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1 Introduction

The S-matrix bootstrap initiated in the middle of the last century began with the hope
that the observable can be fully constrained by global symmetries, crossing, unitarity and
analyticity. However, as one can construct an infinite number of consistent quantum field
theories (even demanding consistent coupling to gravity), each with its own S-matrix, it was
quickly realized that the initial hope was somewhat misguided. On the other hand, while the
S-matrix may not be unique, the region where the S-matrix is confined to can be viewed as
the “theory space”, in which all theories consistent with the previous principles must reside.
This motivated the program of applying the bootstrap approach to the analysis of this space,
which is conveniently parameterized by the Wilson coefficients of the low energy effective
field theory (EFT) description. Modern numerical methods and geometric understanding
of the bootstrap equations have led to tremendous progress in delineating the boundary of
this infinite dimensional space (see [1] and [2] for overview).

One of the most prominent examples is the positivity bound of the four-derivative
coupling in any non-gravitational EFT [3]. Such bounds have been applied to a wide range of
phenomenological processes such as the chiral Lagrangian for pions [4, 5], WW scattering [6, 7],
Higgs production [8, 9], and more recently standard model effective field theory (EFT) [10–12].
For derivation of such bounds from superluminal arguments see [13]. In most of these cases,
the operators in question often involve states that are not stable. However, their decay
widths are usually under control in the weak coupling expansion and can be attributed to
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higher-order effects. On the other hand, it would be interesting to understand on general
grounds, how the fact that the external states are unstable affects these positivity bounds.

At first glance, the problem appears to be ill-posed as by definition asymptotic states
of the S-matrix must be stable. However since the presence of unstable particles can be
detected from the presence of complex poles on the unphysical sheet of the usual S-matrix, it
was suggested long ago [14–18] that the S-matrix for unstable particles can be defined as the
residue on these poles. Such a definition would allow one to infer the analytic properties of
the unstable S-matrix by analytically continuing the unitarity equations for stable particles.
Initial steps toward this direction were taken by one of the authors in [19] (see also [20]),
where the unitarity equation for unstable particles 2 → 2 scattering was derived, taking a form
very similar to that of stable-particle amplitudes. However, as unitarity equations for stable
particles are only applicable to physical kinematics, there exist regions of unstable kinematics
that cannot be reached from physical kinematics. The aim of this paper is to close this gap.

For the purpose of positivity bounds, which is derived from the dispersive representation
of the EFT coefficient and thus depends heavily on the non-analyticity of the amplitude near
the forward limit, the pressing issue is when anomalous thresholds appear [21–24]. Already for
stable particles that are not the lightest state, anomalous thresholds appear on the physical
sheet when M >

√
2m (see [25]). However since the presence of such singularities lies in

the IR region defined by external kinematics, they can be computed via the EFT and safely
subtracted, leaving terms that are constrained by the normal threshold in the dispersive
representation.1 Thus we would like to see if this continues to be the case for unstable particles.

We began by deriving the unitarity equations for the two stable two unstable particle
S-matrix. This follows [19] where one starts with the unitarity equations of stable particle
scattering, and analytically continues the kinematics to complex values. Using ± to represent
the decaying and growing mode of the unstable particle, we see that only for the conjugate
setup M+−

4 do the unitarity equations agree with that of stable particles. For M++
4 we will

have triangle singularities on the first sheet and no positivity can be established.
We use explicit one-loop scalar integrals to verify the above result. For convenience, we

present the scalar triangle and box integral in its dispersive representation to analyze its
analytic continuation to complex kinematics. We find that anomalous thresholds do appear
on the first sheet for both M+−

4 and M++
4 ! For M+−

4 , we see that the triangle singularity
enters the first sheet while Re[t] > 0 which implies that it is reached by analytically continuing
from the unphysical region, which explains why it was not observable in the previous analysis,
i.e. the later utilizes unitarity equations of stable particles which only applies in the physical
region. Furthermore, we find that the anomalous threshold can also occur when the internal
state has a mass that is parametrically large compared to external kinematics! This is
problematic since its source is associated with UV physics and this is not computable within
the IR EFT, i.e. it is not subtractable. This implies that for unstable particles, on general
grounds the positivity bounds should no longer be respected.

To better understand this conclusion we construct an explicit toy model where the
system involves four distinct scalars π, ϕ, χL, χH with π being the lightest state and the

1Indeed one can even search for their presence in the collider [26–28]. We thank Sebastian Mizera for
introducing these works.
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interaction given by:

Lint = −gϕ

2 ϕχ2
L − gππχLχH . (1.1)

We consider the four-point amplitude M4(π(1)ϕ(2)ϕ(3)π(4)). By tuning the mass of ϕ

we can compare the situation between stable and unstable ϕ. Assuming that the mass of
χH is parametrically large compared to all other scales, we find that the coefficient of the
four-derivative coupling B̃2, which is normalized to be dimensionless, is given as

Stable

Unstable (++)

Unstable (+-)

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

MR/mL

B 2

.

The horizontal axis is the mass ratio of the external mass to the internal mass, so the external
state ϕ decays to χL above MR/mL = 2. We indeed find that the coefficient is negative
for unstable kinematics even for the conjugate setup M+−

4 ! The choice M++
4 is worse as

it is not even real (the solid and dashed curves are real and imaginary parts, respectively).
To see that the negativity of M+−

4 is indeed due to anomalous thresholds, we consider the
dispersive representation of the box integral for M+−

4 , and use double discontinuity to isolate
the triangle singularity which is the anomalous threshold:2

B+−
2 =

∫ ∞

m2
th

ds

2πi

2DiscsM+−

(s − M2
R − m2)3︸ ︷︷ ︸

= I+−
n : normal

+
∑

n

∫
Cn

ds

2πi

2Disc2
sM+−

(s − M2
R − m2)3︸ ︷︷ ︸

= I+−
a : anomalous!

. (1.2)

Each contribution after appropriate normalizations is given in the following:

I

n

+-

I

a

+-

B

2

+-

2 4 6 8 10

-4

-2

0

2

4

MR/mL .

Indeed we find that the negative contribution comes solely from the anomalous threshold.
2Here the double discontinuity is with respect to the same variable, which is distinct from Mandelstam’s

double-discontinuity dispersive representation [29].
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This paper is organized as follows: we start with a brief review of unstable particles and
discuss properties coming from the factorizations of S-matrix in section 2. In section 3, we
use unitarity to see the analytic properties of unstable amplitudes. However, as is well-known,
there are singularities that cannot be immediately seen from unitarity. Then, we study the
analytic properties for unstable kinematics based on the explicit Feynmann diagrams in
section 4. We elaborate on how anomalous thresholds appear on the first sheet when we
change the mass of the external state and, importantly, we find anomalous thresholds at
UV if the external state is unstable. In section 5, we explicitly construct a model where
the four-derivative coupling, which is defined by the low-energy expansion of the amplitude,
becomes negative. In section 6, we derive the dispersive representation and isolate the
contribution from the UV anomalous thresholds by a double discontinuity formula, showing
that the violation of the positivity bound comes from the UV anomalous thresholds. In
section 7, we dive into a generic one-loop diagram, discussing that the double discontinuity
generically connects singularities at UV and IR. We conclude in section 8.

2 Unstable particles and their S-matrix

We will begin with a brief discussion of the definition of unstable particles and their S-matrix
(for recent review see [20]). Recall that given the 1 PI contribution to the two-point function
iΣ(p2) the resumed propagator takes the form

−i

p2 + m2 − Σ(p2) = −i

p2 + M2 (2.1)

where M2 is a shifted complex mass with

ReM2 = m2 − ReΣ(p2), ImM2 = −iImΣ(p2) . (2.2)

The imaginary part is identified with the decay rate Γ = ImΣ(p2)/m leading to the Breit-
Wigner shape for the distribution. Note that in general, we have Γ > 0, i.e. the imaginary
part of the mass is negative. Thus the on-shell condition for the unstable particle with
the momentum pµ should be understood as p2 = −M2, such that in the rest frame the
negative imaginary part implies that the “wavefunction” eip·x = e−iMt decays in time so
this is a decaying mode.

With the unstable particle defined, we now proceed to its S-matrix. Since resonances
associated with unstable particles can be identified with poles on the unphysical sheet, see
for example [14] and [19], one can define the S-matrix with unstable external states as the
residue of such poles. In the following, we will use amplitudes of identical real scalars and
use their analytic properties to infer that of amplitudes for unstable particles.

We begin with the scattering amplitude of stable particles satisfying real analyticity,
M∗(sA) = M(s∗A), where sA is the set of independent Lorentz-invariant variables. The
2-to-2 amplitude may have a resonance of the Breit-Wigner form which can be explained
by a simple pole off the real axis,

M2→2(s, t) = Ress=M2 M2→2
s − M2 + regular part. (2.3)
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Figure 1. Positions of complex poles where the zigzag lines denote branch cuts.
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Figure 2. Factorizations of amplitudes. The solid and wavy lines are stable and unstable particles,
respectively.

Here, M2 is a complex number with a negative imaginary part and the position of the complex
pole P is shown by the left panel of figure 1, where one analytically continues along the
normal threshold and crosses over the branch cut to reach the unstable pole. The Mandelstam
variables are defined by s = −(p1 + p2)2, t = −(p1 + p4)2 and u = −(p1 + p3)2, respectively.
The resonance is interpreted as a production of a virtual unstable particle as illustrated by
figure 2 (left), or we can define unstable particles through the complex pole of the S-matrix.
The position of the pole M2 is identified as the complex mass squared of the unstable particle
while the spin can be read off by expanding the residue in the center of mass frame on the
Gegenbauer polynomials. The factorization property for the spin-0 particle implies

Res
s=M2

M2→2 = −M3(1, 2, P +)M3(3, 4, P +) (2.4)

where M3(1, 2, P +) is regarded as the on-shell three-point amplitude with two stable particles
and one unstable particle. Here, the superscript + represents the particle having a negative
imaginary mass, i.e. a decaying mode.

The pole is reached by analytically continuing under the branch cut associated with
physical thresholds. The real analyticity, M2→2(s∗, t) = M∗

2→2(s, t) for a fixed small t,
requires another pole at the complex conjugate position P ′ in the complex s-plane as shown
by figure 1 (right). The on-shell condition reads p2 = −(M2)∗ which has a positive imaginary
part in its frequency, so the particle is a growing mode rather than decaying. This growing
mode can be reached only if the amplitude is analytically continued from the anti-causal
−iε direction. The residue at P ′ is

Res
s=(M2)∗

M2→2 = −M3(1, 2, P−)M3(3, 4, P−) (2.5)

with

M3(1, 2, P−) = M∗
3(1, 2, P +) (2.6)
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Hereinafter, the superscripts ± denote whether the corresponding unstable particle is decaying
(+) or growing (−). If no confusion arises, we omit the particle labels and write Ma

3 =
M3(1, 2, P a) with a = ± and so on.

