3.6 Simulated Annealing

Input:  ,+, 5 (|), �8, ;R9 , C1, C0, C3, )min, )init, d

Output: G:1
8 9

, MEUT

1: ) ← )init; initialize  9 , which is a set of node hosting function 9 .

2: Randomly generate a resource allocation x = G:1
8 9

and calculate MEUT A

with 5 (|).
3: while ) ≥ )min do

4: Switch both primary and backup resource allocation of two randomly

chosen functions; update  9 .

5: Switch the protection strategies of a randomly chosen function.

6: Reallocate a random function to a randomly chosen node in  \ 9 .
7: Update ,8 and failure probability @8 calculated with 5 (|); sort 8 by

@8 increasingly as a set  ′. Allocate 9 to the first node in  ′ as primary

resource and the second node in  ′ as backup resource.

8: while '8 > �8 do
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9: Release a random function hosted by node 8.

10: end while

11: if | 9 | < 2 for any 9 then

12: Allocate function 9 to a random node in  \ 9 .
13: end if

14: Calculate MEUT A′ with (3d) and (3e) by using updated resource al-

location x′.

15: A ← A′ and x← x′ with probability of <8=(1, D), where D = − A ′−A
)

.

16: ) = ) · d
17: end while

18: if | 9 | ≠ 2 for all functions then

19: Return infeasible

20: else

21: Return x and MEUT

22: end if

Algorithm 3.5 shows a workload-ordered greedy algorithm (WOGA) for

solving the baseline model. Each function is allocated to the two nodes with

the minimum failure probability calculated with 5 (|). Algorithm 3.6 shows

simulated annealing (SA), which is a randomized heuristic algorithm [94], to

minimize MEUT based on 5 (|). In Algorithm 3.6, )init is the initial temper-

ature; d is a given decreasing rate of the temperature. In each iteration of de-

creasing the temperature until )min, the existing solution x changes randomly

to generate a new solution and calculate a new MEUT with 5 (|) (lines 3-13).

SA accepts the solution with a worse objective value than the existing solution

with a certain probability; the higher temperature is, the higher probability

to accept a worse solution is (lines 14-16). As a result, SA can jump out of a

local optimal solution.

3.5.3 Case study

This work considers that the given non-decreasing workload-dependent failure

probability can be expressed by 51(|) = (0.005|)2 as a convex function or

52(|) = 0.005
√
| as a concave function. Assuming that the capacities of nodes

are 20, this work obtains step function B` (|), where ` = 1, 2, fitting the curve
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(a) Two-step functions to fit 51 (|) and
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52 (|).

Figure 3.7: Step functions fitting 51(|) = (0.005|)2 and 52(|) = 0.005
√
|.

of 5` (|) to minimize
∫ 20

0
(B` (|) − 5` (|))d|, with constraints B` (|) ≥ 5` (|)

and )B ≥ )B−1,∀B ∈ S. The approximation is implemented with Matlab 2021a;

the results are shown in Fig. 3.7. The computation time for fitting each curve is

0.074 [s] and 0.077 [s] for two-step and four-step approximations, respectively.

For 51(|) = (0.005|)2, this work has )1=11.55, C0 = � =20.00; %1 = 0.0033,

%2 =0.0100 for two-step approximation, and )1=6.87, C0=11.90, )3=16.17, )4 =

� = 20.00; %1 = 0.0012, %2 = 0.0036, %3 = 0.0065, %4 = 0.0100 for four-step

approximation.

For 52(|) = 0.005
√
|, this work has )1 =8.89, C0 = � =20.00; %1= 0.0149,

%2= 0.0224 for two-step approximation, and )1=3.77, C0=8.43, )3=13.92, )4 =

� =20.00; %1 = 0.0098, %2 = 0.0146, %3 = 0.0187, %4 = 0.0224 for four-step

approximation.

This work conducts two tests with different problem sizes. In the smaller

problem size, this work considers three PMs, whose capacities are set to 20,

hosting five VMs with requested loads of 5. In a larger problem size, this work

considers 60 PMs, with capacities of 20, hosting 100 VMs, whose requested

loads are randomly distributed over the range of [0.1, 4.0]. In both tests,

unavailable time C1, C0, and C3 are set to 5 [s], 20 [s], and 200 [s], respectively.

This work sets )init = 100 and 1000 for two cases, and d = 0.98 for SA.

Table 3.4 shows the comparisons between the proposed model with B(|)
and the baseline model with considering 5 (|). Each MEUT obtained with
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the proposed model shown in the table consists of two values. This work uses

the values calculated with 5 (|) for comparison with the baseline models, and

the values calculated with B(|) for reference, where each reference value is

described inside parentheses.

Smaller problem size

In the test with the smaller problem size, this work compares the solutions

obtained by the MILP approach with B(|) and BFS with 5 (|). This work

considers that the proposed model substitutes the allocation obtained by the

MILP approach and calculates a new MEUT with 5 (|). We observe that

MEUT of the proposed model after recalculation is smaller than the objec-

tive value calculated with B(|). Similar with the objective value, MEUT after

recalculation decreases as ( increases. A better performance of the proposed

model on MEUT can be observed as the increase of (. When this work con-

siders 51(|), MEUTs obtained by the baseline model are on average 23.53%

and 0%, respectively, smaller than those of the proposed model with two-step

and four-step approximations. However, since BFS searches for all the pos-

sible allocation patterns, even for the tested small size problem, there exists

( |8 | × |: | × |1 |) | 9 | = (3 × (3 − 1) × 2)5 = 125 = 248832 allocation patterns. The

computation time for solutions with BFS is about 8×102 times longer than the

proposed model with step approximations, which can be linearized and simply

solved by the MILP approach. Then this work compares the proposed model

with the baseline model when it is solved by the greedy algorithm. MEUTs

obtained by the baseline model with WOGA are on average 0% and 30.77%,

respectively, larger than those of the proposed model with ( = 2 and ( = 4.

Similarly, when this work considers 52(|), MEUTs obtained by the baseline

model are on average 5.72% and 0%, respectively, smaller than those of the

proposed model with two-step and four-step approximations. The computation

time for solutions with BFS is about 103 times longer than the proposed model.

MEUTs obtained by the baseline model with WOGA are on average 2.08% and

8.29%, respectively, larger than those of the proposed model with ( = 2 and

( = 4. This work compares convex function 51(|) with concave function 52(|).
Since the workloads of nodes in the tests are larger than 15, the gradient of
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51(|) is larger than 52(|) in the range. The performance of model with B2(|)
to approximate 52(|) is sightly better than that of 51(|).

The proposed model with the step approximation reduces the computation

time significantly with almost the same objective value, compared with BFS

to solve the baseline model. As the problem size increases, the time for solving

BFS significantly increases; it cannot be solved in a practical time. Simplifying

5 (|) by step approximation as B(|) enables the model to be solved in a rela-

tively larger size of problem by the MILP approach, as shown in Section V.C.

Larger problem size

In the test with the larger problem size, this work compares the solutions

obtained by the water-filling algorithm with considering B(|), and WOGA and

SA with 5 (|). To investigate the dependency of MEUT on ( and compare

the proposed model with the baseline model solved by heuristic algorithms,

this work further considers larger ( for approximation. For 51(|), this work

has the thresholds of 3.00, 6.03, 8.38, 10.62, 12.88, 15.22, 17.56, and 20.00 for

eight-step approximation with minimizing
∫ �8

0
(B(|) − 5 (|)) d|, and those of

2.02, 3.42, 4.55, 5.47, 6.40, 7.36, 8.41, 9.60, 10.94, 12.35, 13.75, 15.11, 16.31,

17.55, 18.76, and 20.00 for 16-step approximation. For 52(|), this work has the

thresholds of 1.07, 2.64, 4.59, 6.85, 9.46, 11.27, 12.32, and 15.83 for eight-step

approximation, and those of 0.67, 1.70, 2.89, 4.29, 5.39, 6.45, 7.52, 8.61, 9.69,

10.76, 11.84, 12.94, 14.14, 15.67, 17.50, and 20.00 for 16-step approximation.

We observe that MEUT of the proposed model calculated with 5 (|) re-

duces as ( increases as well as that calculated with B(|). When this work

considers 51(|), MEUTs of the proposed model with ( = 2, 4, 8, and 16 ob-

tained by the water-filling algorithm are 33.33%, 71.43%, 76.19%, and 80.95%,

respectively, smaller than those of the baseline model obtained by WOGA with

about 2.84 times longer computation time. Similarly, when this work considers

52(|), MEUTs of the proposed model with ( = 2, 4, 8, and 16 obtained by the

water-filling algorithm are 17.24%, 20.00%, 26.21%, and 35.17%, respectively,

smaller than those of the baseline model obtained by WOGA.

The water-filling algorithm is also one of greedy algorithms. The algo-

rithm considering thresholds related to the step function enables the VMs to
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be protected iteractively by the PM with failure probability%B2 , while pri-

mary resources can be allocated to the PM with failure probability %B1 , where

%B2 ≥ %B1 . The water-filling algorithm considering the step approximation out-

performs WOGA which only considers 5 (|), with similar computation time.

Besides, without step approximation, Theorem 3.1 does not work for the base-

line model. The selection of the different protection strategies may lead to a

smaller MEUT for the baseline model; it can be achieved by SA.

This work firstly considers the situation under )init = 100 for SA. When

this work considers 51(|), MEUT obtained by the baseline model with SA is

42.86% smaller than that of the proposed model with ( = 2; MEUTs obtained

by the baseline model with SA are 33.33%, 60.00%, and 100.00% larger than

those of the proposed model with ( = 4, 8, and 16, respectively, with about

1.5 × 103 times longer computation time. When this work considers 52(|),
MEUT obtained by the baseline model with SA is 8.3% smaller than that of

the proposed model with ( = 2; MEUTs obtained by the baseline model with

SA are 2.59%, 11.21%, and 26.60% larger than those of the proposed model

with ( = 4, 8, and 16, respectively.

This work secondly considers the situation under )init = 1000, with a longer

computation time than that of )init = 100. When this work considers 51(|),
MEUTs obtained by the baseline model with SA are 64.29%, 16.67%, and 0%

smaller than those of the proposed model with ( = 2, 4, and 8, respectively; the

computation time of SA is at least 1.36× 103 longer than that of the proposed

model. MEUT obtained by the baseline model with SA is 25% larger than

that of the proposed model with ( = 16. When this work considers 52(|),
MEUTs obtained by the baseline model with SA are 25.00%, 22.41%, 15.89%,

and 4.26% smaller than those of the proposed model with ( = 2, 4, 8, and

16, respectively. The designed SA searches a larger solution space with a

longer computation time by involving randomly generated solutions. SA, as

a randomized algorithm, may outperform slightly the water-filling algorithm,

at the cost of longer computation time. As ( increases, both MEUTs of the

proposed model calculated with B(|) and 5 (|) decrease in the tested case.

The accuracy of the approximation for the non-deceasing failure probability

is improved as ( increases. The difference between MEUTs obtained by the

water-filling algorithm and SA decreases as ( increases.
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In conclusion, MEUTs of the proposed model calculated with 5 (|) have

the same tendency with MEUTs calculated with B(|) as the increase of (. The

proposed model with considering the step approximation outperforms WOGA;

it becomes comparable with SA as the increase of (. As ( increases, a better

performance of the proposed model in terms of MEUT can be observed.

3.6 Summary

This work proposed a primary and backup resource allocation model with

considering a workload-dependent failure probability aiming to minimize the

maximum expected unavailable time. The workload-dependent failure prob-

ability and the consideration of different backup strategies cause different re-

covery time and lead to a nonlinear programming problem to calculate un-

available time for each VM. With step functions to approximate the given

non-decreasing workload-dependent failure portability, this work formulated

the problem as an MILP problem to obtain the primary and backup resource

allocation of each VM in PMs, where the expected unavailable time is sup-

pressed. This work proved that MEUT of the proposed model is equal to the

smaller value between the two MEUTs obtained by applying only HB and CB

strategies with the same total requested load by comprehensively discussing

different values of MEUT corresponding to different parameters. The heuristic

algorithm inspired by the water-filling algorithm was developed based on the

proved theorem. The numerical results showed that the proposed model sup-

presses MEUT compared with the conventional model which does not consider

the workload-dependent failure probability. The developed heuristic algorithm

is approximately 105 times faster than the MILP approach with 10−2 perfor-

mance penalty on MEUT. This work discussed and implemented the approx-

imation of step function for a non-decreasing function with a goal; this work

investigated the performance of approximation for different problem sizes.
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Prioritized multiple backups

resource allocation with

workload-dependent failure

probability

This chapter proposes an optimization model to derive a multiple backup re-

source allocation with the workload-dependent failure probability to minimize

MEUT under a priority policy [33,95].

The remainder of the chapter is organized as follows. Section 4.1 presents

the motivation of the proposed model. Section 4.2 describes the proposed

model. Section 4.3 introduces a heuristic algorithm. Section 4.4 presents nu-

merical results that show the performance of the proposed model in different

cases. Section 4.5 discusses the considerations related to the network services,

workload-independent failures, and practical situations. Section 4.6 summa-

rizes this chapter.
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4.1 Motivation and use case

4.1.1 Motivation

Middleboxes fail due to hardware failures and overloads. In order to improve

fault tolerance, service providers usually deploy virtual instances as backup re-

sources of the network functions across multiple servers with different backup

strategies [55, 96]. With considering the workload of servers, different backup

strategies, i.e., HB and CB, lead to different computation resource utilization

of the servers and recovery time for the function. Unavailable time for a func-

tion for recovery can be adopted to estimate the availability of a function [12].

A shorter expected unavailable time for recovery can improve the user expe-

rience. MEUT is related to the backup strategies and the (-step function,

which conservatively approximates a non-decreasing function of workload ac-

cording to the requirement of users. The (-step function can be different for

each server. With considering the workload-dependent failure probability, a

service provider is able to provide each service with the strategy selection and

resources allocation by minimizing MEUT among functions.

The proposed model is designed to determine the initial backup resource

allocations of functions to multiple servers before services run by considering

the unavailable time of functions caused by the workload-dependent failure

and different strategies. Minimizing MEUT among all functions preventively

before services run can improve the fault tolerance; when a failure occurs,

the recovery time among functions is minimized based on the initial backup

resource allocation.

4.1.2 Use case of proposed model

NFV is applicable across a wide range of network functions. For example, a

simple service function model for hypertext transfer protocol (HTTP) traffic

over TCP port 80 includes load balancers (LB), network address translation

(NAT), firewall (FW), deep packet inspection (DPI), and some other network

functions. LB splits HTTP over transmission control protocol (TCP) port 80

away from the rest of Internet traffic; FW protects the carrier network from the

outside; NAT maps the private Internet protocol (IP) address space dedicated
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to user equipment to a public IP address. DPI inspects the performances of

traffic, identification of applications, and policy enforcement. The unavailable

time of each function affects the unavailability of the service [65].

This work presents an allocation example to show the features of proposed

model and compare it with two conventional models that do not consider the

balancing of the unavailable time and unavailable probability [30, 56]. In the

example, this work considers the workload-dependent failure probability for

three cases. Case 1 minimizes the unavailable time; only the HB strategy is

adopted to provide protection [30]. Case 2 minimizes the unavailable probabil-

ity; only the CB strategy is adopted to provide protection [30]. Case 3, which

is the proposed model, considers both HB and CB strategies to balance the

unavailable time and unavailable probability to minimize MEUT.

This work considers that four functions and three servers are given in ad-

vance. This work assumes that the maximum computing capacity of each

server is 1 CPU core. Each function requests amounts of computing resources

of the server for providing the protection with the HB strategy and the CB

strategy. The four functions protected with the HB strategy require the com-

puting resources, which are 0.2, 0.2, 0.3, and 0.3 CPU cores, respectively. The

functions protected with the CB strategy do not require computing resources.

The thresholds of the three servers are 0.4, 0.6, and 0.8 CPU cores, respectively.

This work assumes that there are two failure probabilities corresponding to dif-

ferent workloads, which are 0.1 and 0.2, respectively. The recovery time for

different strategies are determined by the synchronization frequency, the syn-

chronization content size, and the synchronization strategy. The unavailable

time of a function when all of the backup servers fail simultaneously depends

on the recovery mechanism of the physical server. This work assumes that the

recovery time for the HB strategy, the CB strategy, and the physical server

are 0.5 [s], 2 [s], and 100 [s], respectively.

In case 1, each function is protected by three servers with the HB strategy.

The workload of each server is 1 CPU, so that the failure probability is 0.2.

The unavailable time for each function is 0.5 × (1 − 0.2) + 0.5 × 0.2(1 − 0.2) +
0.5 × 0.22(1 − 0.2) + 100 × 0.23 ≈ 1.926 [s].

In case 2, each function is protected by three servers with the CB strategy.

The computing resource of the CB strategy is assume to be 0, so that the
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Input: 

∙ Server information 

(number, capacity)

∙ Function information 

(number, requested load) 

∙ Recovery time (𝑡0, 𝑡1, 𝑡3);

∙ Workload-dependent

failure probability

LB NAT

FW DPI

Output: 

Backup resource 

allocation with 

proper backup 

strategies, i.e., 

HB and CB.

Computing resources

of server 1

LB
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NAT

FW

DPI

Computing resources

of server 2

LB

NAT

FW

DPI

Computing resources used 

for HB strategy

Computing resources used 

for CB strategy

Figure 4.1: Use case to show applicability in practical situation.

failure probability of each server is 0.1. The unavailable time for each function

is 2 × (1 − 0.1) + 2 × 0.1(1 − 0.1) + 2 × 0.12(1 − 0.1) + 100 × 0.13 ≈ 2.100 [s].

In case 3, the functions are protected with the strategies of HB and CB

flexibly. Based on the backup strategies and resource allocations of the func-

tions as shown in Fig. 4.1, the workloads of the servers are calculated, which

are 1, 0.3, and 0.7, respectively. Comparing the workload and the threshold

of each server, the failure probabilities of servers are obtained correspond-

ingly, which are 0.2, 0.1, and 0.1. The unavailable time for each function is

0.5×(1−0.2) +0.5×0.1(1−0.2) +2×0.1(1−0.1) (1−0.2) +100×0.12×0.2 ≈ 0.726

[s].

By balancing the unavailable time and the unavailable probability with two

backup strategies and the workload-dependent failure probability, MEUT in

case 3 is smaller than those of cases 1 and 2. MEUT among functions in a

HTTP traffic service, which includes four functions, i.e., LB, NAT, FW, and

DPI, is suppressed; user experience is improved confronting server failures.

4.2 Optimization Model

This work builds a multiple backup resource allocation model with considera-

tion of determined priority scores (DPS). This work considers that a function
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can be protected by multiple servers. DPS is defined as the priority score of

the set of backup servers which protects the same function. DPS is determined

by the workload and strategies of each server which protects the function. In

this model, each backup resource of a function is allowed to adopt either HB

or CB to provide protection. Each server has its failure probability affected

by the resource allocation and backup strategies. This work focuses on the

assignment to minimize the maximum expected unavailable time of each func-

tion. Let � and # represent a set of functions and a set of backup servers,

respectively, where |� | and |# | denote the numbers of functions and backup

servers, respectively. Consider two kinds of backup strategies 1 ∈ � B {0, 1}.
1 = 0 denotes the CB strategy and 1 = 1 denotes the HB strategy. A func-

tion can be protected by one or more servers. When a function fails, one of

the corresponding servers provides either HB or CB to recover the function.

The reserved idle capacity of the function protected by the server with the CB

strategy is not taken into account as the active workload in the server. The

requested load of the function protected by the server protected with the HB

strategy are counted as the active workload.

Let G1
8 9

, 8 ∈ �, 9 ∈ #, 1 ∈ �, denote a binary decision variable; G1
8 9

is set to

one if function 8 ∈ � is protected by server 9 ∈ # with strategy 1 ∈ �, and

zero otherwise. |8 denotes the requested load of each function 8 ∈ �.

A Failure probability of each server is related to the workload of corre-

sponding function and strategies. Let ! 9 denote the workload of server 9 ∈ #,

which is expressed by:

! 9 =
∑
8∈�

|8G
1
8 9 ,∀ 9 ∈ #. (4.1)

Let � 9 denote the upper bound of computing capacity which server 9 ∈ #
can provide for backup allocation. )9 is a given parameter of servers 9 ∈ #,

which denotes the threshold that the network maintains its normal and efficient

functioning. %L denotes the given failure probability of each server 9 ∈ # with

0 ≤ ! 9 ≤ )9 , while %H denotes the given failure probability of each server

9 ∈ # with )9 < ! 9 ≤ � 9 .
This work assumes that there is a non-decreasing relationship between the

workload and the failure probability. The failure probability of any server is an
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(a) Two-step failure probability.
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(b) (-step failure probability.

Figure 4.2: Workload-dependent failure probability is expressed by a non-

decreasing step function.

non-decreasing function of the workload of itself. Without loss of generality,

given the workload-dependent failure probability, which is assumed to be a

non-decreasing function, this work can use an (-step function, as shown in

Fig. 4.2, to conservatively approximate it. ) B
9
, B ∈ [1, |( |], in the horizontal

axis in Fig. 4.2 is a given value of workload, which can indicate a ratio of a

workload to capacity. When the workload of a server increases from the range

of () B−1
9
, ) B

9
] to () B

9
, ) B+1

9
], the failure probability increases from %B−1 to %B.

As shown in Fig. 4.2(b), the step function can be extended to be an (-step

function, where ( ≥ 2, to conservatively approximate a general non-decreasing

function of workload.

According to [8], this work assumes that when the workload of server 9

does not exceed )9 , a network maintains its normal and efficient functioning.

Each server has a low failure probability %L, and has capacity to handle the

extra workload. When the workload of server 9 is larger than )9 , the failure

probability increases because of higher workload, where the part or whole net-

work cannot maintain its normal and efficient functioning. Even though each

server has capacity, the server becomes fragile, and each server has a higher

failure probability %H to handle the extra workload. Thus, how to balance the

workload becomes a fundamental task for operating NFV clusters [97].

The failure probability of server 9 ∈ # according to the workload is denoted

by @ 9 . Given the workload-dependent failure probability, which is assumed to

be a non-decreasing function, this work can use a two-step function, as shown
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in Fig. 4.2(a), to conservatively approximate it. @ 9 is expressed by the following

step function, which relates the workload of server to the failure probability:

@ 9 =

{
%L ! 9 ≤ )9 ,
%H )9 < ! 9 ≤ � 9 .

(4.2)

Equation (4.2) can be extended by expressing an (-step failure probability,

which can conservatively approximate a general non-decreasing function of

workload with higher accuracy according to the requirement of users.

This work considers that multiple simultaneous failures occur in functions

and servers due to their workload. This work assumes that all servers fail

independently. Let C1 be a given parameter that denotes the recovery time

for the HB strategy. Let C0 be a given parameter that denotes the recovery

time for the CB strategy. D8 denotes the expected unavailable time for each

function 8 ∈ �. There are two situations that function is unavailable. One

is that function 8 ∈ � fails and becomes unavailable before it is recovered

by an available server. One of the corresponding available backup servers

9 ∈ # determined by DPS, requires the recovery time which depends on the

backup strategies and the assignment of backup resource. The other one is

that function 8 ∈ � and all of its corresponding backup servers protecting it

fail simultaneously. Let C3 be a given parameter that denotes the recovery

time of the situation when both function and corresponding backup servers

are unavailable. This work assumes C3 ≥ C0 ≥ C1.

Let #8 denote the set of backup servers assigned to function 8 ∈ �. Let $8 9

be an integer which denotes DPS of each 9 ∈ # 8 assigned to function 8 ∈ �,

and relates to strategies of each server. $8 9 is expressed by:

$8 9 =
∑
1∈�
( 9 + =|# |)G18 9 ,∀8 ∈ �, 9 ∈ #. (4.3)

This work formulates the multiple backup resource allocation problem with

considering DPS as the following optimization problem:

min D (4.4a)

B.C.
∑
9∈#

∑
1∈�

G18 9 ≥ 1,∀8 ∈ �, (4.4b)
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∑
1∈�

G18 9 ≤ 1,∀8 ∈ �, 9 ∈ #, (4.4c)∑
1∈�

∑
8∈�

|8G
1
8 9 ≤ � 9 ,∀ 9 ∈ #, (4.4d)

D8 =
∑
1∈�

∑
9∈# 8

C1G
1
8 9 ?8

∏
$8 9 ′>$8 9 : 9 ′∈N9

@ 9 ′ (1 − @ 9 ) + C3
∏
9∈# 8

∑
1∈�

G18 9 ?8@ 9 ,∀8 ∈ �,

(4.4e)

D ≥ D8,∀8 ∈ �, (4.4f)

G18 9 ∈ {0, 1},∀8 ∈ �, 9 ∈ #, 1 ∈ �. (4.4g)

Equation (4.4a) minimizes D, which denotes the maximum expected un-

available time among D8, 8 ∈ �. Equation (4.4b) ensures that each function

8 ∈ � can be protected by one or more servers with selecting one of the backup

strategies for each server. Equation (4.4c) ensures that each function 8 ∈ �
can be protected with either HB or CB for each server 9 ∈ #. Equation (4.4d)

indicates the capacity constraint that the required space on each server for

the backup resource allocation does not exceed its maximum computing ca-

pacity. The first term in the right side of (4.4e) is the expected unavailable

time for server 9 ∈ # by applying either HB or CB. This term considers the

case that function 8 ∈ � fails and is protected by one of its corresponding

available backup servers. This work considers that the order of servers 9 ∈ # 8
to provide protection follows $8 9 , the larger $8 9 of server 9 ∈ # 8 is, the higher

priority of 9 ∈ # 8 to protect function 8 ∈ � is. The failed function is protected

by an available server whose non-failure probability is 1 − @ 9 and DPS is $8 9

when other servers 9 ′ ∈ #8 which have higher DPS than server 9 ∈ # 8 \ { 9 ′}
fail at failure probability

∏
$8 9 ′>$8 9 : 9 ′∈#8 @ 9 ′ simultaneously. The second term

in the right side of (4.4e) is the expected unavailable time if function 8 ∈ �
fails and all of the corresponding backup servers in #8 fail at failure probability

@ 9 simultaneously. The expected unavailable time for a server is related to the

backup strategies, the workload-dependent failure probability, and the priority

policy. The selection of the HB and CB strategies affects the coefficient C1 in

the first term of (4.4e) and the workload of each server, as shown in (4.1); the

workload may further affect the failure probability @ 9 , as shown in (4.2).

Theorem 4.1 When servers 9 ∈ # 8 adopt the same strategy, either HB or
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CB, the priority does not influence the expected unavailable time D8.

%A>> 5 : When all servers 9 ∈ # 8 adopt the same strategy, either HB or CB,

the expected unavailable time of functions 8 ∈ � are only affected by the

allocation and the corresponding failure probability instead of the priority of

servers. Since (1 − @ 9 ′) + @ 9 ′ (1 − @ 9 ) = (1 − @ 9 ) + @ 9 (1 − @ 9 ′), the right side of

(4.4e) can be expanded and simplified as:

D8 = C1?8 (1 −
∏
9∈# 8

@ 9 ) + C3
∏
9∈# 8

?8@ 9 ,∀8 ∈ �, (4.5)

where 1 is the adopted strategy. The first term in the right side of (4.5)

considers the case that function 8 ∈ � fails and is protected by one of its

corresponding available backup server. The second term in the right side

of (4.5) is the expected unavailable time if function 8 ∈ � fails and all of the

corresponding backup servers in #8 fail at failure probability @ 9 simultaneously.

The expression of situation in (4.4e) can be simplified to (4.5) by combining the

product terms of @ 9@ 9 ′ · · · @ 9 ′′ and subtracting from each other. Equation (4.5)

shows that the relationship of the failure probability of each server 9 ∈ # 8 does

not affect the value of the expected unavailable time, no matter what the

relationship between @ 9 ′ and @ 9 is. �

Theorem 4.2 When servers 9 ∈ # 8 adopt the different strategies, setting the

server with the HB strategy to higher priority has the lower expected unavailable

time than that with the CB strategy.

%A>> 5 : There are two situations for the priority; the first one is that the server

with the CB strategy has the higher priority and the second one is that the

server with the HB strategy has the higher priority. Assume that one server

which is protected with the CB strategy has the failure probability @ 9 ′ and the

other server which is protected with the HB strategy has the failure probability

@ 9 . The right side of (4.4e) of the first and second situations of priority can

be simplified as:

D′8 = C0?8 (1 − @ 9 ′) + C1?8@ 9 ′ (1 − @ 9 ) + C3?8@ 9@ 9 ′, (4.6a)

D′′8 = C1?8 (1 − @ 9 ) + C0?8@ 9 (1 − @ 9 ′) + C3?8@ 9@ 9 ′, (4.6b)
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respectively.

This work subtracts both sides of (4.6b) from those of (4.6a) to compare

the value of expected unavailable time of two situations. There is D′
8
− D′′

8
=

C1(@ 9 ′ − 1) (1 − @ 9 ) + C0(1 − @ 9 ′) (1 − @ 9 ) = (1 − @ 9 ) (1 − @ 9 ′) (C0 − C1) ≥ 0, where

C0 ≥ C1. Thus, setting the server with the HB strategy to higher priority has

the lower expected unavailable time than that with the CB strategy. �

This work defines the priority policy as follows. If servers 9 ∈ # 8 adopt the

different strategies, the server which adopts the HB strategy has higher priority

(see Theorem 4.2). Otherwise, when servers 9 ∈ # 8 adopt the same strategies,

either HB or CB, the priority of servers is arbitrary (see Theorem 4.2). Here,

for convenience, this work assumes that servers 9 ∈ # 8 with larger index 9 .

Here, for convenience, this work assumes that servers 9 ∈ # 8 with larger index

9 have higher priority.

This work linearizes (4.2) by introducing binary variable ~ 9 , 9 ∈ #. ~ 9 is

set to one if ! 9 ≤ )9 , and zero otherwise, (4.2) can be expressed by:

@ 9 = %L~ 9 + %H(1 − ~ 9 ),∀ 9 ∈ #, (4.7a)

! 9 ≤ )9~ 9 + � 9 (1 − ~ 9 ),∀ 9 ∈ #, (4.7b)

! 9 ≥ )9 (1 − ~ 9 ),∀ 9 ∈ #, (4.7c)

~ 9 ∈ {0, 1},∀ 9 ∈ #. (4.7d)

Let 48
9 9 ′, 8 ∈ �, 9 ∈ #, 9 ′ ∈ N9 B ( \ { 9} be a binary variable: it is set to

one if $8 9 ′ > $8 9 , and zero otherwise. 48
9 9 ′ can be expressed as a linear form

as:

$8 9 ′ −$8 9 ≤ 489 9 ′�,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ N9 , (4.8a)

$8 9 ′ −$8 9 ≥ (489 9 ′ − 1)�,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ N9 , (4.8b)

48
9 9 ′ + 489 ′ 9 = 1,∀8 ∈ �, 9 ∈ #,N9 , (4.8c)

48
9 9 ′ ∈ {0, 1},∀8 ∈ �, 9 ∈ #, 9 ′ ∈ N9 , (4.8d)

where � is a sufficiently large number that satisfies � ≥ 2|# |.
By introducing variables A8

9 9 ′, 8 ∈ �, 9 ∈ #, 9 ′ ∈ N9 , which takes two values:

1 and @ 9 ′. This work defines that A8
9 9 ′ = (@ 9 ′ − 1)48

9 9 ′ + 1. The first term in the
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right side of (4.4e) is transformed to:∑
1∈�

∑
9∈#

C1G
1
8 9 ?8 (1 − @ 9 )

∏
9 ′∈(\{ 9}

G18 9 ′A
8
9 9 ′,∀8 ∈ �. (4.9)

In order to linearize (4.9), this work introduces binary variables lL
<8 9

and

lH
<8 9

, where < ∈ [0, |( |] and 8 ∈ �, 9 ∈ #. lL
<8 9

is set to 1 if
∑
1∈�

∑
9 ′∈N9 4

8
9 9 ′

G1
8 9 ′ ~ 9 ′ is equal to < for 8 ∈ �, 9 ∈ #, and 0 otherwise. lH

<8 9
is set to 1 if∑

1∈�
∑
9 ′∈N9 4

8
9 9 ′G

1
8 9 ′ (1 − ~ 9 ′) is equal to < for 8 ∈ �, 9 ∈ #, and 0 otherwise.

This work can express lL
<8 9

and lH
<8 9

in the form of the following constraints:∑
1∈�

∑
9 ′∈N9

489 9 ′G
1
8 9 ′~ 9 ′ =

∑
<∈[0,|( |]

<lL
<8 9 ,∀8 ∈ �, 9 ∈ #, (4.10a)∑

1∈�

∑
9 ′∈N9

489 9 ′G
1
8 9 ′ (1 − ~ 9 ′) =

∑
<∈[0,|( |]

<lH
<8 9 ,∀8 ∈ �, 9 ∈ #, (4.10b)∑

<∈[0,|( |]
lL
<8 9 = 1,∀8 ∈ �, 9 ∈ #, (4.10c)∑

<∈[0,|( |]
lH
<8 9 = 1,∀8 ∈ �, 9 ∈ #, (4.10d)

lL
<8 9 , l

H
<8 9 ∈ {0, 1},∀< ∈ [0, |( |], 8 ∈ �, 9 ∈ #. (4.10e)

Similarly, let IL
<8

, IH
<8

be binary variables, where < ∈ [0, |( |] and 8 ∈ �
to linearize the second term of the right side of (4.4e). IL

<8
is set to 1 if∑

1∈�
∑
9∈# G

1
8 9
~ 9 is equal to < for 8 ∈ �, and 0 otherwise. IH

<8
is set to 1 if∑

1∈�
∑
9∈# G

1
8 9
(1 − ~ 9 ) is equal to < for 8 ∈ �, and 0 otherwise. This work can

express IL
<8

, IH
<8

in the form of the following constraints:∑
1∈�

∑
9∈#

G18 9~ 9 =
∑

<∈[0,|( |]
<IL<8,∀8 ∈ �, (4.11a)∑

1∈�

∑
9∈#

G18 9 (1 − ~ 9 ) =
∑

<∈[0,|( |]
<IH<8,∀8 ∈ �, (4.11b)∑

<∈[0,|( |]
IL<8 = 1,∀8 ∈ �, (4.11c)∑

<∈[0,|( |]
IH<8 = 1,∀8 ∈ �, (4.11d)

IL<8, I
H
<8 ∈ {0, 1},∀< ∈ [0, |( |], 8 ∈ �. (4.11e)
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By introducing binary variables q1
8 9 9 ′ = 4

8
9 9 ′G

1
8 9
~ 9 ′, c

1
8 9 9 ′ = 4

8
9 9 ′G

1
8 9

where 8 ∈
�, 9 ∈ #, 9 ′ ∈ N9 , 1 ∈ �, and Z 1

8 9
= G1

8 9
~ 9 , where 8 ∈ �, 9 ∈ #, 1 ∈ �, (4.10a),

(4.10b), (4.11a), and (4.11b) can be linearized as:∑
1∈�

∑
9 ′∈N9

q18 9 9 ′ =
∑

<∈[0,|( |]
<lL

<8 9 ,∀8 ∈ �, 9 ∈ #, (4.12a)∑
1∈�

∑
9 ′∈N9
(c18 9 9 ′ − q18 9 9 ′) =

∑
<∈[0,|( |]

<lH
<8 9 ,∀8 ∈ �, 9 ∈ #, (4.12b)∑

1∈�

∑
9∈#

Z 18 9 =
∑

<∈[0,|( |]
<IL<8,∀8 ∈ �, (4.12c)∑

1∈�

∑
9∈#
(G18 9 − Z 18 9 ) =

∑
<∈[0,|( |]

<IH<8,∀8 ∈ �. (4.12d)

With lL
<8 9

, lH
<8 9

, IL
<8

, and IH
<8

, (4.4e) can be transformed to:

D8 =
∑
1∈�

∑
9∈#
{C1G18 9 ?8 (1 − @ 9 )

∑
<∈[0,|( |]

∑
<′∈[0,|( |]

((%L)< (%H)<
′
lL
<8 9l

H
<′8 9 )}+

C3?8

∑
<∈[0,|( |]

∑
<′∈[0,|( |]

{(%L)< (%H)<
′
IL<8I

H
<′8},∀8 ∈ �. (4.13)

According to the linearization process in Appendix C, (4.11a)-(4.11b),

(4.12a)-(4.12d), and (4.13) can be linearized.

From the above, this work formulates the problem as an MILP problem,

which is expressed by:

min D (4.14)

B.C.(4.1), (4.3), (4.4b) − (4.4d), (4.4f) − (4.4g), (4.7a) − (4.7d),

(4.8a) − (4.8d), (4.10c) − (4.10e), (4.11c) − (4.11e),

(4.12a) − (4.12d), (C.1a) − (C.1l), (C.2a) − (C.2m).

This work provides a lower bound of the optimal objective value in the

proposed model by analyzing the maximum number of servers that the function

which corresponds to MEUT is protected by, which is derived in Lemma D.1

and Theorems D.1 and D.2 in Appendix D.
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4.3 Heuristic algorithm

Since Appendix E shows that the decision version of the multiple resource

allocation problem is NP-complete, the backup resource allocation problem

becomes difficult to solve in a practical time as the problem size increases.

This section presents a main idea of heuristic algorithm design which obtains

an approximate solution of the resource allocation to minimize MEUT with

considering workload to solve the problem with a larger size. This work in-

troduces a greedy algorithm to solve the multiple backup resource allocation

problem, which aims to reduce the computation time compared with the MILP

approach with a limited performance penalty.

This work presents the developed heuristic algorithm based on the idea

of water-filling [98], since the algorithm with two stages fits the allocation

with workload-dependent failure probability approximated by a step func-

tion. As this work considers a two-step function to approximate the workload-

dependent failure probability, the capacity of each server can be divided into

two parts, each of which corresponds to a failure probability, as shown in

Fig. 4.3(b). The traditional water-filling algorithm allocates the functions to

each server iteratively with considering the current workload until the workload

of the server exceeds the corresponding capacity. The developed algorithm

based on the water-filling algorithm allocates the functions to servers itera-

tively for each part of capacity until the workload exceeds each corresponding

capacity, as shown in Fig. 4.3(a).

Other heuristic algorithms such as randomized ones, which include a genetic

algorithm and a simulated annealing algorithm, can also be used for solving the

proposed model. The accuracy of solution in a randomized heuristic algorithm

can be improved with the cost of longer computation time. Compared with

randomized heuristic algorithms, the developed algorithm takes advantage of

the special structure for the server capacity with the workload-dependent fail-

ure profitability in the proposed model; it cannot adjust the computation time

and the number of trials to improve the accuracy.

