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Abstract 
Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our 
understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. 
Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate 
assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected 
spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome–assembled genome reconstruction enhanced by long-
read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in 
five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from 
marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 
(14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most 
species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and 
exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring 
bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-
specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, 
suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial 
ecosystems. 
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Introduction 
Giant viruses (GVs) are a significant group within the virosphere, 
exhibiting remarkable diversity, ubiquity, and abundance across 
various ecosystems such as oceans, freshwater, and soil [1–6]. In 
marine ecosystems, they are widespread and distributed across 
the water column. In contrast, the diversity of freshwater GVs 
has not been well studied despite indications of high diversity, as 
revealed by the distribution of their major capsid proteins (MCPs) 
in freshwater environments [4]. 

Freshwater lakes, known for their complex seasonal and verti-
cal dynamics, have been the subject of extensive studies in terms 
of the temporal shifts and vertical stratification of plankton and 
prokaryote communities [7–10]. These studies have revealed the 
niche preferences of eukaryotic and prokaryotic microbes across 
seasons and depths, highlighting the existence of a deep-water 
specific microbiome. A recent study revealed the dominant GVs 
associated with spring algal blooms in photic zones [11]. However, 
the ecological dynamics of GVs in freshwater lakes remain poorly 
understood and no study has previously addressed the existence 
of GVs specific to the dark and deep layers of a lake. 

We comprehensively analyzed the diversity of GVs in a 
deep freshwater ecosystem via reconstruction of metagenome-
assembled genomes (MAGs) for investigating the GV dynamics 

across seasons and depths. To achieve this, we combined a 
spatiotemporal sampling strategy with long-read metagenomic 
sequencing. This enabled us to capture the GV community 
dynamics within the ecosystem and overcame the problem 
posed by fragmented assembly of conventional short-read 
metagenomes [12]. The generation of more continuous contigs 
via long-read sequencing aids the identification of a full set 
of marker genes for MAGs, allowing more accurate quality 
evaluation and taxonomic assignment. Indeed, an increasing 
number of studies have used long-read sequencing to generate 
better GV genomes [13–15], but no long-read GV MAG has 
been generated from freshwater metagenomic data. Moreover, 
we developed a pipeline that detected not only GVs of the 
phylum Nucleocytoviricota but also those of Mirusviricota, a  newly  
discovered GV phylum [5]. Previous metagenomic studies have 
often overlooked mirusviruses given their high genomic novelty 
and chimeric attributes [5]. Indeed, mirusviruses in the freshwater 
ecosystems remain to be discovered. 

We leveraged previously published short- and long-read 
metagenomic data from Lake Biwa, a deep oligo-mesotrophic 
freshwater lake of Japan [16]. The data originally targeted the 
prokaryotic community (size fraction = 0.2–5 μm) and were 
collected spatiotemporally. GVs have the same size fraction 
as prokaryotes [17] but were not investigated in the original
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study. We reanalyzed these data using a custom pipeline that 
recovers GV genomes from long-read contigs and bins. This 
led to the reconstruction of 118 high-quality (completeness 
>90%) GV MAGs, including two circular nucleocytoviruses and 
eight representatives of freshwater mirusviruses. Moreover, the 
spatiotemporal data revealed the dynamics of GV communities 
and their specific occurrences across the depths. 

Materials and methods 
Data source 
We compiled long-read MAGs and contigs derived in a recent 
study on Lake Biwa, Japan [16]. Dataset samples were collected 
monthly from May 2018 to April 2019. Throughout the 1-year 
sampling period, thermal stratification occurred from May to 
December. During each sampling event, water samples from two 
depths (5 m for the epilimnion and 65 m for the hypolimnion) 
were collected (24 samples in total). Deoxyribonucleic acid (DNA) 
was extracted from the 0.22–5 μm size fraction of each sample 
and subjected to short-read (MGI DNBSEQ-G400) and long-read 
metagenomic sequencing (Oxford Nanopore). The contigs used 
here were those assembled by Flye v2.8 [18] in the previous study. 
The long-read contigs were polished using both the long and short 
reads. The detailed workflow and the relevant parameters are 
described in the original publication [16]. 