So far we have defined the three-point amplitude with one unstable particle, where there
is only one independent amplitude. The situation is different when amplitudes involve more
than one unstable particle. Let us consider the 3 → 2 amplitude and extract the three-point
amplitude with two unstable particles by utilizing the factorization3

M3→2 ∼



M+
3

1
s23−M2M++

3
1

s45−M2M+
3 around s23 = M2, s45 = M2 ,

M−
3

1
s23−(M2)∗M

−+
3

1
s45−M2M+

3 around s23 = (M2)∗, s45 = M2 ,

M+
3

1
s23−M2M+−

3
1

s45−(M2)∗M
−
3 around s23 = M2, s45 = (M2)∗ ,

M−
3

1
s23−(M2)∗M

−−
3

1
s45−(M2)∗M

−
3 around s23 = (M2)∗, s45 = (M2)∗ .

(2.7)

See the middle panel of figure 2. Using the symmetry in the replacement 23 ↔ 45 and the
real analyticity M∗

3→2(s23, s45, · · · ) = M3→2(s∗23, s∗45, · · · ) where the ellipsis stands for the
variables which are irrelevant to the residue, we find

M++
3 = (M−−

3 )∗ , M+−
3 = M−+

3 = (M+−
3 )∗ = (M−+

3 )∗ . (2.8)

There are now two independent three-point amplitudes, namely unstable particles are either
the same or different. In particular, the symmetry 23 ↔ 45 requires that the on-shell
three-point amplitude with different choices M+−

3 is a real quantity while M++
3 is not

necessarily real.
We proceed to discuss four-point amplitudes involving two external unstable particles,

which is the main focus of this paper. We will define it through the six-point diagram of
figure 2. We regard the six-point as a function of s123, s16, s23, s45 and variables that are
irrelevant to the factorization. We keep the kinematics of the six-point amplitude fixed except
for s23 and s45, which are continued above/below the cut for the decaying/growing mode.
Note that in principle, due to momentum conservation the variables that are irrelevant to
the factorization will also be deformed, which can lead to additional non-analyticity. This
can result in the ambiguity in the definition of the unstable S-matrix. We will address this
ambiguity in the next section.

As in the previous case, the independent functions are M++
4 and M+−

4 , and others
can be obtained by complex conjugation,

M−−
4 (s − iε, t − iε) =

(
M++

4 (s + iε, t + iε)
)∗

, (2.9)

M+−
4 (s+iε, t+iε) = M−+

4 (s+iε, t+iε) =
(
M−+

4 (s−iε, t−iε)
)∗

=
(
M+−

4 (s−iε, t−iε)
)∗

,

where ε → +0 is understood, and s = s123 and t = s16 are the Mandelstam variables of
the embedded four-point amplitude. We have used the real analyticity and the symmetry
in exchanges of external particles, 23 ↔ 45 and 1 ↔ 6. Note that due to the multitude of
complex invariants, the “Im” of the amplitude, defined as M−M∗, and the discontinuity in

3Throughout the paper, we use the notation sij··· = −(pi + pj + · · · )2 with pi being the momentum.
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s, t, defined as M(s, t) −M(s∗, t∗), may be different. Indeed we have,

DiscM++
4 (s, t) = M++

4 (s + iε, t + iε)−M++
4 (s − iε, t − iε) ,

2iImM++
4 (s, t) = M++

4 (s + iε, t + iε)−M−−
4 (s − iε, t − iε) ,

DiscM+−
4 (s, t) = 2iImM+−

4 (s, t) = M+−
4 (s + iε, t + iε)−M+−

4 (s − iε, t − iε) , (2.10)

where Disc is the total discontinuity. The discontinuity and the imaginary part of M++
4 do

not agree with each other, in general, while they agree in M+−
4 .

It would be worth remarking that, in general, M++
4 and M−−

4 are different functions
although they are related by complex conjugation. In other words, they are not real analytic
as seen from (2.10). The separation of the two can be understood by the presence of the
external-mass singularity, which was studied thoroughly for the triangle diagram in ref. [20].4

On the other hand, M+−
4 and M−+

4 are the same functions and real analytic. A path
connecting upper-half and lower-half s-planes of M+−

4 is briefly discussed in [19] under
neglecting anomalous thresholds.

Amplitudes involving unstable external states also have their own threshold singularities.
The discontinuity, defined in eq. (2.10), admits a partial wave expansion where the expansion
basis is dictated by Lorentz invariance to be Gegenbauer polynomials:

DiscMab
4 /2i =

∑
ℓ

ρab
ℓ G

(D)
ℓ (cos θ) . (2.11)

For general complex kinematics the scattering angle θ is defined by

cos θ := 1 + 2(t − t0)√
λ(s, s1, s2)λ(s, s3, s4)/s2 , (2.12)

with

t0 = 1
2s

[
(s1 + s2 + s3 + s4)s − s2 + (s1 − s2)(s3 − s4) +

√
λ(s, s1, s2)λ(s, s3, s4)

]
(2.13)

where λ(x, y, z) := x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källén function. As the singularities
correspond to physical threshold production, ρab

ℓ should have a structure of the product of
two three-point amplitudes with two lines being real masses and the third line being the
complex mass. We now recall (2.6); changing to the conjugate states yields the complex
conjugate. We thus conclude that the discontinuity must be positively expandable on the
Gegenbauer basis for the conjugate pair ρ+−

ℓ > 0. The exchanged state is not necessarily
a one-particle state but may be a multi-particle state with angular momentum ℓ. In this
case, the states are continuously distributed and the singularity should be replaced with
a brunch cut rather than a simple pole. This intuition, however, may fail if the partial
wave expansion does not converge, i.e., DiscM+− has a singularity. Such a singularity is
indeed a centrepiece of the present paper.

4Indeed in ref. [20], it was shown that for unstable kinematics, the triangle diagram develops a cut that
completely separates the upper and lower half-plane, with the function on the upper half related to the lower
half via complex conjugation as can be seen from eq. (5.82) of [20].
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3 Analytic properties of unstable scattering from (stable) unitarity

In the previous section, we’ve seen that the discontinuity of the S-matrix for unstable particles
associated with (unstable) threshold production is positively expandable on the Gegenbauer
polynomials. However, as in stable particles, anomalous thresholds may appear and can be
deduced from a repeated expansion of the unitarity equation (for example see chp.2 of [20]).
In this section, we use the physical unitarity equations together with the real analyticity to
see what type of singularities can be detected. To simplify, we begin by considering a simple
system of two scalars with M > m. For simplicity, we assume that 4m2 < M2 < 9m2 so
that we only have two particle decays for the unstable particle.

We recall that the unstable-particle amplitudes are defined by residues of higher-point
stable-particle amplitudes. Accordingly, analytic properties of the unstable-particle amplitudes
can be obtained from unitarity constraints of higher-point stable-particle amplitudes. It is
convenient to introduce the following diagrammatic notation [30, 31]

n

{
±

}
n′ = −M(±)

n→n′ ,

=

kinematically
allowed∑

a=2

}
a ,

each internal line = −2πiθ(q0)δ(q2 + m2) ,

each loop = i

(2π)4

∫
d4k ,

n lines joining two bubbles = a symmetry factor 1
n! ,

(3.1)

where M(+)
n→n′ is n → n′ scattering amplitude for stable particles with mass m where the

iϵ prescription is causal, and M(−)
n→n′ is the complex conjugate. Each solid line denotes a

single-particle state while the bold line is the sum of multi-particle states. For instance,
the 2-to-2 unitarity equation is written as

+ − − = + −

= + − + + − + · · · . (3.2)

The real analyticity states that the (+) amplitude and the (−) amplitude are the opposite
boundary values of the same analytic function. Hence, l.h.s. of (3.2) represents the disconti-
nuity of the amplitude and the r.h.s. tells us that it is due to the multi-particle intermediate
states. Importantly, the unitarity equations are only applicable in the physical region. Thus
in (3.2) for fixed Re s, only a finite set of intermediate states that are kinematically allowed
to be on-shell contributes.

– 8 –
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The unitarity equation of the 3-to-3 scattering amplitude is obtained from the con-
nected part of

= S S†

=
(

+
∑

+ + +
)(

−
∑

− − −
)

, (3.3)

where S and S† are the S-matrix elements which include both connected and disconnected
diagrams. The summations are over possible choices of particles; for instance,(∑

+
) (∑

−
)
=
∑

+ −︸ ︷︷ ︸
disconnected

+
∑

+ − +
∑

+ −︸ ︷︷ ︸
connected

, (3.4)

where the sum sums over distinct assignments of the external legs to each blob, for example,
there are in total 9 diagrams with a single internal line for the connected graph. The diagrams
with multiple internal lines are kinematically forbidden when 4m2 < ssubenergy < 9m2 with
ssubenergy = {s12, s23, s13, s45, s56, s46} for the label 4

5
6

3
2
1

. In the following, we will
consider the scenario where 4m2 < ssubenergy < 9m2 since we are interested in the unstable
particle that has 2-body decay only. The connected part of (3.3) then gives

+ − − = + − +
∑

+ − +
∑

−+ +
∑

+ − . (3.5)

Note that the disconnected part of (3.3) independently holds thanks to the 2-to-2 unitarity.
Now an alternative expression of the 3-to-3 unitarity can be obtained by starting with the
equation SS†S = S rather than SS† = 1:

0 = S S† S − S

=
(

+
∑

+
)(

S†
)(

+
∑

+
)
− + S† +

+ + S† S + S S† + − S

=
(

+
∑

+
)(

S†
)(

+
∑

+
)
− + S† +

+ + −
(

+
∑

+
)
.

(3.6)

Assuming 4m2 < ssubenergy < 9m2 and using the 2-to-2 unitarity, we can rewrite the first
term in the last line as,

(
+
∑

+
)(

S†
)(

+
∑

+
)

=
(

+
∑

+
)(

−
∑ − − −

)(
+
∑

+
)

= +
∑

+ − − −
∑

− + −
∑

−+ −
∑

−+ +

−
∑

+
+ −

∑
+ − + . (3.7)

(3.7)

– 9 –
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Hence, the disconnected part of (3.6) is cancelled as it should be, whereas the connect
part yields

−
+ − − = + S† + +

∑
− + +

∑
−+

+
∑

−+ + +
∑

+
+ +

∑
+ − + .

(3.8)

The different forms of the 3-to-3 unitarity equations (3.5) and (3.8) allow us to evaluate
different discontinuities as we will see shortly.

The unitarity equations (3.5) and (3.8) are composed of various terms and it is hard
to see their implications. We adopt the proposal [32] that each term of unitarity equations
evaluates discontinuity across individual variables. It relies on the following postulated
2-particle discontinuity equations

+ − − = + − = − + ,

+ − − = −+ = +− .

(3.9)

Here, the labels (±) only refer to the ways of the approach of the specified subenergy variable,
namely s23 = −(p2+p3)2 and s45 = −(p4+p5)2. All other variables are held at fixed real values.
Applying the 2-particle discontinuity equations twice and using the 2-to-2 unitarity, we find

++
− − − = − + + −+ + −+ + . (3.10)

Let us reorganise the unitarity equations (3.5) and (3.8) as

+−+ − −−+ = + − +
∑

+ − , (3.11)

+ ++ − −++ = + S† + +
∑

+ + +
∑

+ − + , (3.12)

where on the l.h.s., the left/right entries refer to the position of the upper left/right two-
particle subenergy variables while the centre entry refers to the remaining variables [31].
More precisely,

+−+ = + −
∑

+ − ,

−−+ = − +
∑

−+ ,

+++ = + ,

−++ = − +
∑

− + +
∑

−+ +
∑

−+ + .