The developed heuristic algorithm determines an initial allocation on mul-

tiple backup resources by allocating functions on each server 9 ∈ # iteratively

by applying the HB strategy, where 1 = 1. The algorithm determines the
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(a) Traditinal water-filiing algorithm.
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(b) Developed water-filiing algorithm.

Figure 4.3: Examples of traditional and developed water-filling algorithms.

resource allocation of functions on each of the servers until the workload for

the server exceeds threshold )9 with the allocation of next function. Then,

the algorithm searches for a server with enough remaining capacity to allocate

functions from the first server and allocates the functions to the server until

the workload exceeds the corresponding threshold with the allocation of next

function. Before each allocation of function 8 to server 9 , the algorithm checks

whether there is function 8 for any previous round is allocated to server 9 .

When the allocation of next function causes the workload of every server to

exceed its corresponding threshold, the algorithm searches for a server with

enough remaining capacity compared with � 9 to allocate the functions iter-

atively until the workload for the server exceeds the corresponding capacity

with the allocation of next function. Then, this algorithm continues to search

for a server with enough remaining capacity to allocate functions until the

workload for the server exceeds corresponding capacity with the allocation of

next function.

The developed heuristic algorithm determines the number of servers which

protect each function 8 ∈ � according to the ratio of the sum of capacity

to the total request load. Let N denote the upper bound of the number of

servers to protect each function, which is expressed by min{|# |, b
∑
9∈# � 9∑
8∈� |8

c} and

calculated in advance. Let ,1
9

and '1
9

denote the workload and the requested

load of server when it protects other servers with strategy 1 = 1 by fixing

G0
8 9
= 0. ,1

9
and '1

9
are equal and can be expressed by (4.1).
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Algorithm 4.1 Developed heuristic algorithm

Input: �, (, )9 , � 9 , |8,∀8 ∈ �, 9 ∈ #
Output: G1

8 9

1: G1
8 9
= 0, ~← ∅, 5 ;0�infeasible ← 0

2: Sort 8 by |8 decreasingly; sort 9 by )9 increasingly

3: for = = 1→ N do

4: for 8 = 1→ |� | do

5: for 9 = 1→ |# | do

6: Calculate ,1
9

7: if ,1
9
+ |8 > )9 or 8 is protected by 9 then

8: if 9 = |# | then

9: Append [=, 8] to ~

10: end if

11: Continue

12: else

13: G1
8 9
← 1

14: Break

15: end if

16: end for

17: end for

18: end for

19: Initialize a full-zero matrix 5 , whose size is |# | × |� |
20: for Each [=, 8] ∈ ~ do

21: Calculate ,1
9

22: for 9 = 1→ |# | do

23: if '1
9
+ |8 > � 9 or 8 is protected by 9 then

24: Continue

25: else

26: G1
8 9
← 1

27: D1 ←Calculate D8 based on current G1
8 9

28: G1
8 9
← 0, G0

8 9
← 1

29: D2 ←Calculate D8 based on current G1
8 9

30: if D1 < D2 then

31: G1
8 9
← 1, G0

8 9
← 0
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32: end if

33: Break

34: end if

35: end for

36: end for

Algorithm 4.1 starts to solve the problem by fixing 1 = 1 and it sorts 8 by |8

decreasingly; sort 9 by )9 increasingly (line 2). The allocation in Algorithm 1

is divided into two parts by threshold )9 (lines 3-18) and capacity � 9 (lines 19-

36). Algorithm 4.1 allocates the backup resources of each function iteratively

on the same server until the allocation of next function 8 causes,1
9
+|8 > )9 and

,1
9
+ |8 > � 9 as the increase of workload, respectively. Before each allocation

of function 8 to server 9 , the algorithm the algorithm checks whether there is

function 8 for any previous round is allocated to server 9 (lines 7 and 23). Let

= ∈ # denote the round of allocation for each function to N servers. For each

round of allocation = ∈ N , functions are allocated to server 9 iteratively if

,1
9
+ |8 ≤ )9 . Algorithm 4.1 does not change backup resource allocation until

the allocation of next function 8 causes ,1
9
+ |8 > )9 (lines 3-18).

Similar to lines 3-18 in Algorithm 4.1, if the next function causes the work-

load of every server to exceed the corresponding threshold, Algorithm 4.1

searches for a server with the enough remaining capacity from the first one

and allocates the backup resources of each function iteratively on the same

server until the allocation of next function 8 causes ,1
9
+ |8 > � 9 or there is

the same 8 for any previous round is allocated to 9 (lines 20-35). [=, 8] denotes

function 8 in round =, which is protected by each server whose requested load

causes the workload to exceed the corresponding threshold. By adopting the

CB strategy for these functions, the workload of each server in Algorithm 4.1

does not exceed the threshold, which indicates the failure probability of %L.

Based on the obtained initial multiple backup resource allocation (lines 3-18),

Algorithm 4.1 calculates two values D1 and D2 of the expected unavailable time

for each [=, 8] by the allocation with the HB and CB strategies, respectively,

and chooses the smaller one in D1 and D2 (lines 26-29). Algorithm 4.1 traverses

and determines the strategies for each [=, 8] to obtain the smaller expected un-

available time, which is the best solution of each function 8 in the round.

The computation time complexities of sorting |� | functions and sorting |# |
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Figure 4.4: Examples of developed heuristic algorithm

.

backup servers are $ ( |� | log |� |) and $ ( |# | log |# |), respectively. The overall

computation time complexity of Algorithm 4.1 is $ ( |� | |# | |# | + |� | log |� | +
|# | log |# |).

This work provides an upper bound of the expected unavailable time ob-

tained by the algorithm by analyzing the lower bound of the minimum size of

#8, 8 ∈ �, which is derived in Lemma D.1 and Theorem D.3 in Appendix D.

Figure 4.4 shows an example of the algorithm to obtain the initial solution

with five servers sorted by )9 increasingly. In this example, this work sets

|� | = 7, |# | = 5,
∑
8∈� |8 = 28, and

∑
9∈# � 9 = 120. This work calculates

the value of min{|# |, b
∑
9∈# � 9∑
8∈� |8

c}, which equals to 4, in advance. For = = 1,

functions 1, 2, and 3 are allocated to server 1 until function 4 causes the

exceeding of )1; functions 4, 5, and 6 are allocated to server 2 until function 7

causes the exceeding of )2 For server 3, function 7 is allocated to server 3;

functions 1 and 2 for = = 2 are allocated to server 3 until function 3 causes the

exceeding of )3. Functions 3, 4 and 5 are protected by server 4 until function 6

causes the exceeding of )4. Functions 6 and 7 for = = 2 and functions 1 and

2 for = = 3 are allocated to server 5 until function 3 for = = 3 causes the

exceeding of )5. Function 3 is allocated to server 2 since it is allocated to

server 1 for = = 1; at this time function 4 cannot be allocated to server 2 since

function 4 for = = 1 is allocated to server 2. Similarly, functions 4, 5, 6 and 7

are allocated to server 1 for = = 3. For = = 4, functions 1 and 2 are allocated

to server 2 since they are allocated to server 1 for = = 1. Similarly, functions 3,
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Figure 4.5: Example of special and general cases.

4, 5, and 6 are allocated to server 3 and function 7 is allocated to server 2.

4.4 Numerical evaluations

The MILP problems are solved by the IBM(R) ILOG(R) CPLEX(R) Interac-

tive Optimizer with version 12.7.1 [93], which is implemented by Python 3.7,

using Intel Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory.

4.4.1 Comparison with baseline

Let =e denote the expected number of servers which provide protection among

function 8 ∈ �, where =e =
∑
8∈� =8
|� | . Figure 4.5(a) shows the SB model with

=8 = 1,∀8 ∈ �, which considers the backup resource allocation of each function

to minimize MEUT among functions by adopting both HB and CB strate-

gies to provide protection. Chapter 3 discuss the backup resource allocation

problem with a special case that a function is only protected by one server,

i.e., =8 = 1,∀8 ∈ �. It indicates that the information of a function is synchro-

nized and recovered by only one backup server 9 ∈ #. The resource allocation,

as shown in Figure 4.5(b), is compared with the proposed model with the

SB model to investigate effectiveness of multiple protections in the proposed

model. Without considering multiple protections and DPS in the SB model,
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Figure 4.6: Comparison between proposed and SB models.

an optimization problem can be formulated as follows:

min A (4.15a)

B.C.
∑
1∈�

∑
9∈#

G18 9 = 1,∀8 ∈ �, (4.15b)∑
1∈�

∑
8∈�

@8G
1
8 9 ≤ � 9 ,∀ 9 ∈ #, (4.15c)

A ≥ A8,∀8 ∈ �, (4.15d)

A8 =
∑
1∈�

C1

∑
9∈#

G18 9 ?8 (1 − @ 9 ) + C3
∑
9∈#

∑
1∈�

G18 9 ?8@ 9 ,∀8 ∈ �. (4.15e)

Consider three servers whose capacities and thresholds are set to 30 and 15,

respectively. Both models are adopted with eight functions, whose requested

loads are randomly distributed over the range of [1, 8]. This work considers

that the average value of %L and %H for each server is no larger than 0.01

based on [99]. The work in [11] draw a conclusion that the failure probabilities
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of DRAM modules in servers with higher level of utilization, as measured by

CPU utilization and the amount of memory allocated, are on average 4–10

times higher than that of lower level of utilization. This work assumes that

%H = 7%L and %H+%L
2 = 0.01. This work sets %H = 0.0175 and %L = 0.0025.

Unavailable time C1, C0, and C3 is set to 0.5, 3, and 20, respectively. Each

server in the SB model can provide protection for only one function while each

server 9 ∈ # in the proposed model can provide protection for at most eight

functions.

Figure 4.6 shows MEUTs and =e derived by the proposed and SB models

for different values of the total requested load. Figure 4.6(a) observes that

the proposed model yields smaller MEUT than the SB model until the total

requested load is so large that at least one function is protected by only one

server whose probability is %H due to the limited capacity of the corresponding

server. In the simulation with given parameters, when =e is smaller than 1.5

(see Fig. 4.6(b)), MEUT derived by the proposed model is equal to that of

the SB model with the same total requested load. We observe that MEUTs of

both models increase as the total requested load of functions increases. MEUT

in the proposed model is in average 21.9% reduced compared with that of the

SB model among the values of total requested load. Figure 4.6(b) observes

that =e in the proposed model decreases as the increase of the total requested

load, while MEUTs of the proposed model increase. =e in the proposed model

decreases from 3 to 1 due to the limited capacity of servers as the increase

of the total requested load while that of the SB model remains to be 1. As

the total requested load of functions increases, =e is smaller than two, which

indicates that the total requested load is so large that at least one function is

protected by only one server due to the limited capacity of the other servers.

4.4.2 Comparison with conventional model that ignores

workload-dependent failure probabilities of func-

tions and backup servers

The conventional model considers the multiple backup resource allocation of

each function to minimize MEUT among functions to provide protection, re-

gardless of a workload-dependent failure probability. Each function is allowed
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Figure 4.7: Comparison of proposed model with conventional model without

considering workload-dependent failure probability.

0.001248

0.001252

0.001256

0.001260

0.001264

0.001268

15 20 25 30 35 40 45

M
E

U
T

 [s
]

Total requested load

Proposed model

FP_H policy

FP_L policy

CB policy

Figure 4.8: Comparison of multiple backup resource allocation model with

different priority policies.

95



Chapter 4

to adopt either HB or CB. This work compares the proposed model with the

conventional model to investigate effectiveness of the proposed model.

Without considering the workload-dependent failure probability, the failure

probability in the conventional model is set to %C, since this work cannot judge

the failure probability with different workloads. Since the conventional model

adopting the CB strategy increases the expected unavailable time without

decreasing of workload-dependent failure probability, the conventional model

with the constant failure probability %C adopts the HB strategy no matter

what the exact value of %C is. Theorem 4.1 indicates that, when each server

protects the function 8 ∈ � with the HB strategy, D8 can be simplified as

?8 (C1 + (C3− C1)
∏

9∈# 8 @ 9 ). Therefore, the optimization problem of conventional

model is formulated as an MILP problem, expressed by:

min D (4.16a)

B.C.(4.4a) − (4.4d), (4.4f) − (4.4g), (4.11c) − (4.11e), (C.2i) − (C.2k),

(C.2m), (4.16b)

@ 9 = %C,∀ 9 ∈ #. (4.16c)

This work obtains the multiple backup resource allocation of both models

by solving the MILP problems presented in Section 4.2 and (4.16a)-(4.16c),

respectively. The exact values of MEUT of both models are calculated by

(4.4d) and (4.4e) by using the obtained allocations.

In order to observe the difference between the proposed and conventional

models, this work sets the thresholds of three servers to 10, 15 and 20, re-

spectively. This work sets %H = 0.0175, %L = 0.0025, and %C =
%L+%H

2 .

As shown in Fig. 4.7(a), MEUT of the proposed model is in average 12.32%

reduced compared with that of the conventional model, which ignores the

workload-dependent failure probability among the values of total requested

load by adopting both HB and CB strategies. In Fig. 4.7(b), a reference value

of total threshold, which is defined by the sum of thresholds over all servers,

i.e.,
∑
9∈# )9 , is indicated. As shown in Fig. 4.7(b), the total workload of

the proposed model is in average 24.05% reduced compared with that of the

conventional model, since functions in the proposed model can adopt the CB

strategy to reduce the workload and further reduce failure probability from %H

to %L. Inspired by Theorem D.1, the expected unavailable time of function
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8 ∈ � is a non-increasing function of =8 in the conventional model with the

constant failure probability %C. Therefore, each function is protected by as

many servers as possible as long as the constraints are satisfied; MEUT of the

conventional model is determined by the function with the smallest =8, 8 ∈ �.

Different from the flexible allocations of the proposed model by adopting the

CB strategy to reduce the workload, the total workload obtained by the con-

ventional model increases to keep each function being protected by as many

servers as possible as long as the constraints are satisfied. When the total

requested load is between 30 and 45 and the total capacity of servers is 90, the

total workload decreases due to the limited capacities of servers which cannot

afford more protection to the functions.

4.4.3 Comparison on different priority policies

This work evaluates the performance of multiple backup resource allocation

model with different priority policies and analyze the results.

First, this work considers a multiple backup resource allocation model that

sets a server with the CB strategy to the higher priority than that with the HB

strategy, which this work calls a CB policy. Similar to the proposed model, the

model with CB policy considers the case that function 8 ∈ � fails and is pro-

tected by one of its corresponding available backup servers which have higher

DPS than those which fail at failure probability
∏
$8 9 ′>$8 9 : 9 ′∈#8 @ 9 ′, 9 ∈ # 8 si-

multaneously. $8 9 in the CB policy is expressed by:

$8 9 =
∑
1∈�
( 9 + (1 − =) |# |)G18 9 ,∀8 ∈ �, 9 ∈ #. (4.17)

Second, this work investigates the influence of priority policy related to

failure probability on MEUT. This work considers two multiple backup re-

source allocation models; one model sets a server whose failure probability is

higher than other servers to the higher priority than other servers, which this

work calls a FP H policy; the other one sets a server whose failure probability

is lower than other servers to the higher priority than other servers, which

this work calls a FP L policy. This work adopts both FP L and FP H poli-

cies to investigate the influence of priority policy related to failure probability
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on MEUT. Similar to the model with CB policy, $8 9 in the FP L and FP H

policies are expressed by:

$8 9 =
∑
1∈�
( 9 + (1 − @ 9 ))G18 9 ,∀8 ∈ �, 9 ∈ #, (4.18a)

$8 9 =
∑
1∈�
( 9 + @ 9 )G18 9 ,∀8 ∈ �, 9 ∈ #. (4.18b)

In order to observe the difference between the proposed model and the

models with different policies clearly, this work modifies unavailable time C0

from 3 to 2, the thresholds of three servers are set to 10, 15 and 20, respectively.

As shown in Fig. 4.8, MEUT in the proposed model is in average 0.22% reduced

compared with that of the model with the CB policy among the values of total

requested load by adopting both HB and CB strategies. MEUT in the proposed

model is in average 0.148% and 0.146% reduced compared with those in the

model with the FP L and FP H policies, respectively, among the values of

total requested load.

Since setting the server with the HB strategy to the higher priority has the

lower expected unavailable time than that with the CB strategy (see Theo-

rem 2), the CB policy tends to lead to allocation results that every server in

the CB policy adopts the HB strategy to protect functions with given param-

eters. Note that Theorem 4.2 only claims the superiority of the HB strategy

on priority instead of allocation. It is possible that resources allocation and

strategies may change due to the different relationships between C0, C1, C3, %L

and %H.

Different from the CB policy, the FP L and FP H policies adopt both

HB and CB strategies, which reduce MEUT compared with the CB policy.

As the total requested load increases, the proposed model adopts both HB

and CB strategies to keep the failure probability of each server to %L; the

models with FP L and FP H policies adopt only the HB strategy. Since both

FP L and FP H policies only focus on the failure probability, it is possible

that server which is protected with the CB strategy, no matter higher failure

probability or lower failure probability compared with other servers, has higher

priority, which further leads to higher expected unavailable time. The proposed

model is more flexible to allocate the backup resource aiming to balance the
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Figure 4.9: Comparison of MEUTs and workloads obtained by proposed model

of MILP approach and heuristic algorithm.

failure probability and strategies while setting the server which adopts the CB

strategy to the lower priority than other servers with the HB strategy, which

suppresses MEUT compared with the FP L and FP H policies.

4.4.4 computation time and accuracy

This work shows the comparisons on MEUT, workloads, and computation time

between the MILP approach and the heuristic algorithm for different numbers

of servers to evaluate the heuristic algorithm for different sizes of problem.

Firstly, this work shows MEUTs and workloads derived by the MILP ap-

proach and heuristic algorithm for different values of the total requested load.

X denotes the accuracy of the heuristic algorithm, which is defined by the ra-

tio of the difference between MEUTs of the proposed model obtained by the

heuristic algorithm and the MILP approach to MEUT of the MILP approach

in each test. The experiment continues to apply the same given parameter in

Section 4.4.3. Fig. 4.9(a) shows that MEUTs derived by Algorithm 4.1 are in

average 0.0289% larger than those in the MILP approach among all the total

requested load. The accuracy of the heuristic algorithm X is 2.89× 10−4 in av-

erage among the given total requested loads. In Fig. 4.9(b), a reference value

of total threshold, which is defined by the sum of thresholds over all servers,

i.e.,
∑
9∈# )9 , is indicated. Fig. 4.9(b) shows the total workload obtained by the

MILP approach is in average 16.82% reduced compared with that obtained by

the heuristic algorithm. According to the allocation in Algorithm 4.1, the func-
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Table 4.1: MEUTs, Workloads and computation time of MILP approach and

heuristic algorithm.

|# | |� |
MEUT (s) Workload

Computation

times (s)

MILP Heuristic MILP Heuristic MILP Heuristic

3 8 1.2521328 1.2596562 42 36 54.75 0.006

3 12 1.2500234 1.2500241 50 54 331.94 0.008

3 16 1.2501689 1.2502612 78 117 1196.62 0.017

3 20 ‡ 1.2596562 ‡ 90 ‡ 0.010

4 8 1.2500241 1.2500241 48 48 892.73 0.005

4 12 1.2500004 1.2500042 75 100 3239.64 0.010

4 16 1.2500241 1.2500241 96 94 45496.05 0.010

4 20 ‡ 1.2593757 ‡ 120 ‡ 0.015

‡: The results cannot be obtained because of the memory limitation.

tions adopt different strategies to reduce failure probabilities. Different from

the flexible allocations of the MILP approach, the total workload obtained by

Algorithm 4.1 is either close to the total threshold to keep the failure proba-

bility %L or much higher than the total threshold to keep each function being

protected by as many servers as possible as long as the constraints are satisfied.

Secondly, this work evaluates the computation time and accuracy of MEUT

for different size of problem. This work considers two situations with three

servers and four servers, respectively, tests 1-8 for each situation correspond

to 8 functions, 12 functions, 16 functions, 20 functions, respectively. The

requested loads of functions are randomly distributed over the range of [1, 6].

This work considers servers whose capacities and thresholds are set to 20 and

12, 30 and 18, 40 and 24, 50 and 30, 60 and 24, respectively, in each test.

Unavailable time C1, C0, and C3 is set to 500, 2000, and 20000, respectively, for

easier observation.

Table 4.1 shows the average computation time for the MILP approach and

the heuristic algorithm for each situation. We observe that the computation
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Table 4.2: Lower bound of optimal objective value in proposed model and

upper bound of expected unavailable time obtained by heuristic algorithm.

|# | Lower bound Upper bound

4 3.87 × 10−12 0.01469

5 9.68 × 10−15 0.01451

6 2.42 × 10−17 0.00838

7 6.05 × 10−20 0.00823

8 1.51 × 10−22 0.00823

9 3.78 × 10−25 0.00799

10 9.45 × 10−28 0.00784

time of the heuristic algorithm is 8.70 × 10−6 times smaller than that of the

MILP approach in average; as the problem size increases, the computation

time of the MILP approach increases remarkably. The larger the problem

size is, the more the computation time of the heuristic algorithm is reduced

compared with that of the MILP approach. MEUTs derived by the heuristic

algorithm is 0.122% larger than the results calculated by the MILP approach

in average.

Thirdly, in order to evaluate the dependency of MEUT obtained by the

developed heuristic algorithm on |# | when |# | increases, this work considers

that there are |# | servers hosting 30 functions, where |# | is set to 4, 5, 6,

7, 8, 9, and 10. The capacities of |# | servers are randomly distributed over

the range of [50, 100]. The ratios of the threshold to the capacity of a server

are randomly distributed over the range of [0.4, 0.8]. The requested loads

of 30 functions are randomly distributed over the range of [1, 10]. Since the

MILP problem becomes difficult to solve in a practical time as the problem

size increases, let ) denote the admissible computation time (seconds) in the

experiment. This work considers the best feasible solution obtained by solving

the MILP problem within ) , where ) is set large enough for running any

heuristic algorithm.

Figure 4.10 shows the relationship between MEUTs and |# | by applying the

MILP approach and the heuristic algorithm. In Fig. 4.10, two reference values,
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Figure 4.10: Dependency of MEUT on |# |.

which are the lower bound of the optimal objective value in the proposed

model and the upper bound of the expected unavailable time obtained by the

algorithm (see Theorems D.1 and D.3), are indicated. The calculated values of

the bounds are shown in Table 4.2. The lower bound decreases and the upper

bound increases as |# | increases. Within ) = 60 and 600 [s], the heuristic

algorithm always outperforms the MILP approach in terms of MEUT. As the

value of ) increases, MEUT in the best feasible solution obtained by solving

the MILP problem decreases. The computation time to solve the problem by

the heuristic algorithm among different resource utilization under different |# |
are almost the same and are approximately 0.1 [s].

4.4.5 Larger-size problem

In order to evaluate the performance of the proposed model for a larger-size

problem, this work considers a larger-size network with 100 middleboxes, or |� |
= 100. This work uses Google cluster usage traces dataset [100], where each

function is accompanied by a set of resource requirements used for schedul-

ing tasks onto the appropriate servers. Google dataset describes particular

information on machines and their attributes, tasks events, service events, and

resource usage. The requested load for each function represents the maximum
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Table 4.3: MEUTs for larger-size problem obtained by heuristic algorithm

under different failure probabilities

.

(%L, %H)
|# |

20 30 40 50

Test 1 (0.0025,0.0175) 1.372 × 10−3 1.259 × 10−3 1.251 × 10−3 1.250 × 10−3

Test 2 (0.01,0.1) 2.180 × 10−2 5.168 × 10−3 5.150 × 10−3 5.001 × 10−3

Test 3 (0.05,0.2) 7.375 × 10−2 3.100 × 10−2 2.886 × 10−2 2.520 × 10−2

amount of CPU that an instance is permitted to use are described in [100].

The capacities of the servers are also obtained by [100]. The measurements

have been normalized, where the normalization is a scaling relative to the

largest capacity of the resource on any machine in the trace. The ratios of the

threshold to the capacity of a server are randomly distributed over the range

of [0.4, 0.8]. This work conducts three tests with different failure probabilities

of %L and %H, where %L is set to 0.0025, 0.01, and 0.05, respectively; %H is set

to 0.0175, 0.1, and 0.2, respectively.

The failure probabilities in three tests have the relationship of %H = 7%L,

%H = 10%L, and %H = 4%L, respectively. MEUTs derived by the heuristic

algorithm increase as |# | increases for different values of %L and %H; MEUTs

increase as the values of %L and %H increase for different sizes of the problem.

MEUTs with |# | = 50 are 9.8%, 335.9%, and 192.7% larger than those of with

|# | = 20 in Tests 1, 2, and 3, respectively. This result is positively related to

the ratio of %H to %L.

When relatively higher-reliable servers are considered in Test 1, MEUT

with |# | = 50 is 0.1% smaller than that of |# | = 30; when relatively lower-

reliable servers are considered, MEUTs with |# | = 50 are 3.4% and 23.0%

smaller than those of |# | = 30 in Tests 2 and 3, respectively. Thus, we observe

that MEUT reduces remarkably as |# | increases in relatively lower-reliable

servers compared with the relatively higher-reliable servers. The average com-

putation time among the three tests for different sizes of the problem are 0.5

[s], 2.7 [s], 6.9 [s], and 13.7 [s], respectively.
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4.5 Discussions

4.5.1 Considerations related to network service

A network service consists of one or more multiple middlebox functions, and

transmits network elements including switches, routers, and links. The service-

level unavailability is caused by the unavailability of functions and network el-

ements used in a network service. Similar to this work, the works in [28–30,56]

focus on the availability of functions, but not the availability of link that is used

to transmit traffic among VNFs. The work in [65] introduced that the avail-

ability of requests is guaranteed by both physical network layer components

(links) and application layer components (NFs). In practical applications,

physical links provided in the electrical or optical domain may also fail. In

literature, several approaches can be adopted to protect logical links against

physical link failures. In [101–103], VNF chaining with path or link protec-

tion was addressed. For example, this work can allocate two disjoint paths,

where one of them works as a primary path and the other is a backup path,

for each logical link against any single physical link failure [103]. This work

assumes that the network links are provided by reliable manufacturers with the

approaches introduced in the literatures. This work focuses on function-level

protection for functions with considering the failures of functions and servers.

The primary and backup path allocation problem can be incorporated in the

optimization model to determine the path allocation at the same time. This

work can be used for estimating the service-level unavailability by using the

function-level unavailability [65].

4.5.2 Considerations related to workload-independent

failures

The workload-independent failures occur in a practical situation, which are

not related with workload of servers. There are several kinds of workload-

independent failures, such as security breaches, misconfigurations, and human

errors. Some approaches can handle some kinds of workload-independent fail-

ures, for example, syslog-based failure diagnosis or prediction usually employs

machine learning techniques to discover patterns from historical failures [104].
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The work in [105] investigated datacenter placement and dynamic content

management through proactive and reactive approaches.

The workload-dependent failures are highly related to the utilization of

computing resources [8–10,50,60,106,107]. This work introduces the relation-

ship between the workload and the failure probability to perform the backup

resource allocation [37,95]. In a practical situation, both workload-independent

and workload-dependent failures may occur simultaneously with complex rea-

sons. In this situation, the model in this work can be independent of the

existing works focusing on different types of workload-independent failures,

so that workload-independent failures and workload-dependent failures can be

jointly handled by different approaches to achieve a higher availability.

4.5.3 Considerations related to practical situation

In practical deployment, this model can be used for VNF orchestration. VNFs

are usually packaged in VMs or containers, which is placed to a node deter-

mined by an orchestration management platform such as Kubernetes [108].

This work introduces an example to implement the proposed model in a prac-

tical situation.

Step 1 (input collection): the inputs of the proposed model include the

requested computing resources for each function and the maximum comput-

ing capacity for each server. The computing resource information can be de-

rived by tracing applications [3, 4], or a monitoring cloud application, e.g.,

Prometheus [109]. The applications allow capturing the runtime behavior of

the system, enabling a thorough analysis of the collected data, which include

resource utilization and available status.

Step 2 (optimization for backup resource allocation): the allocation re-

sults are obtained by the proposed model with the collected data to minimize

MEUT. The calculation results obtained by the proposed model are stored in

a database.

Step 3 (resource binding and Pod creation): a Pod is the smallest deployable

unit of computing that can be created and managed in Kubernetes. Functions

can be bound to backup servers and Pods can be created manually (Step 3-1)

or automatically [35] (Step 3-2) according to the optimization results in Step 2.
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Step 3-1 (manually): the service provider manually binds the functions to

the corresponding server and creates the Pods according to the calculation

results in Step 2.

Step 3-2 (automatically): the proposed model can be implemented based

on the tool introduced in [35]. The tool in [35] enables the allocation results

obtained by a general model with different objectives and designs to be used

to allocate the VNFs to nodes in Kubernetes. In automatic orchestration

management, this model serves as a part of function scheduler. The scheduler

can allocate functions according to the calculation results obtained by Step 2

based on the scheduler framework in Kubernetes. Adopting the proposed

model as a part of scheduler enables the scheduler to evaluate the score of each

server according to the suitability for each function by minimizing MEUT. The

scheduler in the platform [35] binds the functions to the corresponding server

and creates the Pods.

Step 4 (backup Pod label attachment): HB and CB Pods are distinguished

by the labels, each of which is attached to the Pod when a service is created.

Each Pod with a HB label is activated without being exposed to the service;

the Pod takes over the tasks of primary Pod once a failure is detected. When

a Pod with a CB label is requested to be created, this work adds an init

container [110] in the CB Pod. Init containers run before the other containers

in the same Pod. Each init container must be completed successfully before

the activation of other containers in the same Pod; it is used for waiting for

the activation message.

Step 5 (initialization): the Pods start for initialization. The orchestration

platform pulls the images of the functions from the repositories to the loca-

tions of the functions for both HB and CB Pods. The HB Pods are activated

and synchronized with the initial data while the CB Pods are not. After the

function is initialized and the service begins to run, the HB Pods synchronize

the data from the primary functions periodically; the images of the CB pods

are updated by the function orchestration platform periodically.

A demonstration was conducted for a real situation with cooperating the

work in [35]. The demonstration runs on a four-node Kubernetes cluster,

one master node and three worker nodes. There are four functions given in

advance. The required time is measured for implementing the backup resource
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allocation model. The time for the proposed model to obtain an optimal

solution is 1.42 [s]. The time for binding a function to the server according to

the resource allocation obtained by the proposed model is 1.05 [s]. It depends

on the number of servers and functions and processing ability of Scheduler.

The time for pulling a nginx image from docker.io is 12.43 [s]. The time for

the hot backup resources of the functions for synchronizing the initial data,

which are default web pages, from the primary resource is 0.17 [s]. It depends

on the synchronization content size and the bandwidth between the primary

resource (source) and the backup resource (destination).

4.5.4 Considerations related to resource usage

Service providers may also need to consider the resource usage in addition to

the unavailable time. There are several works jointly considered the reliability

and the resource usage. The work in [19] provided a probabilistic protection

guarantee for virtual machines against multiple failures of physical machines

to minimize the required total capacity. The work in [58] introduced a cost-

aware redundancy scheme to maximize the cost-efficiency ratio of the backup

plan with backup cost. The work in [111] introduced a deployment of backup

instances, which uses an improved breadth first search algorithm to reduce

the consumption of backup bandwidth resources during the deployment of

backup instances. Different from the above works, the proposed model does

not consider the cost of resource usage in the objective function; all the given

resources can be used without cost. The capacity of each server is given as

a constraint in the proposed model. The proposed model minimizes MEUT

with different strategies only considering the failure probability depending on

the workload, regardless of the cost on resource usage. The resources can be

fully utilized in terms of MEUT.

This work provides two directions to extend the proposed model with con-

sidering resource usage. In the first direction, MEUT and the total workload

among servers can be jointly considered in the objective value. Firstly, in

(4.4a), the total workload, i.e.,
∑
9∈�, 9 , can be added as the secondary objec-

tive. The complete objective value can be expressed by D+n1
∑
9∈�, 9 , where D

is MEUT; the small number, n1, is multiplied to the second term to prioritize
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Figure 4.11: Comparison among models with different objectives.

the first term over the second term. The solution that minimizes the total

workload,
∑
9∈�, 9 , is chosen when there are multiple solutions that minimize

MEUT. Similarly, the two objective values, i.e., MEUT and the total work-

load, can be incorporated with weights X1 and X2, respectively, each of which

depends on the importance of each term designed based on the requirement

of the provider. The goal of the model is to minimize a weighted value con-

sidering MEUT and the total workload, i.e., X1D + X2
∑
9∈�, 9 . In the second

direction, this work can provide a guarantee of tolerable unavailable time for

MEUT, i.e., this work can impose that the value of MEUT must be under a

certain value as a constraint, and minimize the total workload,
∑
9∈�, 9 .

This work calls a model that minimizes the objective with adopting the

total workload as the secondary objective TW-SO. This work calls a model

that minimizes a weighted value considering MEUT and the total workload

MEUT-TW. This work calls a model that minimizes the total workload with

guaranteeing the unavailable time TW-GU.

Figure 4.11 shows the comparison among models on their features of re-

source usage and unavailable time. Each model with a different objective

considers the unavailable time and resource usage in a different degree. As

shown in Fig. 4.11, the proposed model is aware of unavailable time without
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considering the cost of resource usage. The works in [19, 58, 111] are aware

of both resource usage cost and reliability; they are not explicitly aware of

unavailable time. TW-SO maintains the awareness of unavailable time com-

pared with the proposed model while it increases the awareness on resource

usage with adopting the total workload as secondary objective. The awareness

of the unavailable time and the resource usage can be changed depending on

parameter settings on weights X1 and X2 for MEUT-TW. For example, when

X1 = 0, the modified model focuses only on the resource usage; when X2 = 0,

the modified model focuses only on the unavailable time. For TW-GU, as

the tolerable unavailable time constraint relaxes, the model can have a larger

searching space to minimize the total workload. For example, when the tol-

erable unavailable time becomes large enough so that the time constraint can

be easily satisfied, the model can have a larger feasible region, which can lead

to obtaining a smaller objective value, and vice versa.

4.5.5 Considerations related to resource re-allocation in

dynamic scenarios

The proposed model provides the multiple backup resource allocation under

a static scenario, where all the requested functions are given at the operation

start time. The proposed model can be used in some real application scenar-

ios, such as initial optimal deployment for network services before volume or

phased roll-out [112] and periodic optimal re-deployment for maintenance or

upgrading.

In the dynamic scenarios of arrivals of requested functions and releases of

existing functions, resources of arriving functions need to be allocated; the

resources of existing functions may not need to be re-allocated immediately.

Only the allocation of the arriving requested functions and the releasing of

terminated functions are considered at each request arrival and release. A

triggered re-optimization procedure including the existing resources performs

at a certain interval to reduce MEUT; the interval can be set considering the

cost of re-allocation and optimality. One option is to perform re-allocation

periodically, where an appropriate re-allocation interval is required to be de-

termined. The other option is to set a threshold for the total workload; the
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re-allocation is triggered when the total workload exceeds the given threshold.

4.5.6 Considerations related to multiple types of com-

puting resources

Since multiple types of computing resources can become a key role for services

or applications at the same time in actual clouds [113], the backup resource

allocation with considering multiple types of computing resources, e.g., CPU

and memory, is required to be considered. In the view of multiple resource

types, different computing resources may have different thresholds and differ-

ent workload-probability curves. To handle the multiple types of resources

with the proposed model, since the concept of the workload in the proposed

model represents only one computing resource, the utilization of multiple types

of resource needs to be redefined jointly as one type of new resource, so that

it can be directly handled by the proposed model. To combine the utilization

of multiple resources as one, this work can calculate the average or maximum

failure probability among multiple resource types to approximate the workload-

dependent failure probability with multiple resource types. The approximation

to obtain the joint probability of CPU-related and memory-related failure rate

by directly combining the two types of resources as one may lead to inaccu-

racy, since different types of resources may have different workload-probability

curves and the failures of multiple resources may not be independent.

Thus, this work discusses a direction to extend the proposed model with

considering the multiple resource types. The workload can be extended to

be a multi-dimension concept. In the proposed model, this work considers

that the workload is one type of the computing resources with one dimension.

The non-decreasing workload-dependent failure probability is expressed with

a two-dimensional curve, i.e., the failure probability and the workload. If this

work extends the workload concept from one dimension to U dimensions, i.e.,

this work considers U types of computing resources, a non-decreasing workload

probability can be expressed with an (U + 1)-dimensional curve. The proposed

model can be extended to handle a non-decreasing workload probability that

is expressed with an (U + 1)-dimensional curve.
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4.6 Summary

This chapter proposed a multiple backup resource allocation model with the

workload-dependent failure probability to minimize MEUT under a priority

policy. This chapter analyzed the superiority of the protection priority policy

to express the expected unavailable time for each function protected by multi-

ple backup resources in the proposed model. This chapter derived the theorems

that clarify the influence of policies on MEUT. This chapter formulated the

optimization problem as an MILP problem. A lower bound of the optimal ob-

jective value in the proposed model was derived. This chapter proved that the

decision version of the multiple resource allocation problem in the proposed

model is NP-complete. A heuristic algorithm inspired by the water-filling

algorithm was developed with providing an upper bound of the expected un-

available time obtained by the algorithm. The numerical results showed that

the proposed model reduces MEUT compared with the single backup model in

which each function is protected by only one server without protection priority

of servers and the conventional model without the workload-dependent failure

probability. The priority policy adopted in the proposed model specifying that

the server which adopts the HB strategy has higher priority than that with the

CB strategy for multiple backup resources suppresses MEUT compared with

other priority policies. The developed heuristic algorithm is approximately

106 times faster than the MILP approach with 10−4 performance penalty on

MEUT.
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Resource allocation model with

priority setting against multiple

failures with

workload-dependent failure

probability

This chapter proposes a primary and backup resource allocation model with

preventive recovery priority setting to minimize a weighted value of unavailable

probability (W-UP) against multiple failures. W-UP considers the probabil-

ity of unsuccessful recovery and the maximum unavailable probability after

recovery among physical nodes [114,115].