Reconstruction of long-read giant virus 
metagenome-assembled genomes 
Many contigs exceeded the minimum size criterion for a GV 
genome (>50 kb) and displayed GV signals (≥1/7 nucleocytovirus 
marker genes or the mirusvirus HK97 MCP). The seven nucleocy-
tovirus marker genes were those encoding MCP, DNA polymerase 
family B (PolB), transcription initiation factor IIB (TFIIB), DNA 
topoisomerase II (TopoII), packaging ATPase (A32), DEAD/SNF2-
like helicase (SFII), and the poxvirus late transcription factor 
VLTF3 [19]. In addition to these contigs, we retained all 4648 bins 
generated in the original study [16], which together subjected 
to the exclusion of prokaryotic genomes with CheckM v1.2.2 
[20]. MAGs with CheckM completeness scores higher than 15 
as bacteria or 20 as archaea were considered to be prokaryotes 
and therefore excluded (Fig. S1A). Additionally, we reevaluated 
bins excluded by this process and confirmed that there was no 
significant loss of high-quality GV sequences due to the additional 
recruitment of single-contig GVs in parallel with binned data 
(Fig. S1B; see the Supplementary methods). 

We screened for putative GV MAGs using different methods 
(see Supplementary methods) to identify nucleocytoviruses and 
mirusviruses. For nucleocytoviruses, we employed a core gene 
density index based on the presence of 20 nucleocytovirus 
core genes to select putative nucleocytovirus MAGs for further 
examinations [21]. To detect mirusviruses, we screened for 
the mirusvirus HK97 MCP gene as this is a unique marker of 
mirusviruses [5]. A MAG was identified as a mirusvirus if the 
HK97 MCP gene was detected using the function “hmmsearch” of 
HMMER3 v3.4 (bit score > 100) [22]. 

Following the MAG detection, we removed all cellular contam-
ination and then excluded chimeric, low-quality, and fragmented 
GV MAGs prior to downstream analyses (Figs S2 and S3; see  
the Supplementary Methods). Finally, 293 non-redundant GV 
MAGs generated by the above processes were retained at 
an average nucleotide identity (ANI) threshold of 95% with 
dRep v3.2.2 [23]. The resulting non-redundant GV MAGs were 
species-level representatives that we termed “Lake Biwa giant 

virus metagenome-assembled genomes” (LBGVMAGs). Each was 
assigned a unique four-digit serial number as part of the ID, 
ordered by the maximum coverage rank across all 24 samples. 

Quality assessment of long-read giant virus 
metagenome-assembled genomes 
We first assessed the diversity-coverage of our MAGs by determin-
ing the proportion of uncaptured nucleocytovirus polB sequences. 
The unique nature of this gene, which is single-copy and universal 
in nucleocytovirus genomes, allowed us to assess how much of 
the GV diversity in the lake was captured by our MAGs. We 
performed a blastn search using blast+ v2.15.0 [24] to align all 
representatives of clustered polB sequences from the raw assem-
blies (see the Supplementary methods) against the contigs of our 
MAGs. A polB sequence was considered to be present in our GV 
MAGs if the nucleotide sequence identity was >96% and aligned 
length covered >60% of the shorter sequence in a pair. These 
two thresholds were estimated to roughly represent the species 
boundary of GVs (Fig. S4; see the Supplementary methods). 

To compare the fragmentation levels of our long-read MAGs 
and those of the short-read MAGs, we compiled non-redundant 
quality-controlled (high/medium quality) short-read GV MAGs 
from the Giant Virus Database (GVDB) [19]. Seqkit v2.5.1 [25] 
was employed to calculate the number of contigs and the N50 
value of each MAG. We also determined the POA90 score of each 
MAG; this metric evaluates unpolished indel errors in long-read 
assemblies [16]. The details of quality assessment are given in the 
Supplementary methods. 

Analyses of the phylogenetic diversity and 
community dynamics of GV MAGs 
To evaluate the novelty of our MAGs, we complied a custom 
database that integrated the GVDB [19] and 697 nucleocy-
tovirus/mirusvirus MAGs recovered from “Tara Oceans” and 
lodged in the Global Ocean Eukaryotic Viral database [5]. This 
custom database followed the taxonomic classification of the 
GVDB. Next, we used fastANI v1.33 with the default parameters 
to calculate the pairwise ANIs between this custom database and 
our MAGs [26]. The alignments were visualized with DiGAlign [27]. 