(3.13)

For example in the first line, while s23 is above the real axes, s45 has been brought below
the real axes by subtracting the two-particle discontinuity. Now, importantly, the left and
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right subenergies (s23 and s45) are aligned in (3.11) and (3.12). Therefore, (3.11) and (3.12)
are understood as the discontinuities for fixed subenergy variables, which can be used to
define the unitarity equation for unstable particles!

As mentioned in the previous section, the continuation in s23 and s45 will inevitably
deform other Mandelstam variables which could encounter additional thresholds. This leads
to an ambiguity, i.e. the unstable S-matrix which requires us to move off the physical sheet is
ambiguous as it depends on “how” the analytic continuation is done. This is not surprising as
the amplitude is multi-sheeted and a given unstable pole can appear on different sheets. As
we would like to infer the property of unstable particle S-matrix from unitarity, we assume
the existence of a certain region of kinematics such that a complex pole is the singularity
closest to the real axis. This particularly means that the loop integral of the unitarity
equations does not require contour deformation during the analytic continuation. We define
the unstable-particle amplitude Mab

4 in such a region and discuss its unitarity equation. We
will come back to the issue of other singularities at the end of this section.

We analytically continue (3.11) and (3.12) in the variables s23 and s45 for fixed s and t

where the variables (s, t, u) are the Mandelstam variables of the embedded 2-to-2 diagram.
They are related to the variables of the 3-to-3 diagram via s = s123 = s456, t = s16 = s2345
and u = s145 = s236. Note that the second term of r.h.s. of (3.11) and (3.12) includes the u-
channel single-particle exchange diagram [see (3.4)]. However, the diagram is proportional to
δ(m2−u) so we can ignore the u-channel diagram as long as u = 2m2+s23+s45−(s+t) ̸= m2.
Then, the analytic continuations of (3.11) and (3.12) give, after divided by common factors,5

−+ − +− = + − (3.14)

+ − ++− = + S† + + + − + , (3.15)

with wavy lines being unstable particles and

−+ = −M+−
4 (s + iε, t) , +− = −M+−

4 (s − iε, t) . (3.16)

+ = −M++
4 (s + iε, t + iε) , ++− = −M++

4 (s − iε, t − iε) . (3.17)

As for M+−
4 , we have not added iε to t because (3.11) [or (3.14)] suggests no t-channel type

singularity in the region of our interest.
Let us compare the two discontinuities in (3.14) and (3.15). One important difference is

the absence/existence of the t-channel triangle diagram. To understand it, we should recall
that the unitarity equations are applied in the physical region which requires t = s16 < 0 in
the case of 3-to-3 amplitude. This suggests that the absence/existence of the t-channel triangle
singularity stems from where the unstable kinematics is continued from. In the next section,
we will study the analytic properties of explicit Feynman integrals to verify this analysis.

5The unitarity equation of M++
4 was briefly discussed in [19] in a slightly different way. The expression

in [19] is not symmetrical in the in/out states while (3.15) has such a symmetry, but two expressions are
equivalent under unitarity.
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Figure 3. Paths to reach the complex pole in the presence of additional singularities denoted by the
blue zigzag lines. The blue arrows represent how the branch point moved from its original position
(dashed zigzag lines) by changing the kinematics.

The analysis in this section should be considered as proof of existence, i.e. contributions
to the discontinuities that are implied from the unitarity equations. It does not imply the
absence of particular singularities. Indeed, when continuing the external kinematics into
unstable regions, many new singularities might arise along the way. For example, some
singularities “hidden” in a bubble on the r.h.s. of unitarity equations may generate a new
singularity of l.h.s. through the analytic continuation. For instance, as we will see in the next
section, the perturbative analysis of M+−

4 suggests there exist s-channel (and u-channel)
triangle singularities at complex positions (i.e. away from the physical region) which cannot
be immediately seen from (3.14) and (3.15).

Let us be a little more concrete. So far, we are considering a continuation such that
other singularities are away from the path (the left panel of figure 3). It is easy to imagine
other continuations where additional singularities move closer to the real axes (the middle
and right panels of figure 3). Depending on the continuation, the branch point of the new
singularity can approach the real axis by moving above the complex pole (the middle) or
below it (the right). For the former, one simply deforms the original continuation path, while
for the latter one inevitably crosses the branch cut of the new singularity. Thus the ambiguity
of the definition of unstable pole P reflects the multi-valuedness of the amplitude with respect
to multiple invariants. The middle and right figures actually talk about the same complex
pole but for different sheets of kinematic invariants. Due to the extra singularity, one cannot
directly infer properties of the residue for the complex pole from continuing from unitarity
equations alone. We need a knowledge of positions of such extra singularities.

4 Explicit Feynman diagram analysis

Let us discuss the analytic structure of the 2-to-2 unstable-particle amplitudes at the one-loop
level. The relevant one-loop diagrams for the 2-to-2 amplitudes are the bubble diagram
(2-point diagram), the triangle diagram (3-point diagram), and the box diagram (4-point
diagram). Since the bubble diagram has no anomalous threshold, we shall focus on the
triangle and box diagrams with the internal mass and the momenta shown by figure 4.
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m1

m2m3

p1

p2 p3 p1

p2 p3

p4

m1

m2

m3

m4

Figure 4. The triangle diagram and the box diagram. The dashed lines denote the cuts relevant to
discontinuities.

Using the Feynman parameters, we have

Itri(si, m2
i ) =

∫ 1

0

[ 3∏
i=1

dαi

]
δ

(
1−

3∑
i=1

αi

)
1

Dtri
, (4.1)

Ibox(s12, s23, si, m2
i ) =

∫ 1

0

[ 4∏
i=1

dαi

]
δ

(
1−

4∑
i=1

αi

)
1

D2
box

, (4.2)

where

si := −p2
i , sij := −(pi + pj)2 (4.3)

and

Dtri = α2α3s1 + α3α1s2 + α1α2s3 −
( 3∑

i=1
αim

2
i

)
(α1 + α2 + α3) , (4.4)

Dbox = α2α4s12 + α1α3s23 + α4α1s1 + α1α2s2 + α2α3s3 + α3α4s4

−
( 4∑

i=1
αim

2
i

)
(α1 + α2 + α3 + α4) . (4.5)

Here, we focus on four dimensions for simplicity. For unstable particles, pi can be interpreted as
the internal momentum of a higher-point amplitude, but analytic continued to complex values.

In principle, the locations of the singularities can be analysed by the Landau equations.
However, this will not be suitable for our purpose since the Landau equations only give
necessary conditions, and furthermore, we will be considering complex external kinematics.
Instead, we use the dispersive representation starting with a region where analyticity is
known and then analytically continue. Since we will be interested in the two unstable two
stable particle scattering, we will analytically continue two of the external kinematics, one
after the other, to complex values.

4.1 Anomalous thresholds for stable particles

It is well known that anomalous thresholds can appear on the physical sheet for stable particles
that are not the lightest state in the spectrum. Indeed this can be seen from the analysis of
Landau equations. In this section, we will instead proceed with the dispersive representation
of Feynman integrals, demonstrating the presence of anomalous thresholds. The advantage is
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that we can analytically continue the external kinematics in the representation, and detect
when the triangle singularity enters the first sheet.

Let’s begin with the dispersive representation for the triangle and box integrals, which
do not require subtraction terms in four-dimensions. Fixing all the Mandelstam variables
except for s1 for the triangle and s12 for the box diagram, we will consider the physical
scattering process in the s1-channel and the s12-channel respectively. For instance, in the
case of the triangle diagram, as long as s2 and s3 are small enough (for example, one can
consider the case s2 ≃ s3 ≃ m2

1 ≃ m2
2 ≃ m2

3), the only singularities of Itri on the first
sheet is the normal threshold starting at s1 = (m2 + m3)2. Similarly, the box integral
only has the normal threshold if s23 and si are fixed in sufficiently small values. Then, the
integrals may be written as

Itri =
1
2πi

∫ ∞

(m2+m3)2
ds′1

Discs1Itri(s′1)
s′1 − s1

=
∫ ∞

(m2+m3)2
ds′1

ρtri(s′1)
s′1 − s1

, (4.6)

Ibox = 1
2πi

∫ ∞

(m2+m4)2
ds′12

Discs12Ibox(s′12)
s′12 − s12

=
∫ ∞

(m2+m4)2
ds′12

ρbox(s′12)
s′12 − s12

, (4.7)

with

ρtri =
1

λ1/2(s1,s2,s3)
ln


√
2s1Stri+λ(s1,m2

2,m2
3)λ(s1,s2,s3)−

√
λ(s1,m2

2,m2
3)λ(s1,s2,s3)√

2s1Stri+λ(s1,m2
2,m2

3)λ(s1,s2,s3)+
√

λ(s1,m2
2,m2

3)λ(s1,s2,s3)


(4.8)

ρbox =
1

S
1/2
box

ln


√

SL
triS

R
tri+λ(s12,m2

2,m2
4)Sbox+

√
λ(s12,m2

2,m2
4)Sbox√

SL
triS

R
tri+λ(s12,m2

2,m2
4)Sbox−

√
λ(s12,m2

2,m2
4)Sbox

 . (4.9)

Here, we have introduced λ(x, y, z) := x2 + y2 + z2 − 2xy − 2yz − 2zx,

Stri := det ∂Dtri
∂αi∂αj

(i, j = 1, 2, 3) , (4.10)

Sbox := det ∂Dbox
∂αi∂αj

(i, j = 1, 2, 3, 4) , (4.11)

and

SL
tri := det ∂Dbox

∂αi∂αj
(i, j = 1, 2, 4) , (4.12)

SR
tri := det ∂Dbox

∂αi∂αj
(i, j = 2, 3, 4) . (4.13)

which should satisfy

λ(s1, m2
2, m2

3) > 0 , Stri > 0 , λ(s1, s2, s3) > 0 , (4.14)
λ(s12, m2

2, m2
4) > 0 , Sbox > 0 , SL

tri > 0 , SR
tri > 0 , (4.15)

along the dispersive integral, i.e. (m2 + m3)2 < s1 < ∞ and (m2 + m4)2 < s12 < ∞. Hence,
ρtri and ρbox are real and finite along the contour in eq. (4.6) and eq. (4.7)

– 14 –



J
H
E
P
0
9
(
2
0
2
4
)
0
4
5

p3

p4p1

p2

m4

m1

m2

p2

p1 p4

p3

m4

m3

m2

Figure 5. The relevant reduced diagrams for the s12 cut of the box diagram.