The remainder of the chapter is organized as follows. Section 5.1 describes

the proposed model. Section 5.2 presents a heuristic algorithm. Section 5.3

discusses an approach to obtain the unsuccessful recovery probability with-

out priority setting Section 5.4 presents the numerical results. Section 5.5

summarizes this chapter.
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Input: 

∙ Physical node information (number, capacity)

∙ Function information (number, requested load) 

∙ Workload-dependent failure probability

∙ Number of concurrent node failures

Node 1

F4

F3

F2

F1

Node 3

F3

F1

F2

F4

Node 2

F1

F3

F4

F2

Backup resource

Backup resource 

with highest priority

Primary resource

Output: 

Resource 

allocation and 

recovery 

configuration

Figure 5.1: Example of resource allocation problem.

5.1 Model and problem definition

5.1.1 Problem definition

This work determines a primary and backup resource allocation model with

recovery priority setting against multiple failures preventively with considering

different workload-dependent failure probabilities for each node. The goal of

the model is to minimize a weighted value considering the unsuccessful recovery

probability and the weighted maximum unavailable probability among nodes

against all failure patterns.

RAM-P problem is defined as follows:

Problem 5.1 Given the sets of functions and nodes, the requested load for

each function, the maximum capacity for each node, the maximum number

of concurrent node failures, and the workload-dependent failure probability for

each node, the goal is to find the primary and backup resource allocation and

the priority for recovery, aiming to minimize W-UP.

Figure 5.1 shows an example of the considered problem, where the primary

and backup resource allocation with priority setting against node failures is

presented. The recovery configuration against any failure pattern is determined

at the operation start time with minimizing W-UP.
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5.1.2 Model description

Let � and # represent a set of functions and a set of nodes, respectively, where

|� | and |# | denote the numbers of functions and nodes, respectively. Consider

# 9 ⊆ #, where |# 9 | ≥ 1, as a set of nodes which are assigned to allocate

backup resources of function 9 ∈ �. This work considers that each node is

able to offer capacity for both primary and backup resource allocation; the

backup resources of a function are allocated in |# 9 | ≥ 1 different nodes. Let

�8 denote the upper bound of computing capacity provided by node 8 ∈ # for

operating the primary and backup resources.

When a failure occurs in a node, the functions hosted by the failed nodes fail

concurrently, the workload of the primary resource of the function is transferred

to one of its backup resources in available nodes. Each node in # 9 is associated

with an integer of ? ∈ [1, |# |], which indicates the priority of the backup

resource in a node to recover unavailable function 9 . The backup resource

in node : ∈ # 9 with a greater value of ? has a higher priority to recover

unavailable function 9 .

Let G
: ?

8 9
, 8 ∈ #, : ∈ #\{8}, 9 ∈ �, ? ∈ [1, |# |], denote a binary variable; G

: ?

8 9

is set to one if function 9 is allocated at node 8 and is protected by node :

whose priority among nodes in #\{8} is equal to ?, and zero otherwise. Each

function protected by node : ∈ # is allocated to at most one node in #\{:}
associated with priority ?; each function protected with a priority is allocated

to at most one node in # and protected by another node in #.

Let [∗
9

be an integer variable which denotes the maximum priority among

nodes in # to recover function 9 ∈ �; it is expressed by:

[∗9 = max
?∈[1,|# |]

max
:∈#
{
∑
8∈#

?G
: ?

8 9
},∀ 9 ∈ �. (5.1)

Let d
?

9
, 9 ∈ �, ? ∈ [1, |# |], denote a binary variable; it is set to one if priority ?

equals ? = [∗
9
, and zero otherwise. Let \

: ?

8 9
= G

: ?

8 9
d
?

9
, 8 ∈ #, 9 ∈ �, : ∈ #\{8}, ? ∈

[1, |# |], denote a binary variable which is set to one if node : has the highest

priority among nodes in #\{8} to recover function 9 that is allocated at node

8, and zero otherwise.

Let j8 9 , 8 ∈ #, 9 ∈ �, represent a binary variable that equals ∨
?∈[1,|# |]∨:∈#\{8}

G
: ?

8 9
; it is set to one if function 9 is allocated to node 8, and zero otherwise,
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where ∨ expresses a binary OR. Each function in � is allocated into one node

in # with
∑
8∈# j8 9 = 1,∀ 9 ∈ �. Let b 9 : , 9 ∈ �, : ∈ #, denote a binary variable

that equals ∨
?∈[1,|# |] ∨8∈#\{:} G

: ?

8 9
; it is set to one if function 9 is protected by

node :, and zero otherwise.

Multiple concurrent failures among nodes in # are considered. This work

assumes that each node failure occurs independently with its corresponding

probability. Since a service provider may allow a certain number of concurrent

node failures, where the total unavailable probability of nodes is controlled

under a certain degree [71], this work considers that there are at most Γ ∈
[0, |# |] failed nodes at the same time. The larger Γ is, the more the considered

possible failure patterns of nodes are. Let PΓ denote a set containing all

possible failure patterns, each of which has at most Γ failed nodes. Let Pf
Γ
, f ∈

C B [0, |PΓ |], denote the fth element in PΓ; when f = 0, Pf
Γ
= ∅. Let

5 f
8
∈ {0, 1}, 8 ∈ #, f ∈ C, represent whether node 8 fails; 5 f

8
= 1 if node 8 fails,

i.e., 8 ∈ Pf
Γ

, and zero otherwise.

The failure probability of each node is related to the corresponding work-

load. Before any failure occurs, each function is protected by one or more

nodes and the reserved idle capacity is not taken into account as active work-

load in the nodes until the activation of backup resources caused by the failures.

When a failure occurs to node 8, the functions hosted by failed nodes need to

be recovered by an available node; the backup resource in node : ∈ #\{8} with

the highest priority is activated. Let !W
8f
, 8 ∈ #, f ∈ C, denote the workload

of node 8 under failure pattern Pf
Γ

. When f = 0, !W
80 represents the workload

of node 8 before any failure occurs. Let !R
8

denote total requested load of

node 8. This work assumes that the upper bound of computing capacity for

each function required for information synchronization and snapshot updating

is ;u
9
, 9 ∈ �; ;R

9
denotes the requested load of each function. !W

8f
and !R

8
are

expressed by:

!W
8f =

∑
9∈�
{;R9 j8 9 + ;u9 b 98} +

∑
9∈�

∑
8′∈#\{8}

∑
?∈[1,|# |]

(;R9 − ;u9 )\
8?

8′ 9 5
f
8′ j8′ 9 ,∀8 ∈ #,

f ∈ C, (5.2a)

!R
8 =

∑
9∈�
{;R9 j8 9 + ;R9 b 98},∀8 ∈ #, (5.2b)
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Figure 5.2: Workload-dependent failure probability is expressed by a monotone

increasing S-step function.

where
∑
9∈� ;

R
9
j8 9 is the workload for the primary resource;

∑
9∈� ;

u
9
b 98 is the to-

tal requested capacity for functions protected by node 8 for updating procedure.

The functions hosted by failed nodes fail concurrently,
∑
8′∈#\{8}

∑
9∈�

∑
?∈[1,|# |]

(;R
9
− ;u

9
)\8?
8′ 9 5

f
8′ j8′ 9 is the workload for the activated function caused by failure

5 f
8′ since node 8 has the highest priority among nodes in # for which provide

protection for function 9 ;
∑
9∈� ;

R
9
b 98 is the total requested capacity for func-

tions protected by node 8 for recovery procedure which is reserved in advance.

Equation (5.1), j8 9 , b 9 : , and \
: ?

8 9
, 8 ∈ #, 9 ∈ �, : ∈ #\{8}, ? ∈ P, are

linearized to (F.1a)-(F.1f), (F.2a)-(F.2f), and (F.3a)-(F.3g).

The workload-dependent failure probability of node in failure pattern f is

denoted by @8f, 8 ∈ #, f ∈ C. When f = 0, @80 represents the failure proba-

bility of node 8 ∈ # before any failure occurs. Given the workload-dependent

failure probability, which is assumed to be a non-decreasing function, this work

can use an S-step function, where S ≥ 2, to conservatively approximate a non-

decreasing function of the node workload, as shown in Fig. 5.2; S denotes the

number of steps in a step function. @8f is expressed by the following S-step

function; let B ∈ S = [1,S] denote the Bth step in S-step workload-dependent

failure probability:
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@8f =


%1, )0

8
≤ !W

8f
≤ )1

8

%2, )1
8
< !W

8f
≤ )2

8
...

...

%S , )S−1
8

< !W
8f
≤ )S

8
,

(5.3)

where )0
8
= 0 and )S

8
= �8, 8 ∈ #. When the workload of a node increases from

the range of () B−1
8

, ) B
8
] to () B

8
, ) B+1
8
], the failure probability increases from %B to

%B+1. As the workload increases, even though the node has remaining capacity,

the node becomes fragile, and has a higher failure probability to handle the

extra workload. This work considers the workload-dependent failure probabil-

ity @8f of each physical node so that both failure probabilities of primary and

backup resources of a function hosted by the node are the same as the node

failure probability. By introducing binary variable If
8B
, 8 ∈ #, B ∈ S, f ∈ C,

which is set to one if ) B−1
8

< !W
8f
≤ ) B

8
, and zero otherwise, (5.3) is linearized

to (11a)-(11e) in [114] with several auxiliary variables.

5.1.3 Objective value

Probability of each failure pattern

Since each node fails with the workload-dependent failure probability, failure

pattern %f
Γ

occurs with a certain probability |f, f ∈ C, as a weight of the

unavailable probability for each failure pattern. |f is affected by the failure

probability of each node before any failure occurs; it can be expressed by:

|f =
∏
8∈Pf

Γ

@80

∏
8∈#\Pf

Γ

(1 − @80),∀f ∈ C, (5.4)

where @80 is the failure probability of node 8 before any failure occurs.

Unsuccessful recovery probability

Since all the functions hosted by failed nodes may not be recovered simultane-

ously by the remaining available nodes, this work considers the probability of

unsuccessful recovery. The unavailable functions can be recovered by the cor-

responding backup resource as long as one of the backup resources protecting

the function does not fail and the workload of any node after recovery does not
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exceed the capacity under a failure pattern. Thus, a function hosted by failed

nodes may not be recovered, if all the nodes hosting the primary and backup

resources of the function fail concurrently. Let 4f
9
, 9 ∈ �, f ∈ C, be a binary

variable; it is set to one if the number of nodes in Pf
Γ

hosting the primary and

backup resources of function 9 is equal to the number of nodes in # hosting

the primary and backup resources of 9 , and zero otherwise. In a mathematical

expression, 4f
9

is set to one if∑
8∈#
(j8 9 + b 98) =

∑
8∈Pf

Γ

(j8 9 + b 98), 9 ∈ �, f ∈ C. (5.5)

Further, if the workload of any node after it recovers the unavailable func-

tions hosted by the failed node exceeds the corresponding capacity, at least one

function hosted by failed nodes may not be recovered. Let �f
8
, 8 ∈ #, f ∈ C,

be a binary variable; it is set to one if the workload !W
8f

of node 8 exceeds the

capacity �8 under failure pattern Pf
Γ

, and zero otherwise.

Let Af, f ∈ C, denote a binary variable; it is set to one if at least one

function hosted by failed nodes under failure pattern Pf
Γ

cannot be recovered,

and zero otherwise. The total unsuccessful recovery probability among all

failure patterns can be expressed by:

U1 =
∑
f∈C

|fAf =
∑
f∈C

|f

(
∨ 9∈�4f9 ∨8∈# �f8

)
. (5.6)

Maximum unavailable probability after recovery

With the workload variation after failure, against each failure pattern, this

work considers the maximum unavailable probability among nodes after recov-

ering the functions hosted by failed nodes. The maximum unavailable prob-

ability is weighted by the probability of each failure pattern. Let &f, f ∈ C,
denote the maximum unavailable probability of node 8 ∈ #\Pf

Γ
after the avail-

able backup resource with the highest priority is activated. The maximum

unavailable probability among nodes is given by &f = max
8∈#\Pf

Γ

@8f, where

&f is related to the workloads of nodes, which is affected by the determined

priorities in given failure pattern Pf
Γ

.

Against all failure patterns, this work considers the weighted maximum

unavailable probability among nodes after failure recovery, which can be ex-
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pressed by:

U2 =
∑
f∈C

|f&f . (5.7)

5.1.4 Optimization problem

The optimization problem to allocate the primary and backup resources, RAM-

P, is formulated as follows:

min XU1 + (1 − X)U2 (5.8a)∑
?∈[1,|# |]

∑
8∈#\{:}

G
: ?

8 9
≤ 1,∀ 9 ∈ �, : ∈ #, (5.8b)∑

8∈#

∑
:∈#\{8}

G
: ?

8 9
≤ 1,∀ 9 ∈ �, ? ∈ [1, |# |], (5.8c)∑

8∈#
j8 9 = 1,∀ 9 ∈ �, (5.8d)

(5.1), (5.2a), (5.3), (5.4) − (5.7), (5.8e)

G
: ?

8 9
∈ {0, 1},∀8 ∈ #, : ∈ #\{8}, 9 ∈ �, ? ∈ [1, |# |] . (5.8f)

Equation (5.8a) minimizes W-UP. U1 and U2 are two objective values with

weights X and 1−X, respectively, where 0 ≤ X ≤ 1. Each weight depends on the

importance of each term designed based on the requirement of the provider.

Equation (5.8b) ensures that each function protected by node : ∈ # is allo-

cated to at most one node in #\{:} associated with priority ?. Equation (5.8c)

ensures that each function protected with a priority is allocated to at most one

node in # and protected by another node in #. Equation (5.8d) ensures that

each function in � is allocated into one node in #.

According to the linearization process in (F.4a)-(F.4e), (F.5a)-(F.5f), (F.6a)-

(F.6f), (F.7a)-(F.7e) of Appendix F and in [114], this work formulates the

problem as an MILP problem.

The proposed model is designed to preventively determine the initial re-

source allocations and recovery configuration against multiple node failures

before services run by considering the probability of each failure pattern.
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5.2 Heuristic algorithm

Similar to [71], when Γ = 0, the decision version of RAM-P is an NP-complete

problem by reducing the generalized load balancing (GLB) problem [116],

which is a well-known NP-complete problem. It indicates that the RAM-P

becomes difficult to solve in a practical time as the problem size increases.

This section presents an idea of heuristic algorithm which can obtain an ap-

proximate solution of RAM-P with a larger problem size in a practical time.

5.2.1 Developed heuristic algorithm

This work presents an initial workload-aware greedy algorithm (WAGA). The

algorithm determines an initial primary and backup resource allocation with

considering the workload-dependent failure probability. It avoids uneven fail-

ure probabilities among all nodes by evenly utilizing a part of capacity in a

node with corresponding different failure probabilities.

In addition to considering the ordered failure probability of nodes for al-

locating the functions, the algorithm considers three aspects for allocation.

Firstly, it evenly distributes the primary resource of each function to nodes so

that the number of the functions hosted by each node can be almost the same.

The uneven number of concurrent function failures caused by the failed nodes

among all failure patterns may be avoided. Secondly, the nodes hosting any of

the primary or backup resources of a function are not allowed to host another

backup resource of the function. Thirdly, the backup resources of the func-

tions whose primary resources are hosted by the same node, are distributed to

different nodes with the best.

Algorithm 5.1 starts to solve the problem by sorting 9 ∈ �′ by ;R
9

de-

creasingly (line 2). Algorithm 5.1 is divided into two parts for allocating the

primary resource (lines 4-12) and the backup resources (lines 13-29). Algo-

rithm 5.1 allocates the primary resource of each function to the nodes (lines

4-12) with jointly considering the ordered failure probability for nodes and

evenly distributing the functions to nodes so that the number of the functions

hosted by each node can be almost the same (line 5). Each function is allo-

cated to only one node to satisfy constraints (5.8b) and (5.8d). When failure

Pf
Γ

occurs, the number of concurrent failures of function are almost the same.
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Table 5.1: List of frequently used notations in algorithm.

Parameter Description

�′ Set of sorted functions. The functions are sorted by the num-

ber of nodes hosting the function increasingly.

#′ Set of sorted nodes. The nodes are sorted by @8 increasing

firstly, the nodes that have the same @8 are sorted by the

number of hosting functions increasing secondly.

#′′
9

Set of sorted nodes except for the nodes that host function 9 .

The nodes are sorted by @8 increasing firstly, the nodes with

the same @8 are sorted to distribute the backup resources of

the functions hosted by the same node.

Thus, the uneven number of concurrent function failures may not occur in a

failure pattern.

Algorithm 5.2 is a function for resource allocation called in Algorithm 5.1.

Since any backup resource of each function is not allowed to be allocated to the

same nodes that host the primary resource and backup resources of the function

for any previous round to satisfy constraints (5.8b)-(5.8d), the algorithm only

considers nodes in set #′′
9

for function 9 (lines 2-3 in Algorithm 5.2). Since

function 9 is allocated to the first node in sorted set #′, #′′
9

is set by deleting the

first node in #′. Based on the current resource allocation and input parameters,

the node workload can be calculated with (5.2a) and the failure probability

can be calculated with (5.3).

Algorithm 5.1 Workload-aware greedy algorithm (WAGA)

Input: �, #, �8, ;
R
9
, ;u
9
, B8 (|),∀8 ∈ #, 9 ∈ �,

Output: G
: ?

8 9

1: G
: ?

8 9
= 0, 8 = 9 = 1, #′′

9
= # ∗ |� |, #′ = #.

2: Sort 9 by ;R
9

decreasingly as �′.

3: ,8 ← 0, @8 ← 0

4: for 9 = 1→ |# | do
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5: Sort 8 by @8 increasingly as a set #′. Sort the elements in #′ that have

same @8 according to the number of allocated functions on each element

increasingly.

6: Delete node 8 from #′ if !R
8
+ ;R

9
> �8.

7: if #′ = ∅ then

8: Return infeasible

9: else

10: Update the primary resource allocation obtained by Resource allocation

(�′, #′)

11: end if

12: end for

13: for = = 1→ Γ do

14: �′ = �, : = 1, 9 = 1.

15: while �′ ≠ ∅ do

16: Delete node 8 from #′′
9

if !R
8
+ ;R

9
> �8.

17: Sort functions in �′ by the number of nodes hosting the function

increasingly.

18: Sort 8 in #′′
9
, 9 ∈ �′, by @8 increasingly. Sort nodes in #′′

9
that have

same @8 to distribute the backup resources of the functions whose primary

resources are hosted by the same node.

19: Update the backup resource allocation obtained by Resource allocation

(�′, #′′1 )

20: Set the node with the lowest failure probability among nodes hosting

the backup resource 9 to the highest priority.

21: if #′′
9
= ∅ for all functions then

22: if there exists at least one function that cannot be allocated to

any node as backup resource then

23: Return infeasible

24: end if

25: else

26: Return G
: ?

8 9

27: end if

28: end while

29: end for
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Algorithm 5.2 Resource allocation

1: function Resource allocation(�′, #′)

2: Allocate the first function in �′ to the first node in #′.

3: Record #′′
9
= #\{first element in #′}, where 9 is the first function in

�′.

4: Delete allocated function from �′.

5: Update ,8 with ;R
9
, ;u
9

and current allocation by (5.2a) and calculate @8

with B8 (|) based on ,8.

6: return Resource allocation, #′′
9
,∀ 9 ∈ �, @8,∀8 ∈ #

7: end function

Algorithm 5.1 allocates the backup resources of each function to the nodes

in lines 13-29. The algorithm considers that each function can be allocated to

at most Γ nodes for Γ-fault-tolerance with enough remaining capacity. Firstly,

since the backup resource of each function is not allowed to be allocated to

the same nodes that host the primary resource and backup resources of the

function for any previous round, the algorithm only considers nodes in set #′′
9

for function 9 (lines 2-3 in Algorithm 5.2). Secondly, the functions hosted by

the same node are protected by different nodes with the best. It is achieved by

sorting nodes in #′. For function 9 whose primary resource is allocated to node

8, a node 8′ that hosts the backup resource of a function whose primary resource

is also allocated to node 8 is moved to the later position of array #′ (line 18).

Thus, the backup resource of a function 9 is allocated to a node in the ahead

position of #′ which may not host the backup resource of other functions that

share the same node with 9 for the primary resource. Thirdly, the algorithm

sorts elements in �′ by the number of nodes hosting the function increasingly

(line 17). The functions hosted by less nodes are in the ahead position of �′;

the first function in �′ is allocated to a node in #′′
9

prior to the functions

hosted by more nodes which are in the latter part of �′. After each allocation

of the first function in �′, the allocated function is deleted from �′ and the

elements in #′′
9

are updated, where 9 = 1 (line 19 in Algorithm 5.1 and lines 2-4

in Algorithm 5.2). Since the algorithm always allocates the first element in �′

in each round, #′′
9

with 9 = 1 is used to specify the nodes permitted to host

the function being waited to be allocated in line 19 of Algorithm 5.1.
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Thus, the functions can be evenly allocated to nodes in #′′
9

until all the

functions cannot be allocated to any node or all the functions are protected by

Γ nodes (lines 21-26). Then the node with the lowest failure probability among

nodes hosting the backup resource 9 is set to the highest priority (line 20) with

satisfying (5.8b) and (5.8c). This work summarizes the descriptions of three

sorted sets used in Algorithm 5.1 in Table 5.1.

If there exists at least one function that cannot be allocated to any node as

the primary resource, the algorithm considers that a function cannot find any

feasible allocation (lines 7-8). When failure occurs, one of the backup resources

of the functions hosted by a failed node is required to recover the unavailable

functions. If there exists at least one function that cannot be allocated to

any node as a backup resource, the algorithm also considers the situation as

infeasible (lines 22-24) to satisfy (5.8b)-(5.8d).

Algorithm 5.3 Simulated Annealing

Input: G
: ?

8 9
, �, #,)=

8
, %=, �8, ;

R
9
, ;u
9
, )min, )init.

Output: G
: ?

8 9
,U

1: Calculate an initial objective value U = XU1 + (1 − X)U2 by using initial

solution x obtained by Algorithm 5.1.

2: ) ← )init

3: while ) ≥ )min do

4: Update #′′
9
.

5: Re-allocate 9 with random number from a randomly chosen node in

#\#′′
9

to a randomly chosen node in #′′
9
.

6: Release a randomly chosen backup resource of a randomly chosen func-

tion.

7: Allocate a new backup resource of a randomly chosen function to a

randomly chosen node in #′′
9
.

8: Sort #\#′′
9

by @8 increasingly. Sort the elements in #\#′′
9

that have the

same @8 by the number of allocated functions on each element increasingly.

Impose that the first element has the highest priority to recover function

9 .

9: while the workload of a node exceeds the capacity do

10: Switch the priority of two backup resources of a function for recovery
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11: end while

12: Calculate a objective value U′ = XU′1 + (1 − X)U
′
2 by using updated

solution x′.

13: U ←U′ and x← x′ with probability of min(1, @), where @ = −U ′−U
)

.

14: ) = ) · a given decreasing rate

15: end while

16: Return x and U

This work uses simulated annealing (SA) [94] to minimize XU1 + (1− X)U2

calculated with (5.4)-(5.7) based on the initial backup resource allocation ob-

tained by Algorithm 5.1. The accuracy of solutions by adding SA based on

Algorithm 5.1 can be improved with the cost of longer computation time. SA is

inspired by the principle of solid annealing with a gradually decreasing process

of temperature from given initial temperature )init to given minimum value of

temperature )min. In each iteration of decreasing the temperature, the exist-

ing solution changes randomly to generate a new solution and calculates a new

objective function with (5.4)-(5.7) (lines 5-11). SA accepts the solution with

a worse objective value than the existing solution with a certain probability;

the higher temperature is, the higher probability to accept a worse solution is

(line 13). As a result, SA can jump out of a local optimal solution.

5.2.2 Computational complexity and example

The computational time complexities of sorting |� | functions and sorting |# |
backup servers are $ ( |� | log |� |) and $ ( |# | log |# |), respectively. The compu-

tational time complexities of lines 4-12 and lines 13-29 are $ ( |# |2 log |# |) and

$ (Γ|� | ( |� | log |� | + |# | log |# |)), respectively. The overall computational time

complexity of Algorithm 5.1 is $ ( |# |2 log |# | + Γ|� |2 log |� | + Γ|� | |# | log |# |);
the space complexity is $ ( |# |3 |� |).

Fig. 5.3 shows an example of Algorithms 5.1 and 5.2 to obtain the initial

solution with three nodes sorted by @8 increasingly and four functions sorted

by ;R
9

increasingly. The algorithms firstly allocate each primary resource for

the functions. F1 is allocated to node 1, which is the first element in the

sorted nodes set. After the allocation, node 1 is deleted from #′′1 , since the

nodes hosting any of the primary or backup resources of a function are not
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Node 1

F4

F1

Node 3

F3

Node 2

F2

F4F3

F1 F2

Backup resourcePrimary resource

Figure 5.3: Examples of developed heuristic algorithm.

allowed to host another backup resource of the function. After the node set is

updated with @8 and the number of allocated functions hosted by each node,

F2 is allocated to node 2, which is the first element in the updated node

set. Similar to the allocation of F1 to node 1, the deleting and updating

procedures are repeated. Similarly, F3 and F4 are allocated to nodes 3 and

1, respectively. With satisfying (5.8d), each function is allocated to one node.

Then the algorithms allocate the backup resources of each function. With

setting Γ = 1, the backup resource of each function 9 is allocated to a node

in #′′
9

if there exist sufficient computing resources. The node set is sorted to

distribute the backup resources of the functions whose primary resources are

hosted by the same node. With this rule, the backup resource of F1, F2, and

F3 are allocated to nodes 2, 3, and 1, respectively. For F4, whose primary

resource is hosted by the same node with F1, the backup resource of F4 is

allocated to node 3 to avoid the situation that failure of node 1 causes the

unavailability of F1 and F4, which may not be able to be recovered by node 2

simultaneously due to insufficient capacity.

5.3 Discussion: approach to obtain unsuccess-

ful recovery probability without priority

setting

The proposed model considers weights X and 1 − X, where 0 ≤ X ≤ 1, for

U1 and U2, respectively, which can be adjusted to prioritize the one term
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over the other term. With X = 0, several works introduced the load balanc-

ing model with various objectives, which is summarized in Section 5.4. With

X = 1, the proposed model focuses on fault tolerance. This work defines that

Γ-fault-tolerance guarantees that any function hosted by a failed node can be

recovered by available nodes if there are at most Γ node failures; Γ is named

as fault tolerance level. A priority among multiple backup resources for each

function determines the recovery configuration of the unavailable function.

Obtaining the unsuccessful recovery probability and fault tolerance level by

preparing the recovery configurations and traversing all the failure patterns is

more complicated than that without preparing the recovery configuration. The

unsuccessful recovery probability and fault tolerance level can be obtained by

simplifying the model without considering any recovery configuration to reduce

the complexity. Thus,this section discusses an approach to obtain the unsuc-

cessful recovery probability and fault tolerance level with an initial resource

allocation without considering all the failure patterns and corresponding re-

covery configurations. The recovery configuration can be obtained based on

the initial allocation after any detection of failure.

5.3.1 Examples of initial allocation without considering

failures and recovery configuration

Without appraising the failures and recovery configurations in the initial re-

source allocation, the workload after failure recovery cannot be used for de-

scribing the recovery situation. When a function may be protected by multi-

ple backup resources with dedicated or shared protection against failures, the

functions hosted by failed nodes against a failure pattern may not be recovered

simultaneously by the remaining available nodes with insufficient capacity for

recovery.

This work views an instance of assignment between functions 9 ∈ � and

nodes : ∈ # in the model as a bipartite graph; edge ( 9 , :) between function

9 and node : indicates that node : protects function 9 . Let 3: denote the

degree of node :; the number of protected functions by node : is 3: . =: is the

maximum number of functions that a node : can recover simultaneously.

This work considers an example for unsuccessful recovery in Fig. 5.4(a).
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When function 3 fails, it cannot be successfully recovered in the following two

situations. In the first situation, nodes A and B, which protect function 3,

fail concurrently. In the second situation, multiple functions fail concurrently

and cannot be recovered by nodes A and B. For example, node B protects

functions 2 and 3 but can only recover one of them. Based on the allocations

shown in Fig. 5.4(a), functions 2 and 3 can be recovered by nodes A and B,

respectively. However, it also depends on the availability of function 1. If

function 1 fails, all the failed functions cannot be recovered by nodes A and B.

In Fig. 5.4(b), as an example, arbitrary three failed functions of functions 1,

2, and 3 can be recovered by nodes A and B; arbitrary two failed functions of

functions 3, 4, 5, 6, and 7 can be recovered by nodes C and D; arbitrary two

failed functions of functions 4, 8, 9, and 10 can be recovered by node E. Since

this work focuses on the arbitrary recoverable function by the nodes, the min-

imum value among the three values of arbitrary recoverable functions should

be considered. Therefore, the maximum number of arbitrary recoverable func-

tions is min{3, 2, 2} = 2, arbitrary two failed functions of the ten functions can

be recovered by the five nodes.

5.3.2 Maximum arbitrary recoverable functions for nodes

in connected component

The example shown in 5.3.1 indicates that the unsuccessful recovery proba-

bility can be obtained by comparing the number of recoverable functions and

the number of concurrent failed functions without appraising the failures and

recovery configurations. Thus, this work discusses the maximum arbitrary

recoverable functions for these available nodes in this subsection.

Consider that a bipartite graph consists of functions and nodes, where

each edge in the graph between a function and a node indicates that the node

protects the function. � and # in the model may consist of multiple connected

components in the bipartite graph based on the protection relationship and the

availability of nodes. In this subsection, this work only focuses on the available

nodes which can recover unavailable functions in one connected component to

discuss the maximum arbitrary recoverable functions for these available nodes.

The availability of nodes in multiple connected components will be discussed
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(b) Maximum arbitrary recoverable

functions.

Figure 5.4: Examples of unsuccessful recovery without considering failures and

priority setting.

in Section 5.3.3 for obtaining the unsuccessful recovery probability.

There is a matching containing any set of arbitrary < failed functions in

the connected component. Matching ", representing a subset of the edges

of the bipartite that corresponds to the assignment, describes the possibility

to recover the |" | functions in �, such that a function can be recovered by

the backup resource in its matched node [28]. A matching of size |" | = |� |
is enabled to recover all the failed functions. Since a node can recover one or

more functions simultaneously in the proposed model, when this work consid-

ers the matchings between the functions and the nodes, node : ∈ # can be

transformed into a set of nodes �: where |�: | = =: ; each node :′ ∈ �: has the

same connection between each function and node :; each node :′ ∈ �: can

recover only one function simultaneously, i.e., =: ′ = 1, as shown in Fig. 5.5.

Taking node A with =� = 2 in Fig. 5.5(a) as an example, node A can be

transformed into two (=�) nodes, nodes A1 and A2. Each node of A1 and

A2 has the same connection between each function and node A and can only

recover one function simultaneously. Considering the matching, this work uses

the transformed nodes in �: , : ∈ #, each of which can recover only one func-
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tion, to replace node : ∈ # that can recover more than one function, unless

otherwise stated.

Let �′ = (! ∪ ', �′) be a connected component in bipartite graph � =

(�∪#, �) with |' | nodes and |! | functions, where ' ⊆ #, ! ⊆ �, and �′ ⊆ � .

Node : ∈ ' protects 3: functions and can recover at most =: functions.

Let �full ⊆ ! denote a set of functions with the maximum number of func-

tions in ! that are able to be fully recovered under any failure pattern by a

set of directly connected nodes in 'full ⊆ '; the nodes in 'full directly connect

only to the functions in �full. This work considers that a sub-graph is con-

structed with a set of nodes '′ ⊆ ', a set of edges connecting with nodes in '′,

and a set of functions connecting with the edges. �full and 'full construct the

sub-graph of �′ that maximizes |�full |, where the size of maximum matching

equals |�full |. There is always a matching between the functions in �full and

the nodes in 'full.

Let 'u denote a subset of ', where the number of functions in �u ⊆ � that

are protected only by node : ∈ 'u is larger than =: ; node : ∈ 'u cannot recover

all the functions protected only by itself. Each function in �u is protected by

one backup resource; the remaining functions in !\�u are protected by multiple

backup resources, each of which corresponds to either dedication protection or

shared protection.

A maximum matching is a matching with the maximum number of edges.

In a maximum matching, if any edge is added to it, it is no longer a matching.

There can be more than one maximum matching for a given bipartite graph.

Lemma 5.1 Let I denote a set of functions which are the intersection of

functions in all maximum matchings for � = (! ∪ ', �′). The functions in I
are directly connected to '+ ⊆ ' and '∗ ⊆ ', where '+ is directly connected

only to the functions in I; '∗ is directly connected to the functions both in I
and not I; '+∩'∗ = ∅. The functions in I can be fully recovered by the nodes

in '+.

%A>> 5 : The proof can be done by contradiction. Suppose that this proposition

is false; nodes in '+ cannot recover all functions in I without nodes in '∗,

which indicates that at least one function in I is matched to a node in '∗

131



Chapter 5

A (3,2)

B (2,2)

Node

A2 (3,1)

B1 (2,1)

A1 (3,1)

B2 (2,1)

Functions
Functions Node

A (3,2)

B (2,1)

NodeFunctions

C (4,1)

D (3,1)

E (4,2)

1

2

3

4

5

6

8

9

10

A (3,1)

B (2,1)

NodeFunctions

1

2

3

7

(a) Node : in original bipartite graph

can recover min{3: , =: } nodes.

A (3,2)

B (2,2)

Node

A2 (3,1)

B1 (2,1)

A1 (3,1)

B2 (2,1)

Functions Functions
Node

A (3,2)

B (2,1)

NodeFunctions

C (4,1)

D (3,1)

E (4,2)

1

2

3

4

5

6

8

9

10

A (3,1)

B (2,1)

NodeFunctions

1

2

3

7
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partite graph only recovers one node.

Figure 5.5: Example of bipartite-graph transformation in matching consider-

ation.
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Figure 5.6: Example of Lemma 5.1 to show contradiction.
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in each maximum matching. Let Ī∗ denote a set of functions disjoint with I
that are directly connected to '∗.

Firstly, according to the definition of '∗, each node in '∗ directly connects

to functions not in the intersection, it is obvious that there exists a maximum

matching that a function, 51 ∈ I, that directly connects to a set of nodes

'∗1 ⊆ '
∗ is matched to a node =1 ∈ '∗1, and at least one function, 52 ∈ Ī∗, that

directly connects to '∗1 is not matched to '∗1 in the maximum matching.

There are two situations for 52. In the first situation, 52 is not connected to

any node in '\('∗1 ∪ '
+), this proof swaps function 51 ∈ I and that matched

to '∗ and 52 ∈ Ī∗that is not matched in the maximum matching so that

52 is matched to '∗ and 51 is not matched. After swapping, 52 replaces 51

in the maximum matching. It contradicts the definition of I, which is the

intersection of functions in all maximum matchings.

In the second situation, 52 is connected to a node in '\('∗1∪'
+), there exists

a maximum matching that 52 is matched to a node =2 ∈ '∗2, '
∗
2 ⊆ '\('

∗
1∪'

+),
and at least one function, 53, connected to '∗2 is not matched to '∗2 according

to the definition of I and '+; otherwise 53 should be in I.

Since '∗2 is a subset of '\('∗1 ∪ '
+), by changing the size of '∗2 and com-

bination of nodes in '∗2, all nodes in '\'+ are visited, this proof can always

find an endpoint function, 5e ∈ '\('∗1∪ '
+), that directly connects only to the

nodes that have been visited as long as Ī∗ ≠ ∅.
Next, as shown in Fig. 5.6, based on this claim, if Ī∗ ≠ ∅, an unmatched

function can be always found, 5e, where, if the proof withdraws the matching

of 51 ∈ I that is matched to '∗, a matching for 5e can be added. After the

original matching is changed, 5e replaces 51 in the maximum matching. It

contradicts the definition of I, which is the intersection of functions in all

maximum matchings.

Therefore, the functions in the intersection of functions in all maximum

matchings can be fully recovered by the nodes in '+ without '∗. �

Theorem 5.1 The intersection of functions in all maximum matchings for

� = (! ∪ ', �′) is equal to �full.

%A>> 5 : The proof is done by contradiction. Suppose that this proposition

is false. Firstly, the proof supposes that the intersection of functions in all
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maximum matchings for � = (!\ ∪ ', �′) is smaller than �full. It indicates

that at least one function in �full can be recovered by the directed connected

node; the matching is not in the maximum matching. It is a contradiction

the maximum matching is a matching with the maximum number of edges.

Secondly, the proof supposes that the intersection of functions in all maximum

matchings for � = (! ∪ ', �′) is larger than �full, which indicates that a

function in each maximum matching is not in �full. With Lemma 5.1, the

functions in the intersection of every maximum matching can be recovered

by the nodes that directly connect only to the nodes without '∗. It is a

contradiction since �full is a set of functions with the maximum number of

functions that are able to be fully recovered by a set of directly connected

nodes that are directly connected only to �full.

Therefore, the intersection of functions in all maximum matchings for � =

(! ∪ ', �′) is equal to �full. �

Let 'u denote a subset of ', i.e., 'u ⊆ ', where the number of functions

that are protected only by node : ∈ 'u is larger than =: ; node : ∈ 'u cannot

recover all the functions that are protected only by itself.

Since 'full, 'u, and '\('full ∪ 'u) may not always be a non-empty set in

� = (! ∪ ', �′), if any of the sets of nodes is ∅, it cannot recover any function

protected by it. The maximum number of arbitrary recoverable functions is

determined by the remaining non-empty set among 'full, 'u, and '\('full∪'u).
When all the sets among 'full, 'u, and '\('full∪'u) are ∅, they cannot recover

any function. Thus, this work defines functions Λ(U) and Θ(V), where U and

V are non-negative integers, in the following. If U is zero, Λ(U) = ∞, and

otherwise Λ(U) = U. If V > |� |, Θ(V) = 0, and otherwise Θ(V) = V.

Theorem 5.2 If Θ(min{Λ( |�full |), Λ(min:∈'u {3: , =: }), Λ(
∑
:∈'\('full∪'u) min

{3: , =: })}) ≥ <, a set of arbitrary < failed functions can be recovered by nodes

in ', i.e., there is a matching containing any set of arbitrary < failed functions.

%A>> 5 : If 3: ≤ =: ,∀: ∈ ', node : ∈ ' is able to recover all functions in !;

arbitrary failed functions can be recovered by nodes in '. Otherwise, if there

is at least one node that satisfies 3: > =: , : ∈ ', nodes in ' may not be able

to recover all the failed functions in !. This work now shows the maximum
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number of arbitrary functions that nodes in ' can recover.