For phylogenetic analysis of the nucleocytoviruses, we used 
the “ncldv_markersearch.py” script to call seven marker genes 
(encoding PolB, SFII, TFIIB, TopoII, A32, VLTF3, and the DNA-
directed ribonucleic acid polymerase alpha subunit [RNAPL]) [3] 
from our MAGs and reference genomes. We then generated a con-
catenated alignment of the seven genes using MAFFT v7.520 [28] 
with the “L-INS-i” algorithm and trimmed the alignment at >90% 
gaps using trimAl [29]. We generated a phylogenetic tree with IQ-
TREE v2.2.2.6 [30] using Ultrafast Bootstrap [31] (parameters: -wbt
-bb 1000) and visualized the tree using iTOL [32]. The best-fitting 
model (LG + F + I + R10) was selected according to the Bayesian 
information criterion from the ModelFinder [33]. The taxonomy 
of our MAGs was manually determined based on the topology of 
the tree following the taxonomic classification of the GVDB. 

To infer mirusvirus phylogeny, we generated individual phylo-
genetic trees of HK97 MCP and heliorhodopsin (HeR) sequences. 
We searched against an Hidden Markov Model (HMM) model 
built from marine mirusviruses [5] to screen for HK97 MCPs 
using the hmmsearch (bit score > 100), and another HMM model 
generated from the custom database described above to screen 
for HeRs with an E-value of  1 × 10−3. For both phylogenetic trees, 
we included sequences from our MAGs and marine mirusviruses. 
Additionally, we incorporated reference sequences from recently 
identified endogenous mirusviruses in the HK97 MCP tree [34]
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and sequences from the RefSeq database [35] for the HeR tree. 
We excluded sequences of the marine mirusvirus family M7 from 
both trees due to the phylogenetic instability introduced by them. 
Alignments of the HK97 MCPs and HeRs were generated using 
MAFFT v7.520 with the “L-INS-i” algorithm and trimmed at gaps 
>90% with trimAl v1.4. Trees were built using IQ-TREE v2.2.2.6 
with the Ultrafast Bootstrap parameters “-B 1000 -alrt 1000”. 
Model “LG + F + R7” and “VT + F + R8” were selected to generate 
the trees of HK97 MCPs and HeRs, respectively. Phylogenetic infer-
ences aside, we further quantified the shared genomic content 
among freshwater mirusviruses, marine mirusviruses, and other 
members of the realm Duplodnaviria from Virus–Host Database 
[36], as detailed in the Supplementary methods. 

To determine the relative abundances and spatiotemporal dis-
tributions of LBGVMAGs, the coverage and read per kilobase per 
million reads (RPKM) of each MAG were calculated based on the 
mapping of short reads from all samples to LBGVMAGs using 
CoverM v0.6.1 [37] with parameters “–min-read-percent-identity 
0.92 -p bwa-mem2”. The taxonomic composition was based on the 
RPKMs of each order per sample and visualized using the ggplot2 
package [38] in R Studio [39, 40]. The beta diversity between 
different communities was calculated using the vegdist function 
(method = “bray”) of the vegan package [41] and used for non-
metric multidimensional scaling (NMDS) analysis. The quantita-
tive analysis that compared the compositional variances between 
the epilimnion and hypolimnion used the same distance matrix, 
but we limited our analysis to samples collected during the period 
of water stratification (May–December). The abundance profile of 
plankton in Lake Biwa at sampling months were downloaded from 
a publicly available plankton monitoring project [42]. 

The habitat preference of LBGVMAGs was assessed by an 
indicator termed “Pepi”, which is the cumulative RPKM in the 
epilimnion divided by the cumulative RPKM in both epilimnion 
and hypolimnion during the stratification period (May–December) 
[16]. When Pepi was > 0.95 or < 0.05, the LBGVMAG was defined as 
epilimnion- or hypolimnion-specific, respectively. 

The persistence of each LBGVMAG was defined as the longest 
consecutive months during the stratified period for which the 
covered fraction of the LBGVMAG was >20% from short-read 
mapping [43]. Persistence of epilimnion-specific LBGVMAGs was 
assessed using only epilimnion samples and persistence of 
hypolimnion-specific LBGVMAGs using hypolimnion samples. 
Statistical test of differences in the mean persistence between 
the two groups employed the Welch t-test. 