Let us now analytically continue Itri or Iboxi from the original domain. A singularity
of the integral IA arises when the integration contour is pinched between a singularity of
ρA (A = tri, box) and the singularity due to the denominator of (4.6) or (4.7).6 The conditions
Stri = 0 and Sbox = 0 are the conditions for the leading singularities of the triangle and
box diagram while SL

tri = 0 and SR
tri = 0 are the lower-order singularities associated with

the reduced diagrams shown in figure 5.
Notice that since the ρAs are multi-valued functions, the singularities of ρA are only

relevant if they appear on the first sheet. For example, ρtri may be singular at λ(s1, s2, s3) = 0
but it is not the case when the logarithm takes the principal value. The triangle singularities
Stri = 0, SL

tri = 0, SR
tri = 0 are always singularities of ρA at which the argument of the logarithm

is either 0 or complex infinity. For simplicity, we will consider Stri = 0 in the following.
The equation Stri = 0 is quadratic in s1 and there are two independent roots:

s1 = s± := s2 + s3 +
−(s3 + m2

1 − m2
2)(s2 + m2

1 − m2
3)±

√
λ(s2, m2

1, m2
3)λ(s3, m2

1, m2
2)

2m2
1

.

(4.16)
The question is now when does this singularity pinch the contour on the first sheet. Since the
contour is along (m2+m3)2 < s1 < ∞, in order for the contour to be pinched, the triangle
singularity s1 = s± must first come to the vicinity of the branch point s1 = (m2+m3)2. As
s± is a function of s2, s3 and internal masses, the detail of when a pinch occurs depends
heavily on the regions of these parameters.

Let us begin with the degenerate case where we set both external kinematics to be the
same s2 = s3 = M2 and the internal mass to be identical mi = m. Then the solution to
Stri = 0 becomes s1 = (0, M2(4m2−M2)

m2 ). As we increase M2 the second triangle singularity
moves closer to the branch point s1 = 4m2. At M =

√
2m it reaches the branch point and

can move onto the physical sheet, leading to the famous anomalous threshold.
Similar results can be obtained for general mass distribution. We begin with s2 =

(m1 − m3)2 + ϵ, s3 = (m1 − m2)2 + ϵ with a small positive ϵ at which the roots are real and
s± ≃ (m2−m3)2. The singularities s′1 = s± ≃ (m2−m3)2 are outside of the integration contour
(m2 + m3)2 < s′1 < ∞ as displayed in the left of figure 6. For this to become a singularity
of the integral, we need to move s1 across the branch cut in order to pinch the integration
contour as shown in the center of figure 6, and thus the singularity lives on the second sheet.

6This is the singularity on the s-plane. Singularities of the integral IA in other variables are found when
singularities of ρA pinch the integration contour or a singularity of ρA touches the endpoint of the integral.
They will be studied in section 7.
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s′1

s+s−
s1

(m2 +m3)
2

s′1

s+s−
s1

s′1

s+

s− s1

Figure 6. Generations of triangle singularities. The × are the singularities of the integrand and
the thick curves are the integration contour. Left: s± and s1 do not pinch the contour, showing no
triangle singularity on the first sheet. Middle: as s1 moves through the branch cut associated with the
normal threshold, the contour is distorted and a pinch occurs, that is, Itri has a triangle singularity at
s1 = s± on the second sheet. Right: s+ moves and go round (m2 + m3)2 as s2 and/or s3 increase.
Then, a singularity is found at s1 = s+ on the first sheet while s1 = s− remains regular. This is
the usual anomalous threshold for stable particles. Note that the figures are drawn to understand
qualitative behaviours and not drawn by using (4.16).

As s2 and/or s3 increase, the singularities s± move along the real s′1 axis and s+ will touch the
end point of the integration s′1 = (m2+m3)2 when m2s2+m3s3−(m2

1+m2m3)(m2+m3) = 0.
We add a small imaginary part to bypass the endpoint singularity,

m2s2 + m3s3 > (m2
1 + m2m3)(m2 + m3) . (4.17)

In such case, the integration contour will be deformed in such a way that it can be pinched
at s1 = s+ without s1 passing through the branch cut as illustrated on the right of figure 6.
Thus the triangle singularity of Itri(s1) arises on the first sheet at s1 = s+. Importantly, note
that if any of the internal mass is parametrically large compared to the external kinematics,
the inequality cannot be satisfied. Thus the anomalous threshold here is strictly IR, and
can be reliably computed and subtracted.

4.2 Anomalous thresholds for unstable particles: IR

With the anomalous threshold on the first sheet, we further increase s2 and/or s3 and
eventually, we will obtain the anomalous threshold for unstable configurations. We will
follow the migration of the roots to track the kinematic region where the threshold resides
for different unstable configurations. This will help us elucidate how from the unitarity
equations, the triangle singularity only appeared in one particular unstable kinematics (+,+)
and not the other (+,−). The two roots s± will eventually become degenerate at either
s2 = (m1 + m3)2 or s3 = (m1 + m2)2, i.e., at the decay threshold. We can go round the
threshold by adding a small imaginary part (cf. figure 1) to avoid the pinch between s± and
then reach the region where s2 and/or s3 are unstable.

Keeping s3 stable, i.e., λ(s3, m2
1, m2

3) = (s3−(m1−m2)2)(s3−(m1+m2)2) < 0, we study
the neighbourhood of the decaying threshold, s2 = (m1 + m3)2 + δs2, in which the Källén
function takes

λ(s2, m2
1, m2

3) = 4m1m3δs2 +O(δs2
2) . (4.18)
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To bypass the decaying threshold, s2 needs to be rotated more than π but less than 3π/2
(see figure 1) and thus s± after the continuation are given by

s± → s2 + s3 +
−(s3 + m2

1 − m2
2)(s2 + m2

1 − m2
3)∓

√
λ(s2, m2

1, m2
3)λ(s3, m2

1, m2
2)

2m2
1

. (4.19)

where the square root is understood as the principal square root. The root s+ is complex even
if s2 is almost real, namely the narrow width approximation for s2. For s2 = P (decaying
mode), the triangle singularity s1 = s+ appears in the lower-half plane and it exists in the
upper-half plane for s2 = P ′ (growing mode).

The expression (4.19) remains valid even after s3 also goes beyond the decaying threshold
if both s2 and s3 bypass the thresholds from the same complex direction, i.e., both s2 and
s3 follow the same path of figure 1. On the other hand, if s2 and s3 bypass the thresholds
from opposite directions (one is the +iε path while the other is the −iε path), the analytic
continuation of s± is given by

s± → s2 + s3 +
−(s3 + m2

1 − m2
2)(s2 + m2

1 − m2
3)±

√
λ(s2, m2

1, m2
3)λ(s3, m2

1, m2
2)

2m2
1

. (4.20)

As shown in figure 6 (right), s1 = s+ is the singularity on the first sheet while s1 = s− may
not be. Therefore, the position of the triangle singularity depends on whether the s2 and
s3 are decaying modes P or growing modes P ′.

Let us see this difference in the equal mass case m1 = m2 = m3 = m. For s2 = s3 = M2,
the plus branch is given by

s+|s2=s3 = −M2

m2 (M
2 − 4m2) , (4.21)

whereas in the conjugate case s2 = M2, s3 = (M2)∗, it is given by

s+|s2=s∗3
= 1

2m2

[
|M2|

√
(ReM2 − 4m2)2 + (ImM2)2 − ReM2(ReM2 − 4m2)− (ImM2)2

]
.

(4.22)
The expressions are valid in both ReM2 < 4m2 and ReM2 > 4m2. They agree with each
other in the stable region M2 < 4m2 with ImM2 → 0. However, one can see

s+|s2=s∗3
= 4m2(ImM2)2

ReM2(ReM2 − 4m2) +O((ImM2)4) , (4.23)

in the unstable region ReM2 > 4m2 with the limit ImM2 → 0, which does not agree with
s+|s2=s3 with the same limit ImM2 → 0.

Using the above analysis, we discuss analytic structures of 2-to-2 amplitudes by fixing the
external states. For simplicity, we consider the system with one stable particle of the mass m

and one unstable particle of the complex mass M . We then consider the following amplitudes:

M++
4 =

1

2+ 3+

4
, M+−

4 =
1

2+ 3−

4
, (4.24)
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where the solid and wavy lines represent stable and unstable particles, respectively. The
amplitudes M+±

4 can have the following triangle singularities:

M+±
4 ∼

+ ±
+

+ ±

︸ ︷︷ ︸
s,u-channels

+
+ ±

︸ ︷︷ ︸
t-channel

, (4.25)

where the diagrams on the r.h.s. show possible kinematic configurations of triangle singularities
with specified external states. The all-(+) amplitude M++

4 have triangle singularities at

s, u = m2 + 1
2

[
M2 −

√
3M2(4m2 − M2)

]
, (4.26)

t = −M2

m2 (M
2 − 4m2) , (4.27)

whereas the positions of the triangle singularities of the mixed amplitude M+−
4 are

s,u=m2+ 1
2

[
M2−

√
3M2(4m2−M2)

]
, m2+ 1

2

[
M2−

√
3M2(4m2−M2)

]∗
, (4.28)

and the t-channel triangle is given in eq. (4.22). To simplify the discussion, we assume a small
decay width and approximate M2 by a real number. Then, the t-channel triangle singularity
of M++

4 exists at a negative t region while that of M+−
4 is t ≃ 4m2(ImM2)2/[ReM2(ReM2−

4m2)] → +0. Thus the triangle singularity for the M++
4 amplitude exits from the analytic

continuation of the physical region, while the M+−
4 stems from the unphysical regime. This is

precisely why we did not see the t-channel triangle singularity for M+−
4 in our analysis from

unitarity equations of stable particles in the previous section. Indeed information extracted
from the unitarity equations is only applicable for physical kinematics, or analytic continuation
thereof. Thus we see that contrary to the conclusion from the unitarity analysis, anomalous
thresholds appear on the first sheet for both unstable particle scattering M++

4 and M+−
4 .

4.3 Anomalous thresholds for unstable particles: UV

In the previous discussion, we have assumed that the external kinematics are comparable
to the internal masses, and thus the triangle is essentially an “IR”-loop, i.e. contributions
that are computable within the IR theory and thus can be subtracted from any dispersive
representation. We now move on to consider UV-loops where one or more heavy (unstable)
particles are in the loop. These are not calculable from the IR theory, it is important to know
when do the triangle singularities of these integrals enter the first sheet.

In the event of a UV state in the loop, one can easily have s3 < (m1 −m2)2, where m2 is
the UV state. To track things, first consider the case s3 = (m1 − m2)2 where the roots (4.16)
are degenerate s± = (m2 + m3)2 + m2

m1
[s2 − (m1 + m3)2] and outside of the integration region.

The roots monotonically increase as s2 increases and touch the endpoint s′1 = (m2 + m3)2 at
the decay threshold s2 = (m1 + m3)2. Analytically continuing across the decay threshold
brings the triangle singularity onto the first sheet. A similar analysis applies for the case
where s3 < (m1 −m2)2. In summary, for s3 ≤ (m1 −m2)2, the UV triangle singularity enters
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s2

M2

+iε

4m2

s1

(m+m2)
2

s+

s−

s+

s−

Figure 7. The path of s2 and the corresponding paths of s±(s2) in the complex s1 plane. As in
figure 6, the figures are drawn for illustrative purposes and the curves are not accurate.

the first sheet only if s2 crosses the decay threshold! This is very different from the previous
IR discussion, where s± can pinch the contour within a parameter range including both
stable and unstable kinematics, i.e. eq. (4.17).