There are three situations for the recovery. In the first situation, all func-

tions in �full can be fully recovered by a set of nodes in 'full, which is the

intersection of functions in all maximum matchings for �′ = (! ∪ ', �′).
In the second situation, a set of nodes 'u connect to a set of functions

�u ⊆ �, each of which is protected only by node : ∈ 'u. The number of

functions in �u is larger than =: for each node in 'u. Nodes in 'u can recover

at most min:∈'u{3: , =: } arbitrary directly connected functions in !. In other

words, the number of functions in �full is smaller than or equal to the number

of functions that nodes in 'full can recover, i.e., |�full | ≤ ∑
:∈'full =: .

In the third situation, if the number of remaining functions from ! sub-

tracted by �full and �u is larger than the maximum number of nodes in

'\('full ∪ 'u) that can recover, i.e., |! | − |�full | − |�u | > ∑
:∈'\('full∪'u) =: , the

nodes that protect the functions cannot fully recover functions in !\(�full∪�u).
The maximum number of arbitrary functions in !\(�full∪�u) that nodes may

recover is
∑
:∈'\('full∪'u) min{3: , =: }.

In the above three situations, if any set among 'full, 'u, and '\('full∪ 'u)
is ∅, the corresponding value of Λ(U) is equal to ∞. The maximum number

of arbitrary recoverable functions is determined by the remaining non-empty

set. When all the sets of 'full, 'u, and '\('full ∪ 'u) are ∅, i.e., the three

values are equal to ∞, Θ(min{Λ( |�full |), Λ(min:∈'u{3: , =: }), Λ(
∑
:∈'\('full∪'u)

min{3: , =: })}) = 0, i.e, there is no function that can be recovered.

Therefore, the maximum number of arbitrary failed functions that nodes

in ' can recover is Θ(min{Λ( |�full |), Λ(min:∈'u{3: , =: }), Λ(
∑
:∈'\('full∪'u)

min{3: , =: })}). �

In Fig. 5.4(b), as an example, functions 1, 2, and 3 are the set of functions

in �full, where all the functions in �full can be fully recovered by nodes � and

�, which is illustrated by the below two boxes. Functions 1, 2, and 3 are the

intersection of functions in all maximum matchings; |�full |=3. Node � , i.e.,

'u, connects to functions 8, 9, and 10, each of which is protected only by node

� . The number of functions 8, 9, and 10 is larger than min{3� , =� }, i.e., 3 > 2.

Node � can recover at most min{3� , =� }, i.e., 2, arbitrary functions among 8,

9, and 10, which is illustrated by the below two boxes. Nodes in '\('full∪'u),
i.e., nodes C and D, can recover at most arbitrary min{3� , =�} +min{3� , =�},
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i.e., 1+1 = 2, functions among functions 4, 5, 6, and 7. Therefore, the maximum

number of arbitrary recoverable functions is min{3, 2, 2} = 2; arbitrary two

failed functions of the ten functions can be recovered by the five nodes.

The unsuccessful recovery probability can be upper-bounded by the prob-

ability that the upper bound of the number of concurrent failed functions

exceeds the lower bound of the number of recoverable functions.

5.3.3 Unsuccessful recovery probability against failures

The bipartite graph of functions in � and nodes in # in the model consists of

one or more connected components. Let � denote the number of the connected

component in � = (�∪#, �), where each edge in � between function and node

indicates that node protects function. Let �′′
ℎ
= (�c

ℎ
∪ #c

ℎ
, �c

ℎ
), ℎ ∈ [1, �], be

the ℎth connected component in �, where �c
ℎ
⊆ � is the set of functions in

�′′
ℎ
; #c

ℎ
⊆ # is the set of nodes in �′′

ℎ
that protect all functions in �c

ℎ
. The

concurrent failures of functions in �c
ℎ

may come into a collision so that the

unavailable functions cannot be recovered, since the unavailable function are

protected by the same set of nodes in #c
ℎ
.

A node failure may cause the concurrent failures of the functions hosted by

the node. Let o8ℎ, 8 ∈ #, ℎ ∈ [1, �], denote the number of the primary resources

of functions in �c
ℎ

hosted by node 8. When node 8 ∈ # fails, o8ℎ functions in

�c
ℎ

fail concurrently; o8ℎ is equal to
∑
9∈�c

ℎ
j8 9 . Let P� , � ∈ [0, Γ] represent

the failure patterns with exact � node failures; P4
�
, 4 ∈ [1, |P� |] represents

4th element in P� . Focusing only on the initial allocation without workload

variation, the weight for each failure pattern in P� is the same, which can be

represented by |E. Among failure patterns in P� , the maximum number of

unavailable function that fail concurrently is max4∈[1,|P� |]
∑
8∈P4

�
o8ℎ.

The failures of nodes affect the unsuccessful recovery probability of the

functions in �c
ℎ

when the remaining available nodes in #c
ℎ

cannot recover func-

tions in �c
ℎ

hosted by failed nodes. Let # fail
ℎ4
, ℎ ∈ [1, �], 4 ∈ �, denote a set of

failed nodes in #c
ℎ

in failure pattern P4
�

. Let #av
ℎ4
= #c

ℎ
\# fail

ℎ4
denote the set of

available nodes in #c
ℎ

against failure pattern P4
�

.

Let 3: , : ∈ #, be an integer variable which indicates the number of func-

tions in �c
ℎ

that are protected by node :. =: is an integer variable which
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indicates the minimum number of functions in �c
ℎ

that node : can recover

simultaneously. =: ≥ �:−,:0
max 9∈�c

ℎ
(| 9−Au9 )

, where max 9∈�c
ℎ
(| 9 − Au

9
) is the maximum

requested load among functions in �c
ℎ
, ℎ ∈ [1, �], for recovery procedure with

the updated information.

Against each failure pattern, only nodes in #av
ℎ4

can recover functions. This

work considers a sub-graph of �′′
ℎ

with only #av
ℎ4
⊆ #c

ℎ
, i.e., �av

ℎ4
= (�c

ℎ
∪

#av
ℎ4
, �c′

ℎ
). Based on Theorem 5.2, �full

ℎ4
, ℎ ∈ [1, �], 4 ∈ �, denotes a set of

functions in �c
ℎ

with the maximum number of functions in �c
ℎ

that can be

fully recovered by a set of directly connected nodes in # full
ℎ4
⊆ #av

ℎ4
; �full

ℎ4
is the

intersection of functions in all maximum matchings for �av
ℎ4

. #u
ℎ4

denotes a

subset of #av
ℎ4

, where the number of functions that are protected only by node

: ∈ #u
ℎ4

is larger than corresponding =: ; node : ∈ #u
ℎ4

cannot recover all the

functions that are protected only by itself. The maximum number of arbitrary

functions that nodes in #av
ℎ4

can recover simultaneously, which is denoted by

Mℎ4, is given by:

Mℎ4 = Θ(min{Λ( |�full
ℎ4 |),Λ(min

:∈#u

{3: , =: }),

Λ(
∑

:∈#av
ℎ4
\(#full

ℎ4
∪#u

ℎ4
)

min{3: , =: })}),∀ℎ ∈ [1, �], 4 ∈ �. (5.9)

Let a�
ℎ
, ℎ ∈ [1, �], � ∈ [0, Γ] denote a binary variable. It indicates whether

the maximum unavailable functions due to the failure of nodes in P4
�

can

be recovered by nodes in #av
ℎ4

. a�
ℎ

is set to one if the maximum unavailable

functions in �c
ℎ

due to the failed nodes in P4
�

cannot be recovered by nodes

in #av
ℎ4

, and zero otherwise. In a mathematical expression, a�
ℎ

is set to one if

max4∈[1,|P� |]
∑
8∈P4

�
o8ℎ > min4∈[1,|P� |]Mℎ4, and zero otherwise. Let A′

�
denote

a binary variable; it is set to one if the functions in at least one connected

component cannot be recovered under failure pattern P4
�

, and zero otherwise,

i.e., A′
�
= ∨ℎ∈[1,�]a�ℎ . The unsuccessful recovery probability can be expressed

by U′1 =
∑
�∈[0,Γ]

( |# |
�

)
|EA′

�
.

This work can obtain the initial resource allocation with minimizing U′1.

After detecting a failure pattern, the recovery configuration results can be

obtained by minimizing U2 introduced in Section 5.1.3. The fault tolerance

level can also be obtained by comparing the maximum number of arbitrary

recoverable functions by the |# | −Γ available nodes and the maximum number
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of concurrent unavailable functions hosted by the Γ failed nodes under a failure

pattern; the maximum Γ satisfying that the former value is larger than or equal

to the latter value under any failure pattern with at most Γ node failures is

the fault tolerance level.

5.4 Numerical evaluations

This section first introduces four baselines with different objectives and de-

scribe the experiment settings. Second, this section investigates the model

characteristics with smaller-size problems in Sections 5.4.3 and 5.4.4 in terms

of the effect of considering workload and the dependency of W-UP on weight

X. The smaller-size problems are solved by the MILP approach. Third, in Sec-

tion 5.4.5, this work evaluates the computation times of the MILP approach

and the heuristic algorithm and the accuracy of the latter. In Section 5.4.6,

this work considers larger-size problems with 20 nodes and more than 100

functions to evaluate the performance of the proposed model, which are solved

by the developed heuristic algorithm.

The MILP problems are solved by the IBM(R) ILOG(R) CPLEX(R) In-

teractive Optimizer with version 12.7.1 [93] which is implemented by Python

3.7, using Intel Core i7-7700 3.60 GHz 4-core CPU with 32 GB memory.

5.4.1 Baselines

Table 5.2 summarizes the features of the proposed model and four baselines.

Baseline 1 (B1) is a conventional model that minimizes W-UP without con-

sidering a workload-dependent failure probability. Baseline 2 (B2) is a load

balancing model introduced in [71] that minimizes the maximum utilization ra-

tio among nodes without considering a workload-dependent failure probability.

The recovery priority of each function that can be applied for all failure pat-

terns is determined at the operation starting time. Since W-UP considers two

unavailability situations: unsuccessful recovery and workload-related unavail-

ability after recovery, baseline 3 (B3) and baseline 4 (B4) consider, respectively,

each unavailable situation addressed for W-UP with the workload-dependent

failure probability.
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Table 5.2: Features of proposed model and baselines.

Model Objective (Minimize) Failure

probability†
Workload‡ Recovery

Proposed

model

W-UP Yes Yes Determined

in advance

B1 W-UP No Yes Determined

in advance

B2 Maximum utilization

ratio

No Yes Determined

in advance

B3 Weighted maximum

unavailable proba-

bility after recovery

among nodes (X = 0)

Yes Yes Determined

in advance

B4 Unsuccessful recovery

probability discussed

in Section 5.3 (X = 1)

Yes No Obtained by

recalculation

Failure probability†: Is the workload-dependent failure probability adopted in

the model?

Workload‡: Is the workload variation after detecting the failure and activating

the backup resource taken into consideration?
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Figure 5.7: Effect of considering workload on W-UP.

0.005

0.015

0.025

0.035

0.045

14 16 18 20 22 24 26

W
-U

P

|F|

B2

B3

Proposed model

Figure 5.8: Comparison among proposed model, B2, and B3 with X = 0.

140



Section 5.4

In detail, regardless of a workload-dependent failure probability in B1,

the failure probability in B1 is set to %C =
∑
B∈S %B
|S| since this work cannot

judge the failure probabilities with different workloads, where %C represents

a constant failure probability adopted in B1. The objective value of B1 is

U = XU1 + (1 − X)U2. B2 handles a load balancing model [71] to minimize

the maximum utilization ratio among nodes with considering the activation

of a backup resource after failures occur, regardless of a workload-dependent

failure probability. The utilization ratio of node 8 ∈ # is expressed by
!W
8f

�8
, 8 ∈

#, f ∈ C. The optimization problem of B2 is expressed by:

min max
f∈C

max
8∈#

!W
8f

�8
(5.10a)

B.C.(5.1), (5.2a), (5.4) − (5.7), (5.8b) − (5.8f). (5.10b)

B3 and B4 considerU1 andU2 as objective values, respectively. B4 merely

considers the unsuccessful recovery probability without priority setting in ad-

vance, which is discussed in Section 5.2. The recovery configuration after fail-

ure is required, which can be obtained by minimizing U2. The computation of

reallocation after failure detection in B4, which may affect the recovery time,

is required. In the recalculation of B4, this work fixes the resource allocations

of available functions to avoid introducing any interruption of these functions.

5.4.2 Experiment settings

In the smaller-size problems investigated in Section 5.4.3 and 5.4.4, consider

five nodes whose capacities are set to 20; the requested loads of functions are

randomly distributed over the range of [1, 4]; the loads required for informa-

tion synchronization and snapshot updating are randomly distributed over the

range of [0.1, 0.4], unless stated otherwise. To investigate the effect of work-

load on W-UP, this work only considers the tests in which the total requested

load among less number of functions is smaller than that of more number of

functions. Let 5 (|) be a given non-decreasing failure probability, which shows

the practical relationship between the failure probability and the workload; let

B(|) denote an S-step function; | is a node workload. This work considers that

the failure probability of a physical node is approximate to 0.01 based on [99].
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Taking 5 (|) = 0.005
√
| as an example, which is one of the workload-dependent

failure probabilities adopted in the case study of Chapter 3, this work obtains

step function B(|) fitting the curve of 5 (|) to minimize
∫ �8

0
(B(|) − 5 (|)) d|.

This work has %1 = 0.015 and %2 = 0.022; )1 = 9 and )2 = � = 20 for two-step

approximation and %1 = 0.098, %2 = 0.015, %3 = 0.019, and %4 = 0.022; )1 = 4,

)2 = 9, )3 = 14, and )4 = � = 20, unless stated otherwise. The work in Chap-

ter 3 discussed the procedure of the approximation of non-decreasing function

in detail, where two examples of step functions fitting the 5 (|) curve were

presented. The evaluation sets weight X = 0.5 and Γ = 2, unless stated other-

wise. When this work compares W-UPs obtained by the proposed and baseline

models, the exact values of W-UP of both models are calculated by (5.4)-(5.7)

by using the obtained allocations. In order to evaluate the performance of

the proposed model compared with the baselines, this work conducts different

trials, in each of which a parameter is set to a value randomly selected from

the considered range, to compute the average value for each result. This work

performs such sufficient trials that the 95% confidence interval is no greater

than 5% of the reported average value, unless stated otherwise.

In the larger-size problems, this work considers problems with 20 nodes

and more than 100 functions. this work uses a dataset of Google cluster usage

traces [100] as a case study, which describes the maximum amount of CPU

that a function is permitted to use and the capacities of the physical nodes.

The measurements have been normalized, where the normalization is a scaling

relative to the largest capacity of the resource on any machine in the trace.

The developed algorithm is adopted to solve larger-size problems; this work

sets )init = 100 and the temperature decreasing rate is set to 0.95 for SA. In

the larger-size problems, this work focuses on the failure patterns with up to

five node failures. Even more failures may occur concurrently, the probability

of concurrent failures of more than five nodes is less than 10−10, which is

considered as improbable scenarios. The weight for such failure patterns is less

than 10−10; the term with 10−10 as a coefficient can be ignored in calculating

W-UP. This is because the term with 10−10 as a coefficient is much smaller than

the terms with 1 and 10−2 as coefficients for failure patterns with zero and one

node failure, respectively, where the node failure probability is approximate to

0.01.
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Table 5.3: Examples for U1 and U2 of proposed model with different values

of weight X and |� | with |# | = 3.

|� |
X=0.5 X=0.1 X=0.01 X=0.001

Af U1 U2 Af U1 U2 Af U1 U2 Af U1 U2

6 [0, 0, 0, 0, 0, 0, 0] 0 0.015207 [0, 0, 0, 0, 0, 0, 0] 0 0.015002 [0, 0, 0, 0, 0, 1, 0] 0.00022 0.015001 [0, 0, 0, 0, 1, 1, 1] 0.00066 0.014999

8 [0, 0, 0, 0, 0, 0, 0] 0 0.015207 [0, 0, 0, 0, 1, 0, 1] 0.00044 0.015002 [0, 0, 0, 0, 0, 1, 1] 0.00044 0.015002 [0, 0, 0, 0, 1, 1, 1] 0.00066 0.015001

10 [0, 0, 0, 0, 0, 0, 0] 0 0.015310 [0, 0, 0, 0, 1, 1, 1] 0.00066 0.015309 [0, 0, 0, 0, 1, 1, 1] 0.00066 0.015221 [0, 0, 0, 0, 1, 1, 1] 0.00066 0.015221

5.4.3 Effect of considering workload

This work compares the proposed model with B1 and investigate the depen-

dency on Γs of the proposed model to show the effect of considering workload

in Fig. 5.7.

Figure 5.7(a) shows W-UPs obtained by the proposed model and B1 for

different values of |� |. Since the total node workload for the initial allocation

increases as |� | increases, it leads to the increase of the workload-dependent

failure probability; the weight for each failure pattern increases. Similarly, as

|� | increases, the number of functions hosted by the same node increases, each

failure pattern may cause a larger number of concurrent unavailable functions

with a larger workload required to be recovered. Both unsuccessful recovery

probability and unavailable probability after recovery may increase. Thus, an

increasing tendency of W-UP with the increase of |� | in the proposed model

can be observed.

Then this work compares W-UPs between the proposed model and B1 in

Fig. 5.7(a). With a constant value of failure probability regardless of consid-

ering the effect of node workload on the failure probability, B1 is not sensitive

to both initial workload for primary resource and workload variation caused

by node failures. W-UPs obtained by B1 are on average 29% and 52%, respec-

tively, larger than those of the proposed model with two-step and four-step

approximations, among the values of |� |. When |� | ≤ 20 in the tested cases

where the total requested load among |� | functions is so small that it does

not lead to the unsuccessful recovery, W-UP only depends on the weighted

maximum unavailable probability among nodes after failure recovery, i.e., U2.

W-UPs obtained by B1 remain to be constant. Both weights of failure pat-
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terns and maximum unavailable probability among nodes in B1 are larger than

those of the proposed model. W-UPs obtained by B1 are on average 38% and

64%, respectively, larger than those of the proposed model with two-step and

four-step approximations, among the values of |� |. As the workload increases,

the failure probability in the proposed model gets close to that of B1. When

|� | > 20 in Fig. 5.7(a), the total requested load of function is so large that the

concurrent unavailable functions cannot be recovered simultaneously due to

insufficient capacity. Both W-UPs of the proposed model and B1 increase; a

decreasing tendency of the difference of W-UPs between B1 and the proposed

model can be observed in the increase of |� |.
Then this work considers the workload variation caused by at most Γ node

failures. As shown in Fig. 5.7(b), W-UPs obtained by the proposed model

with Γ = 1 is 2.3% smaller than that of Γ = 2; it is 3.4% smaller than that of

Γ = 3. The average availability among different |� | obtained with 1-(W-UP)

are 0.9911, 0.9908, and 0.9907 for Γ = 1, 2, and 3, respectively. The weight of

failure pattern with exact three node failures is 6.6× 10−6, which is 2651 times

smaller than that of exact one node failure and 515 times smaller than that of

exact two node failures. Since the weight of a failure pattern with more failed

nodes is smaller than that of less failed nodes, the difference between W-UPs

of Γ and Γ + 1 decreases as Γ increases. The difference between W-UPs of Γ

and Γ + 1 increases as |� | increases. When the primary resources hosted by

the same node increase, the increase of the number of concurrent unavailable

functions may lead to a higher probability of unsuccessful recovery.

5.4.4 Dependency of W-UP on weight X

Dependency of U1 and U2 on weight

X is the weight for unsuccessful recovery probability, U1, of W-UP. Since

Af, f ∈ C, is a binary variable and 0 < &f ≈ 0.02 < 1 under the same f,

this work investigates the tests with X = 0.5, 0.1, 0.01, and 0.001 so that the

ratio of XAf to (1 − X)&f approximates to 50, 5, 0.5, and 0.05, respectively.

Af = 1, f ∈ C, represents that at least one unavailable function under failure

pattern Pf
Γ
∈ {∅, {1}, {2}, {3}, {1, 2}{1, 3}, {2, 3}} cannot be recovered. When

the total workload of functions is so small that the unsuccessful recovery situa-
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tion due to the insufficient capacity does not exist against any failure pattern,

i.e., �f
8
= 0, U1 only relates to the unavailable situation that all of the pri-

mary and backup resources fail in a failure pattern, i.e., 4f
9
= 1. Table 5.3

shows examples for U1 and U2 with different values of weight X and |� | with

|# | = 3. As X decreases, the proposed model shows a tendency to reduce U2

at the cost of a larger unsuccessful recovery probability, U1. This is because

the functions are allocated to nodes with a number less than Γ to reduce the

workload-dependent failure probability in U2, at the cost of the unavailable

situation of insufficient primary and backup resources against failures. When

X is small enough, U2 does not decrease since it is the smallest value with

conservative workload-dependent failure probability.

X = 0

When X = 0, only the weighted maximum unavailable probability is considered

in the proposed model; whether concurrent unavailable functions in a failure

pattern can be recovered is not considered. This work compares the proposed

model with B2 and B3, each of the baselines focuses only on the recovery

configuration against failures, regardless of the unsuccessful recovery. This

work obtains the resource allocation of baselines by solving the MILP prob-

lems presented in (5.8a)-(5.8f) with X = 0 and (5.10a)-(5.10b), respectively.

To differentiate the workload-dependent failure probability among nodes, this

work considers that the ratios of the threshold to the capacity of a node are

randomly distributed over the range of [0.4, 0.8].

As shown in Fig. 5.8, W-UPs obtained by B2 and B3 are on average 22%

and 31%, respectively, larger than those of the proposed model, among the val-

ues of |� |. In comparison between the proposed model and B2, when the total

workload is so small that the proposed model can adapt the resource alloca-

tion to reduce the workload-dependent failure probability, B2 merely minimizes

the utilization ratio without considering the different workload-related failure

characteristics of nodes. As |� | increases, the proposed model cannot suppress

the failure probabilities of nodes to be smaller than %S; the failure probability

in B2 gets close to that of the proposed model. Thus, the difference between

W-UPs in the proposed model and B2 decreases as |� | increases.
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Table 5.4: Comparison between proposed model and B4 in terms of average

&f among failure patterns with exact Γ failures with different |� |.

Model X Γ

|� |

10 12 14 16 18

Proposed 0.5 1 0.0150 0.0150 0.0150 0.0220 0.0220

Proposed 0.5 2 0.0164 0.0185 0.0206 0.0220 0.0220

B4 1 1 0.0150 0.0178 0.0220 0.0220 0.0220

B4 1 2 0.0178 0.0199 0.0220 0.0220 0.0220

Focusing on B3, since it does not consider the unsuccessful recovery due

to the insufficient capacity, this work adds !W
8f
≤ �8,∀8 ∈ #, f ∈ C, as a

constraint to reduce the unsuccessful recovery probability. When the total

workload among functions is so large that the workload after recovery against

at least one failure pattern exceeds the capacity and B3 cannot find any feasible

solution, this work relaxes the constraint as !W
80 ≤ �8,∀8 ∈ #, to only suppress

the initial workload not to exceed the capacity. When |� | < 20 in Fig. 5.8 where

the total workload among functions is so small that the workload of a node can

be suppressed to be smaller than the threshold, B3 shows better performance

than B2, since B3 considers the workload-dependent failure probability. W-

UPs in B3 are 7% larger than that of the proposed model, since the unsuccessful

recovery against Γ failures is not considered in B3. When |� | ≥ 22 in the

tested case, B3 relaxes the capacity constraint since it cannot find any feasible

solution with !W
8f
≤ �8, which further leads to the increase of unsuccessful

recovery probability. Thus, W-UPs of B3 are larger than both B2 and the

proposed model with |� | ≥ 22.

X = 1

When X = 1, the proposed model focuses on the unsuccessful recovery proba-

bility. However, the workload after recovery is also required to be considered,

since it is related to the unsuccessful recovery due to insufficient capacity. As
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Table 5.5: Maximum concurrent unavailable functions and maximum arbitrary

recoverable functions against Γ node failures

|� | Γ
Maximum concurrent unavailable

functions hosted by Γ failed nodes

Maximum arbitrary

recoverable functions

10

1 2 2

2 4 4

3 6 6

15

1 3 3

2 6 6

3 9 4

20

1 4 4

2 8 3

3 12 2

discussed in Section 5.3, the unsuccessful recovery probability with X = 1 can

be obtained by simplifying the model without considering any recovery con-

figuration to reduce the complexity. When a failure pattern is detected, the

proposed model recovers the unavailable functions based on the determined

priority; B4 determines a recovery configuration for the detected failure pat-

tern in operation run time.

Table 5.4 shows the average &f among failure patterns with exact Γ fail-

ures of the proposed model and B4. Each &f is obtained with the priority in

the proposed model; it is obtained with the run-time calculation for the re-

covery configuration against each failure pattern in B4. Average &f obtained

by the proposed model is 9% and 4% smaller than that of B4 with exact one

failure and two failures, respectively. &f is a value of the workload-dependent

failure probability approximated by the step function. Focusing on average

&f among failure patterns, when it is equal to the maximum value of the

failure probability, i.e., 0.022, as shown in Table VI, it does not increase as

|� | increases. Since the initial allocation obtained by B4 with X = 1 does not

consider workload after recovery, it does not distribute the backup resource of

147



Chapter 5

functions whose primary resources are hosted by the same nodes into different

nodes against node failures. Thus, the run-time obtained recovery configu-

ration may not the best one even against each failure pattern; the proposed

model can reduce W-UP compared with B4. The computation time of B4 to

determine recovery configuration after failures is almost the same among fail-

ure patterns, which is 0.03 [s]. The average workload-related availability after

recovery among different |� | of the proposed model are 0.9822 and 0.9801 for

Γ = 1 and 2, respectively; those of B4 are 0.9802 and 0.9793.

Then this work considers the fault tolerance level of the proposed model,

which can be obtained with the discussion in Section 5.3 without recovery

configuration. The discussion provides the maximum number of concurrent

unavailable functions hosted by the failed nodes and the maximum number

of arbitrary recoverable functions by the remaining available nodes. Fault

tolerance levels can be obtained by comparing the two numbers, as shown

in Table 5.5. The number of concurrent unavailable functions hosted by

Γ failed nodes can be obtained with an even primary resource allocation,

which is equal to Γ × b |� ||# | c. The maximum arbitrary recoverable functions

can be obtained with analyzing the graph structure of the connected compo-

nent in the graph corresponding to backup resource allocation. Since Mℎ4 =

Θ(min{Λ( |�full
ℎ4
|),Λ(min:∈#u{3: , =: }), Λ(

∑
:∈#av

ℎ4
\(#full

ℎ4
∪#u

ℎ4
) min{3: , =: })}), this

work allocates all functions in one same set of nodes among # full
ℎ4

, #u
ℎ4

, and

#\(# full
ℎ4
∪ #u

ℎ4
) with the best, so thatMℎ4 can be increased. From Table 5.5,

we can observe that an allocation with 10 functions is 3-fault-tolerance; an al-

location with 15 functions is 2-fault-tolerance; an allocation with 20 functions

is 1-fault-tolerance. There is no more Γ-fault-tolerance guarantee with : ≥ 1

for |� | > 20 in the considered case with five nodes whose capacities are 20.

5.4.5 Competitive evaluation on computation time and

accuracy

Table 5.6 shows W-UPs and computation times for the MILP approach and

the heuristic algorithm. We observe that the computation time of the heuristic

algorithm is 729 times smaller than that of the MILP approach on average;

as the problem size increases, the computation time of the MILP approach
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Table 5.6: W-UPs and computation times of MILP approach and heuristic

algorithm.

|# | |� | Γ
W-UP computation times (s)

MILP Heuristic MILP Heuristic

5 10 2 0.00750 0.00750 15.98 11.70

5 15 2 0.00775 0.00775 339.98 14.25

5 20 2 0.01099 0.01110 2108.95 21.84

5 25 2 0.01099 0.01167 4602.74 26.22

6 10 3 0.00750 0.00750 138.24 28.03

6 15 3 0.00750 0.00766 1760.25 32.72

6 20 3 0.00776 0.00780 63022.89 40.53

6 25 3 0.01099 0.01129 182170.30 47.44

Table 5.7: W-UPs, availability, and computation times of larger size problems

with different |� | obtained with heuristic algorithm.

|� |

100 150 200 250 300

W-UP 0.00769 0.00820 0.00879 0.01088 0.01363

Availability 0.99231 0.99181 0.99121 0.98912 0.98637

computation times (s) 454.6 736.1 3381.2 6907.5 15303.3

increases. The larger the problem size is, the more the computation time of

the heuristic algorithm is reduced compared with that of the MILP approach.

W-UPs derived by the heuristic algorithm is 1.6% larger than that of the MILP

approach on average among eight tests. The average difference among tests

between W-UPs derived by the heuristic algorithm and the MILP approach is
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0.0001625.

5.4.6 Larger-size problem

First, this work investigates the performance of the developed heuristic algo-

rithm to solve larger-size problems. Table 5.7 shows W-UPs, availability, and

computation times for larger-size problems solved with the developed heuristic

algorithm. Similar to Section 5.4.4, the ratios of the threshold to the capacity

of a node are randomly distributed over the range of [0.4, 0.8]. W-UPs in

Table 5.7 show the same tendency with the smaller size problem; the compu-

tation time increases as the problem size increases. As shown in Table 5.7,

the difference between the availability with |� | = 300 and that of |� | = 100 is

0.00595. Since the proposed model is designed to preventively determine the

initial resource allocations and recovery configuration against failures before

services run by considering the probability of each failure pattern, instead of

determining the recovery configuration in service run-time after any failure

occurs, the computation time of the developed heuristic algorithm to solve

the problem is acceptable in this application scenario. It is validated that the

proposed model can obtain the primary and backup resource allocation with

priority setting for larger-size problems in practical time.

Second, this work compares the performance of the developed heuristic al-

gorithm and the other heuristic algorithms introduced in literature [77, 117].

The work in [117] addressed an SA-based load balancing algorithm with being

aware of workload. It transforms the solutions in the algorithm by re-allocating

a random chosen function from the node with the highest workload to the node

with the lowest workload. The SA-based algorithm accepts the solution with

a worse objective value than the existing solution with a certain probability.

This work sets the same )init and temperature decreasing rate for the SA-based

and developed algorithm. The work in [77] addressed a water-filling-based load

balancing algorithm, which is a greedy algorithm, to minimize the maximum

utilization among nodes. It determines the maximum water level (utilization

ratio) in advance and allocates the resources of each function iteratively until

the maximum water level. This work compares the performance of the algo-

rithms in three different scenarios. Scenario 1 considers a stable running status
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Table 5.8: Comparisons of W-UPs and computation times of different algo-

rithms in different scenarios with Γ = 5.

Solving Approaches

Scenarios

1 2 3

Developed heuristic

algorithm

W-UP 0.0078 0.0123 0.0158

time (s) 741.4 80787.0 167.3

SA-based

algorithm [117]

W-UP 0.4750 0.5011 0.5049

time (s) 278.5 354.1 132.0

Water-filing-based

algorithm [77]

W-UP 0.0102 0.0259 Infeasible

time (s) 2.1 3.0 Infeasible

with 20 nodes and 100 functions; scenario 2 considers an increasing number

of resource requests with 500 functions; scenario 3 considers resource-hungry

services with 10 nodes and 100 functions, where random ten of these functions

request 10 times of the computing resources compared with their stable run-

ning status. Based on the analysis of Section 5.4, in scenarios 2 and 3 with

insufficient resource capacity, each node may host more functions while there

is a less remaining capacity that can be used for unavailable function recov-

ery. In other words, 3: and =: for each node are larger than and smaller than

those with stable running status, scenario 1, respectively, which leads to more

severe unsuccessful recovery. Similarly, since each node hosts more functions

and more functions become unavailable due to the node failures, U2 increases

in scenarios 2 and 3.

Table 5.8 shows the comparisons between the developed heuristic algorithm

and different algorithms in the three scenarios. First, focusing on the com-

parison between the developed algorithm and the water-filling-based greedy

algorithm in [77], the greedy algorithm saves much computation time. The

accuracy of solutions obtained by the developed algorithm with adopting SA

is improved at the cost of longer computation time. W-UPs obtained by the

developed algorithm are 24% and 53% smaller than those from the greedy al-
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gorithm in scenarios 1 and 2, respectively. The greedy algorithm only focuses

on the workload without considering the unsuccessful recovery probability; the

developed algorithm distributes the backup resources of the functions whose

primary resources are hosted by the same node to different nodes. When this

work considers scenario 2 with limited computing resources and a higher prob-

ability of the unsuccessful recovery, the greedy algorithm shows worse perfor-

mance in comparison with the developed algorithm than that of scenario 1. In

scenario 3, when some functions request tremendous amounts of computing re-

sources, the greedy algorithm cannot find a feasible solution in the case study;

parts of resources cannot be efficiently utilized due to the iterative allocation

of functions to a node. The developed algorithm with adding SA considers dif-

ferent random transformations of the solutions; it shows superiority to handle

the resource-hungry services compared with the greedy algorithm.

Second, this work focuses on the comparison between the developed al-

gorithm and the SA-based algorithm in [117]. Compared with the developed

algorithm, the SA-based algorithm in [117] does not take the result of a greedy

algorithm as an initial allocation; instead, it adopts a random generated ini-

tial allocation. The SA-based algorithm saves computation time for calculating

the initial allocation with WAGA. We observe that it is hard for the SA-based

algorithm to jump out of a local optimal solution in the case study. The SA-

based algorithm only focuses on the workload; it transforms the solutions by

re-allocating the functions hosted by the node with the highest workload to the

node with the lowest workload; it does not consider random transformations

to improve the unsuccessful recovery probability and recovery priority against

failures.

5.5 Summary

This chapter proposed a primary and backup resource allocation model with

preventive recovery priority setting against multiple failures to minimize W-

UP for both dedicated and shared protection. Each node fails with different

workload-dependent failure probabilities; each failure pattern has its corre-

sponding weight. This chapter introduced a recovery strategy which is deter-

mined at the operation start time and can be applied for each failure pattern.
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Once failures are detected, the recoveries are operated with the workload vari-

ation according to the priority setting. Besides, this chapter introduced an

approach to obtain unsuccessful recovery probability without priority setting.

The numerical results observed that the proposed model reduces W-UP com-

pared with baselines. The proposed model, which jointly considers the unsuc-

cessful recovery and load balancing against failures, outperforms the baseline

models which consider each type of unavailability separately. The developed

heuristic algorithm is approximately 729 times faster than the MILP approach

with 1.6% performance penalty on W-UP.
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Robust resource allocation

model under uncertain recovery

time with workload-dependent

failure probability

This chapter proposes a robust function deployment model against uncertain

recovery time with satisfying an expected recovery time guarantee to minimize

the number of active nodes [118,119].

The remainder of the chapter is organized as follows. Section 6.1 describes

the proposed model. Section 6.2 presents a heuristic algorithm. Section 6.3

presents the numerical results. Section 6.4 summarizes this chapter.

6.1 Model and problem definition

6.1.1 Overall of the considered problem

Figure 6.1 shows the overall of the problem considered in this chapter. As

shown in the left hand side of Fig. 6.1, VNFs are hosted by physical nodes

deployed on networks and each physical node is connected to the network via

a router or switch. The work in [120] introduced a prototype system for con-

necting VNFs to the network. This system used the OVN [121] as a CNI [122]
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Figure 6.1: Overall of the considered problem in Chapter 6.

to steer the traffic among VNFs in the network. VNFs that run over the NFV

infrastructure can be constructed and managed dynamically by NFVO to pro-

vide services. NFVO is responsible for managing and orchestrating VNFs.

The embedding of VNs on the PNs has been widely studied in previous works.

This chapter focuses on the failures of functions with assuming that reliable

network resources are provided; it does not include any specific assumption

of networking aspects. The proposed model considers VNF placement with

satisfying recovery time guarantee and can be cooperated with NFVO. This

model considers that the preventively deployed backup resources can recover

an unavailable function hosted by a failed node in a period of time, which is

related to the backup strategies and protection types, as described in the right

hand side of Fig. 6.1. The recovery time depends on the recovery mechanism,

such as the types of failures, the time for failure detection and distinction,

the initiation time for hardware and applications, and the restoration time for

data and process state. It also relates to the size of the function and the ac-

tivation time for it, which leads to the uncertainty of the recovery time. This

section formulates the worst-case of expected recovery time among uncertain

recovery time of each function and describe the proposed model to minimize

the deployment cost with satisfying the recovery time guarantee.

6.1.2 Model description

Let � and # represent a set of functions and a set of nodes, respectively.

Consider # 9 ⊆ #, where |# 9 | ≥ 1, as a set of nodes which are assigned to
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allocate backup resources of function 9 ∈ �. This model considers that each

node is able to offer capacity for both primary and backup resource allocation;

let �8 denote the upper bound of computing capacity provided by node 8 ∈ #.

Consider two backup strategies 1 ∈ � B {0, 1}. 1 = 0 denotes the CB strategy

and 1 = 1 denotes the HB strategy. A function can be protected by one or

more nodes. Let G:1
8 9

, 8 ∈ #, : ∈ #\{8}, 9 ∈ �, 1 ∈ �, denote a binary variable;

G:1
8 9

is set to one if function 9 is allocated at node 8 and is protected by node

: with backup strategy 1, and zero otherwise.

Let j8 9 , 8 ∈ #, 9 ∈ �, represent a binary variable that equals ∨
1∈� ∨:∈#\{8}

G:1
8 9

; it is set to one if function 9 is allocated to node 8, and zero otherwise,

where ∨ expresses a binary OR. Let b1
9 :
, 9 ∈ �, : ∈ #, 1 ∈ �, denote a binary

variable that equals ∨
8∈#\{:}G

:1
8 9

; it is set to one if function 9 is protected by

node : with strategy 1, and zero otherwise.

Let ,8, 8 ∈ #, denote the workload of node 8. This work assumes that

the upper bound of computing capacity for each function protected with CB

required for information synchronization and snapshot updating is Au
9
, 9 ∈ �;

;w
9

denotes requested workload of function 9 . ,8 is expressed by:

,8 =
∑
9∈�
{;w9 (j8 9 + b1

98) + ;u9 b0
98},∀8 ∈ �, (6.1)

where
∑
9∈� ;

w
9
j8 9 is the workload for the primary resource;

∑
9∈� ;

w
9
b1
98

is the

total requested capacity for functions with the HB resource;
∑
9∈� ;

u
9
b0
98

is the

total requested capacity for functions protected by node 8 for updating pro-

cedure with the CB resource. Let @8, 8 ∈ #, denote the workload-dependent

failure probability of node 8 according to the workload.