Results 
High quality long-read assembled giant virus 
metagenome-assembled genomes 
Within the 24 samples, 0.5%–4.2% (mean = 2.1%) of the short reads 
were mapped onto the LBGVMAGs (hereafter, GV MAGs or MAGs 
when there is no ambiguity). The percentage of mapped reads 
was typically larger for the epilimnion than the hypolimnion 
(Fig. S5). Using these samples, we successfully reconstructed 293 
non-redundant species-level GV MAGs (Table S1). The assembly 
became more challenging with increasing genome size, typically 
resulting in a higher number of contigs (Fig. 1A). Despite these 
challenges, the high quality of our GV MAGs was verified by 
comparison with previously reported short-read MAGs, and via 
completeness assessment. Our long-read MAGs demonstrated 
a significantly (P value = 6.8 × 10−6) lower median number of 
contigs, with a count of 6 compared to 10 for short-read MAGs, 
and the median N50 of long-read contigs was also significantly 

(P value = 8.4 × 10−16) longer than short-read MAGs by threefold 
(Fig. S6). We obtained 118 (40.3%) GV MAGs with completeness 
scores >90% that were classified as “high-quality” [44], of which 74 
(62.7%) MAGs contained all seven marker genes (Fig. 1B). Among 
the 118 high-quality MAGs, 42 were composed of single contig, 
including 2 MAGs (0074 and 0028) previously identified as circular 
[16]. Additionally, we identified terminal inverted repeats in six 
single-contig MAGs, which are the signature of linear complete 
genomes (Table S2). 

A large proportion of the polB genes (79.3%) in the assembled 
contigs were present in our GV MAGs, indicating that our 
MAGs represented most of the GV diversity present in the lake 
(Fig. 1C). Upon closer examination, the three most abundant 
nucleocytovirus polB genes absent from the MAGs were encoded 
in cellular contigs, suggesting that our pipeline effectively 
eliminated contamination of cellular sequences. The POA90 
score that assessed the performance of contig polishing (see 
the Supplementary methods) decreased when the short-read 
coverage was below 7× (Fig. S7), suggesting that a short-
read coverage >7× was required for effective nucleotide error 
correction. 

Expanded diversity of giant viruses 
The GV MAGs included mirusviruses (Fig. 2A) and five orders of 
nucleocytoviruses (Fig. 2B). We identified 285 new species that 
did not show >95% ANI with any known GV genome (Fig. 2C). 
Among them, 177 (60.4%) had ANI values <80% or ANI val-
ues that could not be calculated because of large divergences 
from the reference genomes. Of interest, 85.9% of GV MAGs with 
assigned ANIs were closely related to genomes from freshwater 
environments (Table S3). We also discovered three GV MAGs of the 
Mesomimiviridae (IM_01) family that were nearly identical (Fig. S8) 
to the MAGs recovered from Lake Lanier in North America [3, 4]. 
Specifically, MAGs 0129, 0046, and 0059 exhibited ANIs of 99.2%, 
98.2%, and 98.2% to the MAGs from Lake Lanier, respectively. The 
order Imitervirales exhibited pronounced diversity, accounting for 
237 (80.9%) MAGs in this study. Also, we recovered 20 Algavirales, 
16 Pimascovirales, 8  Asfuvirales, and  4  Pandoravirales. 