Let us discuss the appearance of such singularities more concretely. For the sake of
simplicity, we assign the same light particle to m1, m3, and s3, and assume m2 is much
heavier than the light particle:

m2
2 ≫ m2 = m2

1 = m2
3 = s3 . (4.29)

The positions of the triangle singularities in the s1 plane are

s± = m2 + m2
2

s2
2m2 ±

√
m2

2(m2
2 − 4m2)s2(s2 − 4m2)

2m2

= m2
2

[
s2
2m2 ±

√
s2(s2 − 4m2)

2m2

]
+O(m0

2). (4.30)

The singularities are on the second sheet when s2 is stable, s2 < 4m2. We then move s2
along the path as shown in the left panel of figure 7. The corresponding paths of s±(s2)
are shown in the right panel. The roots s± are complex during s2 < 4m2 and then collide
and become degenerate at s2 = 4m2, for which s± = 2m2

2 and thus far beyond the branch
point s1 = (m + m2)2. We continue by adding a positive imaginary part to s2. The square
root remains the same form

√
s2(s2 − 4m2) →

√
s2(s2 − 4m2) around s2 = 4m2 by using the

principal square root, so s± moves to the right/left with a positive/negative imaginary part
as Re s2 increases. Then, as s2 is continued to the lower-half plane, s± passes through the
real axis and shows up on the first sheet of the complex s1 plane.

One may suspect that the appearance of such singularities is an artifact of our one-loop
truncation. In principle, the UV mass m2 should be complexified and the branch cut running
from (m + m2)2 is not a normal-threshold cut on the real axes, but on the complex plane on
an unphysical sheet [14–18, 31]. In particular, as the decay of m2 particle is a 2-loop effect,
it is at the same order as the three-particle threshold. In such case, whether the triangle
singularities appear on the physical sheet or not depends on the decay widths of the external
unstable particle and the internal heavy particle as illustrated in figure 8.

While we need a higher-loop analysis for precise treatment, we suppose that the positions
of the triangle singularities are still given by (4.30) but now with complexified m2

2. We discuss
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s1
9m2

(m+m2)
2

s−

s+

s1
9m2

(m+m2)
2

s−

s+

Figure 8. The expected positions of the triangle singularities from the loop with a UV state. Left:
the triangle singularities are in the unphysical sheet when m2 has a sufficiently large decay width.
Right: the triangle singularities can show up on the physical sheet if the heavy particle is long-lived.

when s− shows up on the physical sheet where s− is the singularity appearing above the
complex normal threshold. For simplicity, we assume m2 ≪ |M2|(≪ |m2

2|) and find

s
(+iε)
− ≃ m2

2

(
1 + m2

M2

)
, (4.31)

s
(−iε)
− ≃ m2

2
(M2)∗

m2 , (4.32)

where the superscripts denote which path we chose. The imaginary parts are

Im s
(+iε)
− ≃ mR

(
m2mR

M3
R

Γ− γ

)
, (4.33)

Im s
(−iε)
− ≃ mRMR

m2 (mRΓ− MRγ) , (4.34)

where m2
2 = m2

R − imRγ and M2 = M2
R − iMRΓ with 0 < γ ≪ mR and 0 < Γ ≪ MR.

Therefore, the triangle singularity from the loop with a UV state may appear on the upper-
half plane when

γ <
m2mR

M3
R

Γ for the +iε path, (4.35)

γ <
mR

MR
Γ for the −iε path. (4.36)

Hence, the analytic structure is similar to the one-loop as long as the decay of the UV
state is sufficiently small.

5 A violation of positivity bounds: toy example

In non-gravitational EFTs, one can in general derive positivity bounds for the four-derivative
operator based on the optical theorem for the a, b → a, b four-point amplitude, where a, b

labels the potential distinct particle species. As discussed in the previous sections, when
there are unstable particles, we have anomalous thresholds from the UV which are not
subtractable and thus contribute to the dispersive representation. Such contributions would
violate the positivity bounds. In this section, we consider a simple toy example to illustrate
such a phenomenon.
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Consider a theory with four scalars, π, ϕ, χL and χH , where the mass scales are such
that π is the lightest state and consider the following interactions:

Lint = −gϕ

2 ϕχ2
L − gππχLχH . (5.1)

As a result the leading contribution to the four-point M (π(1)ϕ(2)ϕ(3)π(4)) is the sum of
the scalar box integral:

M(s, t; s2, s3) =

p1

p2 p3

p4

mL

mL

mL
mH

+

p1

p2 p3

p4

mL

mL

mL
mH

=
g2

ϕg2
π

(4π)2 [Ibox(s, t; s2, s3) + Ibox(u, t; s2, s3)] , (5.2)

Ibox(s, t; s2, s3) =
∫ d4ℓ

iπ2
1

(q2
1 + m2

L)(q2
2 + m2

L)(q2
3 + m2

L)(ℓ2 + m2
H)

. (5.3)

Here, s = −(p1 + p2)2, t = −(p1 + p4)2, u = −(p1 + p3)2, si = −p2
i and qi are

q1 = ℓ + p1 , q2 = ℓ + p1 + p2 , q3 = ℓ + p1 + p2 + p3 , (5.4)

where ϕ, π, χL and χH correspond to the wavy, solid, dashed, and thick lines in the Feynman
diagrams, respectively. The particle χH is supposed to be heavy so that we can separate the
physics of the IR particles (ϕ, π, χL) and the UV particle χH . The low-energy part of M can
be described by a low-energy EFT composed of the particles (ϕ, π, χL). We shall discuss how
the low-energy part of M changes when we change the mass spectrum of the IR particles
(ϕ, π, χL). The masses of (ϕ, π, χL) are denoted by (M, m, mL), respectively.

When the decay ϕ → χLχL is kinematically allowed, the mass of ϕ is complexified. We
use M2

R to denote the real part of M2. The leading order result of the decay width is

Γ =
g2

ϕ

32πMR

√
1− 4m2

L/M2
R θ(M2

R − 4m2
L) , (5.5)

and then the mass squared is

M2 = M2
R − iMRΓ , (5.6)

where θ(x) is the step function. To deal with the external unstable particles, we first regard
s2 and s3 as complex variables and analytically continue the box integrals. On the other
hand, we set s2 = s3 = M2

R for the stable kinematic of ϕ (MR < 2mL). Note that the decay
width for χH → π, χL pair is controlled by gπ, which can be taken to be small in a controlled
fashion and thus neglected in the remaining discussion.

For a small fixed t, |t| ≪ 4m2
L, the amplitude M(s) must be analytic in a small-|s| region

because the s and u channel cuts run from the heavy mass scale m2
H (see also below). The

Taylor expansion around the s ↔ u symmetric point is then

M = B0(t; s2, s3) + B2(t; s2, s3)[s − m2 − (s2 + s3)/2 + t/2]2 +O(s4) . (5.7)
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The s2 coefficient B2 can be directly read off by the low-energy expansion of the amplitude.
On the other hand, as is well-known, when ϕ is stable and no anomalous threshold exists,
the low-energy coefficients admit representations by the use of the high-energy integral

B2 =
∫ ∞

(mL+mH)2

ds

2πi

2DiscsM
[s − m2 − (s2 + s3)/2 + t/2]3 . (5.8)

Unitarity ensures the positivity of the discontinuity ImM = DiscsM/2i > 0 in the forward
limit t → 0. We thus find the inequality B2|t=0 > 0 which is known as the positivity bound [3].

One may expect that the same inequality holds even in the unstable ϕ particle if we
choose the conjugate pair s2 = s∗3 = M2. Unitarity then leads to the positivity of the
discontinuity with s2 = s∗3 = M2 at the forward limit t = t0. We can practically take t0 → 0
because t0 scales as t0 ≃ 4m2(ImM2)2/s2 with s > m2

H . So we end up with B2|t=0 > 0 if
the dispersion relation (5.8) remains to be true in unstable particles. As we’ve seen in the
previous discussion, the presence of anomalous thresholds can potentially spoil eq. (5.8).
For stable particles, due to the UV scale of m2

H the triangle singularity is never on the first
sheet, as can be seen in eq. (4.17). For unstable particles, triangle singularities in the UV
can contribute, and thus B2 might become negative.

Consider the low-energy expansion of the box integral

Ibox(s, t; s2, s3) =
∫ d4ℓ

iπ2
1

(q2
1 + m2

L)(q2
2 + m2

L)(q2
3 + m2

L)(ℓ2 + m2
H)

(5.9)

under the hierarchy mL, |pi| ≪ mH . We wish to compute the coefficient for s2 in the low
energy expansion. To track the expansion more concretely, we separate the loop momentum
into two regions based on an intermediate scale Λ such that mL, |pi| ≪ Λ ≪ mH and divide
the integral into small and large regions [33]:

Ibox = Ismall + Ilarge =
(∫

|ℓ|<Λ
+
∫
|ℓ|>Λ

)
1

(q2
1 + m2

L)(q2
2 + m2

L)(q2
3 + m2

L)(ℓ2 + m2
H)

, (5.10)

For Ismall, all kinematics are parametrically smaller than mH and one can Taylor expand the
integrand in 1/m2

H . For Ilarge since ℓ ≫ mL, |pi| we can expand the propagators that does not
contain mH in 1/ℓ2. This amounts to the following expansion in the two regions respectively,

Ismall :
1

ℓ2 + m2
H

= 1
m2

H

− ℓ2

m4
H

+ (ℓ2)2

m6
H

+ · · · ,

Ilarge :
1

(ℓ + Pi) + m2
L

= 1
ℓ2 − 2ℓ · Pi + P 2

i + m2
L

(ℓ2)2 + (2ℓ · Pi + P 2
i + m2

L)2

(ℓ2)3 + · · · , (5.11)

with Pi =
∑i

j=1 pj . For Ismall we will be working with the t-channel triangle integral with
loop momentum dependent numerators:

1
m2n+2

H

∫ d4ℓ

iπ2
(ℓ2)n

(q2
1 + m2

L)(q2
2 + m2

L)(q2
3 + m2

L)
. (5.12)

Since after integral reduction, this only generates t-channel scalar triangle and bubbles,
s-dependence can only come from the numerator in the process of reduction. Since we are
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interested in the s2 coefficient, only n = 2 is relevant, giving a coefficient that scales as
O(m−6

H ). On the other hand for Ilarge, since

∫
d4ℓ

(2ℓ · P )j

(ℓ2)i(ℓ2 + m2
H)

∝


0 for j = odd

(P 2)j/2

m
2(i−1−j/2)
H

for j = even ,
(5.13)

we see that contributions to the s2 coefficient starts at O(m−8
H ). Thus in conclusion, Ismall

yields the leading order contribution to B2 in the large m2
H expansion.