The functions become unavailable and are required to be recovered when

the node hosting them fails. The expected recovery time is related to the

backup strategies and node failure probabilities. There are two backup strate-

gies with different recovery times and workloads: cold backup (CB) and hot

backup (HB). The CB strategy provides protection to corresponding primary

resources, where the backup resources are only reserved without being active;

the recovery time is related to the activation time. The backup resources pro-

tected with the HB strategy are activated and synchronized with the primary

resource so that it can recover the unavailable function immediately. HB re-
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duces the recovery time compared with CB at the cost of a higher workload

due to the synchronization with the primary resource [62]. Let C1
9
, 9 ∈ �, be

a given recovery time for the HB strategy, which is mainly determined by the

availability monitoring mechanism of physical nodes. For instance, C1
9

is related

to the interval of heartbeat packets or the alert thresholds for a monitoring

mechanism. Let C0
9

be a given recovery time for the CB strategy, which is

related to the monitoring mechanism, resource activation and synchronization

time, and remaining capacity on nodes that can be used for recovery. Let Cm
9

be a given recovery time of the situation that all nodes hosting the primary

and backup resources of a function fail. This situation relies on the mainte-

nance systems, e.g., VMware vCenter Site Recovery Manager, which delivers

automated orchestration of fail-over and fail-back to minimize downtime [89].

Let $ 9 : be an integer variable that represents the priority of backup re-

source in each : ∈ # 9 to recover the unavailable function 9 .

$ 9 : =
∑
?∈�
(: + ? |# |)b ?

9 :
,∀: ∈ #, 9 ∈ �. (6.2)

The larger $ 9 : is, the higher priority node : has to recover function 9 ; $ 9 : =

0, : ∈ #\# 9 . The expected recovery time of unavailable function 9 hosted by

a failed node can be expressed by:

C 9 =
∑
1∈�

∑
8∈#

∑
:∈# 9

C19 G
:1
8 9 @8

∏
$ 9: ′>$ 9: :: ′∈# 9

@: ′ (1 − @: ) + Cm9
∏
:∈# 9

∑
1∈�

∑
8∈#

G:18 9 @8@: ,

∀ 9 ∈ �. (6.3)

This work formulates the function deployment problem with deterministic

workload and recovery time as the following optimization problem:

min
∑
8∈#
∨ 9∈� (j8 9 ∨ b0

98 ∨ b1
98) (6.4a)

s.t.
∑
8∈#

j8 9 = 1,∀ 9 ∈ �, (6.4b)

b0
9 : + b

1
9 : ≤ 1,∀ 9 ∈ �, : ∈ #, (6.4c)

C 9 ≤ ),∀ 9 ∈ �, (6.4d)

,8 ≤ �8,∀8 ∈ #. (6.4e)
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Equation (6.4a) minimizes the number of nodes for primary and backup re-

sources of function deployment. Equation (6.4b) ensures that each function

in � is allocated into one node in #. Equation (6.4c) ensures that each func-

tion protected by a node with at most one strategy, either HB or CB. Equa-

tion (6.4d) ensures that the worst-case expected recovery time for each function

is smaller than or equal to a given time guarantee, ) .

6.1.3 Formulation with uncertain recovery time in re-

source sharing

In the resource sharing, the recovery time C0
9
, 9 ∈ �, is also related to the

availability of nodes. This work introduces g0
9 :
, 9 ∈ �, : ∈ N0

9
, to replace C0

9
.

g0
9 :

represents the recovery time for function 9 if node : recovers the function

when the nodes with higher priority than : are unavailable.

g0
9 :

is related to the availability of nodes in two items: the number of

unavailable functions and the number of recoverable functions derived from

the remaining capacity. When node 8 fails, Λ8 =
∑
9∈� j8 9 functions become

unavailable and are required to be recovered. The remaining capacity for node

8 is �8 −,8.

In the first item, when this work considers the expected recovery time in

the first term of (6.3), unavailable function 9 is recovered by available node :

with priority $ 9 : when a node hosting the primary resource of 9 and the nodes

that have higher priority than : fail concurrently.
∑
8∈#

∑
9 ′∈� j8 9 j8 9 ′ primary

resources of functions are allocated to the node that hosts the primary resource

of function 9 ;
∑
8∈#

∑
9 ′∈� j8 9 j8 9 ′ functions become unavailable concurrently

with function 9 , where j8 9 j8 9 ′ = 1, 8 ∈ #, 9 , 9 ′ ∈ �, represents that the primary

resources of function 9 and 9 ′ are allocated to the same node 8. Each node

:′ that has higher priority than node : hosts Λ: ′ functions, which leads to∑
: ′∈# 9 :$ 9: ′>$ 9:

Λ: ′ unavailable functions. Further, since this work cannot judge

the unavailability of the nodes that have lower priority than :, i.e., the nodes

that have lower priority than :, this work considers the expected unavailable

number of unavailable functions due to the failed nodes, which is equal to∑
: ′∈# 9 :$ 9: ′<$ 9:

@: ′Λ: ′. Let N9 : denote the expected number of unavailable
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functions when function 9 is recovered by available node :. This work has:

N9 : =
∑
8∈#

∑
9 ′∈�

j8 9 j8 9 ′ +
∑

: ′∈# 9 :$ 9: ′>$ 9:

Λ: ′ +
∑

: ′∈# 9 :$ 9: ′<$ 9:

@: ′Λ: ′,∀ 9 ∈ �,

: ∈ #. (6.5)

Since each function can only be allocated into one node in #, which is ensured

by (6.4b), the three terms are exclusive.

In the second item, this work focuses on the remaining capacity. When node

: recovers unavailable function 9 , (�:−,: ) remaining capacity of node : can be

assigned for recovery. Further, since this work cannot judge the unavailability

of the nodes that have lower priority than :, this work considers an expected

remaining capacity,
∑
: ′∈# 9 :$ 9: ′<$ 9:

(1 − @: ′) (�: ′ − ,: ′). Let C9 : denote the

expected remaining capacity when function 9 is recovered by available node :.

This work has:

C9 : = (�: −,: ) +
∑

: ′∈# 9 :$ 9: ′<$ 9:

(1 − @: ′) (�: ′ −,: ′),∀ 9 ∈ �, : ∈ #. (6.6)

For an unavailable function, if it fails and there is not sufficient remaining

capacity that can be assigned for recovery of the unavailable function, a waiting

time is required to be considered. Let d 9 : denote a binary variable that is

set to one if unavailable function 9 is recovered by node : with priority $ 9 :

without any waiting time, and zero otherwise. This work considers whether

a waiting time is required by comparing the expected remaining capacity and

the expected number of unavailable functions when function 9 is recovered by

node :.

In the mathematical expression, d 9 : = 1 when:

N9 : ≤
C9 :

max 9 ′∈� (;w9 ′ − ;u9 ′)
, 9 ∈ �, : ∈ #, (6.7)

where the denominator of the right hand side, max 9 ′∈� (;w9 ′ − ;u9 ′), is the max-

imum requested load among functions in � for recovery procedure with the

updated information.

With linear form of N9 : and C9 : , d 9 : can be expressed by:

N9 : −
C9 :

max 9 ′∈� (;w9 ′ − ;u9 ′)
≥ −d 9 :� + n, 9 ∈ �, : ∈ #, (6.8a)
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N9 : −
C9 :

max 9 ′∈� (;w9 ′ − ;u9 ′)
≤ (1 − d 9 : )� + n . (6.8b)

Let N1
9
⊆ # 9 represent a set of nodes that protect function 9 with strategy

1 ∈ �. The uncertain recovery time is caused by two aspects, which is related

to d 9 : , 9 ∈ �, : ∈ #. First, this work considers the situation with d 9 : = 1,

which indicates that function 9 is recovered by node : without any waiting

procedure in resource sharing. This work considers that g0
9 :

does not depend

on :, and have lower and upper bounds gl
9

and gu
9
, respectively, for each 9 ,

which can be collected by the trace logs [1]. This uncertainty is related to the

activation time for the function itself. Different from the recovery time C1
9

and

Cm
9
, which depend on recovery mechanisms with the maximum recovery time

guarantee given by a service provider, recovery time g0
9 :

depends on the size of

function and the activation time for it, which has larger estimable uncertainty

than C1
9

and Cm
9

. To cover this aspect, this work considers that each recovery

time for function 9 has its lower and upper bounds gl
9

and gu
9
, which can be

expressed by:

d 9 :g
l
9 ≤ g0

9 : ≤ d 9 :g
u
9 ,∀ 9 ∈ �, : ∈ N0

9 . (6.9)

Second, this work considers the situation with d 9 : = 0. The more con-

current failed nodes are, the more the unavailable functions are. With an

insufficient remaining capacity, a longer waiting time is required for a func-

tion recovery. To cover the uncertainty of recovery time considering the to-

tal remaining capacity, this work introduces a coefficient l 9 : that equals

(max 9 ′∈� (;w9 ′ − ;u9 ′)N9 :−C9 : ) and a given coefficient time for waiting, gw, where

l 9 : shows the relationship between the remaining capacity and the number

of unavailable functions when function 9 is recovered by node :. The waiting

time gw can also be collected by the trace logs. The uncertainty set of recovery

time with considering resource sharing with d 9 : = 0 can be expressed by:

g0
9 : ≤ g

u
9 + (1 − d 9 : )gwl 9 : ,∀ 9 ∈ �, : ∈ N0

9 . (6.10)

Third, this work considers the average recovery time among nodes that

protect function 9 with the CB strategy for each 9 , where the upper bound of

the average recovery time can also be collected by the trace logs [1]. While
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the recovery times of function protected by different nodes may have different

variations, it can be upper-bounded by the average downtime or average re-

covery time [123,124]. The uncertainty of average recovery time is considered

by: ∑
:∈N0

9
g0
9 :

|N0
9
|
≤ gE

9 ,∀ 9 ∈ �, (6.11)

where gE
9

is a given parameter representing the maximum average recovery

time.

Let τj ∈ R|N
0
9
| be a set of g0

9 :
, 9 ∈ �, : ∈ N0

9
, where R|N

0
9
| is a set of

|N0
9
|-dimensional real-number vectors. Let * 9 : = (1 − d 9 : )gu

9
+ d 9 :gwl 9 : and

! 9 : = (1 − d 9 : )gl
9

represent the upper and lower bounds of g0
9 :

, respectively.

Combining (6.9), (6.10), and (6.11), the uncertainty set of the recovery time

for each function 9 ∈ � under resource sharing is defined as:

T9 =

τj ∈ R
|N0
9
|

�������
! 9 : ≤ g0

9 :
≤ * 9 : ,∀: ∈ N0

9∑
:∈N0

9
g0
9:

|N0
9
| ≤ gE

9

 ,∀ 9 ∈ �. (6.12)

6.1.4 Dual formulation and MILP formulation

To obtain the optimal function deployment against uncertain recovery time

with a non-deceasing workload-dependent failure probability. This work needs

to linearize the failure probability and handle the maximization problem under

an uncertain recovery time.

First, this work considers how to express the workload-dependent failure

probability in the MILP problem. Given the workload-dependent failure prob-

ability, which is assumed to be a non-decreasing function, this work can use an

S-step function, where S ≥ 2, to conservatively approximate a non-decreasing

function of the node workload, as shown in Fig. 6.2; S denotes the number of

steps in a step function. @8 can be expressed by the following S-step function;

let B ∈ S = [1,S] denote the Bth step in S-step workload-dependent failure
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Figure 6.2: Workload-dependent failure probability is expressed by a monotone

increasing S-step function.

probability:

@8 =


%1, )0

8
≤ ,8 ≤ )1

8

%2, )1
8
< ,8 ≤ )2

8
...

...

%S , )S−1
8

< ,8 ≤ )S8 ,

(6.13)

where )0
8
= 0 and )S

8
= �8, 8 ∈ #. When the workload of a node increases from

the range of () B−1
8

, ) B
8
] to () B

8
, ) B+1
8
], the failure probability increases from %B−1

to %B. As the workload increases, even though the node has remaining capacity,

the node becomes fragile, and has a higher failure probability to handle the

extra workload. By introducing binary variable I8B, 8 ∈ #, B ∈ S, which is set to

one if ) B−1
8

< ,8 ≤ ) B8 , and zero otherwise, (6.10) is linearized with the same

approach in [114] with several auxiliary variables.

Second, to handle the expected recovery time guarantee (6.4d), it is re-

quired to guarantee that the recovery time of any function 9 under the worst

case against the uncertain recovery time does not exceed the maximum toler-

able recovery time ) . This work considers the dual problem for the maximum

recovery time under the uncertainty with assuming that G:1
8 9

and b0
9 :

are fixed;

the failure probability @8 is also fixed by following the same approach in [86].

Let & 9 : =
∑
1∈�

∑
8∈# G

:1
8 9
@8

∏
$ 9: ′>$ 9: :: ′∈# 9 @: ′ (1 − @: ) represent the failure

probability if function 9 is recovered by node : with priority $ 9 : . Equa-
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tion (6.4d) combined with (6.3) for each 9 ∈ � can be rewritten by:

max
τj∈T9

©­­«
∑
:∈N0

9

g0
9 :& 9 :

ª®®¬ ≤ ) −
∑
:∈N1

9

g1
9 :& 9 : − Cm9

∏
:∈# 9

∑
1∈�

∑
8∈#

G:18 9 @8@: ,∀ 9 ∈ �.

(6.14)

With uncertainty set T9 , the left hand side of (6.14) for each 9 ∈ � can be

formulated by a optimization problem:

max
∑
:∈N0

9

g0
9 :& 9 : (6.15a)

s.t. ! 9 : ≤ g0
9 : ≤ * 9 : ,∀: ∈ N0

9 , (6.15b)∑
:∈N0

9

g0
9 : ≤ g

E
9

∑
:∈#

b0
9 : , (6.15c)

g0
9 : ≥ 0,∀: ∈ N0

9 . (6.15d)

The dual problem of (6.15a)-(6.15d) is given by:

min
∑
:∈N0

9

(
* 9 :c

0
9 : − ! 9 :_

0
9 :

)
+ `0

9 g
E
9

∑
:∈#

b0
9 : (6.16a)

s.t. c0
9 : − _

0
9 : + `

0
9 ≥ & 9 : ,∀ 9 ∈ �, : ∈ N0

9 , (6.16b)

c0
9 : ≥ 0,∀ 9 ∈ �, : ∈ N0

9 , (6.16c)

_0
9 : ≥ 0,∀ 9 ∈ �, : ∈ N0

9 , (6.16d)

where c0
9 :

, _0
9 :

, and `0
9

are variables introduced in the dual formulation.

Since the duality gap between (6.16a)-(6.16d) and (6.15a)-(6.15d) is zero,

by using the duality theorem, this work has:

max
τj∈T9

∑
:∈N0

9

g0
9 :& 9 : = min

∑
:∈N0

9

(
* 9 :c

0
9 : − ! 9 :_

0
9 :

)
+ `0

9 g
E
9

∑
:∈#

b0
9 : ,∀ 9 ∈ �.

(6.17)

Since c0
9 :

, _0
9 :

, and `0
9 :

are not binary variables and (6.16b) considers only

the nodes that protects function 9 with the CB strategy, this work takes c0
9 :
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as an example and introduce c′09 : is equal to c0
9 :

, if b0
9 :
= 1. With b0

9 :
= 0,

c′09 : = 0. c′09 : can be lineaized as:

c′09 : ≤ c0
9 : + (1 − b

0
9 : )�,∀ 9 ∈ �, : ∈ #, (6.18a)

c′09 : ≥ c0
9 : − (1 − b

0
9 : )�,∀ 9 ∈ �, : ∈ #, (6.18b)

c′09 : ≤ b0
9 :�,∀ 9 ∈ �, : ∈ #, (6.18c)

c′09 : ≥ −b0
9 :�,∀ 9 ∈ �, : ∈ #. (6.18d)

Similarly, _0
9 :

, `0
9 :

, and the left hand of (6.14) can be linearized with the same

approach in (6.18a)-(6.18d).

Since the minimum value among a set does not exceed a given value if there

exists one value in the set that does not exceed the given value, (6.11) can be

rewritten by:∑
:∈N0

9

(
* 9 :c

0
9 : − ! 9 :_

0
9 :

)
+ `0

9 g
E
9

∑
:∈#

b0
9 : ≤ ) −

∑
:∈N1

9

g1
9 :& 9 :

− Cm9
∏
:∈# 9

∑
1∈�

∑
8∈#

G:18 9 @8@: ,∀ 9 ∈ �. (6.19)

Finally, (6.4a)-(6.4e) are transformed into the following optimization problem:

min
∑
8∈#
∨ 9∈� (j8 9 ∨ b0

98 ∨ b1
98) (6.20a)

s.t.(6.4b)-(6.4c), (6.4e), (6.5)-(6.7), (6.14), (6.16b)-(6.16d), (6.19).

(6.20b)

j8 9 , b
1
9 :

, and & 9 : can be linearized with the same approach described in [114]

and [33]. Appendix G summarizes a part of the linearization process that is

not mentioned in the previous works.

6.2 Heuristic algorithm

This work defines a decision problem related to the considered problem as:

given a set of functions � and a set of nodes #, is it possible to find an

assignment of function deployment so that the maximum expected recovery
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time among functions is no more than 2? Similar to [33], when ! 9 : = * 9 : and

gE
9
= * 9 : , the decision version of the considered problem is an NP-complete

problem by reducing the multiple backup resource allocation problem in [33],

which is an NP-complete problem. It indicates that the considered problem

becomes difficult to solve in a practical time as the problem size increases.

This section presents an idea of a heuristic algorithm that can obtain an

approximate solution of the considered problem with a larger problem size

in a practical time with a randomized heuristic algorithm. The procedure of

simulated annealing is as follows. This work assumes a minimization problem.

Firstly, an initial solution is generated with a greedy approach (Algorithm 6.1),

and the objective value is evaluated. Secondly, a neighboring point of the

current solution is randomly chosen as a new solution, and the new objective

value is evaluated. The new solution is accepted probabilistically, where the

probability is determined by the relationship between the current and new

objective values.

Algorithm 6.1 Greedy algorithm with protection types and backup

strategies

Input: �, #, �8, ;
w
9
, ;u
9
, )

Output: G:1
8 9
, C 9

1: Sort # by �8 decreasingly.

2: Iteratively allocate the primary resource of function 9 to each node until

the workload exceeds its capacity. Record #′′
9
= #\{the allocated node}.

3: for 9 = 1→ |� | do

4: while C 9 ≤ ) × n1 do

5: Sort #′′
9

according to the number of allocated functions on each

element decreasingly.

6: Allocate a backup resource for function 9 to the first node in #′′
9

until the workload exceeds �′
8
= n2 ×�8, where the function is allocated to

the next node in sorted #′′
9

if the workload exceeds.

7: Calculate the expected recovery time C 9 for each function. If C 9 ≤
) × n1,∀ 9 ∈ �, turn to Line 11; otherwise, eliminate the allocation and

backtracking to the line 3 with only the primary allocation and turn to

Line 8.

8: Allocate a backup resource for function 9 to the first node in #′′
9
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until the workload exceeds its capacity, where the function is allocated to

the next node in sorted #′′
9

if the workload exceeds. Update #′′
9
.

9: Calculate the expected recovery time for each function with each

backup strategy, i.e., HB or CB. Record the smaller one as C 9 .

10: end while

11: end for

12: Record the number of active nodes as =.

13: return G:1
8 9

,C 9 , =

Algorithm 6.1 determines an initial allocation on function deployments by

allocating functions on each node 8 ∈ # iteratively for the primary resource

(line 2). The backup resources are also allocated on each node 8 ∈ # iteratively

with further considering protection types and backup strategies (lines 3-11).

Since Algorithm 6.1 is only developed to provide an approximate solution of

the considered problem, parameters n1 and n2 are designed for providing toler-

ances with exceeding the expected time guarantee and capacity, respectively.

Algorithm 6.1 tries to provide a solution of function deployment with as few

nodes as possible with tolerance parameters n1 and n2.

Lines 6-7 and 8-9 present the allocation of shared and dedicated protection,

respectively. Algorithm 6.1 first tries the allocation with the shared protec-

tion to check whether the allocation satisfies the recovery time guarantee with

tolerance parameter n1. In the allocation with the shared protection, n2 times

of the capacity of each node is allowed to be used; the backup resources are

allowed to be allocated to the same node with exceeding capacity (lines 6-7).

With the same number of active nodes, if the allocation with the shared pro-

tection cannot satisfy the recovery time guarantee, Algorithm 6.1 eliminates

the allocation and backtracking to Line 3 with only the primary allocation

and turns to Line 8. Lines 8-9 then obtain the minimum number of active

nodes with the dedicated protection that satisfies n1 times of the recovery time

guarantee. More specially, the backup resources are allocated to the node

iteratively until exceeding capacity. After the allocation of all the functions

for each round, Algorithm 6.1 calculates the expected recovery time for each

function with each backup strategy, i.e., HB or CB, and records the smaller

one as C 9 . After Algorithm 6.1 obtains a feasible solution that satisfies the re-
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laxed recovery time guarantee, line 12 records the number of active nodes as =,

which is used in the following randomized heuristic algorithm. Algorithm 6.1

terminates with returning the resource allocation G:1
8 9

, the expected recovery

time C 9 , and the active number of nodes =.

Algorithm 6.2 Simulated annealing

Input: �, #, �8, ;
w
9
, ;u
9
, )min,)init, G

:1
8 9

obtained by Algorithm 6.1

Output: G:1
8 9

,C 9 , =

1: for =→ |# | do

2: ) ← )init

3: Add a new backup resource of each function in � on the newly active

node regardless of the capacity constraint.

4: while ) ≥ )min do

5: Release a randomly chosen backup resource of a randomly chosen

function if the function has multiple backup resources. Update #′′
9
.

6: Allocate a new backup resource of a randomly chosen function to a

randomly chosen node in #′′
9
. Update #′′

9
.

7: Re-allocate 9 with random number from a randomly chosen node

in #\#′′
9

to a randomly chosen node in #′′
9
. Update #′′

9
.

8: while the workload ,8 of a node exceeds its capacity �8 do

9: Switch the allocation a primary function hosted by the node

with one of its backup resources.

10: end while

11: Calculate the expected recovery time C 9 by Algorithm 6.3 using

updated solution x′.

12: if C 9 ≤ C then

13: Return Δ, G:1
8 9

,C 9

14: else

15: G:1
8 9
← G:1

8 9

′
with probability of min(1, @), where @ = 4−

C ′
9
−C 9
) .

16: ) = ) · a given decreasing rate

17: end if

18: end while

19: end for

Algorithm 6.2 aims to find a feasible solution that satisfies the recovery
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time guarantee with as few active nodes as possible by adjusting the function

deployments. This algorithm first gives an initial function deployment in a

greedy manner (Algorithm 6.1) and record the number of active nodes as =.

Since the backup resource of each function is not allowed to be allocated to the

same nodes that host the primary resource of the function, this algorithm only

considers nodes in set #′′
9
, which is # excluding the allocated node, for function

9 (lines 2, 6, and 8 in Algorithm 6.1). The backup resource of function 9 is

allocated to a node in #′′
9

that hosts the most functions, i.e., the busiest node,

to activate as few nodes as possible that are assigned for function deployment.

When the workload of the first node exceeds the capacity, the function is

allocated to the next node hosting the most functions with enough remaining

capacity to satisfy the capacity constraints.

Since the considered problem aims to minimize the number of active nodes

while satisfying the reliability guarantees, Algorithm 6.2 reduces the expected

recovery time and unsuccessful recovery probability when a given number of

nodes are admitted to be used (lines 2-18), where the expected recovery time is

calculated by Algorithm 6.3. Similar to the algorithm developed in [125], with

fixing the number of active nodes, in each iteration of decreasing the temper-

ature, the existing function deployment changes randomly to generate a new

solution (lines 5-9) and calculates new reliability indicators with Algorithm 6.3.

When the recovery time calculated by Algorithm 6.3 satisfies the recovery time

guarantee, Algorithm 6.2 is terminated by accepting and returning the corre-

sponding solution (lines 12-13). When any of the reliability indicators does

not satisfy the reliability guarantees until the temperature is decreased to the

set minimum temperature )min, one more node is permitted to be activated

(line 1); a new round of the iteration of decreasing the temperature from )init

(repeating lines 4-18) with randomly changing the deployment from the initial

allocation obtained in lines 2-6. The algorithm accepts the solution with a

worse reliability indicator than the existing solution with a certain probability

of min(1, 4−
C ′
9
−C 9
) ); the higher temperature is, the higher probability to accept a

worse solution is (line 15). The iterations terminate when the obtained alloca-

tion satisfies the requirement of the recovery time guarantee or the minimum

temperature with the maximum admissible number of nodes is reached. The

accuracy of solutions by using simulated annealing based on Algorithm 6.1 can
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be improved with the cost of longer computation time.

Algorithm 6.3 Calculation of recovery times under uncertainty

Input: G:<
8 9
, ) B
8
, %B, g

u
9
, gl
9
, gE
9
.

Output: C 9

1: Calculate the workload-dependent failure probability of each node based

on their workload based on (6.1) and (6.13).

2: Calculate the unavailability& 9 : with
∑
1∈�

∑
8∈# G

:1
8 9
@8

∏
$ 9: ′>$ 9: :: ′∈# 9 @: ′ (1−

@: ).
3: Calculate the expected remaining capacity C9 : and the expected number

of unavailable functions N9 : when function 9 is recovered by node : based

on (6.6) and (6.7).

4: Judge the protection type by the relationship between C9 : and N9 : and

obtain d 9 : .

5: Calculate the upper bound * 9 : of recovery time C 9 : with considering the

protection types based on (6.10).

6: Find maximum value of
∑
:∈N0

9

g0
9 :
& 9 : , where g0

9 :
is in the range of uncer-

tainty set T9 introduced in (6.12).

7: Calculate the expected recovery time based on (6.3)

Algorithm 6.2 focuses on finding a solution that satisfies the recovery time

guarantee by random changing the resource allocation while Algorithm 6.3

calculates the expected recovery time with handling the uncertain recovery

time. More specifically, Algorithm 6.3 fixes the primary and backup resources

allocation obtained in Algorithm 6.2 and calculates the upper and lower bounds

of the recovery time in the allocation. It finds the maximum expected recovery

time C 9 with uncertain recovery time g0
9 :

among the uncertain recovery time

set T9 in (6.12).

Then this algorithm focuses on how to find the maximum value of
∑
:∈N0

9

g0
9 :
& 9 : ,

for each 9 ∈ �. With the fixed allocation, it becomes an LP problem. Each

LP problem can be transformed into a minimum cost flow problem, which is

inspired from [126]. A directed graph is expressed by � 9 (+ 9 , � 9 ), where + 9

and � 9 denote a set of all nodes and a set of all edges, respectively. Instead of

solving (6.15a)-(6.15d), this algorithm considers the directed graph in Fig. 6.3.
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…
Set N

𝑗 ∈ F

d
∞0

Flow demand: Cost Capacity

𝐸!" = 𝑗, 𝑘 , 𝑗 ∈ 𝐹, 𝑘 ∈ ℕ"#

𝐸! = 𝑘, 𝑡 , 𝑘 ∈ 𝑁

Figure 6.3: Directed graph � 9 (+ 9 , � 9 ) used for computing maximum value of∑
:∈N0

9

g0
9 :
& 9 : .

Directed graph � 9 (+ 9 , � 9 ), 9 ∈ �, consists of + 9 = { 9} ∪ # ∪ {C} and

� 91 = � 91 ∪ �2, where � 91 and �2 are defined by � 91 B {( 9 , :) : 9 ∈ �, : ∈
N0
9
(b0
9 :
= 1)}, and �2 B {(:, C) : : ∈ #}, respectively; a source node is 9 and a

destination node is 3.

The maximum out flow demand of 9 is set to gE
9

∑
:∈# b

0
9 :
−∑

:∈N0
9
! 9 : and

capacity of ( 9 , :) ∈ � 91 is set to * 9 : − ! 9 : . The capacity of edge (:, C) ∈ �2 is

set to an infinite value. The cost of each edge ( 9 , :) ∈ � 91 is −& 9 : . All other

edges have 0 cost. The problem is transformed to a minimum cost flow problem

in Fig. 6.3. With considering −& 9 : as the cost and solving the minimum cost

problem, this algorithm can obtain the maximum value of
∑
:∈N0

9

g0
9 :
& 9 : , which

is the absolute value of the minimum cost with the maximum flow demand

(gE
9

∑
:∈# b

0
9 :
−∑

:∈N0
9
! 9 :). The problem can be solved by the capacity scaling

algorithm [127], which is a capacity scaling successive shortest augmenting

path algorithm with computing complexity $ (<2 log�) [128], where < is the

total edge amount and � is the maximum capacity among edges. Please note

that, for calculating
∑
:∈N0

9

g0
9 :
& 9 : , the obtained each flow that outflows from

node 9 to : needs to be added to ! 9 : ;
∑
:∈N0

9

g0
9 :
& 9 : is calculated with the

updated flows.

Thus,
∑
:∈N0

9

g0
9 :
& 9 : for each 9 ∈ � in the worst case can be obtained in

polynomial time.
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6.3 Numerical evaluations

The MILP problems are solved by the IBM(R) ILOG(R) CPLEX(R) Interac-

tive Optimizer with version 12.7.1 [93] implemented by Python 3.7, using Intel

Core i7-7700 3.60 GHz 4-core CPU with 32 GB memory. In this section, this

work investigates the effects of adopting the recovery time guarantee, uncer-

tainty set, and shared protection in the proposed model; this work investigates

the dependency on the bounds of recovery time.

6.3.1 Experiment settings, baselines, and demonstra-

tion

In the experiments, this evaluation sets the recovery time of each function

randomly in a certain range. Recovery times C1
9

and Cu
9

for CB are randomly

distributed over ranges of [0.5, 1] and [1, 5], respectively, for different func-

tions. Maximum average recovery time gE
9

and waiting time gw are distributed

over ranges of [2, 8] and [0.5, 2], respectively. Unavailable times C1
9

for HB and

Cm
9

for maintenance are randomly distributed over the range of ranges of [0.01,

0.5] and [20, 200], respectively, where the unit for the times is second. This

evaluation sets %H = 0.0175 and %L = 0.0025 and each threshold is equiva-

lent to the half of each capacity of a node to approximate a non-decreasing

workload-dependent failure probability. The work in [88] discussed the pro-

cedure of the approximation of non-decreasing function, where two examples

of step functions fitting the workload-dependent failure probability curve were

presented. The requested loads of functions ;w
9

and ;u
9

are randomly distributed

over the range of [1, 5] and [0.1, 0.5], respectively.

Then, this work introduces five baseline models, as listed in Table 6.1, where

the features of the proposed model and baselines are summarized. Baseline 1,

which was introduced in [33], addresses the function deployment, where each

function can be protected by HB or CB in dedicated protection to minimize

the maximum C 9 among functions, which is the maximum expected unavail-

able time (MEUT) among functions described in (6.3). Baseline 1 considers

the uncertain recovery time handled by the same approach as the proposed

model. It is solved by an MILP problem minimizing (6.3) and constrained to
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Table 6.1: Features of proposed model and baselines.

Model Objective

(Minimize)

Recovery

time guar-

antee

Recovery

time

description

Protection type

Proposed

model

Cost Yes Uncertain Dedicated & shared

Baseline 1 MEUT No Uncertain Dedicated

Baseline 2 Cost Yes Deterministic Dedicated

Baseline 3 Cost Yes Deterministic Dedicated & shared

Baseline 4 Cost Yes Uncertain Dedicated

Baseline 5 Cost Yes Uncertain† Dedicated & shared

Uncertain†: In baseline 5, the upper bound of the uncertain recovery time

with the shared protection is given in consideration of the maximum arbitrary

recoverable functions for nodes. In the proposed model, it is given in

consideration of the expected remaining capacity of a node and the expected

number of unavailable functions.

(6.20b). Baselines 2 and 3 consider the deterministic recovery time in each

model. All the functions are limited to being protected by the dedicated pro-

tection in baselines 2, whereas functions in baseline 3 can be protected by

both dedicated and shared protection. Baselines 2 and 3 are solved by an

MILP problem to minimize the deployment costs while satisfying the recov-

ery time guarantee. Since the uncertainty set (6.12) is not utilized in these

baselines, the maximum value of the recovery time is directly given by * 9 :

given in (6.10). Baseline 2 minimizes the deployment cost described in (6.20a)

constrained to (6.4b)- (6.4e), (6.5)-(6.7) and (6.14); baseline 3 minimizes the

deployment cost described in (6.20a) constrained to (6.4b)- (6.4e) (6.14). Base-

line 4, which was introduced in [118], restricts the functions to be protected
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only by dedicated protection, and the uncertainty of the recovery time of func-

tions are considered. The upper bound of its recovery time is given by (6.9).

Baseline 4 minimizes the deployment cost described in (6.20a) constrained

to (6.4b)- (6.4e) (6.14), (6.14), (6.16b)-(6.16d), and (6.19). Baseline 5 also

considers the uncertain recovery time in the dedicated and shared protection,

but the baseline considers the approach in [115] to derive the upper bounds of

the recovery time with maximum arbitrary recoverable functions for nodes.

This works presents a demonstration to observe the basic characteristics

of the proposed model with four nodes and four functions, where the node

capacities are 10. This evaluation sets the maximum time guarantee ) = 0.0015

[s]. As shown in Fig. 6.4, each function in baseline 1 is protected by three

nodes with four active nodes and MEUT is 0.001251 [s]. Each function in the

proposed model is protected by two nodes with only three active nodes and

one node remaining to save cost; MEUT in the proposed model is 0.001321 [s]

with satisfying the time guarantee. The proposed model saves 25% cost with

5% increase on MEUT; the increase of MEUT corresponds to a situation that

occurs with a probability that all of the primary and three backup nodes fail,

which is about 10−8. The computational time to solve the problem is 1.02 [s].

Further, as the number of functions increases, baseline 1 with considering

the dedicated protection cannot find a feasible solution with no sufficient re-

maining capacity for all backup resources. The proposed model allows the CB

resource sharing and considers the uncertain recovery time. When this evalu-

ation considers six functions and ) = 0.005 [s], the proposed model activates

all four nodes and MEUT is 0.004379 [s]; baseline 1 cannot obtain a feasible

solution.

6.3.2 Effect of recovery time guarantee

This evaluation investigates the effect of recovery time guarantee with focusing

on cost-efficiency. The proposed model saves 43% and 26% on the number of

active nodes compared with baseline 1 among the tested cases, with setting

) = 0.01 [s] and 0.005 [s], respectively, as shown in Fig. 6.5. All the five nodes

are activated in baseline 1 among the tested cases to distribute the workloads

and provide multiple protection against failures of primary and backup nodes.
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Node 1 Node 2 Node 3 Node 4

1H1P1H

2P

2C

2H

3H

3P

3C

T_w=2s, T=0.005

time_0 = 0.0012565078125
time_1 = 0.0014092500000000001
time_2 = 0.0014092500000000001

CB resource

OFF

(a) Propsoed model.

Node 1 Node 2 Node 3 Node 4

1H2P1P

2C

2H

3H

3P

1C

T_w=2s, T=0.005

Baseline

time_0 = 0.00125011388671875
time_1 = 0.0012504957421875002
time_2 = 0.0012501138867187498

1H

2H3H

3H

1P

HB resource Primary resource

(b) Baseline 1.

Figure 6.4: Demonstration of function deployment.

Since baseline 1 only considers minimizing MEUT without saving cost, it tends

to provide excessive backup instances for covering improbable scenarios, which

leads to excessive redundancy. The proposed model minimizes the number of

active nodes with satisfying a time guarantee. Taking the tests with |� | = 8 and

10 as examples, with ) = 0.01 [s], the proposed model only activates two nodes

for function deployment. The primary resources are distributed into two nodes

to decrease the workload-dependent failure probability. When ) = 0.005 [s],

one CB resource for protection cannot guarantee such an expected recovery

time, the proposed model activates the third node so that the functions can be

protected by the HB strategy while the workload of primary and HB resources

can be distributed into three nodes to decrease the workload-dependent failure

probability. Among all the tests, we can observe that more nodes are required

to be activated and provide protection for functions as ) decreases. The cost

increases by 30% when ) decreases by 50%. When the time guarantee is

relatively loose, the functions can be protected with the CB strategy with

shared protection while distributing the primary workload to reduce the failure

probability.

Functions in the proposed model can be protected by both dedicated and

shared protection. As the number of activated node increases, each function

can have a higher probability to be hosted nodes with lower workload and lower

g0
9 :

, which reduces the expected recovery time for each function. Compared

the proposed model with ) = 0.01 and ) = 0.005, we observe that the number

of activated nodes to satisfy the worst-case expected recovery time guarantee

175



Chapter 6

Figure 6.5: Effect of recovery time guar-

antee.

Figure 6.6: Effect of uncertain set of

recovery time.

decreases as the recovery time guarantee increases. HB can be adopted when

the workload is not too high and functions can be protected with shared CB to

reduce cost while satisfying the recovery time guarantee. For the same recovery

time guarantee, more nodes are required to be activated for hosting functions

to distribute the workload while the functions is required to shared protected

with CB to reduce cost when |� | increases and the failure probability of each

node increases. Otherwise, the worst-case expected recovery time increases

and does not satisfy the recovery time guarantee.

6.3.3 Effect of uncertainty set of recovery time

This evaluation investigates the effect of utilizing the uncertainty set to de-

scribe the recovery time. This evaluation compares the proposed model with

baselines 2 and 3. The proposed model utilizes the uncertainty set of recovery

time with CB. Baselines 2 and 3 can only utilize the maximum empirical value

of the recovery time to conservatively provide robustness disregarding that the

actual recovery time may be less than the empirical maximum recovery time;

they do not consider the empirical average and lower bound of recovery time.

* 9 : in baseline 2 is directly given by the empirical value and * 9 : in baseline 3

is calculated with the empirical value and the resource allocation based on

(6.10).

The proposed model saves 36% and 26% on the number of active nodes com-

pared with baselines 2 and 3 among the tested cases, respectively, as shown
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in Fig. 6.6. Since the recovery time g0
9 :

in baselines 2 and 3 is a deterministic

value of * 9 : , the calculated MEUT in the baselines are always larger than

the proposed model when
∑
:∈N0

9
* 9 : > g

E
9
× |N0

9
|. When the number of func-

tions is relatively small, only two nodes are activated in the proposed model.

