(fifk 1)

FUHR K5 it () K4 | R 236

Resource Allocation in Network Function Virtualization with Workload-Dependent
FWSCEHE | Unavailability

(AMKGTEOARA AN EZME Y *y bV — 7RI T 2 &IEEI Y 4 0)

(G XK DEF)

Network Function Virtualization (NFV) has transformed network services by shifting from
dedicated hardware to virtualized functionalities, thus eliminating the constraints and expenses
of traditional systems. Through NFV, computational resources can be pooled, offering enhanced
scalability, flexibility, and cost-efficiency. Traditional network functions like firewalls and load
balancers are virtualized for deployment on virtual machines and containers. Efficient resource
allocation is vital for optimizing network performance, ensuring availability, and meeting
agreements. Properly managing resources can enhance the overall efficiency and responsiveness
of the service and maintain uninterrupted functionality. Node failures and resource backups
impact service reliability and continuity. Resource backups, such as cold and hot backups, enable
recovery and minimize downtime. However, challenges arise from many factors like backup
strategies, utilization ratio, failure probabilities, recovery strategies, and shared protection,
necessitating innovative approaches to balance resource sharing, recovery time, and availability.
To tackle these issues, the thesis introduces optimization models and algorithms. This thesis
consists of nine chapters.

Chapter 1 introduces the background of resource allocation for higher availability and fault
tolerance with workload-dependent unavailability.

Chapter 2 investigates the related works in literature.

Chapter 3 proposes an optimization model to derive a primary and single backup resource
allocation considering a workload-dependent failure probability to minimize the maximum
expected unavailable time (MEUT). The proposed model adopts hot and cold backup strategies
to provide protection. The optimization problem is formulated as a mixed integer linear
programming (MILP) problem. This work proves that MEUT of the proposed model is equal to
the smaller value between the two MEUTSs obtained by applying only hot backup and cold
backup strategies with the same total requested load. A heuristic algorithm inspired by the water-
filling algorithm is developed with the proved theorem. The numerical results show that the
proposed model suppresses MEUT compared with the conventional model. The developed
heuristic algorithm is approximately 105 times faster than the MILP approach with 10—2
performance penalty on MEUT.

Chapter 4 proposes a multiple backup resource allocation model to minimize MEUT under a
protection priority policy with a workload-dependent failure probability. The proposed model
adopts hot and cold backup strategies; for protection of each function with multiple backup
resources, it is required to adopt a suitable priority policy. This work analyzes the superiority of
the protection priority policy for multiple backup resources and provide the theorems that clarify
the influence of policies on MEUT. The optimization problem is formulated as an MILP
problem. This work proves that the decision version of the multiple resource allocation problem
is NP-complete. A heuristic algorithm inspired by the water-filling algorithm is developed. The
numerical results show that the proposed model reduces MEUT compared to baselines. The
adopted priority policy suppresses MEUT compared with other priority policies. The developed
heuristic algorithm is approximately 106 times faster than the MILP approach with 10—4
performance penalty on MEUT.

Chapter 5 proposes a resource allocation model under preventive recovery priority setting to
minimize a weighted value of unavailable probability (W-UP) against multiple failures. W-UP




considers the probability of unsuccessful recovery and the maximum unavailable probability
after recovery among physical nodes. This work introduces a recovery strategy to handle the
workload variation which is determined at the operation start time and can be applied for each
failure pattern. This work also discusses an approach to obtain unsuccessful recovery probability
with considering the maximum number of arbitrary recoverable functions by a set of available
nodes. The optimization problem is formulated as an MILP problem. This work develops a
heuristic algorithm to solve larger size problems in a practical time. The numerical results
observe that the proposed model reduces W-UP compared with baselines.

Chapter 6 proposes a robust function deployment model against uncertain recovery time with
satisfying an expected recovery time guarantee in a cost-efficient manner. Multiple functions
protected by a node can share the resources to save cost, which also affects the recovery time if
the number of unavailable functions is so large that the remaining capacity cannot recover them
and causes a waiting procedure. This work introduces an uncertainty set that considers the upper
and lower bounds of the recovery time and the upper bound of the average recovery time among
nodes. The robust optimization technique is applied to obtain the worst-case expected recovery
time under an uncertain recovery time set. With this technique, the model is formulated as an
MILP problem. To solve the problem in a practical time, a heuristic algorithm is developed. It
reduces the number of active nodes while decreasing the worst-case expected recovery time
within the uncertainty set by converting the linear programming problem to a graph problem.
The numerical results reveal the superiority of the proposed model by considering the recovery
time guarantee, uncertainty set, and shared protection.

Chapter 7 proposes a primary and backup resource allocation model under reliability
guarantees to minimize the deployment cost with considering the effect of the assigned workload
on recovery time. This work considers multiple states of pre-configuration for each function
with different degrees of instantiation, initialization, and synchronization and different recovery
times. This work considers that the extra-assigned recovery workload can be adopted, which
means that the recovery workload can be scaled, to speed up the recovery, while improving the
resource efficiency to fully utilize the idle capacity for faster recovery. On the other aspect, the
extra-assigned recovery workload may lead to unsuccessful recovery in a specific failure
configuration. The numerical results indicate that the deployment cost is saved on average 19%
and 9% with considering the proposed model compared to two baselines that do not consider
flexible backup modes and extra-assigned recovery workload, respectively.

Chapter 8 designs and implements a custom resource and controller in Kubernetes to handle
primary and backup resources. This custom resource includes different types of Pods: primary,
hot backup, and cold backup. The controller oversees these Pods, ensuring they match their
desired states. Moreover, deploying and managing functions play a crucial role in enhancing
network service continuity and reliability. Kubernetes automates this process, but existing tools
lack real-time and optimal function deployment and management. This chapter presents a two-
layer controller structure in Kubernetes to achieve efficient function deployment while
considering resource migration for optimal allocation. The demonstration validates that the
controller automatically manages the resources promptly and correctly.

Finally, Chapter 9 concludes this thesis and discusses the future works to extend this work.
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