Integrating eq. (5.12) with n = 2, we find

B2 =
g2

ϕg2
π

(4π)2m6
H λ̂2

(5.14)

×
[{

(s2 − s3)λ̂ + 3t(s3 − t)2 − 3ts2
2

}
Λ(s2) +

{
(s3 − s2)λ̂ + 3t(s2 − t)2 − 3ts2

3

}
Λ(s3)

+ 6t2(s2 + s3 − t)Λ(t) + 2t
{
(2m2

L + t)λ̂ + 6ts2s3
}
Itri(t, s2, s3)− 2tλ̂

]
+O(m−8

H )

where λ̂ := λ(s2, s3, t) = (s2 − s3)2 + O(t), Itri is the triangle integral with all internal
masses being mL, and

Λ(z) =

√
1− 4m2

L

z
ln

−1−
√
1− 4m2

L
z

1 +
√
1− 4m2

L
z

 , (5.15)

is the discontinuous part of the bubble integral; Λ(z) has a branch cut along z > 4m2
L and

analytic elsewhere on the first sheet.
We would like to evaluate B2 at s2 = s∗3 = M2 and t → +0. However, we should

carefully take the limit t → +0 since Itri can be singular at t = 0 when s2 and s3 are
analytically continued to the second sheet. Nevertheless, we can make sure limt→+0 tItri = 0
independently from the details of analytic continuation as follows. For general kinematics,
the triangle integral is expressed by 12 Spence’s functions [34–36]:

Itri =
1

λ1/2(s2, s3, t)
∑

a=±1

[
Li2ξ+1

a (s2, s3, t)− Li2ξ−1
a (s2, s3, t)

]
+(s2 ↔ s3)+(s2 ↔ t) , (5.16)

with

ξb
a(s2, s3, t) = s2(s2 − s3 − t) + bs2

√
λ(s2, s3, t)

s2(s2 − s3 − t) + a
√

λ(s2, m2
L, m2

L)λ(s2, s3, t)
. (5.17)

Spence’s function Li2(z) has a logarithmic branch point at z = 1 and we have to choose an
appropriate branch to evaluate the concrete value of Itri. In the present purpose, on the
other hand, we do not choose the branch and use the expression on a general branch

Li2(z) = pvLi2(z) + 2πni ln z + 4π2m (n, m = 0,±1,±2, · · · ) , (5.18)
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where pv denotes the principal value. It is easy to show that Itri can diverge as t → 0 on a
general branch but is a logarithmic divergence. Therefore, we conclude limt→+0 tItri = 0 and
ignore the second line of (5.14) in the limit t → +0 as long as s2 ̸= s3. We then obtain the
following expressions at the leading order in the large mH expansion:

B2 ≈
g2

ϕg2
π

(4π)2m6
H

×

− 1
s2

− 2m2
LΛ(s2)

s2(4m2
L−s2) (s2 = s3) ,

Λ(s2)−Λ(s3)
s2−s3

(s2 ̸= s3) ,
(5.19)

where “≈” is used to denote the equality at the leading order in the large mass expansion of
mH . For the sake of comparison, we computed B2 in which s2 = s3 and t = 0 are assumed on
the physical sheet. The former one of (5.19) agrees with the latter one with the limit s3 → s2.

We now discuss B2 in the stable case (s2 = s3 < 4m2
L), the unstable case with the same

choice (s2 = s3 = M2), and the unstable case with the conjugate choice (s2 = s∗3 = M2),
respectively. The function Λ(z) has a branch cut in z > 4m2

L and the analytically continued
Λ on the unphysical sheet is given by

Λ±(z) = pvΛ(z)± 2πi

√
z(z − 4m2

L)
z

(Rez > 4m2
L, sgn(Imz) = ∓) , (5.20)

with Λ−(z∗) = [Λ+(z)]∗. As a result, we obtain

Bstable
2 ≈ −

g2
ϕg2

π

(4π)2m6
H

[
1

M2
R

+ 2m2
LΛ(M2

R)
M2

R(4m2
L − M2

R)

]
(MR < 2mL) ,

B++
2 ≈ −

g2
ϕg2

π

(4π)2m6
H

[
1

M2 + 2m2
LΛ+(M2)

M2(4m2
L − M2)

]
(MR > 2mL) ,

B+−
2 ≈ −

g2
ϕg2

π

(4π)2m6
H

ImΛ+(M2)
MRΓ

(MR > 2mL) . (5.21)

The sign symbol denotes whether the unstable particle is decaying (+) or growing (−).
The behaviours of B2 are shown in figure 9. Thus we see in this explicit toy model, the
standard positivity bound B2 > 0 is violated for the unstable particles. Again this result is
not surprising given for unstable particles, anomalous thresholds from UV massive state do
contribute. In the next section, we will show that the source of the negativity indeed arises
from the anomalous threshold. As we have mentioned, the violation of B2 > 0 would imply
that the dispersion relation (5.8) no longer holds in unstable particles.

6 Anomalous thresholds from double discontinuity

In this section, we will find a dispersion relation of B+−
2 with a special emphasis on delineating

contributions from the normal and anomalous thresholds, and see that the anomalous
thresholds are indeed the origin of the negative sign.

We start with the standard dispersive representation in the stable kinematics (0 <

s2, s3 < 4m2
L): the low-energy coefficient of the amplitude is given by the integral along
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Stable

Unstable (++)

Unstable (+-)

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

MR/mL

B 2

Figure 9. Normalized s2 coefficient as B̃2 = (4π)2m6
H

g2
ϕ

g2
πm2

L

B2: stable external particles Bstable
2 (red),

decaying-decaying external particles B++
2 (green), and decaying-growing external particles B+−

2 (blue).
While Bstable

2 and B+−
2 are real numbers, B++

2 is a complex number; the real and imaginary parts are
represented by solid and dashed curves, respectively. We set g2

ϕ/4π = M2
R for illustrative purpose.

Note that the divergence at MR = 2mL is caused by a t-channel triangle singularity of M.

the normal threshold cuts as

B̃2 = m6
H

m2
L

∫ ∞

m2
th

ds
2ρbox|t=0

[s − m2 − (s2 + s3)/2]3

≈ 2
∫ ∞

1
dz

m2
L

s3 − s2

ln[z − z+(s2)][z − z−(s2)]
z3 + (s2 ↔ s3) (6.1)

where B̃2 = (4π)2m6
H

g2
ϕ

g2
πm2

L
B2, z = s/m2

th, m2
th = (mL + mH)2 is the threshold energy and

z±(s) =
1

2m2
L

[
s ±

√
s(s − 4m2

L)
]

, (6.2)

are (the rescaled values of) the positions of the triangle singularities studied in section 4.3.
The integrand has singularities at z = z±(s2) and z = z±(s3) which are away from the real
z-axis when 0 < s2, s3 < 4m2

L [see figure 7 and figure 10 (left)].
We then increase s2 along the +iε path and s3 along the −iε path respectively. Since

the logarithm in the integrand of (6.1) can be separated into pure s2- and pure s3-dependent
pieces, we can discuss their analytic continuation separately. As long as Im s2 > 0, i.e.,
s2 does not cross the real axis, the singularities z = z±(s2) do not touch the integration
contour and the contour deformation is not needed. Eq. (6.1) is simply given by the integral
of the principal value of the logarithm (multiplied by z−3). Again, as s2 = 4m2

L we enter
unstable kinematics and we continue to the lower-half plane as in the left of figure 7, the
singularities z = z±(s2) cross the real axis and then the contour needs to be distorted (the
middle of figure 10). The contour remains to run above z = z− and below z = z+. Note
that since Im s2 < 0, the branch cut for the principle branch of logarithm should run upward
from z = z− and downward from z = z+, as the integrand with Im s2 < 0 is conjugate to
that with Im s2 > 0. We can redefine the branch cuts so that they align with the principal
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→ =

Figure 10. Integration contours before (left) and after (middle and right) the analytic continuation.
The red curves represent the branch cuts of the logarithmic function of (6.1). The black solid curves
are the contours on the first sheet while the black dashed curve is the path on the second sheet. The
branch cuts are deformed in the middle and right figures; in the right panel, the first sheet agrees
with the principal sheet of the logarithm while it does not in the middle panel. The contours always
run above z = z− and below z = z+.

branch. The price we pay is that the contour will now pass through one branch cut onto
the second sheet and come back through the second branch cut, as shown in the right of
figure 10. Thus we see that the analytically-continued B̃2 is no longer given by a contour
integral of the principal value of the logarithm.

It is convenient to divide the contour integral as follows:

= + . (6.3)

The first term is nothing but the integral of the principal logarithm while the second term is
the integral of the difference between the different sheets, namely the discontinuity. Therefore,
the analytically-continued dispersive representation is

B̃2 ≈ 2
∫ ∞

1
dz

m2
L

s3 − s2

ln[z − z+(s2)][z − z−(s2)]
z3 +2

∫ z−(s2)

z+(s2)
dz

m2
L

s3 − s2

2πi

z3 +(s2 ↔ s3) , (6.4)

where ln is understood as the principal logarithm. The integrations yield

2
∫ ∞

1
dz

m2
L

s3 − s2

ln[z − z+(s2)][z − z−(s2)]
z3 = pvΛ(s2)

s2 − s3
+ 1

s2 − s3
, (6.5)

2
∫ z−(s2)

z+(s2)
dz

m2
L

s3 − s2

2πi

z3 = 2πi

√
s2(s2 − 4m2

L)
s2(s2 − s3)

. (6.6)

The second term of the first integral is cancelled with the (s2 ↔ s3) term in (6.4). Hence, (6.4)
indeed reproduces (5.21) by setting s2 = s∗3 = M2.

All the calculations have been so far made explicit but the essential ingredients are (i) pairs
of new singularities enter the first sheet and (ii) the integration contour is deformed like (6.3).
The second term of (6.3) is the evaluation of the discontinuity of the integrand. Since the later
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+-

B

2

+-
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-4

-2

0

2

4

MR/mL

Figure 11. Normalized s2 coefficient B̃+−
2 (blue), the normal threshold contribution Ĩ+−

n (red), and
the anomalous threshold contribution Ĩ+−

a (magenta).

is the discontinuity of the amplitude in s1, the second term is a double discontinuity. Hence,
the dispersive representation of the s2 coefficient at t = 0 takes a more illustrative form:

B̃+−
2 =

∫ ∞

m2
th

ds

2πi

2DiscsM̃+−

(s − ReM2 − m2)3 +
∑

n

∫
Cn

ds

2πi

2Disc2
sM̃+−

(s − ReM2 − m2)3 . (6.7)

Here, Disc2
sM+− refers to the double discontinuity of the same channel. The contour Cn

is a path connecting the pair of singularities and the summation is over all the pairs.7 In
the example above, the discontinuity DiscsM̃+− has two pairs of the triangle singularities
associated with the contact diagrams

and .