With the same number of activated nodes, baselines 2 and 3 adopting with

CB cannot satisfy the recovery time guarantee, since the utilized g0
9 :

for each

: is the maximum value of recovery time; baselines 2 and 3 adopting with HB

cannot satisfy the recovery time guarantee since the workload is distributed in

a smaller number of nodes so that the workload-dependent failure probability

is higher. One more node must be activated to distribute the workload to sup-

press the failure probability and HB is adopted in the baselines. An increasing

tendency of recovery time with the increase of |� | in the proposed model can be

observed and more nodes are activated when the worst-case expected recovery

time cannot satisfy the recovery time guarantee anymore.

Then this evaluation focuses on the tendency in Fig. 6.6. As |� | increases,

the number of functions hosted by the same node increases, while the workload

rises, baselines 2 and 3 adopting HB cannot suppress the expected recovery

time to satisfy the recovery time guarantee, one more node is activated to

distribute the workload. With the same recovery time guarantee, since the

proposed model with considering the uncertain set to describe the recovery

time, the worst-case expected recovery time with only adopting CB can sat-

isfy the recovery time requirement to achieve the reduction of cost. As |� |
further increases, activated nodes in baseline 2 cannot host the functions while

satisfying the recovery time requirement, whereas baseline 3 can partially uti-

lize the shared CB to reduce the workload and the deployment cost, this is

why baseline 3 has better performance than baseline 2. As the number of

functions that are shared and protected by the same node increases, both un-

successful recovery probability and expected waiting time may increase. The

calculated MEUT in baseline 3 cannot satisfy the recovery time guarantee since

the utilized g0
9 :

is the maximum value of recovery time. As |� | increases, the

worst-case expected recovery time in the proposed model obtained by utiliz-

ing the uncertainty set satisfies the recovery time guarantee while the MEUT

calculated in baseline 3 with the upper bound of the recovery time considering

the waiting procedure does not satisfy the recovery time guarantee so that one
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Table 6.2: Worst-case expected recovery time in proposed model and baselines

with different |� |.

|� |

8 10 12 14 16

Proposed model 0.0101 0.0698 0.0125 0.0125 0.0149

Baseline 2 0.0251 - 0.0250 - 0.0250

Baseline 3 0.0251 0.1752 0.0250 0.1750 0.0250

Baseline 4 0.0101 - 0.0125 - 0.0149

−: No feasible solution can be obtained with limited number of activated nodes.

node is required to be activated and distribute the workload and to reduce

MEUT.

To compare the worst-case expected recovery time in the proposed model

and baselines 2, 3, and 4, this evaluation fixes the number of nodes that can

host the resource of functions as the minimum number of active nodes obtained

by the proposed model with each parameter setting; this evaluation compares

the worst-case expected recovery time obtained by the proposed model and

baselines 2, 3, and 4 when only these nodes are activated. In Table 6.2, this

evaluation considers that only a limited number of nodes can be used and

the worst-case expected recovery time is minimized. To compare the proposed

model and baselines 2, 3, and 4 more clearly in terms of the worst-case expected

recovery time, this evaluation restricts the proposed model and the baselines

to use only CB. From Table 6.2 we can observe the effect of the uncertainty set

on the worst-case expected recovery time in the proposed model and compared

with baselines 2 and 3, which do not consider the uncertainty set; the worst-

case expected recovery time in the proposed model is 52.2% smaller than that

of baseline 3.

6.3.4 Dependency on bounds of recovery time

This evaluation investigates the dependency of the settings of bounds describ-

ing the recovery time of a function protected by different nodes; g0
9 :

is related
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to the uncertainty set (6.12). In (6.12), gE
9

represents the average recovery

time, ! 9 : and * 9 : represent the upper and lower bounds of the recovery time,

respectively. This evaluation investigates deployment costs obtained by dif-

ferent approaches for different values of coefficient [ =
! 9:
* 9:

, 0 ≤ [ ≤ 1, and

gE
9

. For each setting, this evaluation conducts 10 trials with different resource

allocations and calculate the average deployment cost of all 10 trials with the

given settings. This evaluation compares the proposed model with different

[ and different upper bounds of total recovery time (gE
9
|N0

9
|) with baseline 3,

which is a model with the same recovery time guarantee and objective function

with the same protection types that do not utilize the uncertainty set to effi-

ciently provision functions. Instead, baseline 3 always applies the deterministic

recovery time g0
9 :

, to provide robustness with ignoring (6.12).

Figure 6.7 shows the deployment costs obtained by the proposed model

and baseline 3 for different values of [ and upper bound of total recovery

time (gE
9
|N0

9
|). This evaluation obtains that the deployment cost from the

proposed model increases as the value of gE
9

increases. This is because the

worst-case expected recovery time increases as gE
9

increases so that more nodes

are activated against recovery time guarantee violation. After the value of gE
9

reaches that of

∑
:∈N0

9
* 9:

N0
9

, the deployment costs of the proposed model and

baseline 3 are comparable. Since baseline 3 is not aware of the uncertainty

set, its deployment costs are kept as the same for different values of the upper

bound of total recovery time, which are greater than or equivalent to those of

the proposed model. We observe that, when gE
9
≤

∑
:∈N0

9
* 9:

N0
9

, the deployment

cost in the proposed model decreases as the value of [ increases. This is because

the range of uncertainty decreases as [ increases, which decreases the worst-

case expected recovery time. By utilizing the uncertainty set, the proposed

model with different [ saves the deployment cost on average 13%, 18%, and

23% with different [ compared to baseline 3.

6.3.5 Effect of shared protection

This evaluation investigates the effect of the shared protection, which reduces

deployment costs while increasing waiting time and may further increase the
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Figure 6.7: Dependency on bounds of

recovery time.

Figure 6.8: Effect of the shared pro-

tection.

upper bound of the uncertain recovery time g9 : , as shown in (6.10). This work

investigates the cases of dedicated protection and shared protection. This

evaluation compares the proposed model with baseline 4, which does not allow

backup resource sharing. Figure 6.8 shows the activated number of nodes of

the proposed model baseline 4; it is obvious that leveraging the shared pro-

tection can increase resource efficiency since multiple functions can be shared

protected by a commodity node with CB. By utilizing the shared protection,

the proposed model with different |� | saves the deployment cost on average

14% compared to baseline 4 in Fig. 6.8. In the case that only dedicated pro-

tection is needed to meet the guarantee, the difference between the proposed

model and baseline 4 is relatively small. From Table 6.2 we can observe the

effect of the shared backup on the worst-case expected recovery time by com-

paring the proposed model with baseline 4, which can only adopt the dedicated

protection; we can observe that in some cases, the proposed model, which al-

lows shared protection to reduce the resource utilization, can obtain a feasible

solution with a limited number of activated nodes; baseline 4 cannot obtain

any feasible solution since each backup resource is dedicatedly reserved for each

function and the total required workload exceeds the node capacity. Shared

protection needs less amount of backup resources than that of functions with

dedicated protection but it may not provide complete recovery when multiple

functions fail concurrently. More specifically, the utilization of shared protec-

tion may lead to the waiting procedure for recovery. With considering the
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expected remaining capacity of a node and the expected number of unavail-

able functions hosted by the node, the upper bound of the g0
9 :

increases as the

number of N9 : increases and C9 : decreases, as shown in (6.5), (6.6), and (6.12).

When the recovery time guarantee is relatively relaxed, the proposed model

shows a larger superiority over baseline 4 compared with a stricter recovery

time guarantee.

Then this evaluation compares two approaches to calculate the upper bound

of the recovery time of the shared protection. Previous work in [115] introduced

the theoretical derivation of the maximum arbitrary recoverable functions for

nodes by viewing an instance of assignment between functions 9 ∈ � and nodes

: ∈ # in the model as a bipartite graph. Similarly to the work in [115], this

work can derive the number of maximum arbitrary recoverable functions of

each node. When the number of unavailable functions exceeds the recovery

capacity of the host node, there may be a delay in the recovery of functions due

to waiting time. Thus, this work can obtain an upper bound of the recovery

time g9 : under consideration of waiting time in the shared protection by lever-

aging the number of maximum arbitrary recoverable functions of each node

to replace C9 : in the proposed model in (6.6). In baseline 5, this evaluation

compares the number of maximum arbitrary recoverable functions and the ex-

pected C9 : . Similar to (6.7), this evaluation compares N9 : and the number of

maximum arbitrary recoverable functions in baseline 5 to obtain d 9 : and l 9 : .

Since the number of maximum arbitrary recoverable functions is not related

to 9 , this evaluation sets d 9 : and l 9 : in baseline 5 are the same for each 9

protected by the same node :.

Figure 6.8 compares the worst-case expected recovery times obtained by

the proposed model and baseline 5 for different numbers of functions with dif-

ferent approaches to obtain the upper bound of the recovery time. By utilizing

the shared protection, the proposed model with different |� | saves the deploy-

ment cost on average 6% compared to baseline 5. Comparing the worst-case

expected recovery times obtained by the proposed model and baseline 5, which

adopts different approaches to obtain the uncertain set, we can observe that

mode nodes are activated in baseline 5 due to the recovery time guarantee

violation. Since the derivation of the number of maximum arbitrary recover-

able functions does not consider the current recovery situation (function 9 is
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recovery by which node and the node’s priority), it is a coarser granularity and

more conservative expression of the recoverable ability of the nodes. Therefore,

baseline 5 has a larger upper bound of the uncertain recovery time than the

proposed model. Further, the computation time of the proposed model to ob-

tain the optimal solution by solving the MILP problem is about 1.38 times less

than that of baseline 5, since the number of maximum arbitrary recoverable

functions in baseline 5 requires an addition algorithm to solve the problem in

a bipartite graph, which is more complex calculating the expected remaining

capacity, C9 : , and the expected number of unavailable functions, N9 : .

6.3.6 Competitive evaluation on computation time and

accuracy

This work shows the comparisons on the number of activated nodes and com-

putation time between the MILP approach and the heuristic algorithm for

different numbers of nodes and functions to evaluate the heuristic algorithm

for different sizes of problems. This work sets the allowable computation time

to 10000 [s] to solve each MILP problem. This work considers a larger size

problem with eight nodes with around 20 functions. The developed algorithm

is adopted to solve larger-size problems; this evaluation sets )init = 100 and

)init = 1000 for two sets of cases; the temperature decreasing rate is set to 0.95

for SA.

Table 6.3 shows the number of activated nodes and computation times for

the MILP approach and the heuristic algorithm, where Obj. represents the

number of activated nodes and the Comp. time indicates the computation

time. We observe that the computation times of the heuristic algorithm with

)init=100 and )init=1000 are 74 and 58 times smaller than that of the MILP

approach on average in the seven tests, respectively; as the problem size in-

creases, the computation time of the MILP approach increases. The larger the

problem size is, the more the computation time of the heuristic algorithm is

reduced compared with that of the MILP approach. The case with )init=100

has a solution with higher deployment cost within a shorter computation time

than that of )init = 1000. On the other hand, the case with )init=1000 gets a

better solution as much as possible in a tolerable time than that of )init = 100.
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Table 6.3: Number of activated nodes and computation times of MILP ap-

proach and heuristic algorithm with different parameters.

|� |

MILP
Heuristic

)init=100 )init=1000

Obj. Comp. time [s] Obj. Comp. time [s] Obj. Comp. time [s]

14 3 616.1 3 52.7 3 88.2

16 3 980.4 4 68.8 4 137.2

18 4 1796.3 4 109.7 4 219.2

20 4 3823.5 5 281.3 4 327.3

22 5 57683.5 6 412.5 5 542.3

24 6† 105 6 519.7 5 608.7

26 8† 105 6 571.6 6 867.1

†: Feasible solution obtained within 105 [s]

The computation time of the heuristic algorithm is similar when the same

number of nodes is activated. The number of activated nodes derived by the

heuristic algorithm is 14% larger than that of the MILP approach on aver-

age among the seven tests with )init = 100; it is 28% smaller than that of

the MILP approach on average among the seven tests with )init = 1000 since

the computation time of MILP approach is limited in a tolerable computing

time, 105 [s]. The difference between the number of activated nodes derived

by the heuristic algorithm and that of the MILP approach does not exceed 1

in the seven tests. The heuristic algorithm activates a fixed number of nodes

and randomly adjusts the resource allocation to satisfy the reliability indica-

tors. Similar to the MILP approach, the related calculation of (6.15a)-(6.15d)

and (6.16a)-(6.16d) introduces additional variables and increases the compu-

tational time complexity to find the worst-case expected recovery time when

the recovery time C0
9

is in the uncertainty set (6.12). In the heuristic algo-

rithm, the worst-case expected recovery time needs to be computed in each

initial solution given by Algorithm 6.1 and in each iteration in Algorithm 6.2
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by executing Algorithm 6.3, which requires building a graph in Fig. 6.3 and

finding the maximum flow of the graph and brings a longer computation time

compared with the algorithm that does not consider calculating the worst-case

expected recovery time in the uncertain recovery time set.

6.4 Summary

This chapter proposed a robust function deployment model against uncer-

tain recovery time with satisfying an expected recovery time guarantee in

a cost-efficient manner. Each node fails with a workload-dependent failure

probability; preventive deployed backup resources can recover the unavailable

function hosted by a failed node within a period of time related to the backup

strategy. The expected recovery time of a function is related to the backup

strategy (HB or CB strategy), protection types (dedicated or shared protec-

tion), the workload of the node hosting it, and the number of unavailable

functions and remaining capacity of available nodes. This chapter introduced

an uncertainty set that considers the upper bound of the average recovery

time among nodes and the upper and lower bounds of each recovery time.

The robust optimization technique was applied to handle the worst-case ex-

pected recovery time among the uncertain recovery time satisfying a recovery

time guarantee; the model was formulated as an MILP problem. A greedy-

based simulated annealing algorithm was developed to address the considered

problem in practical scenarios. In the algorithm, this chapter transformed

the linear-programming problem to obtain the worst-case expected recovery

time among uncertain times into a graph problem. The algorithm decreases

the number of active nodes while decreasing the worst-case expected recovery

time until the recovery time satisfies the recovery time guarantee. The nu-

merical results showed the superiority of the proposed models by taking into

account the recovery time guarantee, uncertainty set, and shared protection,

and this chapter investigated the dependency on the uncertain recovery time

boundaries.
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Resource allocation strategies

for accelerating recovery under

reliability guarantees with

workload-dependent failure

probability

This chapter proposes a primary and backup resource allocation model under

reliability guarantees to minimize the deployment cost [125].

The remainder of the chapter is organized as follows. Section 7.1 presents

the motivation of the proposed model. Section 7.2 describes the proposed

model. Section 7.3 introduces a heuristic algorithm. Section 7.4 presents

numerical results that show the performance of the proposed model in different

cases. Section 4.5 summarizes this chapter.

7.1 Motivation for considering workload-related

recovery time in two aspects

The recovery time relates to different backup modes [60]; the modes have differ-

ent workloads to provide different pre-configuration states for recovery [61]. If

185



Chapter 7

Figure 7.1: Comparison among different backup modes.

the backup resources are only deployed without being activated as an instance,

the recovery time of an unavailable function relates to the activation and in-

stantiation time; the backup mode is called cold backup (CB). If a backup

instance is activated and synchronized with the primary function so that the

backup instance can take over the task running on the function immediately,

the recovery time is only affected by the monitoring mechanism of the avail-

ability of physical nodes [62]; the backup mode is called hot backup (HB). In

addition to the two typical backup modes, warm backup (WB) is also com-

monly used for cost-efficient prompt failure recovery [63]. In the warm backup,

a backup instance of the function is already resident in memory; it is partially

or fully initialized for standby; the backup instance synchronizes the state

of services from the processing primary function periodically. When the pri-

mary function fails, the backup instance can take over the tasks running on

the primary function faster than CB based on the pre-configuration. Com-

pared with the HB mode, where the backup instance is fully pre-configured,

backup resources with different degrees of the pre-configuration in WB recover

the unavailable primary function in a longer or equal time. In other words,

the more sufficient pre-configuration (including the instantiation, initializa-

tion, and synchronization) a backup instance provides, the faster the recovery

procedure can be, as shown in Fig. 7.1. This work considers that there exist

multiple states of pre-configuration for different types of service, i.e., stateful

and stateless services [64] with different degrees of instantiation, initialization,

and synchronization.

The recovery of an unavailable function requires workloads, which include
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Figure 7.2: Left: primary workload is dedicatedly assigned for each function;

right: when function 1 is not being recovered by node 1, the non-activated

workload of function 1 can be utilized by functions 2 and 3 to speed up the

recovery, where node 1 hosts each backup resource of functions 1, 2, and 3.

the workloads for instantiation, initialization, and synchronization. After re-

covery, the workload increases from backup workload for pre-configuration to

primary workload for steady running. For higher reliability, the workload for

a primary resource is commonly dedicatedly reserved for each function with

providing redundant backup instances for covering improbable situation of un-

availability of nodes, which leads to redundancy. However, if a function is not

being recovered by a node, the non-activated resource, which is equal to the

difference between the primary and backup workloads, is not utilized. Service

providers can utilize the non-activated workload, which is similar to resource

scale-up in cloud computing [129, 130]; they should consider a suitable toler-

ation on the function reliability degradation. Figure 7.2 shows an example in

which node 1 protects functions 1, 2, and 3. When function 1 is not being

recovered by node 1, the non-activated workload of function 1 can be utilized

by functions 2 and 3 to speed up their recovery, where a function can be recov-

ered faster if more computing resources are permitted to be used. On the other

aspect, the workload of a node during recovering unavailable functions may ex-

ceed its capacity and lead to unsuccessful recovery. Thus, suitable toleration on
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the function reliability degradation should be considered. The work in [131]

considered reducing operating cost by scaling computational resources with

satisfying the consumer demand. This work considers the balance between

the deployment cost and the recovery time that is affected by the allocated

resources. The proposed model reduces the cost while keeping a certain level of

reliability, rather than offering unnecessary redundancy; it considers the active

number of nodes as the deployment cost, and the workload-dependent failure

probability as the proportionate cost [83].

7.2 Optimization model

7.2.1 Model description

Let # and � denote a set of nodes and a set of functions, respectively. Consider

# 9 , which is a subset of # with |# 9 | ≥ 1, as nodes hosting the backup resources

of function 9 ∈ �. This work considers that each node can host both primary

and backup resources. Let |P
9

represent the given workload of each running

primary function 9 ∈ �. Considering the backup resources for function recov-

ery, the required pre-configuration state for each function is not the same; this

work considers that " 9 , 9 ∈ �, represents a set of backup modes for function 9

with different degrees of instantiation, initialization, and synchronization. For

instance, periodic synchronization can speed up the recovery for the functions

of a stateful service, e.g., database; it cannot improve the recovery time for

the functions of a stateless service, e.g., web service [64]. Each backup mode

< ∈ " 9 corresponds to a processing workload of the backup resource for func-

tion 9 ∈ �, which is represented by |B
9<

. Let |R
9 :

represents the workload in

node : ∈ # that is permitted to be used by function 9 ∈ � for recovery. �8

represents the maximum resource capacity of node 8 ∈ # for processing the

resources hosted by the node.

G:<
8 9

, 8 ∈ #, 9 ∈ �, : ∈ #\{8}, < ∈ " 9 , represents a binary variable; G:<
8 9

is

1 if the primary resource of function 9 is hosted by node 8 and the function is

protected by node : with backup mode <, and otherwise 0. Let j8 9 denote a

binary variable that equals ∨
<∈" 9

∨
:∈#\{8} G

:<
8 9

; it is 1 if primary resource of

function 9 is hosted by node 8, and otherwise 0. b 9 : denotes a binary variable
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that equals ∨
<∈" 9

∨
8∈#\{:} G

:<
8 9

; it is 1 if the backup resource of function 9 is

hosted by node :, and otherwise 0.

!W
8
, 8 ∈ #, denotes the workload of node 8, which includes the primary

workload of running functions and the pre-configuration backup workload for

functions hosted by node 8. !,
8

can be given by:

!W
8 =

∑
9∈�
{|P

9 j8 9 +
∑
<∈" 9

|B
9<Z

<
98 },∀8 ∈ #, (7.1)

where
∑
9∈� |

P
9
j8 9 is the workload for the primary resource hosted by node

8;
∑
9∈�

∑
<∈" 9

|B
9<
Z<
98

is the total workloads for the pre-configuration of the

backup functions hosted by node 8.

By analyzing the empirical relationship in tracelog, the workload-dependent

failure probability is given; an S-step function can be adopted to conservatively

approximate the failure probability depending on the node workload, as shown

in Fig. 7.3. Let S denote the number of steps; B ∈ S = [1,S] represents the

Bth step in the failure probability, and this work has )0
8
= 0 and )S

8
= �8, 8 ∈ #.

@8 can be described by:

@8 =


%1, )0

8
≤ !,

8
≤ )1

8

%2, )1
8
< !,

8
≤ )2

8
...

...

%S , )S−1
8

< !,
8
8 ≤ )S

8
,

(7.2)

When the workload of a node grows from () B−1
8

, ) B
8
] to () B

8
, ) B+1
8
],, the failure

probability grows from %B−1 to %B. Even if there is remaining capacity for a

node, as the workload grows, the node becomes more vulnerable and has a

higher failure risk to host some additional workloads.

The backup modes of each function affect the workload-dependent failure

probability of the node hosting it and the recovery time if it becomes unavail-

able under node failures. Let CB
9<
, 9 ∈ �, < ∈ " 9 , be a given recovery time

for backup mode <, each of which corresponds to backup workload |B
9<

for

pre-configuration. The recovery time of a function is also related to the re-

covery ability and the assigned recovery workload of each node that protects

the function; the recovery times of a function protected by different nodes as-

signed with different recovery workloads can be collected and analyzed. Let
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Figure 7.3: Workload-dependent failure probability can be described by an

S-step function.

AR
9 :
, 9 ∈ �, : ∈ # 9 , represent the rate of node : to recover function 9 , each of

which is related to the assigned recovery workload |R
9 :

. Each recovery rate has

been normalized, where normalization refers to a scale of the recovery time on

each node whose assigned recovery workload is equal to the primary workload,

as the example shown in the left side of Fig. 7.2. The relationship between

assigned recovery workload and recovery rate can be approximated by a step

function shown Fig. 7.4(a), where Fig. 7.4(b) shows a numerical example of

the relationship. The recovery time of function 9 protected with mode < by

node : is
CB
9<

AR
9:

.

As this work considers that a larger assigned recovery workload can increase

the recovery rate, this work sets the node assigned with a larger recovery work-

load to the higher priority among multiple backup resources. $ 9 : is an integer

that reflects the priority of a backup instance in : ∈ # 9 for recovering an

unavailable function 9 , which is affected by the assigned recovery and backup

workloads. Let $ 9 : = "1|
R
9 :
+ "2|

B
9<
Z<
9:

, where "1 and "2 are given mul-

tipliers to make "1|
R
9 :

and "2|
B
9<
Z<
9:

as integers. This work sets "1 � "2

so that the assigned backup workload affects the priority when the assigned

recovery workload is the same for some nodes that host the backup resources

of a function. The larger $ 9 : is, the higher priority node : is responsible for

recovering function 9 with; $ 9 : = 0, : ∈ #\# 9 .
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(a) Relationship between assigned recov-

ery workload and recovery rate is approx-

imated by "-step function.

(b) Example, where assigned reocvery

workload is comapred with primary work-

load.

Figure 7.4: Relationship between assigned recovery workload and recovery

rate.

7.2.2 Reliability guarantees

This work considers two reliability guarantees for different recovery scenarios.

The first one is a recovery time guarantee with considering a situation that

a function can be successfully recovered by an available node with its backup

resource. The recovery time for each function is restricted not to exceed the

recovery time guarantee. The second one is an unsuccessful recovery probabil-

ity guarantee, where the unsuccessful recovery probability is restricted not to

be greater than a given survivability parameter.

Assuming that each node independently fails with a corresponding prob-

ability. The recovery time guarantee considers the expected recovery time of

unavailable function 9 if the function can be successfully recovered by an avail-

able node with backup resource; the expected recovery time can be expressed

by:

g9 =
∑
<∈" 9

∑
8∈#

∑
:∈# 9

CB
9<

AR
9 :

G:<8 9 @8

∏
$ 9: ′>$ 9:

@: ′ (1 − @: ),∀ 9 ∈ �, (7.3)

where multiple concurrent nodes failures are considered.

Let PΓ be a collection of of all feasible failure configurations, each with

at most Γ failed nodes in #. Let Pf
Γ
, f ∈ C B [1, |PΓ |], represent the fth
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element in PΓ; it is a set of failed nodes, which is called a failure configuration.

Each %f
Γ

occurs with a specific probability |f with considering a workload-

dependent failure probability of each node, where |f is a weight of the un-

availability for the failure configuration. |f can be described by:

|f =
∏
8∈Pf

Γ

@8

∏
8∈#\Pf

Γ

(1 − @8),∀f ∈ C, (7.4)

The unsuccessful recovery probability corresponds to two cases. In one

case, the nodes hosting all of the primary and backup resources of a function

fail; in the other case, the total workload of any node during recovery (with

utilizing the extra-assigned recovery workload) exceeds the capacity under a

failure configuration.

Let ℎf
9
, 9 ∈ �, f ∈ C, be a binary; it is 1 if all the nodes that host the

resources of function 9 fail concurrently (in other words, all the nodes are in

Pf
Γ

), and otherwise 0. More precisely, In a mathematical formula, ℎf
9

is 1 if∑
8∈#
(j8 9 + b 98) =

∑
8∈Pf

Γ

(j8 9 + b 98), 9 ∈ �, f ∈ C. (7.5)

Binary variable ∨ 9∈�ℎf9 is 1 if at least one function under failure configuration

Pf
Γ

cannot be recovered by any available backup resource of it, and otherwise

0.

When the primary workload for a function is not dedicatedly reserved, un-

successful recovery may occur under some failure configurations, each of which

occurs with a probability. In other words, since the non-activated workload

can be utilized by other functions protected by the node for higher-speed re-

covery, all the unavailable functions may not be recovered simultaneously with

the assigned recovery workload.

In other words, Uf
9:

is 1 if all :′ that satisfy $ 9 : ′ > $ 9 : is in %f
Γ

. Let Xf
9:

represent the probability of Uf
9:
= 1, which can be expressed by:

Xf9: = U
f
9:

∑
8∈#

j8 9@8

∏
: ′∈%f

Γ
:$ 9: ′>$ 9:

@: ′ (1 − @: ),∀ 9 ∈ �, : ∈ #\%fΓ , f ∈ C.

(7.6)

This work introduces #∗
9 :f

which denotes a set containing the unavailable

nodes hosting the backup and primary resources of function 9 when it is recov-

ered by node : under failure configuration %f
Γ

, i.e., Uf
9:
= 1. More specifically,
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#∗
9 :f

includes node 8 that hosts the primary resource of function 9 with j8 9 = 1;

it also includes the unavailable nodes :′ that have higher recovery priority $ 9 : ′

than $ 9 : . Let 4
9

: : ′ = 1 if $ 9 : ′ > $ 9 : ; 0 otherwise. In a mathematical formu-

lation, #★
9:f

can be expressed by: #∗
9 :f

= {:′ ∈ # 9\{:}|4 9: : ′ = 1 and Uf
9:
=

1} ∪ {8 ∈ #\{:}|j8 9 = 1}, 9 ∈ �, : ∈ #\%f
Γ
, f ∈ C.

Multiple functions can be recovered a node simultaneously. Let �c denote a

set containing all combinations of functions. Let F lc , l ∈ F B [1, |�c |], denote

the lth element in �c. Node : recovers the functions in F lc under Pf
Γ

with a

certain probability, Zf
l:

, which is expressed by:

Zfl: =
∏

: ′∈ ∪
9∈Flc

#∗
9:f

@: ′,∀l ∈ F, : ∈ #\%fΓ , f ∈ C, (7.7)

where ∪
9∈F lc

#∗
9 :f

represents a node set that contains all possible unavailable

nodes among functions 9 ∈ F lc ; ∪ expresses the “or” operation among each

set #∗
9 :f

.

Let !R
8lf
, 8 ∈ #\%f

Γ
, l ∈ F, f ∈ C, represent the workload of node 8 during

recovering unavailable functions 9 ∈ F lc under failure configuration Pf
Γ

, which

can be described by:

!R
8lf =

∑
9∈�

|P
9 j8 9 +

∑
9∈F lc

{
Uf98|

R
98b 98+∑

<∈" 9

(1 − Uf98)|B
9<Z

<
98

}
,∀8 ∈ #, l ∈ F, f ∈ C, (7.8)

where the first term expresses the total primary workload of functions hosted

by node 8, the former part of second term expresses the total recovery workload

of functions which are recovered by node 8, and the latter of second term

expresses the total backup workload of functions hosted by node 8.

Let �f
8l

represent a binary variable, which is set to 1 if !R
8lf

exceeds capacity

�8 when functions in F lc is being recovered by node 8 under failure configuration

Pf
Γ

, and 0 otherwise. In a mathematical formulation, it can be expressed by:

If !R
8lf
≤ �8 then

�f
8l
= 0

Else

�f
8l
= 1.

(7.9)
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The total probability for unsuccessful recovery among all failure configura-

tions is described by:

U =
∑
f∈C

©­«
∑
l∈F

∑
8∈#\%f

Γ

Zfl8�
f
8l + |f

(
∨ 9∈�ℎf9

)ª®¬ . (7.10)

This work formulates the function deployment problem as the following

optimization problem:

min
∑
8∈#

Δ8 (7.11a)

s.t.Δ8 = ∨ 9∈� (j8 9 ∨ b 98) (7.11b)∑
8∈#

j8 9 = 1,∀ 9 ∈ �, (7.11c)∑
<∈" 9

∑
8∈#\{:}

G:<8 9 ≤ 1,∀ 9 ∈ �, : ∈ #, (7.11d)

C 9 ≤ ),∀ 9 ∈ �, (7.11e)

U ≤ n, (7.11f)

!W
8 ≤ �8,∀8 ∈ #, (7.11g)

|R
98 ≤ �8,∀8 ∈ #, 9 ∈ �, (7.11h)

(7.1) − (7.10), (7.11i)

G:<8 9 , j8 9 , b 98, Z
<
8 9 ∈ {0, 1},∀8 ∈ #, : ∈ #\{8}, 9 ∈ �, < ∈ " 9 , (7.11j)

ℎf9 ∈ {0, 1},∀: ∈ #, 9 ∈ �, f ∈ C, (7.11k)

Uf9: ∈ {0, 1},∀: ∈ #\%
f
Γ , 9 ∈ �, f ∈ C, (7.11l)

4
9

: : ′ ∈ {0, 1},∀ 9 ∈ �, : ∈ # 9 , :
′ ∈ # 9 \ {:}, (7.11m)

�f8l ∈ {0, 1},∀8 ∈ #\%fΓ , l ∈ F, f ∈ C. (7.11n)

Equation (7.11a) minimizes the active number of nodes hosting primary and

backup resources with different modes of function deployment. Equation (7.11c)

ensures that the primary resource of each function in � is hosted by only one

node in #. Equation (7.11d) ensures that each function can be protected by

a node with at most one backup mode. Equation (7.11e) imposes that the ex-

pected recovery time of each function does not exceed a given time guarantee,

) . Equation (7.11f) imposes that the total unsuccessful recovery probability
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in all failure configurations does not exceed a given survivability parameter,

n . Equations (7.11g) and (7.11h) impose that the workload on each node does

not exceed its maximum computing capacity �8.

Appendix H and the work in [114] describe a part of linearization process

of the model; the problem can be formulated as an MILP problem.

7.3 Heuristic algorithm

The computational time for solving the MILP problem is time-consuming,

to solve a larger-size problem in a practical time, a heuristic algorithm for

obtaining an approximate solution of the considered problem is presented in

this section.

Algorithm 7.1 Simulated annealing

Input: �, #,)=
8
, %=, �8, |

P
9
, |B

9<
, )min, )init,

Output: G:<
8 9
, |R

9 :

1: Sort # by �8 decreasingly.

2: Iteratively allocate the primary resource of function 9 to each node until

the workload exceeds its capacity. Record #′′
9
= #\{the allocated node}.

3: for 9 = 1→ |� | do

4: Sort #′′
9

based on the number of hosting functions on each node de-

creasingly.

5: Allocate a backup resource for function 9 with a random backup mode

and random assigned recovery workload to the first node in #′′
9

until the

workload exceeds its capacity, where the function is allocated to the next

node in sorted #′′
9

if the workload exceeds. Update #′′
9
.

6: Record the number of activated nodes as =.

7: end for

8: for =→ |# | do

9: ) ← )init

10: Add a new backup resource of each function in � on the newly activated

node regardless of the capacity constraint.

11: while ) ≥ )min do

12: Randomly re-allocate function 9 from a node in #\#′′
9

to an acti-

vated node in #′′
9
. Update #′′

9
.
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13: Randomly adjust the backup mode of a randomly chosen function.

14: Sort nodes with the number of functions hosted by it increasingly.

Randomly release a backup instance of a function hosted by the first node

in the sorted set if the function has multiple backup resources; increase

the assigned recovery workload of the remaining backup resource of the

function. Update #′′
9
.

15: Randomly assign a new backup instance of a function to a node in

#′′
9
. The function is preferentially assigned to an activated node; a new

node is activated with a probability d. The new backup resource is assigned

with a random backup mode and random recovery workload. Update #′′
9
.

16: while !w
8

exceeds the capacity of node 8 do

17: Randomly swap the primary and backup resource allocation of

a function hosted by node 8.

18: end while

19: Calculate the expected recovery time g9 and unavailable probability

U using updated solution x′.

20: if g9 ≤ C and U ≤ n then

21: Return Δ, x ,g9 , and U
22: else

23: x← x′ with probability of min(1, @), where @ = 4−
g′
9
−g 9
) .

24: ) = ) · a given decreasing rate

25: end if

26: end while

27: end for

Algorithm 7.2 Calculation of reliability indicators

Input: G:<
8 9
, |R

9 :
, #′′

9

Output: g9 , U
1: Calculate the failure probability of each node based on their workload.

2: Calculate the recovery rate AR
9 :

of each node for each function based on

their assigned recovery workload |R
9 :

; Calculate priority $ 9 : .

3: Calculate the expected recovery time g9 based on (7.3) with considering

the assigned backup mode.

4: Set Uf
9:
= 1 if all :′ that satisfy 4

9

: : ′ = 1 is in %f
Γ

.
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5: If
∏

9∈F lc Uf
9:
= 1, calculate the workload of node 8 after failure configura-

tion f with (7.8) when recovering functions in F lc . Determine �f
8l

.

6: Calculate Xf
9:

based on (7.6).

7: Calculate the unsuccessful recovery probability U based on (7.10).

This work uses simulated annealing (SA) [94] to minimize the number of

nodes activated for function deployment while satisfying the reliability guaran-

tees. This work first gives an initial function deployment in a greedy manner

(lines 1-6) and record the number of activated nodes as =. This work con-

siders nodes in set #′′
9
, which is # excluding the allocated node, for function

9 (lines 2-6). Function 9 is deployed to a node in #′′
9

that hosts the most

functions to activate as few as possible nodes are assigned for function deploy-

ment. When the workload of the first node exceeds the capacity, the function

is allocated to the next node that has enough capacity to satisfy the capacity

constraints.

Since the considered problem aims to minimize the number of activated

nodes while satisfying the reliability guarantees, Algorithm 7.1 minimizes the

expected recovery time and unsuccessful recovery probability when a given

number of nodes are admitted to be used (lines 8-26), where the reliability

indicators are calculated by Algorithm 7.2. Fixing the number of activated

nodes, the resource allocation, including the function deployment with backup

modes and assigned recovery workload, changes randomly to generate a new so-

lution (lines 9-17) and calculates new reliability indicators with Algorithm 7.2

in each iteration of the temperature decreasing. When both calculated relia-

bility indicators satisfy the reliability guarantees, Algorithm 7.1 is terminated

with accepting and returning the corresponding solution (lines 18-21). When

any of the reliability indicators does not satisfy the reliability guarantees until

the temperature decrease to the set minimum temperature )min, one more node

is permitted to be activated (line 8); a new round of the iteration of decreas-

ing the temperature from )init (repeating lines 9-25) with randomly changing

the deployment from the initial allocation obtained in lines 2-6. SA accepts a

worse solution with larger reliability indicators than the existing solution with

probability of min{1, 4−
g′
9
−g 9
) } (line 22).
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7.4 Numerical evaluations

This work first introduces demonstrations to show the basic characteristics

of the proposed model. Further, this work describes the experiment settings

and the baseline models; this work compares the proposed model with three

baselines.

7.4.1 Demonstration

This work introduces two demonstrations with four nodes and four functions,

where the node capacities are 10 and the primary workloads of functions are

set to 2. This work considers a two-step function with setting %1 = 0.0025

and %2 = 0.01 and set each threshold to 50% of each node’s capacity. Four

backup modes with < = 1, 2, 3, and 4 are considered for each function; the

backup workload is set to 0.5, 1, 1.5, and 2 for each mode, respectively; the

corresponding recovery time is set to 2, 1.5, 1, and 0.5, respectively. The

recovery workload, |R
9 :

, can be assigned for faster recovery to a range over

[2,10], where 2 is the primary workload of function and 10 is the node capacity.

For a model linearization purpose, this range is divided into four sub-ranges,

which are [2,3), [3,4), [4,5), and [5,10] similar to the horizon axis of Fig. 7.4(a);

each sub-range has its reciprocal of the recovery rate, 1/AR
9 :

, that is set to 1,

0.9, 0.8, and 0.7, respectively, similar to the vertical axis of Fig. 7.4(a). The

maximum time guarantee is set to ) = 0.005 [s] for demonstrations. This work

sets n = 2 × 10−4 and n = 10−6 for demonstrations 1 and 2, respectively, as

reliability guarantees.

Figure 7.5 shows the primary (“P”) and backup (“B”) resource allocation

with backup mode < of function deployment. As shown in demonstration 1

of Fig. 7.5(a), each function is protected by two nodes to fit the reliability

guarantee n = 10−6, where totally three nodes are activated. Except for the

situation that nodes 1, 2, and 3 fail simultaneously, the workload during re-

covery of any failure configuration, !R
8lf

, is smaller than each capacity so that

unsuccessful recovery does not occur. For each function, the recovery workload

of a node with a higher priority to recovery the function is assigned to 3; its

corresponding reciprocal of the recovery rate is 0.9. The maximum recovery

time among the four functions is 0.004851 [s] to fit the maximum recovery time
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(a) Demostration 1: ) = 0.005, n =

2 × 10−4.

(b) Demostration 2: ) = 0.005, n =

10−6.

Figure 7.5: Demonstration of function deployment (recovery workload of each

node protects each function without star mark is 2).

guarantee.