Following the screening approach guided by the mirusvirus 
HK97 MCP gene, we recovered eight mirusviruses from Lake Biwa, 
including the abovementioned circular genome (0074). HK97 MCP 
aside, other key components of the virion module were also 
shared with marine mirusviruses, including the genes encoding 
the portal protein, terminase, and the triplex capsid protein 
(Fig. S9A). The phylogenetic trees inferred based on HK97 MCPs 
(Fig. 2A) and HeRs (Fig. S10) supported a distant evolutionary 
relationship between the newly identified freshwater clade 
and known marine mirusviruses. For the freshwater clade, we 
further subdivided the group into three subclades based on the 
topology of the HK97 MCP tree (subclade1: 0074; subclade2: 0010; 
subclade3: the remaining six members). To date, the taxonomic 
classification of mirusviruses has been following the topology 
of HK97 MCP tree [5, 34] because it is considered as the key 
gene to guide the taxonomic classification of Duplodnaviria. 
Subclade3 was placed within the clade E03 of endogenous 
mirusviruses identified from two assemblies of algae under 
the class Cryptophyceae [34]. Subclade1 and subclade2 were 
placed next to the deep branches of endogenous mirusviruses 
clade E02 and E01, respectively (Fig. 2A). Consistent with the 
phylogenetic inferences suggested by the HK97 MCPs, the GC 
content of freshwater mirusviruses was higher than that of 
marine mirusvirus clades (Fig. S9B). Further genomic analysis 
of this freshwater clade revealed that a small fraction of genes
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Figure 1. GV MAG quality and diversity coverage. (A) Genome size of GV MAGs versus the number of contigs. The size of each bubble represents the 
maximum RPKMs of each MAG in all 24 samples. (B) Distribution of the GV MAG completeness scores. Marker genes indicated here are 
nucleocytovirus marker genes. (C) Presence or absence of abundant polB genes in the GV MAGs. “Max coverage” refers to the highest read coverage of 
the contig from which the polB was called among the 24 samples. Dots indicate the three abundant polB genes absent from our MAGs. 

(4.0%–10.8%) per genome were detected to be homologous to 
those of the marine mirusvirus orthogroups ( Fig. S11; Table S4). 
Although limited, this genomic similarity was greater than that 
observed with other members of the realm Duplodnaviria (i.e. 
caudoviruses and herpesviruses; 0.6%–1.9%). 

Depth–dependent distribution patterns and 
functional capacities of giant viruses 
The order-level community compositions and beta diversi-
ties among samples clearly revealed the succession of GV 
communities over the year (Fig. 3). After the water stratified 
(May–December), water circulation commenced and the GV 
communities of different water layers became well-mixed 
in February. A drastic shift in the hypolimnion community 
was apparent from January to February; however, the year-
round cycle of the epilimnion community evidenced a more 
gradual change. This phenomenon is consistent with the mixing 
mechanism of lake water. As the temperature drops, the boundary 
of mixing water begins to gradually descend, and previously 
unmixed water is thus added to the epilimnion. In contrast, the 
hypolimnion is not affected until the mixing boundary attains the 
sampling depth (65 m). Throughout the stratification period, the 
compositional variation among communities in the hypolimnion 
was generally smaller than in the epilimnion (Fig. 3C). In line with 
NMDS analyses, most GV species (65.5%) were niche-specific. 
Specifically, 143 (48.8%) were epilimnion-specific and 49 (16.7%) 
were hypolimnion-specific (Fig. 3D). 

Investigations on the coding capability of GV MAGs has 
revealed a rich diversity of metabolic genes that suggested 
possible adaptations at depths (Table S5). In addition to the 
most widely identified KEGG Orthology (KO) groups [45] involved  
in genetic information processing, those involved in glycan, 
nucleotide, amino acid, and carbohydrate metabolism were 
also prevalent (Fig. S12A). In total, we identified 1518 KOs 
from our GV MAGs. Of these, around half (656) were shared 
among GV MAGs with habitat preferences and those without 
such preferences (Fig. S12B), indicating their broad ecological 
relevance. We also identified 176 and 27 KOs exclusive to 
epilimnion- and hypolimnion-specific GV MAGs, respectively 
(Fig. S12B). The distinct distributions of KOs across depths suggest 
distinct metabolic adaptations at depths. For example, carotenoid 
cleavage oxygenase was detected to be unique to epilimnion-
specific MAGs, indicating a possible adaptation to higher light 
exposure and oxidative conditions through manipulation of 
host carotenoid biosynthesis pathways. Despite these possible 
adaptations, the absence of highly prevalent habitat-specific 
genes (Fig. S12C) suggests a genetic versatility in their adaptation 
to environments. 