Since the second term in (6.7) occurs only when the triangle singularity crosses onto the
physical sheet, we can identify it with the anomalous threshold. Thus the normal and
anomalous contributions have been identified with

Ĩ+−
n :=

∫ ∞

m2
th

ds

2πi

2DiscsM̃+−

(s−ReM2−m2)3 ≈ 4Im
∫ ∞

1
dz

m2
L

2MRΓ
ln[z−z+(M2)][z−z−(M2)]

z3 , (6.8)

Ĩ+−
a :=

∑
n

∫
Cn

ds

2πi

2Disc2
sM̃+−

(s−ReM2−m2)3 ≈ 4Re
∫ z−(M2)

z+(M2)
dz

m2
L

MRΓ
π

z3 . (6.9)

The dispersion relation (6.7) disentangles the contributions from normal and anomalous
thresholds to B̃+−

2 . We have numerically computed their individual contribution as in figure 11.
7If Disc2

sM+− has singularities and they require to deform the contour Cn, we can again separate the
integral into that of Disc2

sM+− and Disc3
sM+−, which may continue to even higher orders. In our one-loop

example, however, it is enough to include up to the double discontinuity.
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As one can see the normal threshold Ĩ+−
n still satisfies the positivity DiscsM̃+−/(2i) > 0

in the unstable kinematics (MR > 2mL) as predicted by unitarity, while the anomalous
part Ĩ+−

a yields a large negative value. The anomalous sign of the s2 coefficient comes from
the anomalous thresholds!

7 Integral formula for discontinuities

In the previous section, we’ve seen that the anomalous threshold can be isolated in a dispersive
representation by identifying it as the double discontinuity of the amplitude for the same
variable. In this section, we derive this in a more general setup to get more insights into
the double-discontinuity formula.

As we’ve seen the anomalous threshold enters the physical sheet when one of the external
kinematics become unstable. At this point the two roots of the triangle singularity becomes
degenerate. Such kinematic configuration can be analyzed utilizing Landau equations. We
start with the n-point one-loop diagram

p1

p2

p3

pn m1

m2

mn

which is proportional to

In =
∫ ddℓ

iπd/2

n∏
i=1

−1
q2

i + m2
i

= Γ
(

n−d

2

)∫ 1

0

[
n∏

i=1
dαi

]
δ(1−

∑
i αi)

[1
2
∑

i,j αiYijαj ]n−d/2 (7.1)

with Pi =
∑i

j=1 pi and

Yij = −(Pi − Pj)2 − m2
i − m2

j . (7.2)

The final form of (7.1) manifests that In is a function of zij = −(Pj − Pi)2 with (j > i).
The singularities of In(zij) are governed by Landau equations∑

i,j

αiYijαj = 0 , (7.3)

either αi = 0 or
∑

j

Yijαj = 0 for each i . (7.4)

The singularities with αi ̸= 0 for all i are called leading singularities while those with
αi = 0 are called lower-order singularities. The lower-order singularities are the leading
singularities for the diagram where lines i corresponding to αi = 0 are contracted. Let
|Yi1i2···ip |, (0 ≤ p ≤ n − 1) be the principal minor of order p of Y = (Yij) with removing
the i1th, i2th, · · · , and ipth rows and columns. The equation

|Yi1i2···ip | = 0 (7.5)
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solves the Landau equation (7.4) with αi1 = αi2 = αip = 0. Hence, (7.5) determine would-be
singularity hypersurfaces in the complex zij-space which we call Landau surfaces. The
singularities determined by (7.5) are understood as the singularities where all internal lines
except qi1 , qi2 , · · · , qip are on-shell. Note that not all parts of the Landau surfaces are
necessarily singularities of In. We shall particularly refer to surfaces/singularities with p αis
zero as Landau surfaces/singularities of order n−p corresponding to singularities where (n−p)-
propagators are on-shell. Thus the leading order Landau surface corresponds to all propagators
on-shell, which in fixed dimensions implies a non-trivial constraint on the external kinematics.

Let us consider intersections of two Landau surfaces. The equations of the Landau
surfaces are all given by the principal minors. Hence, without loss of generality, we can
consider intersections between the leading-order Landau surface (n-propagators on-shell)
and a lower-order Landau surface. The equation |Y | = 0 is generically quadratic for one
variable in {zij}. We bring this specified variable into the leading position without loss
of generality, so we call it z12. The set of variables other than z12 is denoted by z. The
Laplace expansion of the determinant gives

|Y | = −z2
12|Y12|+O(z12) . (7.6)

The coefficient of the highest degree term vanishes at the intersection with the Landau surface
of order n − 2, implying that one branch of the Landau surface of order n reaches infinity at
the intersection. Next, we consider the intersection between the Landau surfaces of order n

and order n−1 under the assumption |Y12| ̸= 0 where the roots of |Y | = 0 are denoted by
z12 = z±(z). By Jacobi’s theorem (for example, see [31, 37]), we obtain the identity

|Y1||Y2| − |Y 1
2 ||Y 2

1 | = |Y ||Y12| , (7.7)

where |Y i
j | denotes the (i, j) algebraic minor of Y . Note that |Y i

j | = |Y j
i | because Y is

symmetric. In particular, from eq. (7.7) if |Y12| ̸= 0 and |Y1| = 0 or |Y2| = 0, i.e. if we
are considering the intersection with one lower-dimensional Landau surface, then equation
|Y | = 0 is reduced to |Y 1

2 | = 0. This implies that the different roots of |Y | = 0 are multiple
roots z+ = z− at the intersection. In other words, a Landau surface is tangent to one
lower-order Landau surface [see figure 12 (left)]. The converse is also true: the equation
|Y | = 0 is reduced to

|Y1||Y2| − |Y 1
2 |2 = 0 , (7.8)

according to (7.7). Since |Y1| and |Y2| are independent of z12, while |Y 1
2 | = z12|Y12|+O(z0

12),
the roots z12 = z± are degenerate only if |Y1| = 0 or |Y2| = 0. All in all, we conclude

z+(z) = z−(z) ⇐⇒ |Y1||Y2| = 0 . (7.9)

That is, when the order n Landau singularity becomes degenerate, one in fact has an order
n−1 Landau singularity.

The relation (7.9) helps us to understand generations of singularities through the dis-
persive representation. Let us assume that the n-point one-loop function, with n > 2, can
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z

z12

z+(z) = z−(z)

|Y1||Y2| = 0

|Y | = 0

z′12

z+(z)

z−(z)

Figure 12. Left: the roots of |Y | = 0, denoted by z12 = z± are multiple roots if and only if |Y1| = 0
or |Y2| = 0, showing these surfaces are tangent to each other. Right: the singularities of integrand
z′

12 = z± in the dispersive representation may pinch the integration contour C described by the thick
line, generating a singularity of the integral at z+(z) = z−(z). Note that z+ = z∗

− if z, m2
i ∈ R and

|Y1||Y2| < 0 because z± are the roots of the quadratic equation (7.8).

be written as

In(z12, z) =
∫ ∞

m2
th

dz′12
2πi

Discz′12
In(z′12, z)

z′12 − z12
, (7.10)

for a certain region of z.8 Here we treat the external kinematic variables to be independent
and below two-particle normal thresholds. Suppose that Discz12In has a Landau singularity
of order p at z′12 = z±(z). The n-point function In may possess the following types of
pinch singularities: (i) one of z± coincides with the singularity coming from the denominator
z′12 = z12, trapping the integration contour (see figure 6) and (ii) the singularities z′12 = z±
pinch the integration contour [see figure 12 (right)]. They occur at z12 = z±(z) for the first case
and at z+(z) = z−(z) for the second case, respectively. The first, which is z12-dependent is the
condition for the Landau surface of order p while the second, whose position is independent of
z12, is the condition for the surface of order p − 1. Said in another way, for the z12 dispersive
representation, z12 independent singularities arise from lower order Landau surfaces.9

We can derive an integral formula for the discontinuity by using the above discussion.
Here, in addition to the variable z12, we only vary an additional variable denoted as z. The
other variables are supposed to be fixed so that the n-point function In is real analytic in
the variables of interest {z12, z}. Let z = zs ∈ R be the singularity of order p−1 of In(z12, z)
and let the dispersion relation

In(z12, z) =
∫ ∞

m2
th

dz′12
2πi

Discz′12
In(z′12, z)

z′12 − z12
(7.11)

holds in z < zs corresponding to |Y1||Y2| < 0. We consider the analytic continuation into the
region z > zs corresponding to |Y1||Y2| > 0. As discussed, a singularity of order p − 1 of In

8Here, we consider the dispersive representation with zero subtraction, which should hold for triangle, box,
and any higher n-gon in four dimensions. If subtractions are needed, a similar discussion can be made by
replacing (7.10) with a dispersive representation of derivatives of In.

9Note that this is sufficient for the generations of singularities of In but not necessary. The function In

may also be singular due to a pinch between Landau surfaces of different orders or an end-point singularity.
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in the z-plane is generated by the pinch of a pair of singularities of order p of Discz′12
In in the

z′12-plane. We need to add a small imaginary part ±iε to z to avoid the pinch and shift the
positions of singularities z12 = z±(z) away from the real axis in z > zs. Depending on the sign
of the imaginary part, the positions of the singularities z′12 = z± will be different. According
to the real analyticity, the singularities are found in the complex conjugate positions for the
opposite sign of the imaginary part, z±(z + iε) = [z∓(z − iε)]∗, implying that

∫ ∞

m2
th

dz′12
2πi

Discz′12
In(z′12, z + iε)

z′12 − z12
=

z′12 = z+ 
z′12 = z−

(7.12)

∫ ∞

m2
th

dz′12
2πi

Discz′12
In(z′12, z − iε)

z′12 − z12
=

z′12 = z+ 
z′12 = z−

(7.13)

where r.h.s. represents the integration contour and the singularities of the integrand. The
singularities z′12 = z± can be branch points of the integrated answer so we introduce branch
cuts denoted by red curves.10 They should also be symmetrical for the opposite sign of
imaginary parts z ± iε. Note that z+ is the singularity above the integration contour before
the analytic continuation (z < zs) and it remains above it in z > zs. We further analytically
continue the first equation into the lower-half z-plane, which is the same problem as we

10If they are poles, the discussion is straightforward.
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have done in section 6:

z′12 = z+ 
z′12 = z−

→

z′12 = z+ 

z′12 = z−

= z′12 = z+ 
z′12 = z−

=
z′12 = z+ 

z′12 = z−
+

z′12 = z+ 

z′12 = z−

. (7.14)

As in section 6, the branch cuts are deformed so that the direction of the cuts agree with
those of (7.13). Then the contour integral is split into the real axis and the closed contour.
The first term on the third line is exactly the same as (7.13) after relabelling z± and the
second term is replaced with the integral of the double discontinuity of the z12-channel. Thus
taking the difference between (7.12) and (7.13), we obtain a new formula for discontinuities:

DisczIn(z12, z) =
∫ z−

z+

dz′12
2πi

Disc2
z′12

In(z′12, z)
z′12 − z12

. (7.15)

The l.h.s. is the discontinuity associated with the singularity of order p − 1 in the z-plane
whereas the r.h.s. comes from the singularities of order p in the z12-plane. The information
about different singularities in different channels is related through (7.15).

A key feature of (7.15) is to relate singularities associated with different numbers of cuts.
To illustrate it, let us consider the already-accustomed triangle diagram (p = 3). We apply
the two-particle cut to the l.h.s. and the three-particle cut to the r.h.s.:

l.h.s. = , r.h.s. = . (7.16)

Suppose that the thin internal lines correspond to IR states and the thick line is a UV
state. Then, the two-particle cut is possible at IR while the three particles can be on-shell
only at UV. In this way, the formula (7.15) can connect singularities at different energies
through the integration. This is precisely what we have seen in (6.7), the triangle cut arises
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from the double discontinuity in z12. The UV double discontinuity arises because we have
crossed the IR branch cut of the external mass variable. Further checks of (7.15) for n = 3, 4
are given in appendix A.