When the reliability guarantee is relaxed with maintaining the same maxi-

mum recovery time guarantee, each function is protected by one node, as shown

in demonstration 2 of Fig. 7.5(b). The recovery workload, |R
9 :

, of each function

by its backup node is assigned to 3 and the corresponding reciprocal of the

recovery rate, 1/AR
9 :

, is 0.9. The maximum recovery time among the four func-

tions is 0.004455 [s]. The probability that the nodes hosting the functions fail

simultaneously is 10−4. Similar to demonstration 1, the extra-assigned recov-

ery workload speeds up the recovery while avoiding the unsuccessful recovery

probability under some failure configurations to fit the reliability guarantee.

The computation time for this size problem in the demonstration is at most

10 [s].

7.4.2 Baselines and experiment settings

Baseline 1 considers a situation that each function has only one backup mode

and its recovery time corresponding to the selected backup mode is given

and fixed. Baseline 2 considers a fixed assigned recovery workload which is

equal to the primary workload for each function. Baseline 3 does not consider

the workload-dependent failure probability; the failure probability is set to

a constant value as maxB∈S %B since the failure probabilities with different
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(a) Experiment 1: ) = 0.008 and n = 10−4. (b) Experiment 2: ) = 0.005 and n =

10−6.

Figure 7.6: Comparison with baselines.

workloads cannot be judged. The objective value of baselines 1, 2, and 3

is to minimize the number of activated nodes with satisfying the reliability

guarantees. Baseline 4 considers the same model setting with minimizing a

weighted value of maximum recovery time and reliability among functions

without considering the deployment cost.

This work considers a smaller-size problem with five nodes where the node

capacities are randomly distributed over [15, 25]. The ratios of )8
�8

for each node

8 are randomly distributed over [0.4, 0.8]. The primary workload of functions

is randomly distributed over the range of [1, 4]. Each function can have 2, 3, or

4 backup modes with different pre-configuration states, i.e., |" 9 | = 2, 3, or 4.

Each backup mode has different backup workloads for pre-configuration. The

backup workload of function 9 for backup mode < is randomly distributed over

the range of ( (<−1)|P
9

|" 9 | ,
<|P

9

|" 9 | ], where < ∈ [1, |" 9 |]. The recovery workload and

recovery rate settings are the same as the demonstrations in Section 7.4.1. This

work sets %1 = 0.0025 and %2 = 0.0175 as the same settings with Chapter 4.

7.4.3 Comparison with baselines on cost-efficiency

This work compares the proposed model with the baselines on cost by con-

ducting two experiments with setting ) = 0.008, n = 10−4 and ) = 0.005,

n = 10−6 for experiments 1 and 2, respectively. In experiment 1, the reliability
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guarantees are relatively loose; each function can be protected by at least one

node while satisfying the guarantees. As shown in Fig. 7.6(a), the number of

activated nodes in baselines 1, 2, and 3 is on average 14%, 11%, and 21%,

respectively, larger than that of the proposed model, over the different values

of |� |. The number of activated nodes is 43% reduced by considering the pro-

posed model compared with baseline 4 in the examined case. All the five nodes

are activated in baseline 4 to distribute the workloads and provide protection

against failures as much as possible. In experiment 2, the reliability guarantees

restrict that each function must be protected by more than one node to satisfy

that the total unsuccessful recovery probability does not exceed n = 10−6. As

shown in Fig. 7.6(b), the number of activated nodes in baselines 1 and 2 is on

average 23% and 8%, respectively, larger than that of the proposed model; any

feasible solution cannot be found in baseline 3.

Then this work discusses the reasons for the differences between each base-

line and the proposed model.

Baseline 1 considers that each function is protected with one fixed backup

mode with a fixed workload; it lacks flexibility for adapting the resource alloca-

tion and backup modes to reduce the maximum recovery time. In comparison

between the proposed model and baseline 1, when the total workload is so

small that the reliable time in the proposed model can be easily suppressed to

be smaller than ) with the admitted activated nodes, baseline 1 shows simi-

lar performance with the proposed model. As |� | increases, each function is

protected by more than one node with the same backup mode in baseline 1;

the baseline cannot suppress node workloads with a similar approach demon-

stration 1 in Section V.A. It leads to the increase of maximum recovery time

and further leads to the increase of the number of activated nodes. When the

reliability is relatively strict in experiment 2, baseline 1 with considering only

one backup mode shows worse performance than a loose reliability guarantee

in experiment 1.

Baseline 2 cannot find any feasible solution with activating nodes with the

same number of the proposed model without an extra-assigned recovery work-

load in experiment 1; the baseline needs to activate one more node than the

proposed model to distribute the workload and reduce the workload-dependent

failure probability to satisfy the recovery time guarantee with some different
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values of |� |. On the other aspect, the extra-assigned recovery workload may

lead to the unsuccessful recovery under some failure configurations. Thus,

when the reliability guarantee is relatively loose in experiment 1, which has

higher tolerance on the unsuccessful recovery than experiment 2, more recovery

workload can be assigned at the cost of complying with unsuccessful recovery

probability.

In baseline 3, each function needs to be protected with a backup mode

with the shortest recovery time and highest backup workload to satisfy the

recovery time guarantee in baseline 3, since it considers a fixed failure prob-

ability. Further, the recovery workload must be extra-assigned to speed up

the recovery, which may lead to the unsuccessful recovery under some failure

configurations. In experiment 1, one more node is required to be activated

to reduce the unsuccessful recovery probability compared with the proposed

model with some different values of |� |. Baseline 3 cannot find any feasible

solution that satisfies the reliability guarantees in experiment 2.

7.4.4 Competitive performance of heuristic algorithm

for larger-size problems

Table 7.1 compares the performance of the developed heuristic algorithm with

the MILP approach, where Obj. represents the number of activated nodes and

the time indicates the computation time. This work considers a larger size

problem with eight nodes with ) = 0.005 and n = 10−6. This work can observe

that there is a gap between the computation times of the MILP approach and

the heuristic algorithm; the computation time gap increases as the problem

size increases. Considering 105 [s] as the allowable maximum computation

time in the tests, the deployment cost obtained with the algorithm is 1.9%

larger than that of the MILP approach. The heuristic algorithm considers to

activate a fixed number of nodes and randomly adjust the resource allocation

to satisfy the reliability indicators. The case with )init=100 and d=0.1 is to

give some tolerance on a relatively high cost to get a solution in a shorter

computation time. The case with )init=1000 and d=0.05 is to get a better

solution as much as possible in a tolerable time. Without the initial allocation

with the greedy algorithm described in lines 1-6 in Algorithm 7.1, the heuristic
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Table 7.1: Number of activated nodes and computation times of MILP ap-

proach and heuristics algorithm with different parameters.

|� |

MILP
Heuristic

)init=100, d=0.1 )init=1000, d=0.05

Obj.
Comp.

time [s]
Obj.

Comp.

time [s]
Obj.

Comp.

time [s]

14 3 345.6 4 58.2 3 89.4

16 3 852.4 4 79.5 4 143.2

18 3 1169.3 4 93.7 4 169.2

20 4 3932.5 5 183.3 4 174.3

22 5 69545.5 5 212.5 5 402.3

24 7† 105 6 391.7 5 398.7

26 8† 105 6 417.6 6 435.1

†: Feasible solution obtained within 105 [s].

algorithm cannot find any solution with a random given initial allocation to

reduce the number of activated nodes from eight (the maximum number of

nodes that can be activated) with satisfying the constraints.

7.5 Summary

This chapter proposed a primary and backup resource allocation model under

reliability guarantees to minimize the number of activated nodes. The re-

source allocation was considered with two kinds of workload distribution, the

backup workload and the recovery workload. Different backup modes with dif-

ferent backup workloads corresponding to varying degrees of pre-configuration

and recovery times. The extra-assigned recovery workload can be adopted to

speed up the recovery while improving the resource efficiency; it may lead to

unsuccessful recovery in a specific failure configuration. The proposed model

minimizes the number of activated nodes as deployment cost while restricting
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the recovery time and the total unsuccessful recovery probability not to exceed

each guarantee. The proposed model was compared with two baselines, each

of which does not consider flexible backup modes and extra-assigned recovery

workload, respectively, in different reliability guarantees. The numerical re-

sults revealed that the proposed model saves the deployment cost on average

14% and 11% in the experiments compared to the two baselines, respectively.

This chapter analyzed the reasons for the superiority of the proposed model

compared with baselines.

204



Chapter 8

Implementations

This chapter provides two demonstrations on how to implement the resource

allocation models in real network system. VNFs can be deployed by NFVO

platform, e.g., Kubernetes, which is an open-source system to deploy and

manage functions automatically [62, 132]. This work considers customized

resources to realize reliable and prompt function deployment.

Section 8.1 designs and implements a two-layer controller structure in Ku-

bernetes to achieve the function deployment in a limited computation time

with considering resource migration for allocation optimality. Section 8.2 fo-

cuses on the backup resources design with implementing a custom resource and

the corresponding controller in Kubernetes to manage the primary and differ-

ent types of backup resources of network functions. Section 8.3 summarizes

this chapter.

8.1 Implementation of real-time function de-

ployment with resource migration in Ku-

bernetes

This section designs and implements controllers to deploy network functions

in a real-time and reliable manner. This section introduces two new resource

types called migratable Pod set (MPS) and global optimizer (GO), each of which

is custom resource in Kubernetes [38]. To achieve the function deployment in a
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Figure 8.1: Overall structure of the system in 8.1.

Figure 8.2: Controller structure of the system in 8.1.

limited computation time, this section introduces two controllers in Kubernetes

for a two-stage function deployment. The MPS controller manages the Pods for

an intermediate allocation with a model or a heuristic algorithm to respond

to the requests promptly. The GO controller manages the MPS instances

by optimizing Pod allocations with considering resource migration of network

functions to maintain the current state of the Pods to keep the current state

consistent with the desired state.
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Figure 8.3: Workflow of controllers of the system in 8.1.

8.1.1 Design and Implementation

Overall structure

Figure 8.1 overviews the structure of the reported controllers with considering

arrival and releasing requests, the MPS and GO controllers receive the notifi-

cation from Kubernetes application programming interface (API) server and

handle the events caused by MPS and GO instance operations, respectively,

corresponding to the received requests. Each controller requests the solution

of function deployment corresponding to each model. With the allocation re-

sults, each controller adjusts the current state of each Pod to its expected state

through the control loop [133]. More specifically, the controller is responsible

for the first stage allocation with an intermediate model or heuristic algorithm

for a prompt response to user requests. The GO controller is responsible for

the second stage allocation with optimization models with different objectives.

The GO controller modifies Pod allocations with resource migration. Each

controller requests the allocation of different models while the resource moni-

tor provides the system data for model calculation.

For an arrival user request, which includes the requested functions and

the intermediate and global optimal requirements, the implemented system

transforms the user request into two aspects. First, an MPS instance is created

and labeled. Second, a GO instance is created if the requested model has not

been requested before. If the requested GO instance exists, the newly created
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MPS instance is automatically detected and matched with the GO instance,

while the optimal allocations are calculated with a corresponding model.

Controllers design

In a dynamic scenario with arrival and releasing requests, a one-controller

structure is not sufficient to handle multiple requests, each of which may re-

quire different intermediate allocation approaches to achieve different requests.

In addition, requests arrive continuously in sequence instead of concurrently

so that each request needs to be managed independently, where a request is

the smallest operable unit in the implemented system by a service provider.

The requested GO and MPS instances are designed to be flexibly combined

and replaced at will. Based on this principle, this work designs a two-layer

controller structure in the implemented system, which is designed for man-

aging MPS instances in the lower layer and managing GO instances in the

upper layer, as shown in Fig. 8.2. If a new request of adding functions arrives,

an MPS instance is created to manage the corresponding Pods by setting the

ownership between the MPS instance and the corresponding Pods to deploy

containerized VNFs. The allocations of these Pods are determined by an inter-

mediate allocation approach appointed by the MPS instance. A GO instance

represents a global optimizer for the Pods owned by the appointed MPS in-

stances, which are identified by labels defined in the GO instance. When a GO

instance detects a new MPS instance filtered by the label, optimal allocations

of Pods are calculated and the Pods are migrated to the new allocations. If an

MPS instance is deleted, its owned Pods are correspondingly deleted with the

MPS instance. If a GO instance is deleted, the MPS instances are not affected.

This enables flexible matches of global optimizers and the MPS instances.

Workflow

When user requests of creating/updating/deleting an instance for a container-

ized function arrive, the request is automatically translated to the operation

for MPS and GO instances. If a new function is required to be deployed ac-

cording to the arrival request, the MPS controller promptly determines the

intermediate allocation with a model or an algorithm to respond to the re-
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quest. Simultaneously, the GO controller determines the optimal allocation

to obtain the expected state of the function deployment, which commonly

requires a longer time than the determination of MPS controller. The GO

controller manages the allocation of Pods to let the current state of them,

i.e., intermediate allocation, keep pace with the expected state configured by

optimal allocation. The management of resource migration is achieved by the

control loop [133]; it firstly instantiates and initializes the Pods at the optimal

allocation configured by its corresponding GO instance and secondly termi-

nates the running Pods owned by the MPS instance to keep continuous service

for the request. With updating an instance according to a request, the cor-

responding GO instance determines the optimal allocation and migrates the

deployed Pods while keeping the service continuity. When a request is re-

leased, the corresponding MPS instance is deleted while its owned Pods are

deleted automatically while keeping the GO instance. The workflow is shown

in Fig. 8.3.

8.1.2 Demonstration

This work implements the controllers by Operator SDK v1.4.2 [134], Golang

1.16 [135], and Kubernetes v1.20.4 [108] running on a 5-node cluster including

one master and four worker nodes. This work deploys the designed controller

as a deployment in Kubernetes with relative resources, e.g., namespace, CRD,

and permissions for modifying the instances and Pods.

This work implements the controllers with the following algorithm and

optimization model. This work considers a workload-aware greedy algorithm

to balance the utilization ratio among nodes to determine the intermediate

allocation for the MPS controller.

Algorithm 8.1 Workload-aware greedy algorithm (WAGA)

Input: Requested functions and their requested load, cluster information

Output: Intermediate allocation

1: for each function waited to be allocated do

2: Sort nodes by their workload increasingly as a set #.

3: Allocate the function to the first node in # and update its workload.

4: end for
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(a) Pods are created and located as intermediate deplyment.

(b) Pods are migrated and located as global deplyment.

Figure 8.4: Locations of Pods created by first user.

The GO controller determines the optimal allocation with a mathematical

model. The work in [8] introduced a migration policy triggered by an excess

CPU utilization compared with a certain threshold of computing resources.

The work in [33] introduced workload-dependent failure probability, which

can be modelized as a two-step function. This work considers that each node

has a certain threshold for resource utilization and a corresponding workload-

dependent failure probability; the threshold is different based on each charac-

teristic. The objective of the optimization model is to minimize the maximum

failure probability among nodes as the primary objective, the number of active

nodes as the secondary one, and the migration cost as the third one.

This work validates the implementation by using the following scenario.

Two users request five and three functions, respectively, in sequence. All re-

quests choose the introduced intermediate algorithm and global optimization

model. After each request from each user arrives, two YAML configuration files

are translated for creating an MPS instance and a GO instance, respectively.

For the first request, five Pods are created and deployed as determined by the

introduced intermediate algorithm, as shown in Fig. 8.4(a). The intermediate

deployment time is 1.1 [s], including the calculation and creation time. Simul-

taneously, the GO controller determines a global optimal allocation based on

the introduced model. After the calculation, the Pods are migrated to optimal

allocation, as shown in Fig. 8.4(b). The time for the optimal deployment with
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(a) Pods are created and located as intermediate deplyment.

(b) Pods are migrated and located as global deplyment.

Figure 8.5: Pod deployment created by first and second users.

calculation and migration is 2.9 [s]. Fig. 8.5 shows the deployments and the

migration of the functions requested by the second user. The total time for

optimal deployment is 3.8 [s]. Fig. 8.6 outlines the entire process, where the

green rectangles represent the newly allocated functions with an intermedi-

ate deployment to respond to the request and the orange rectangles represent

the resource migration for global deployment. Secondly, this work compares

the implemented system with the scheduler introduced in [35], which does not

consider the two-layer controller structure. The implemented system saves

approximately three times computation time compared with [35] to achieve

prompt request responses.

8.2 Implementation of backup resource man-

agement controller for reliable function al-

location in Kubernetes

This section designs and implements a controller to manage the primary and

backup resources of network functions. This section introduces a new resource
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Figure 8.6: Entire process in demonstration.

type called backup Pod set (BPS), which is a custom resource in Kubernetes

[38]. BPS includes a certain number of different types of Pods which are

the primary, HB, and CB Pods. The transitions of different types of Pods

can be customized by cooperating with the allocation-model-based scheduler

introduced in [35] or randomly. Demonstrations validate the effectiveness of

the controller.

8.2.1 Design and Implementation

Overall structure

Figure 8.7 overviews the structure of the reported controller and the coopera-

tion between the controller and Kubernetes application programming interface

(API) server. The controller handles events triggered by BPS instance opera-

tions; BPS is defined by custom resource definitions (CRD) [38].

When a BPS instance is requested to be created, updated, or deleted,

Informer, which is a bridge between the API server and the controller, re-

ceives the notification from the API server and pushes the events caused

by BPS instance operations to a First-In, First-Out (FIFO) queue called

WorkQueue. Control loop is the core of the controller, which handles the

events in WorkQueue by maintaining the current state of a BPS instance until
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Figure 8.7: Overall structure.

Figure 8.8: Pod state transition diagram.

it is consistent with the desired state. Control loop maintains the number of

Pods for each type by resource releasing and converting, until the number of

Pods for each type is consistent with the desired number requested by the user

requirement, as shown in Fig. 8.8. The scheduler decides the allocations of

the newly created Pods with the default scheduler or allocation-model-based

scheduler in [35].

8.2.2 Backup Pod set (BPS)

A BPS instance is a custom resource defined by CRD. CRD includes the re-

quired information and specifications for creating a BPS instance with three

parts: Metadata, Spec, and Status. Metadata provides descriptive information

of a BPS instance including name and creation time. Spec provides the speci-

fications and desired state of a BPS instance including the desired numbers of

the different types of Pods, the strategies for state transitions, and the name

of the specified scheduler. Status contains the current state of a BPS instance,

including the current numbers and names of the Pods. Status is updated pe-
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riodically in the control loop.

Primary, HB, and CB Pods are distinguished by the labels, each of which

is attached to the Pod when a service is created. Each Pod with a primary

label is used to balance the traffic for services. Each Pod with a hot backup

label is activated without being exposed to the service; the Pod takes over

the tasks of primary Pod once a failure is detected. When a Pod with a cold

backup label is requested to be created, this work adds an init container [110]

in the CB Pod. Init containers run before the other containers in the same

Pod. Each init container must be completed successfully before the activation

of other containers in the same Pod. The init containers in this demonstration

is implemented as a transmission control protocol (TCP) server, which is used

for waiting for the activation message from the control loop.

8.2.3 Control loop

The control loop handles the add, delete, and update events of a BPS instance,

as shown in Algorithm 8.2.

When a BPS operation is requested, the desired numbers of Pods for dif-

ferent types are changed. The control loop focuses on the comparison between

the desired number and the current number of each type of Pods. The control

loop automatically maintains the current BPS state until it reaches the de-

sired state by following the transition of different types of Pods with resource

releasing and converting shown in Fig. 8.8. Note that, for a different conver-

sion unavailable time, the resource conversion has a priority policy. Compared

with the Pods with longer unavailable time, the Pods with shorter time are

prioritized to be converted. For example, the conversion of the HB Pod to

the primary Pod has higher priority than the conversion of the CB Pod to the

primary Pod. A candidate of the same type of Pods can be chosen based on a

given policy; it is chosen randomly in this algorithm.

When the current number of the primary/CB/HB Pods is larger than the

desired number, each unnecessary primary/CB/HB Pod with the number of

the difference between the desired number and the current number of prima-

ry/CB/HB Pods is selected by the given strategy and deleted; the occupied

resources of the unnecessary Pods are released.
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Algorithm 8.2 Control loop
1: Update Status defined in CRD

2: if the instance is newly created then

3: Create desired numbers of primary/HB/CB Pods

4: else

5: if Current primary Pods < desired primary Pods then

6: Convert an HB Pod to the primary Pod until there is no more HB Pods or the

primary Pods reach the desired number.

7: Convert a CB Pod to the primary Pod until there is no more CB Pods or the

primary Pods reach the desired number.

8: Create a primary Pod until the desired number of primary Pods.

9: else if Current primary Pods > desired primary Pods then

10: Delete a primary Pod until the desired number of primary Pods.

11: end if

12: if Current primary Pods = desired primary Pods then

13: if Current HB Pods < desired HB Pods then

14: Convert a CB Pod to the HB Pod until there is no more CB Pods or the HB

Pods reach the desired number.

15: Create HB Pod until the desired number of HB Pods.

16: else if Current HB Pods > desired HB Pods then

17: Delete HB Pod until the desired number of HB Pods.

18: end if

19: if Current HB Pods = desired HB Pods then

20: if Current CB Pods < desired CB Pods then

21: Create a CB Pod until the desired number of CB Pods.

22: else if Current CB Pods > desired CB Pods then

23: Delete a CB Pod until the desired number of CB Pods.

24: end if

25: end if

26: end if

27: end if

28: Requeue in WorkQueue
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When the current number of primary Pods is smaller than the desired

number, firstly, the current HB Pod is converted to the primary Pod and

exposed to the service. When all the HB Pods are converted and the number of

current primary Pods is still less than the desired number, secondly, the current

CB Pod is converted to the primary Pod with being activated and exposed to

the service. When all the CB Pods are converted to the primary Pods and

the number of current primary Pods is still less than the desired number, the

remaining primary Pods are created with using unallocated resources.

When the current number of the HB Pods is smaller than the desired

number, firstly, the current CB Pod is converted to the HB Pod with being

activated by the init container. When all the CB Pods are converted and the

number of current HB Pods is still less than the desired number, the remaining

HB Pods are created with using unallocated resources.

When the current number of the CB Pods is smaller than the desired

number, the insufficient CB Pod is created following a given strategy. The

resource of the CB Pod is reserved without activated; they wait for being

activated by the init container.

8.2.4 Demonstrations

This work implements the controller by Operator SDK v1.4.2 [134], Golang

1.16 [135], and Kubernetes v1.20.4 [108] running on an Intel Core i7- 10510U

1.80 GHz 2-core CPU, 4 GB memory. This work deploys the designed con-

troller as a deployment in Kubernetes with relative resources, e.g., namespace,

CRD, and permissions for modifying the BPS instances and Pods. This work

creates a BPS instance with two primary Pods, two HB Pods, and two CB

Pods by a YAML file shown in Fig. 8.9. Figure 8.10 shows the created Pods

in the BPS instance. The time for the controller to handle the BPS creation

request is 0.211 [s]. The total creation time for the instance is 5.344 [s].

When the traffic increases, the request of updating the number of Pods

for each type in a BPS instance from two to three for load balancing arrives.

The controller compares the current and desired states of the different types

of Pods; one Pod for each type is added. Figure 8.11(a) shows the results.

The Pod index refers to the name of Pod in Fig. 8.10. One HB Pod, Pod 3, is
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Figure 8.9: Configuration file of a BPS instance.

Figure 8.10: List of resources created by the BPS instance.
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converted to a primary Pod. Two CB Pods, Pods 5 and 6 are activated and

converted to HB Pods. Three Pods, Pods 7, 8,and 9 are newly created as the

CB Pods. The time for the controller to handle the BPS updating request is

0.113 [s]. The total transition time from the last state to the current one of

the BPS instance is 3.681 [s].

When the traffic decreases, the request of updating the number of Pods for

each type to one for higher utilization arrives. Figure 8.11(a) shows the results

after resource releasing. The controller compares the current and desired states

of the different types of Pods and decreases the numbers of Pods for all types

to one randomly with releasing the corresponding resources. The time for the

controller to handle the BPS updating request is 0.226 [s]. transition time

from the last state to the current one of the BPS instance is 2.137 [s].

In the case that a primary Pod failure is detected, the HB and CB Pods are

activated to take over the task of the failed primary Pod. This demonstration

deletes a primary Pod, Pod 3, to demonstrate the case of primary Pod failure.

Figure 8.11(b) shows the maintenance results in confronting with a failure. The

controller maintains the number of Pods for different types until the current

BPS instance state becomes the desired state. The HB Pod, Pod 6, is converted

to a primary Pod and is exposed to the service. The CB Pod, Pod 9, is

successfully activated and converted to an HB Pod. A CB Pod, Pod 10, is

newly created. The controller is normally running as shown in Fig. 8.12. The

time for the controller to handle a primary Pod failure is 0.079 [s]. The total

transition time is 1.933 [s].

8.3 Summary

This chapter firstly designed and implemented a two-layer controller struc-

ture in Kubernetes for automatic function deployment and management in a

real-time and optimal manner. The controllers achieve the function deploy-

ment in a limited computation time with considering resource migration for

allocation optimality. The demonstration validates that the controller auto-

matically manages the resources promptly and correctly. The time for the

controller to respond a request is within one second. The total transition time

for the optimal deployment of the MPS instance is within four seconds. The
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(a) List of resources after updating the BPS in-

stance.

(b) List of resources after fail-

ure of primary Pod.

Figure 8.11: State transition of Pods triggered by requests.

Figure 8.12: List of resources after deleting a primary Pod in BPS instance.
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implemented system responds to the request approximately three times faster

than the previous work in the tested case.

This chapter secondly designed and implemented a custom resource and the

corresponding controller in Kubernetes to manage the primary and backup re-

sources of network functions. The controller manages the state of each BPS

instance to keep the current state consistent with the desired state. Demon-

stration validated that the controller automatically manages the resources cor-

rectly and rapidly. The time for the controller to handle a BPS operation is

within one second. The total transition time from the last state to the current

one of the BPS instance is within four seconds.
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Conclusions

The revolution brought about by NFV has made the deployment of functions

more efficient, fast, and convenient. However, the occurrence of software and

hardware failures poses significant challenges to the availability and continuity

of services. In the face of failures, the backup and recovery mechanisms play

a crucial role in ensuring the resilience of the network and the uninterrupted

delivery of services. This thesis explores different protection approaches, i.e.,

dedicated protection and shared protection, as well as various backup strate-

gies, including cold backup and hot backup, and their impact on recovery

time; this thesis investigates the impact of node workload on failure proba-

bility. This thesis studies six specific problems about the resource allocations

with workload-dependent failure probability with relative implementations in

containerized networks.

Firstly, this thesis proposed a primary and backup resource allocation

model with considering a workload-dependent failure probability aiming to

minimize the maximum expected unavailable time. The workload-dependent

failure probability and the consideration of different backup strategies cause

different recovery time and lead to a nonlinear programming problem to cal-

culate unavailable time for each VM. With step functions to approximate the

given non-decreasing workload-dependent failure portability, this work formu-

lated the problem as an MILP problem to obtain the primary and backup

resource allocation of each VM in PMs, where the expected unavailable time

is suppressed. This work proved that MEUT of the proposed model is equal
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to the smaller value between the two MEUTs obtained by applying only HB

and CB strategies with the same total requested load by comprehensively

discussing different values of MEUT corresponding to different parameters.

The heuristic algorithm inspired by the water-filling algorithm was developed

based on the proved theorem. The numerical results showed that the pro-

posed model suppresses MEUT compared with the conventional model which

does not consider the workload-dependent failure probability. The developed

heuristic algorithm is approximately 105 times faster than the MILP approach

with 10−2 performance penalty on MEUT. This work discussed and imple-

mented the approximation of step function for a non-decreasing function with

a goal; this work investigated the performance of approximation for different

problem sizes.

Secondly, this thesis proposed a multiple backup resource allocation model

with the workload-dependent failure probability to minimize MEUT under a

priority policy. This thesis analyzed the superiority of the protection priority

policy to express the expected unavailable time for each function protected

by multiple backup resources in the proposed model. This thesis derived the

theorems that clarify the influence of policies on MEUT. This thesis formu-

lated the optimization problem as an MILP problem. A lower bound of the

optimal objective value in the proposed model was derived. This thesis proved

that the decision version of the multiple resource allocation problem in the

proposed model is NP-complete. A heuristic algorithm inspired by the water-

filling algorithm was developed with providing an upper bound of the expected

unavailable time obtained by the algorithm. The numerical results showed that

the proposed model reduces MEUT compared with the single backup model in

which each function is protected by only one server without protection priority

of servers and the conventional model without the workload-dependent failure

probability. The priority policy adopted in the proposed model specifying that

the server which adopts the HB strategy has higher priority than that with the

CB strategy for multiple backup resources suppresses MEUT compared with

other priority policies. The developed heuristic algorithm is approximately

106 times faster than the MILP approach with 10−4 performance penalty on

MEUT.

Thirdly, this thesis proposed a primary and backup resource allocation
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model with preventive recovery priority setting against multiple failures to

minimize W-UP for both dedicated and shared protection. Each node fails

with different workload-dependent failure probabilities; each failure pattern

has its corresponding weight. This thesis introduced a recovery strategy which

is determined at the operation start time and can be applied for each fail-

ure pattern. Once failures are detected, the recoveries are operated with the

workload variation according to the priority setting. Besides, this thesis intro-

duced an approach to obtain unsuccessful recovery probability without priority

setting. The numerical results observed that the proposed model reduces W-

UP compared with baselines. The proposed model, which jointly considers

the unsuccessful recovery and load balancing against failures, outperforms the

baseline models which consider each type of unavailability separately. The de-

veloped heuristic algorithm is approximately 729 times faster than the MILP

approach with 1.6% performance penalty on W-UP.

Fourthly, this thesis proposed a robust function deployment model against

uncertain recovery time with satisfying an expected recovery time guarantee

in a cost-efficient manner. Each node fails with a workload-dependent failure

probability; preventive deployed backup resources can recover the unavailable

function hosted by a failed node within a period of time related to the backup

strategy. The expected recovery time of a function is related to the backup

strategy (HB or CB strategy), protection types (dedicated or shared protec-

tion), the workload of the node hosting it, and the number of unavailable

functions and remaining capacity of available nodes. this thesis introduced an

uncertainty set that considers the upper bound of the average recovery time

among nodes and the upper and lower bounds of each recovery time. The

robust optimization technique was applied to handle the worst-case expected

recovery time among the uncertain recovery time satisfying a recovery time

guarantee; the model was formulated as an MILP problem. A greedy-based

simulated annealing algorithm was developed to address the considered prob-

lem in practical scenarios. In the algorithm, this thesis transformed the linear

programming problem to obtain the worst-case expected recovery time among

uncertain times into a graph problem. The algorithm decreases the number

of active nodes while decreasing the worst-case expected recovery time until

the recovery time satisfies the recovery time guarantee. The numerical results
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showed the superiority of the proposed models by taking into account the re-

covery time guarantee, uncertainty set, and shared protection, and this thesis

investigated the dependency on the uncertain recovery time boundaries.

Fifthly, this thesis proposed a primary and backup resource allocation

model under reliability guarantees to minimize the number of activated nodes.

The resource allocation was considered with two kinds of workload distri-

bution, the backup workload and the recovery workload. Different backup

modes with different backup workloads corresponding to varying degrees of

pre-configuration and recovery times. The extra-assigned recovery workload

can be adopted to speed up the recovery while improving the resource effi-

ciency; it may lead to unsuccessful recovery in a specific failure configuration.

The proposed model minimizes the number of activated nodes as deployment

cost while restricting the recovery time and the total unsuccessful recovery

probability not to exceed each guarantee. The proposed model was compared

with two baselines, each of which does not consider flexible backup modes and

extra-assigned recovery workload, respectively, in different reliability guaran-

tees. The numerical results revealed that the proposed model saves the de-

ployment cost on average 14% and 11% in the experiments compared to the

two baselines, respectively. This thesis analyzed the reasons for the superiority

of the proposed model compared with baselines.

Sixthly, this thesis designed and implemented two custom resources and the

corresponding controllers in Kubernetes to manage the function deployment in

a real-time and optimal manner and the primary and backup resources of net-

work functions, respectively. In the first demonstration, the controllers achieve

the function deployment in a limited computation time with considering re-

source migration for allocation optimality. The demonstration validates that

the controller automatically manages the resources promptly and correctly.

The time for the controller to respond to a request is within one second. The

total transition time for the optimal deployment of the MPS instance is within

four seconds. The implemented system responds to the request approximately

three times faster than the previous work in the tested case. In the second

demonstration, the controller manages the state of each BPS instance to keep

the current state consistent with the desired state. Demonstration validated

that the controller automatically manages the resources correctly and rapidly.
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The time for the controller to handle a BPS operation is within one second.

The total transition time from the last state to the current one of the BPS

instance is within four seconds.

The thesis introduced the five proposed models with workload-dependent

unavailability and two implementations that address different distinct applica-

tion scenarios in the realm of enhanced network virtualization reliability and

fault tolerance, taking into account their respective attributes. Each model

is accompanied by optimal modeling, algorithm, and theoretical analyses, of-

fering diverse approaches to cater to specific needs. This comprehensive work

equips network operators and service providers with the flexibility to choose

the most suitable model and approach based on their specific requirements,

thereby enabling them to establish a network virtualization environment that

is adaptable, cost-efficient, and high available.

For future studies in resource management, two challenges with potential

research directions stand out. The first challenge concerns the dynamic re-

quests for resource allocation. Addressing this requires online allocation mech-

anisms capable of adapting to ever-changing demands. Online resource allo-

cation considering dynamic requests can be achieved by different approaches.

By leveraging machine learning techniques such as graph neural networks and

autoregressive models, precise prediction of resource demands and occurrence

of failures can be achieved. In-depth research into online scheduling algo-

rithms holds the potential to enhance network performance, including conges-

tion reduction and improved data transmission rates, particularly vital when

expanding NFV services across geographically distributed data centers. Rein-

forcement learning plays a significant role in dynamic resource allocation algo-

rithms, enabling real-time adaptive decision-making for optimizing resource al-

location strategies. Its capacity for learning from real-time feedback facilitates

rapid adaptation to changes and realization of real-time performance optimiza-

tion. In complex environments, reinforcement learning navigates multifactorial

influences by learning the relationships between states, actions, and rewards,

striking an optimal balance. Its goal of resource allocation optimization aligns

with the requirements of dynamic resource allocation, effectively distributing

resources efficiently under varying demands and constraints to enhance overall

system performance.
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The second challenge focuses on migration issues in real-world produc-

tion environments, such as user mobility in mobile edge computing networks

and the complex dependency structures and heterogeneous resource demands

these environments present. Key migration issues include ensuring seamless

data transfer across different platforms, minimizing downtime, and maintain-

ing consistency, especially for stateful applications. Seamless data transfer

is crucial, as it requires maintaining data integrity across various architec-

tures. Consistency is also vital to prevent data loss or functionality problems.

Addressing these challenges necessitates strategies that balance technical re-

quirements with operational continuity. This involves scheduling the migra-

tion of NFV services across multiple nodes or executors to achieve optimal

service performance, meeting both dependency and user-perceived delay re-

quirements. It requires identifying suitable VNF scheduling and migration

strategies. Research should focus on optimizing handover delay and develop-

ing efficient algorithms for seamless management in NFV environments. This

can be achieved by optimizing resource allocation and traffic management, en-

suring that services have the necessary resources for faster data transmission

and reduced job completion times.
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Linearization of (-step function

in Chapter 3

By introducing binary variable I8B, 8 ∈  , B ∈ S, where I8B is set to one if

) B−1
8

< ,8 ≤ ) B8 , and zero otherwise, (3.2) can be expressed by:

PS
8 =

∑
B∈S

%BI8B,∀8 ∈  , (A.1a)

,8 ≤
∑
B∈S

) B8 I8B,∀8 ∈  , (A.1b)

,8 >
∑
B∈S

) B−1
8 I8B,∀8 ∈  , (A.1c)∑

B∈S
I8B = 1,∀8 ∈  , (A.1d)

I8B ∈ {0, 1},∀8 ∈  , B ∈ S. (A.1e)

Equation (A.1a) expresses the failure probability of a PM. With binary vari-

able I8B, 8 ∈  , B ∈ S, when the workload of PM 8 is in the range of () B−1
8

, ) B
8
],

(A.1b) and (A.1c) restrict I8B = 1. Equation (A.1d) imposes that each PM

corresponds to the failure probability in only one step among multiple steps.
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Analysis of possible values of

MEUT in Chapter 3

B.1 Possible values of MEUT

From (3.3d), we observe that multiple values of MEUT in the proposed model

exist, each of which corresponds to a situation. Since the work in Chapter 3

considers that each VM is allocated into only one PM and protected by another

PM with selecting one of the protection strategies, the possible values of (3.3d)

can be simplified as:

A′9 = C1@8 (1 − @: ) + C3@8@: , (B.1a)

A′′9 = C0@8 (1 − @: ) + C3@8@: , (B.1b)

where @8 and @: denote the failure probabilities of PMs, which are either %L

or %H. Therefore, MEUT has eight possible values:

A′19 =C1%L(1 − %L) + C3%L%L, (B.2a)

A′29 =C1%L(1 − %H) + C3%L%H, (B.2b)

A′39 =C1%H(1 − %L) + C3%L%H, (B.2c)

A′49 =C1%H(1 − %H) + C3%H%H, (B.2d)

A′′19 =C0%L(1 − %L) + C3%L%L, (B.3a)
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A′′29 =C0%L(1 − %H) + C3%L%H, (B.3b)

A′′39 =C0%H(1 − %L) + C3%L%H, (B.3c)

A′′49 =C0%H(1 − %H) + C3%H%H, (B.3d)

where the four values in (B.2a)-(B.2d) are derived from (B.1a) by considering

(@8, @: ) as (%L, %L), (%L, %H), (%H, %L), and (%H, %H), respectively; the four

values in (B.3a)-(B.3d) are derived from (B.1b) with the same consideration

with (B.2a)-(B.2d), respectively.