8 Conclusions

Unstable particles have been largely unexplored in studies of S-matrix. The obvious difficulty
comes from the fact that unstable particles do not appear in the asymptotic states so the
definition of scattering amplitudes is obscure. Precisely, scattering amplitudes of unstable
particles can be defined by the analytic continuation of higher-point amplitudes into an
unphysical sheet where the pole associated with the unstable particle exists. The difficulty
then traces back to the lack of precise knowledge of amplitudes away from the physical sheet.

In this work, we have studied the analytic properties of scattering amplitudes in unstable
kinematics. The main results are twofold: there exist anomalous thresholds in a UV region
of the energy variable and such anomalous thresholds can yield negative contribution to
the dispersion relation. Both properties are quite different from what we have learned from
stable particles. The appearance of anomalous thresholds in scatterings of heavy particles has
been well known (see e.g. [20, 25] for recent papers). When an external mass is analytically
continued to a heavy value, singularities which are originally situated on the second sheet,
enter the first sheet through the IR side of the branch cut. These IR singularities associated
with light loops appear in both stable and unstable kinematics and can be traced by low-
energy EFTs. On the other hand, if the external mass is analytically continued beyond
the decay threshold, singularities associated with loops involving particle(s) whose mass is
much heavier than the external masses also enter the first sheet through the UV side of the
branch cut. The UV singularities give rise to an unsubtractable “anomalous” contribution
to the dispersion relation in the form of double discontinuity. At least in the example, we
have found that this anomalous contribution is negative, violating the positivity bounds
known in stable-particle scatterings.

Our results can be phrased in another way. For the scattering of stable particles, the
anomalous threshold can only enter to the physical sheet by passing through the physical
threshold at 4m2, and thus strictly within the realm of IR kinematics. In defining our unstable
particle S-matrix by analytically continuing through the decay threshold to a complex mass,
we introduce a new avenue where the anomalous threshold can enter the physical sheet. In
such case, “UV” anomalous thresholds, which for us are triangle singularities associated with
UV states, can also enter the physical sheet. Note that not all is lost. As seen in our toy
model analysis, the leading contribution to B2 comes from Ismall in eq. (5.10), i.e. where
the loop momentum is small compared to m2

H . In this region, the four-point amplitude
M(ππχLχL) is well approximated by an EFT description with local operators suppressed by
m2

H and B2 is calculable by EFT loops with such local vertices. Thus such UV anomalous
threshold is well computable in terms of a handful of EFT Wilson coefficients. It will be
interesting to systematically study such effects in the future.

At first glance this conclusion might seem contradictory. On the one-hand the anomalous
threshold is of “UV” origin as it is associated with a triangle singularity that has a UV
massive propagator. On the other, in the explicit computation, the leading contributions
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came from Ismall in eq. (5.10), which is computable directly using low energy EFT, i.e. in
the IR. The resolution is of course (7.15), where the discontinuity of the variable z in the
IR (l.h.s.), knows about the singularities in the UV in the variable z12 (r.h.s.). The essential
ingredients for the derivation of the formula (7.15) are real analyticity, the dispersion relation,
and its analytic continuation. The analysis of Landau equations that led to the relations
between different singularities (7.9) are specialized to one-loop, while other parts of the
discussion, e.g. the contour deformation (7.14), are expected to be generic. Thus if we have
control over the position of the singularities, similar formulae may be derived beyond the
one-loop level or even non-perturbatively by starting with the (twice-subtracted) dispersion
relation. The precise analysis is left for future investigation. Also, the formula is applicable
not only for unstable particles but also for stable-particle scatterings. In this case, one can
think of the l.h.s. as the EFT-calculable t-channel discontinuity of the 2-to-2 amplitude. The
r.h.s. corresponds to the s- and u-channel double discontinuity associated with one cut added
to the l.h.s., which can be a UV state. One such example is a box integral like (5.3) where
it can have an IR t-channel triangle singularity and a UV s-channel box singularity. We
can then obtain a new type of UV-IR relation of the 2-to-2 scattering amplitude. However,
we need more knowledge about the anomalous thresholds and the double discontinuity to
understand such a UV-IR relation, which we leave for future work.

In summary, our results pose new challenges for the S-matrix bootstrap. On the one
hand, our analysis indicates that the standard dispersive formulae cannot be immediately
applied to unstable particles except in the absence of anomalous thresholds, e.g. the tree-level
approximation, or assuming a model that the interaction is dominated by a non-decay process.
Since most particles have finite decay width, to be agnostic about models, one needs to find
an appropriate prescription for phenomenological applications such as the standard model
effective field theory and strongly coupled systems. On the other hand, it is evident that our
knowledge is only the tip of the iceberg of the S-matrix. We have found that singularities of
different channels at different energies are related, which would be a portion of the hidden
structure of the S-matrix. Scattering amplitudes should be even more restricted than what
we currently know and studying unstable particles, or more generically speaking, singularities
other than normal thresholds (resonance poles, antibound state poles, anomalous thresholds,
etc) will help us expose the entire structure of the S-matrix.
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A Explicit check of discontinuity formula

In this appendix, we compute the l.h.s. and r.h.s. of (7.15) and confirm the agreement.
We focus on the triangle and box diagrams in four dimensions. The explicit forms of the
discontinuities are given in (4.8) for s2 and (4.9) for s12, which are worth rewriting here
as a reference:

ρtri =
1

λ1/2(s1,s2,s3)
ln


√
2s1Stri+λ(s1,m2

2,m2
3)λ(s1,s2,s3)−

√
λ(s1,m2

2,m2
3)λ(s1,s2,s3)√

2s1Stri+λ(s1,m2
2,m2

3)λ(s1,s2,s3)+
√

λ(s1,m2
2,m2

3)λ(s1,s2,s3)


(4.8)

ρbox =
1

S
1/2
box

ln


√

SL
triS

R
tri+λ(s12,m2

2,m2
4)Sbox+

√
λ(s12,m2

2,m2
4)Sbox√

SL
triS

R
tri+λ(s12,m2

2,m2
4)Sbox−

√
λ(s12,m2

2,m2
4)Sbox

 . (4.9)

We first consider the triangle diagram and see the relation between the two-particle
and three-particle cuts:

3

2

1 = Discs3Itri = 2πiρtri|1↔3 , (A.1)

3

2

1 = Disc2
s1Itri =

(2πi)2

λ1/2(s1, s2, s3)
, (A.2)

where the thick line is supposed to be heavy so that the triangle singularities appear in the first
sheet of the s1 plane (See section 4.3). The (single) discontinuity in s3 is given by (4.8) with
the replacement 1 ↔ 3. The double discontinuity is computed from the discontinuity (4.8)
for the logarithmic singularity Stri = 0. Then, the formula (7.15) yields

2πiρtri|1↔3 =
∫ s−

s+

ds′1
2πi

(2πi)2

λ1/2(s′1, s2, s3)
1

s′1 − s1
, (A.3)

where s1 = s± are the roots of Stri = 0, which are explicitly given by (4.16). Here, we should
make sure that only the triangle singularities Stri = 0 deform the contour, in particular,
λ(s′1, s2, s3) > 0 in the interval of integration. As demonstrated in figure 13, one can confirm
that the equality (A.3) indeed holds.

Next, we discuss the box integral Ibox to relate the s and t channel singularities. For a
sufficiently large external mass (which can be stable), the triangle singularity appears below
the normal threshold. In such a case, the analytic continuation of the s-channel dispersion
relation in t first touches the triangle singularity. We can thus apply (7.15) to the three-
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Figure 13. Comparisons between the l.h.s. and the r.h.s. of (A.3) (left) and (A.8) (right). The red
curves and the black dashed curves respectively represent the l.h.s. and the r.h.s. divided by 2πi. Here,
we set s1 = s2 = m2

1 = m2
2 = 1, m3 = 4 (left) and s = m2

L = 1, M = 1.9, mH = 4 (right).

and four-particle cuts of the box diagram:

l.h.s. =

1

2 3

4

mL

mL

mLmH
, r.h.s. =

1

2 3

4

mL

mL

mLmH
. (A.4)

For simplicity, we assume the same external masses p2
i = −M2 and the internal masses

specified by the diagrams. Note that (4.9) is the discontinuity across the normal threshold cut.
It cannot be directly applied to evaluate the discontinuity across the triangle cut. However,
we can find the triangle discontinuity as follows. In 2m2

L < t < 4m2
L, with a small fixed s,

the t-channel dispersion relation should take the form

Ibox =
∫ ∞

ttri

dt′

2πi

DisctIbox
t′ − t

=
(∫ 4m2

L

ttri
+
∫ ∞

4m2
L

)
dt′

2πi

DisctIbox
t′ − t

, (A.5)

with ttri = 4M2−M4/m2
L. This dispersion relation should agree with the analytic continuation

of (4.7) in the external mass after appropriately relabelling variables. As shown in figure 6
(right), the analytic continuation generates the additional integral below the normal threshold,
which should be identified with the first integral of the second line of (A.5). The contour
integral of figure 6 (right) is nothing but the integral of the discontinuity of ρbox for the
triangle singularity which is logarithmic. Hence, the triangle cut is

DisctIbox = (2πi)2

S
1/2
box

(ttri < t < 4m2
L) . (A.6)

On the other hand, the s-channel double discontinuity is computed by the discontinuity (4.9)
for the box singularity Sbox = 0. The singularity arises from the denominator of (4.9). Note
that Sbox = 0 is a singularity of ρbox only if the logarithm does not take a principal value.
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Therefore, the double discontinuity should be11

Disc2
sIbox = −2× (2πi)2

S
1/2
box

. (A.7)

The integral formula (7.15) then gives

(2πi)2

S
1/2
box

=
∫ sb

−

sb
+

ds′

2πi

(−2)× (2πi)2

S
1/2
box

1
s′ − s

, (A.8)

where s = sb
± are the roots of Sbox = 0, satisfying sb

− < sb
+. One can confirm the agreement

as shown in figure 13.
One can notice that (A.3) and (A.8) are the same as the dispersion relations of the

discontinuities. For instance, DisctIbox = (2πi)2/S
1/2
box has a branch cut in sb

− < s < sb
+ in

the complex s plane, corresponding to the change of the sign of Sbox. Hence, we obtain

DisctIbox =
∫ sb

+

sb
−

ds′

2πi

DiscsDisctIbox
s′ − s

=
∫ sb

+

sb
−

ds′

2πi

2× (2πi)2

S
1/2
box

1
s′ − s

(A.9)

which exactly agrees with (A.8). However, we emphasise that the integrand of (A.8) is
the double discontinuity in the same variable, rather than s and t, because it is derived by
the analytic continuation of the s-channel dispersion relation. In other words, the double
discontinuities are the same

DiscsDisctIbox = −Disc2
sIbox (A.10)

for the box singularity Sbox = 0. Here, we recall that Disc2
s is defined by (the first sheet

value of Discs) − (the second sheet value of Discs) while DiscsDisct = (the upper-half plane
of Disct) − (the lower-half plane of Disct).
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