This work investigates all the possible situations associated with MEUT

with optimal consideration to minimize MEUT. With the assumption of C1 < C0,

the proposed model chooses the HB strategy to reduce MEUT with the same

allocation. The CB strategy does not affect the failure probability of backup

resource in a PM compared with the HB strategy. If the failure probability of a

PM whose backup resource provides protection with the CB strategy is %H, the

failure probability of that by adopting the HB strategy is also %H. Therefore,

C0%L(1 − %H) + C3%L%H, and C0%H(1 − %H) + C3%H%H do not exist when MEUT

is minimized. Both primary resource and backup resource that protects the

primary one with the HB strategy work actively; the proposed model can

swap the primary resource and backup resource without changing the failure

probabilities of PMs. With the assumption of %L < %H, C1%H(1−%L) + C3%L%H

does not exist when MEUT is minimized since C1%L(1−%H)+C3%L%H < C1%H(1−
%L) + C3%L%H. There are five feasible values with optimal consideration left:

T1 = C1%L(1 − %L) + C3%L%L, (B.4a)

T2 = C1%L(1 − %H) + C3%L%H, (B.4b)

T3 = C0%L(1 − %L) + C3%L%L, (B.4c)

T4 = C0%H(1 − %L) + C3%L%H, (B.4d)

T5 = C1%H(1 − %H) + C3%H%H. (B.4e)

B.2 Boundary values

This work compares the values of T1, T2, T3, T4, and T5 to obtain the rank of

the values of MEUT.

T2 − T1 = (C3 − C1)%L%H − (C3 − C1)%L%L (B.5a)
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T3 − T2 = C0(%L − %2
L) + C3%

2
L − C1(%L − %L%H) − C3%L%H (B.5b)

T4 − T3 = C0(%H − %L) (1 − %L) + C3(%L%H − %L%L) (B.5c)

T5 − T3 = C1(%H − %2
H) + C3%

2
H − C0(%L − %2

L) − C3%
2
L (B.5d)

T5 − T4 = C1(%H − %2
H) + C3%

2
H − C0(%H − %L%H) − C3%L%H. (B.5e)

When C3 > C1, C3 > C0, and %L < %H, T2 > T1 and T4 > T3 can be easily

derived from (B.5a) and (B.5c).

Assuming that (B.5b) is equal to 0, a boundary value of C1 is obtained as:

{2 =
1 − %L

1 − %H
C0 +

%L − %H

1 − %H
C3. (B.6)

If C1 ≤ {2, T3 ≤ T2, and otherwise, T2 > T3.

Assuming that (B.5d) is equal to 0, a boundary value of C1 is obtained as:

{1 =
%L(1 − %L)
%H(1 − %H)

C0 +
%2

L − %
2
H

%H(1 − %H)
C3. (B.7)

If C1 ≤ {1, T5 ≤ T3, and otherwise, T5 > T3.

Assuming that (B.5e) is equal to 0, the same boundary value of C1 as:

{2 =
1−%L
1−%H C0 +

%L−%H
1−%H C3 is obtained; if C1 ≤ {2, T5 ≤ T4, and otherwise, T5 > T4.

{2 − {1 =
(1 − %L) (%H − %L)

%H(1 − %H)
C0 +

%L%H − %2
H − %

2
L + %

2
H

%H(1 − %H)
C3

=
(%H − %L)C0
%H(1 − %H)

+
(%2

L − %L%H) (C0 − C3)
%H(1 − %H)

C3

=
(%H − %L)C0
%H(1 − %H)

+ (%H − %L)%L(C3 − C0)
%H(1 − %H)

C3 > 0. (B.8)

Therefore, {2 > {1.

B.3 Rank of the values of MEUT

In the condition of C1 ≤ {1, the rank of MEUT among the five values is C1%L(1−
%L) + C3%L%L < C1%L(1 − %H) + C3%L%H < C1%H(1 − %H) + C3%H%H ≤ C0%L(1 −
%L)+C3%L%L < C0%H(1−%L)+C3%H%L. C1%L(1−%L)+C3%L%L corresponds to the

situation that the total requested load is so low that all VMs are protected with

the HB strategy with failure probability %L. Since each value of MEUT with
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the CB strategy is not less than C1%H(1 − %H) + C3%H%H, the proposed model

can switch the CB strategy to the HB strategy to reduce MEUT. It indicates

that each value of MEUT with the CB strategy does not exist when MEUT is

minimized. MEUT of the proposed model is C1%L(1 − %L) + C3%L%L, C1%L(1 −
%H) + C3%L%H, and C1%H(1−%H) + C3%H%H as the total requested load increases.

In the condition of {1 < C1 ≤ {2, the rank of MEUT among the five values

is C1%L(1 − %L) + C3%L%L < C1%L(1 − %H) + C3%L%H ≤ C0%L(1 − %L) + C3%L%L <

C1%H(1−%H)+C3%H%H ≤ C0%H(1−%L)+C3%H%L. C0%H(1−%L)+C3%H%L does not

exist when MEUT is minimized. The CB strategy can be switched to the HB

strategy, which has smaller MEUT of C1%H(1−%H) + C3%H%H to reduce MEUT.

Similar to the condition of C1 ≤ {1, with the same total requested load, C1%L(1−
%L) + C3%L%L and C1%L(1− %H) + C3%L%H can replace C0%L(1− %L) + C3%L%L by

switching the CB strategy to the HB strategy to reduce MEUT. As the increase

of total requested load, C0%L(1−%L)+C3%L%L can replace C1%H(1−%H)+C3%H%H

until the total requested load is larger than the sum of thresholds of all PMs.

C1%H(1 − %H) + C3%H%H can replace C0%H(1 − %L) + C3%H%L when the failure

probability of the primary PM which is protected with the CB strategy is %H.

The protection strategies can be changed according to the total requested load

so that the larger value of MEUT does not exist when MEUT is minimized.

The proposed model adopts both HB and CB strategies to balance the recovery

time and workload. MEUT is C1%L(1 − %L) + C3%L%L, C1%L(1 − %H) + C3%L%H,

C0%L(1− %L) + C3%L%L, and C1%H(1− %H) + C3%H%H as the total requested load

increases.

In the condition of {2 < C1, the rank of MEUT among the five values is

C1%L(1 − %L) + C3%L%L < C0%L(1 − %L) + C3%L%L < C1%L(1 − %H) + C3%L%H <

C0%H(1−%L)+C3%H%L < C1%H(1−%H)+C3%H%H. C1%L(1−%H)+C3%L%H does not

exist when MEUT is minimized. The HB strategy can be switched to the CB

strategy, which has smaller MEUT of C0%L(1−%L) + C3%L%L to reduce MEUT.

Similar to the condition of {1 < C1 ≤ {2, C0%H(1 − %L) + C3%H%L can replace

C1%H(1 − %H) + C3%H%H by switching the HB strategy to the CB strategy to

reduce MEUT until the total requested load becomes so large that the failure

probabilities of both primary and backup PMs with the CB strategy is %H.

MEUT is C1%H(1 − %H) + C3%H%H when the total requested load is larger than

that of the case that MEUT is C0%H(1 − %L) + C3%H%L. The proposed model
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in Chapter 3 adopts both HB and CB strategies to balance the recovery time

and the workload. MEUT is C1%L(1 − %L) + C3%L%L, C0%L(1 − %L) + C3%L%L,

C0%H(1− %L) + C3%H%L, and C1%H(1− %H) + C3%H%H as the total requested load

increases.
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Appendix C

Linearization of proposed model

in Chapter 4

q1
8 9 9 ′ = 4

8
9 9 ′G

1
8 9
~ 9 ′, c

1
8 9 9 ′ = 4

8
9 9 ′G

1
8 9

, 8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, and Z 1
8 9
= G1

8 9
~ 9 ,8 ∈

�, 9 ∈ #, 1 ∈ �, can be linearized as:

q18 9 9 ′ ≤ 489 9 ′,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, (C.1a)

q18 9 9 ′ ≤ G18 9 ′,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, (C.1b)

q18 9 9 ′ ≤ ~ 9 ′,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, (C.1c)

q18 9 9 ′ ≥ 489 9 ′ + G18 9 ′ + ~ 9 ′ − 2,∀8 ∈ �, 9 ∈ #, (C.1d)

9 ′ ∈ ( 9 , 1 ∈ �,
c18 9 9 ′ ≤ 489 9 ′,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, (C.1e)

c18 9 9 ′ ≤ G18 9 ′,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, (C.1f)

c18 9 9 ′ ≥ 489 9 ′ + G18 9 ′ − 1,∀8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, (C.1g)

Z 18 9 ≤ G18 9 ,∀8 ∈ �, 9 ∈ #, 1 ∈ �, (C.1h)

Z 18 9 ≤ ~ 9 ,∀8 ∈ �, 9 ∈ #, 1 ∈ �, (C.1i)

Z 18 9 ≥ G18 9 + ~ 9 − 1,∀8 ∈ �, 9 ∈ #, 1 ∈ �, (C.1j)

q18 9 9 ′, c
1
8 9 9 ′ ∈ {0, 1},∀8 ∈ �, 9 ∈ #, 9 ′ ∈ ( 9 , 1 ∈ �, (C.1k)

Z 18 9 ∈ {0, 1},∀8 ∈ �, 9 ∈ #, 1 ∈ �. (C.1l)

By introducing binary variables _
8 9 1

<<′ = l
L
<8 9
lH
<′8 9G

1
8 9

, \
8 9 1

<<′ = l
L
<8 9
lH
<′8 9G

1
8 9
~ 9 ,

where <, <′ ∈ [0, |( |], 8 ∈ �, 9 ∈ #, 1 ∈ �, [<<′8 = IL
<8
IH
<′8, where <, <′ ∈
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[0, |( |], 8 ∈ �, (4.4e) can be expressed by a linear form as:

D8 =
∑
1∈�

∑
9∈#
{C1?8

∑
<∈"

∑
<′∈"
((%L)< (%H)<

′
(C.2a)

((1 − %H)_8 9 1<<′ + (%H − %L)\8 9 1<<′))}+

C3?8

∑
<∈"

∑
<′∈"
{(%L)< (%H)<

′
[<<′8},∀8 ∈ �,

_
8 9 1

<<′ ≤ l
L
<8 9 ,∀<, <′ ∈ ", 8 ∈ �, 9 ∈ #, 1 ∈ �, (C.2b)

_
8 9 1

<<′ ≤ l
H
<′8 9 ,∀<, <′ ∈ ", 8 ∈ �, 9 ∈ #, 1 ∈ �, (C.2c)

_
8 9 1

<<′ ≤ G
1
8 9 ,∀<, <′ ∈ ", 8 ∈ �, 9 ∈ #, 1 ∈ �, (C.2d)

_
8 9 1

<<′ ≥ l
L
<8 9 + lH

<′8 9 + G18 9 − 2,∀<, <′ ∈ ", (C.2e)

8 ∈ �, 9 ∈ #, 1 ∈ �,
\
8 9 1

<<′ ≤ _
8 9 1

<<′,∀<, <
′ ∈ ", 8 ∈ �, 9 ∈ #, 1 ∈ �, (C.2f)

\
8 9 1

<<′ ≤ ~ 9 ,∀<, <
′ ∈ ", 8 ∈ �, 9 ∈ #, 1 ∈ �, (C.2g)

\
8 9 1

<<′ ≥ _
8 9 1

<<′ + ~ 9 − 1,∀<, <′ ∈ ", 8 ∈ �, 9 ∈ #, 1 ∈ �, (C.2h)

[<<′8 ≤ IL<8,∀<, <′ ∈ ", 8 ∈ �, (C.2i)

[<<′8 ≤ IH<′8,∀<, <′ ∈ ", 8 ∈ �, (C.2j)

[<<′8 ≥ IL<8 + IH<′8 − 1,∀<, <′ ∈ ", 8 ∈ �, (C.2k)

_
8 9 1

<<′,\
8 9 1

<<′ ∈ {0, 1},∀<, <
′ ∈ ", 8 ∈ �, 9 ∈ #, 1 ∈ �, (C.2l)

[<<′8 ∈ {0, 1},∀<, <′ ∈ ", 8 ∈ �. (C.2m)
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Performance bounds in

Chapter 4

Let =8 =
∑
1∈�

∑
9∈# G

1
8 9
,∀8 ∈ �, denote the number of servers which provide

protection for function 8 ∈ �. This work reorders the set of � by sorting 8

by |8 decreasingly, i.e., |8 ≥ |8−1,∀8 ∈ �\{1}. Let � denote a set of ordered

function sets � = {∅, {1}, {1, 2}, {1, 2, 3}, · · · , �}. Let �′ denote each element

in �, which contains |�′| functions with largest requested loads. This work

introduces a binary parameter U 9 |� ′ |, 9 ∈ #, �′ ∈ �. U 9 |� ′ | is set to 1 if � 9 ≥∑
8∈�\� ′ |8, and 0 otherwise. This work introduces an integer parameter V 9 , 9 ∈

#, which equals max� ′∈�
{
( |� | − |�′|)U 9 |� ′ |

}
.

Lemma D.1
∑
8∈� =8 ≤

∑
9∈# V 9 .

%A>> 5 : Since this work reorders the set of � by sorting 8 by |8 decreasingly, if a

server has enough capacity to protect function 8 ∈ �, it must be able to protect

function 8′ ∈ �, 8′ ≥ 8. On the contrary, if a server protects function 8′ ∈ �, it

may not be able to protect function 8 ∈ �, 8 < 8′. If � 9 ≥
∑
8∈�\� ′ |8, functions

in set �\�′ can be allocated to server 9 ∈ #. The smaller |�′| is, the more

functions can be allocated to server 9 ∈ #. V 9 = max� ′∈�
{
( |� | − |�′|)U 9 |� ′ |

}
is the maximum number of functions which can be allocated to server 9 ∈ #
according to the capacity of server 9 and the total requested load.

∑
9∈# V 9 is

the maximum number of servers which provide protection for all functions in

�; it is the upper bound of
∑
8∈� =8. �

237



Chapter D

Theorem D.1 When the failure probability of each function 8 ∈ � is the

same and only the HB strategy is considered, the function which corresponds

to MEUT is protected by at most min{|# |,
∑
9∈# V 9
|� |

log %L
log %H

} servers.

%A>> 5 : Firstly, without loss of generality, this work assumes two different

functions 81 and 82; function 81 ∈ � is protected by =1 servers; function 82 ∈ �
is protected by =2 servers. The failure probability of each function 8 ∈ � is

denoted by ?. Since only the HB strategy is considered, the upper bound of

the expected unavailable time of 81 is ?(C1+(C3−C1)%=1H
); the lower bound of the

expected unavailable time of 82 is ?(C1 + (C3− C1)%=2L
). By subtracting the lower

bound of D82 from the upper bound of D81 , this work obtains that, if D81 ≥ D82 ,

then %=1
H
≥ %=2

L
. It indicates that, if D81 ≥ D82 , then =1

=2
≤ log %L

log %H
.

Let 8′ denote the function which corresponds to MEUT, =8′ denote the num-

ber of servers which protect 8′, and D8′ denote MEUT. Since D8′ ≥ D8,∀8 ∈ �, this

work has =8′ ≤ =8 log %L
log %H

,∀8 ∈ �. It indicates that |� |=8′ ≤
∑
8∈� =8

log %L
log %H

. With

Lemma D.1, this work has =8′ ≤
∑
8∈� =8
|� |

log %L
log %H

≤
∑
9∈# V 9
|� |

log %L
log %H

. Each function can

be protected by at most |# | servers, while the function which corresponds to

MEUT can be protected by at most
∑
9∈# V 9
|� |

log %L
log %H

servers. Therefore, the func-

tion which corresponds to MEUT is protected by at most min{|# |,
∑
9∈# V 9
|� |

log %L
log %H

}
servers with the HB strategy. �

Theorem D.2 When the failure probability of each function 8 ∈ � is the same

and only the HB strategy is considered, MEUT in an optimal solution is at least

C1%
M
L
(1 − %H) + C3%M+1L

, where M = min{|# |,
∑
9∈# V 9
|� |

log %L
log %H

}.

%A>> 5 : Let D∗ denote MEUT obtained by the algorithm and 8′ denote the

function which corresponds to MEUT. Let ?8′ denote the failure probability

of function with MEUT. Theorem D.1 indicates that the maximum size of

(8, 8 ∈ �, is M = min{|# |,
∑
9∈# V 9
|� |

log %L
log %H

}. Therefore, this work obtains that∏
$8 9 ′>$8 9 : 9 ′∈(8 @ 9 ′ (1 − @ 9 ) ≥ %

M−1
L
(1 − @ 9 ), 9 ∈ #8;

∏
9∈#8 @ 9 ≥ %

M
L

. By using

(4.4e), this work has:

D∗ ≥
∑
1∈�

∑
9∈#8′

C1G
1
8′ 9 ?8′%

M−1
L (1 − @ 9 ) + C3?8′%ML ,

≥ C1%ML (1 − %H) + C3%M+1L . (D.1)
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Therefore, a lower bound of the optimum objective value is obtained as D∗ ≥
C1%
M
L
(1 − %H) + C3%M+1L

. �

Lemma D.2 The lower bound of the minimum size of (8, 8 ∈ �, is
min{|� |,

min 9∈# �9

max8′∈� |
′
8
}|# |

|� | .

%A>> 5 : The maximum requested load among functions in �, is expressed

by max8∈� A8. The number of functions that can be protected by a server

is at least min{|� |, min 9∈# � 9
max8∈� |8

}. If min{|� |, min 9∈# � 9
max8∈� |8

} |# ||� | ≥ |� |, each function

can be protected by at least |# | servers and the minimum size of (8, 8 ∈ �,

is |# |. If min{|� |, min 9∈# � 9
max8∈� |8

} |# ||� | < |� |, this work can find a set of func-

tions that can be protected by each server without any duplicated element.

min{|� |, min 9∈# � 9
max8∈� |8

}|# | is the minimum total number of functions that can be

protected by all servers. Therefore, the lower bound of the minimum size of

(8, 8 ∈ �, is
min{|� |,

min 9∈# �9

max8′∈� |
′
8
}|# |

|� | . �

Theorem D.3 The maximum expected unavailable time obtained by Algo-

rithm 4.1 is at most C1
%H (1−%L) (1−%NH)

1−%H + C3%N
′+1

H
, where N = min{|# |, b

∑
9∈# � 9∑
8′∈� |

′
8
c}

and N ′ =
min{|� |,

min 9∈# �9

max8′∈� |
′
8
}|# |

|� | .

%A>> 5 : Let D∗ denote MEUT obtained by the algorithm and 8′ denote the func-

tion which corresponds to MEUT. Let ?8′ denote the failure probability of func-

tion with MEUT. The maximum size of (8, 8 ∈ �, is N = min{|# |, b
∑
9∈# � 9∑
8′∈� |

′
8
c}

and the lower bound of the minimum size of (8, 8 ∈ �, isN ′ =
min{|� |,

min 9∈# �9

max8′∈� |
′
8
}|# |

|� | ,

where N ′ ≤ N .

Therefore, this work obtains that
∏

9∈#8′ @ 9 ≤ %
N ′
H

. Since
∑
9∈#8′

∏
$8′ 9 ′>$8′ 9 : 9 ′∈#8′

@ 9 ′ (1−@ 9 ), can be approximated as a geometric sequence with initial value (1−
%L) and common ratio %H, this work obtains that

∑
9∈#8′

∏
$8′ 9 ′>$8′ 9 : 9 ′∈#8′ @ 9 ′ (1−

@ 9 ) ≤
(1−%L) (1−%NH )

1−%H . By using (4.4e), this work has:

D∗ ≤ C1?8′
(1 − %L) (1 − %NH )

1 − %H
+ C3?8′%N

′

H ,

≤ C1
%H(1 − %L) (1 − %NH )

1 − %H
+ C3%N

′+1
H . (D.2)
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Therefore, an upper bound of the objective value obtained by the algorithm is

obtained as D∗ ≤ C1
%H (1−%L) (1−%#H )

1−%H + C3%#
′+1

H
. �
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NP-Completeness of the

problem in Chapter 4

This work defines the decision version of the multiple backup resource alloca-

tion (MBRA) problem as: given a set of functions � and a set of servers (, is

it possible to find a assignment of servers to functions so that MEUTs among

all functions is no more than 2?

Theorem E.1 The decision version of the multiple backup resource allocation

problem is NP-complete.

%A>> 5 : Firstly, the MBRA problem is NP, as this work can verify whether a

certificate of any instance of the MBRA decision problem, which is an assign-

ment of functions to backup servers, makes MEUTs among all functions no

more than 2 by calculating (4.4e) and (4.4f) in a polynomial time of $ ( |� | |# |).
Then, this work shows a reduction from the partition problem, which is a

known NP-complete problem [136], to prove the NP-completeness of MBRA.

The partition problem is defined as: is it possible to partition a given set � of

positive integers into two subsets �1 and �2 such that the sum of the numbers

in �1 equals that in �2?

First, this work constructs an instance of MBRA from any instance of

the partition problem. An instance of the partition problem consists of a

set of positive integers � = {�� : � ∈ [1, |� |]}. An instance of the MBRA

decision problem is constructed with the following steps, which performs in
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a polynomial time of $ ( |� |). An instance of MBRA is constructed with the

following steps:

1) Set |� | = 2 and both failure probabilities of two functions are set to 1;

2) Set |8 = 1,∀8 ∈ � and � 9 = 1,∀ 9 ∈ #. It indicates that each server can

protect at most one function;

3) Set |# | = |� |. For each positive integer � ∈ �, there is a corresponding

server 9 ∈ # with )9 = 0,∀ 9 ∈ #, which means threshold of each server is set

to 0. The failure possibility of each server is set to @ 9 = 4
−�� ;

4) Set C0 = C3;

5) Set 2 = (C3 − C1)4
−∑

��∈� ��

2 + C1 = (C3 − C1)
√∏

9∈# @ 9 + C1.

This construction imposes that each server can protect at most one function

with the HB strategy in MBRA. According to the proof of Theorem 4.1, the

expected unavailable time of each function 8 ∈ �, D8, can be simplified as (4.5).

D8 is expressed by C1 + (C3 − C1)
∏

9∈#8 @ 9 .

Consider that a partition problem instance is a Yes instance, which indi-

cates that there exists two subsets of �1 and �2 with
∑
��∈�1

�� =
∑
��∈�2

��. By

using the above presented steps to define the corresponding MBRA instance

from any partition problem instance, each function is assigned to multiple

servers. The production of failure probabilities for each subset of servers, is

the same and equal to 4
−∑

��∈� ��

2 . The expected unavailable time of each func-

tion protected by servers which correspond to each of �1 and �2 is equal to

(C3 − C1)4
−∑

��∈� ��

2 + C1. As a result, it is possible to find an assignment of the

two functions to servers so that MEUTs of the two functions is no more than

2.

Conversely, consider that an MBRA instance is a Yes instance, which

indicates that it is possible to find an assignment of the two functions to

servers making both expected unavailable time of the two functions are no

more than 2. Let (1 and (2 be the sets of servers each of which protects

each function in the assignment. �1 and �2 are two subsets of �, which

correspond to (1 and (2, respectively. Let �′ = �1 ∪ �2 and �′ ⊆ �.

Since each server can protect at most one function, (1 ∩ (2 = ∅, which in-

dicates that �1 ∩ �2 = ∅ and �′ = �. The expected unavailable time of

two functions protected by servers with the HB strategy which correspond to
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�1 and �2 is equal to C1 + (C3 − C1)4−
∑
��∈�1 �� and C1 + (C3 − C1)4−

∑
��∈�2 �� , re-

spectively. Since both expected unavailable time of the two functions are no

more than C1 + (C3 − C1)4
−∑

��∈� ��

2 , this work can obtain that the production of

failure probabilities for each subset of servers which protect each function is

4
−∑

��∈�1 �� ≤ 4
−∑

��∈� ��

2 and 4−
∑
��∈�2 �� ≤ 4

−∑
��∈� ��

2 , respectively, which indicates

that
∑
��∈�1

�� ≥
∑
��∈� ��

2 and
∑
��∈�2

�� ≥
∑
��∈� ��

2 . Since �′ = �1 ∪ �2 = �,∑
��∈�1

�� +
∑
��∈�2

�� =
∑
��∈� ��. Therefore,

∑
��∈�1

�� =
∑
��∈�2

�� =

∑
��∈� ��

2 . As

a result, this work is able to partition � into two subsets �1 and �2 such that

the two sums of numbers in the two subsets are equal. If an MBRA instance

is a Yes instance, then the corresponding partition problem instance is a Yes

instance.

This work confirmed that if a partition problem instance is a Yes instance,

then the corresponding MBRA instance is a Yes instance, and vice versa.

This work can transform any instance of the partition problem into an MBRA

instance in a polynomial time. This confirms that the partition problem, which

is NP-complete, is polynomial time reducible to MBRA. Since MBRA belongs

to NP, MBRA is NP-complete. �
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Appendix F

Parts of linearzion processing

for proposed model in

Chapter 5

For the sake of brevity and readability, let ? ∈ P B [1, |# |]; 0 ∈ A B [1,
( |� |
Γ

)
].

Equation (1), j8 9 , 8 ∈ #, 9 ∈ �, b 9 : , 9 ∈ �, : ∈ #, and \
: ?

8 9
, 8 ∈ #, 9 ∈ �, : ∈

#\{8}, ? ∈ P, are linearized to (8a)-(8f), (9a)-(9f) and (10a)-(10g), respec-

tively. Equations (3) and (5f) are linearized to (11a)-(14f) with some auxiliary

variables as follows:

?∗9 ≤
∑

8∈#\{:}
?G

: ?

8 9
+ (1 − f?

9 :
)�,∀ 9 ∈ �, ? ∈ P, : ∈ #, . (F.1a)

?∗9 ≥
∑

8∈#\{:}
?G

: ?

8 9
− (1 − f?

9 :
)�,∀ 9 ∈ �, ? ∈ P, : ∈ #, (F.1b)∑

8∈#\{:}
?G

: ?

8 9
≥ (f?

9 :
− 1)� +

∑
8∈#\{: ′}

?′G:
′?′

8 9
,∀ 9 ∈ �,

(?, :) ∈ (P, #), (?′, :′) ∈ (P, #)\{(?, :)}, (F.1c)∑
?∈P

∑
:∈#

f
?

9 :
= 1,∀ 9 ∈ �, (F.1d)

?∗9 ≥
∑

8∈#\{:}
?G

: ?

8 9
,∀ 9 ∈ �, ? ∈ P, : ∈ #, (F.1e)

f
?

9 :
∈ {0, 1},∀ 9 ∈ �, ? ∈ P, : ∈ #.. (F.1f)
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j8 9 ≥
1

|# | ( |# | − 1)
∑
?∈P

∑
:∈#\{8}

G
: ?

8 9
,∀8 ∈ #, 9 ∈ �, . (F.2a)

j8 9 ≤
∑
?∈P

∑
:∈#\{8}

G
: ?

8 9
,∀8 ∈ #, 9 ∈ �, (F.2b)

b 9 : ≥
1

|# | ( |# | − 1)
∑
?∈P

∑
8∈#\{:}

G
: ?

8 9
,∀ 9 ∈ �, : ∈ #, (F.2c)

b 9 : ≤
∑
?∈P

∑
8∈#\{:}

G
: ?

8 9
,∀ 9 ∈ �, : ∈ #, (F.2d)

j8 9 ∈ {0, 1},∀8 ∈ #, 9 ∈ �, (F.2e)

b 9 : ∈ {0, 1}∀ 9 ∈ �, : ∈ #. (F.2f)

\
: ?

8 9
≤ G: ?

8 9
,∀8 ∈ #, 9 ∈ �, : ∈ #\{8}, ? ∈ P, (F.3a)

\
: ?

8 9
≤ X?

9
,∀8 ∈ #, 9 ∈ �, : ∈ #\{8}, ? ∈ P, (F.3b)

\
: ?

8 9
≥ G: ?

8 9
+ X?

9
− 1,∀8 ∈ #, 9 ∈ �, : ∈ #\{8}, ? ∈ P, (F.3c)

\
: ?

8 9
∈ {0, 1},∀8 ∈ #, : ∈ #\{8}, 9 ∈ �, ? ∈ P, (F.3d)

1 − X?
9
≤ ?∗9 − ?,∀ 9 ∈ �, ? ∈ P, (F.3e)

1 − X?
9
≥ (?∗9 − ?)n,∀ 9 ∈ �, ? ∈ P, (F.3f)

X
?

9
∈ {0, 1},∀ 9 ∈ �, ? ∈ P. (F.3g)

where 0 < n < 1
|# | .

Let ~f<B, ~
′f
<B, < ∈ [0, |# |], B ∈ S, f ∈ C, be binary variables to linearize

(5.4). ~f<B is set to one if
∑
8∈Pf

Γ
I0
8B

is equal to < among nodes in Pf
Γ

, and zero

otherwise. ~′f<B is set to one if
∑
8∈#\Pf

Γ
I0
8B

is equal to < for nodes in #\Pf
Γ

,

and zero otherwise. This work can express ~f<B and ~′f<B in the form of the

following constraints:∑
8∈Pf

Γ

I08B =
∑

<∈[0,|# |]
<~f<B,∀f ∈ C, B ∈ S, (F.4a)∑

8∈#\Pf
Γ

I08B =
∑

<∈[0,|# |]
<~′f<B,∀f ∈ C, B ∈ S, (F.4b)
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<∈[0,|# |]

~f<B = 1, B ∈ S, f ∈ C, (F.4c)∑
<∈[0,|# |]

~′f<B = 1, B ∈ S, f ∈ C, (F.4d)

~f<B, ~
′f
<B ∈ {0, 1},∀< ∈ [0, |# |], f ∈ C, B ∈ S. (F.4e)

&f can be expressed as a linear form as:

&f ≤ @8f + (1 − l8f)�,∀8 ∈ #\PfΓ , f ∈ C, (F.5a)

&f ≥ @8f − (1 − l8f)�,∀8 ∈ #\PfΓ , f ∈ C, (F.5b)

@8f ≥ (l8f − 1)� + @8′f,∀8, 8′ ∈ #\PfΓ , f ∈ C, 8
′ ≠ 8, (F.5c)∑

8∈#\Pf
Γ

l8f = 1,∀f ∈ C, (F.5d)

&f ≥ @8f,∀8 ∈ #\PfΓ , f ∈ C, (F.5e)

l8f ∈ {0, 1},∀8 ∈ #\PfΓ , f ∈ C. (F.5f)

4f
9
∈ {0, 1}, �f

8
∈ {0, 1}, and Af ∈ {0, 1} can be expressed as a linear form as:∑

8∈#
(j8 9 + b 98) −

∑
8∈Pf

Γ

(j8 9 + b 98) ≥ −4f9 � + n,∀ 9 ∈ �, f ∈ C, (F.6a)∑
8∈#
(j8 9 + b 98) −

∑
8∈Pf

Γ

(j8 9 + b 98) ≤ (1 − 4f9 )�,∀ 9 ∈ �, f ∈ C, (F.6b)

!W
8f − �8 ≤ �f8 �,∀8 ∈ #, f ∈ C, (F.6c)

!W
8f − �8 ≥ (�f8 − 1)�,∀8 ∈ #, f ∈ C, (F.6d)

Af ≥
1

|� | + |# | (
∑
9∈�

4f9 +
∑
8∈#

�f8 ),∀f ∈ C, (F.6e)

Af ≤
∑
9∈�

4f9 +
∑
8∈#

�f8 ,∀f ∈ C, (F.6f)

where � is a sufficiently large number that satisfies � ≥ 2|� |. 'f can be

expressed as a linear form as:

'f ≤ |f + (1 − Af)�,∀f ∈ C, (F.7a)

'f ≥ |f − (1 − Af)�,∀f ∈ C, (F.7b)

'f ≤ Af�,∀f ∈ C, (F.7c)

'f ≥ −Af�,∀f ∈ C, (F.7d)

Af ∈ {0, 1},∀f ∈ C. (F.7e)
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Appendix G

Parts of linearzion processing

for proposed model in Chapter 6

To linearize d 9 : and l 9 : , the linear form of N9 : and C9 : are required. First,

this work introduces binary variable 4
9

: : ′, 9 ∈ �, : ∈ #, :
′ ∈ # \ {:}: it is set to

one if $ 9 : ′ > $ 9 : , and zero otherwise. 4
9

: : ′ can be expressed as a linear form

as:

$ 9 : ′ −$ 9 : ≤ 4 9: : ′�,∀ 9 ∈ �, : ∈ #, :
′ ∈ # \ {:}, (G.1a)

$ 9 : ′ −$ 9 : ≥ (4 9: : ′ − 1)�,∀ 9 ∈ �, : ∈ #, :′ ∈ # \ {:}, (G.1b)

4
9

: : ′ + 4
9

: ′: = 1,∀ 9 ∈ �, : ∈ #, :′ ∈ # \ {:}. (G.1c)

With 4
9

: : ′, this work introduces binary variable _ 9 9 ′:: ′ that satisfies
∑
$ 9: ′>$ 9:

Λ: ′ =∑
9 ′∈�

∑
: ′∈# _ 9 9 ′:: ′, which can expressed in a linear form as:

_ 9 9 ′:: ′ ≤ j: ′ 9 ′, 9 , 9 ′ ∈ �, : ∈ #, , :′ ∈ #{:} (G.2a)

_ 9 9 ′:: ′ ≤ 4 9: : ′, 9 , 9
′ ∈ �, : ∈ #, :′ ∈ #{:} (G.2b)

_ 9 9 ′:: ′ ≥ j: ′ 9 ′ + 4 9: : ′ − 1, 9 , 9 ′ ∈ �, : ∈ #, :′ ∈ #{:}. (G.2c)

Similarly, this work introduces binary variable 5
9

: : ′, 9 ∈ �, : ∈ #, :′ ∈
# \ {:}: it is set to one if $ 9 : ′ < $ 9 : and

∑
?∈� b

?

9 : ′ =
∑
?∈� b

?

9 :
= 1, and zero

otherwise. 5
9

: : ′ can be expressed as a linear form as:

5
9

: : ′ = 5 1
9

: : ′ − 5 2
9

: : ′, 9 ∈ �, : ∈ #, :
′ ∈ # \ {:} (G.3a)

5 1
9

: : ′ ≤
∑
?∈�

b
?

9 : ′, 9 ∈ �, : ∈ #, :
′ ∈ # \ {:}, (G.3b)
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5 1
9

: : ′ ≤
∑
?∈�

b
?

9 :
, 9 ∈ �, : ∈ #, :′ ∈ # \ {:}, (G.3c)

5 1
9

: : ′ ≤
∑
?∈�

b
?

9 :
+

∑
?∈�

b
?

9 : ′ − 1, 9 ∈ �, : ∈ #, :′ ∈ # \ {:}, (G.3d)

5 2
9

: : ′ ≤ 5 1
9

: : ′, 9 ∈ �, : ∈ #, :
′ ∈ # \ {:}, (G.3e)

5 2
9

: : ′ ≤ 4
9

: : ′, 9 ∈ �, : ∈ #, :
′ ∈ # \ {:}, (G.3f)

5 2
9

: : ′ ≥ 5 1
9

: : ′ + 4
9

: : ′ − 1, 9 ∈ �, : ∈ #, :′ ∈ # \ {:}. (G.3g)∑
: ′∈# 9 :$ 9: ′<$ 9:

@: ′Λ: ′ and
∑
$ 9: ′<$ 9:

(1− @: ′) (�: ′ −,: ′) can be linearized with

the same approach with (G.2a)-(G.2c).

Let
∑
8∈# Δ8 = ∨ 9∈� (j8 9 ∨ b0

98
∨ b1

98
) represent the objective function of the

optimization problem. It can be linearized as:

X8 9 ≥
1

3
(j8 9 + b0

98 + b1
98),∀8 ∈ #, 9 ∈ �, (G.4a)

X8 9 ≤ (j8 9 + b0
98 + b1

98),∀8 ∈ #, 9 ∈ �, (G.4b)

Δ8 ≥
1

|� | (
∑
9∈�

X8 9 ),∀8 ∈ #, (G.4c)

Δ8 ≤ (
∑
9∈�

X8 9 ),∀8 ∈ #. (G.4d)
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Parts of linearzion processing

for proposed model in

Chapter 7

Let 3
9 :f

: ′8 = |:′4 9
: : ′ − 8 |, 9 ∈ �, : ∈ # \ P

f
Γ
, :′ ∈ # \ {:}, 8 ∈ Pf

Γ
, f ∈ C, whose

range is in [0, |# |]. 3 9 :f
: ′8 can be expressed in a linear form as:

3
9 :f

: ′8 ≤ :
′4 9
: : ′ − 8 + (1 − X

9 :f

: ′8 )�, (H.1a)

3
9 :f

: ′8 ≥ :
′4 9
: : ′ − 8 − (1 − X

9 :f

: ′8 )�, (H.1b)

3
9 :f

: ′8 ≤ 8 − :
′4 9
: : ′ + X

9 :f

: ′8 , (H.1c)

3
9 :f

: ′8 ≥ 8 − :
′4 9
: : ′ − X

9 :f

: ′8 , (H.1d)

:′4 9
: : ′ − 8 ≥ (X

9 :f

: ′8 − 1)�, (H.1e)

8 − :′4 9
: : ′ ≥ −X

9 :f

: ′8 �, (H.1f)

X
9 :f

: ′8 ∈ {0, 1}. (H.1g)

Let 2
9 :f

: ′8 , 9 ∈ �, : ∈ # \ P
f
Γ
, :′ ∈ # \ {:}, 8 ∈ Pf

Γ
, f ∈ C, denote a binary

variable that is set to zero if :′4 9
: : ′ = 8, i.e., 3

9 :f

: ′8 = 0, and otherwise one. 2
9 :f

: ′8

can be expressed in a linear form as:

2
9 :f

: ′8 ≥
3
9 :f

: ′8

|# | , (H.2a)

2
9 :f

: ′8 ≤ 3
9 :f

: ′8 . (H.2b)
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For each :′ satisfying 4
9

: : ′ = 1, q
9 :f

: ′ =
∏
8∈Pf

Γ
2
9 :f

: ′8 = 0 represents that :′ is

in %f
Γ

.
∑
: ′∈# q

9 :f

: ′ = 0 represents that each :′ satisfying 4
9

: : ′ = 1 is in %f
Γ

. Uf
9:

can be expressed in a linear form as:

Uf9: = 1 −
∑

: ′∈#\{:}
q
9 :f

: ′ , 9 ∈ �, : ∈ #, f ∈ C, (H.3a)

q
9 :f

: ′ ≤ 2
9 :f

: ′8 ,∀8 ∈ P
f
Γ , 9 ∈ �, : ∈ # \ P

f
Γ , :

′ ∈ #\{:}, f ∈ C, (H.3b)

q
9 :f

: ′ ≥
∑
8∈Pf

Γ

2
9 :f

: ′8 − |P
f
Γ | + 1,∀ 9 ∈ �, : ∈ #\PfΓ , :

′ ∈ #\{:}, f ∈ C,

(H.3c)

q
9 :f

: ′ , 2
9 :f

: ′8 ∈ {0, 1},∀8 ∈ P
f
Γ , 9 ∈ �, : ∈ #\P

f
Γ , :

′ ∈ #\{:}, f ∈ C. (H.3d)
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