Besides to the assigned KOs, we also widely detected GV 
rhodopsins (HeRs and type-1 rhodopsins). Specifically, 15 (30.6%) 
hypolimnion-specific and 57 (38.5%) epilimnion-specific GV 
species harbored rhodopsin genes (Fig. S13). HeR genes were 
present in most freshwater mirusvirus MAGs (7/8). In contrast, 
rhodopsins were least commonly observed in the order Algavirales.
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Figure 2. Phylogenetic diversity and novelty of GV MAGs. (A) Phylogenetic tree of the mirusvirus HK97 MCPs. Sequences from marine mirusvirus MAGs 
[5], endogenous mirusvirus sequences [43], and freshwater mirusvirus MAGs recovered in this study are included. The ultrafast bootstrap values are 
indicated by the sizes of the circles on the branches. Certain key nodes indicating the divergences of different clades are indicated by values 
(aLRT/UFBoot) (see Materials and methods). Phylogenetic supports were considered high (aLRT ≥80 and UFBoot ≥95), medium (aLRT ≥80 or UFBoot 
≥95), or low (aLRT <80 and UFBoot <95). The three proposed subclades of freshwater mirusviruses are marked with stars on the tree in a clockwise 
direction: subclade2 (black), subclade1 (red), and two clusters of subclade3 (yellow). The tree is rooted between the freshwater and marine clades. 
Scale bar represents one substitution per site. (B) Phylogenetic tree of the recovered nucleocytoviruses. The tree was built using the concatenated 
protein sequences of seven genes (PolB, TFIIB, TopoII, A32, SFII, VLTF3, and RNAPL) and is rooted between the class Pokkesviricetes and Megaviricetes. The  
first outer layer of the tree (from the inside) indicates the taxonomic order of each GV genome, including our GV MAGs and the reference GV genomes. 
In the second layer, the uncolored branches of the tree are the reference genomes used to guide taxonomic assignment of our GV MAGs. “Other” 
means that the habitat preference was unclear. The third layer indicates the presence or absence of type-1 rhodopsin (Type-1 RHO)/HeR-encoding 
genes in our GV MAGs and the reference genomes. Scale bar represents one substitution per site. (C) The highest ANI value for each of our GV MAGs 
compared to the public GV genomes. Pairwise ANIs were calculated between our MAGs and publicly available GV genomes and only the highest ANI 
for each MAG is plotted. ANIs <80% are not specified, being rather clustered into the “<80” category. 

Distinct dynamics of epilimnion and 
hypolimnion specialists 
In general, GVs exhibiting different habitat preferences evidenced 
distinctive dynamic patterns. Epilimnion-specific GVs were typ-
ically transient but hypolimnion specialists tended to be more 
persistent as indicated by their significantly higher persistence (P 
value = 6.7 × 10−6) during the stratification period (Figs 4, S14, and 
S15). The median persistence duration for hypolimnion-specific 
GVs was 6 months, which is 3-fold longer than the 2-month 
median observed for epilimnion-specific GVs. 

Overall, imiterviruses dominated both water layers throughout 
the year, with the exception that four algaviruses collectively 
accounted for >50% of the relative epilimnion abundances in 
March, April, and May (Fig. 3A). Each of the four algaviruses (0001, 
0002, 0003, and 0008) exhibited a relative abundance >5.3% for 
at least 1 month and MAG 0001 alone accounted for 47.6% of 
the relative abundance in March. Among the four viruses, two 
(0001, 0003) were related to Yellowstone Lake phycodnaviruses of 

the Prasinoviridae (AG_01) family, with ANIs of 87.5% and 84.1%, 
respectively [46]. The other two (0002, 0008) lacked any close 
relative in the database. Besides algaviruses predominating in the 
epilimnion in spring, the relative abundance of a mirusvirus (0007) 
ranked second and third among all GV MAGs in March (5.4%) 
and April (6.5%), respectively. Another mirusvirus (0010) ranked 
fourth in April, accounting for 5.3% of the relative abundance. 
Additionally, three viruses (0009, 0040, and 0018) with ANIs >87% 
to the reference genomes of the Mesomimiviridae family, and one 
virus (0014) with an ANI of 77.1% to a reference genome of the 
Allomimiviridae (IM_12) family, were among the most abundant 
species identified. Each accounted for >2.1% of the relative abun-
dance in the epilimnion during this period. Together, mirusviruses 
and nucleocytoviruses of the orders Algavirales (family Prasinoviri-
dae) and Imitervirales (families Mesomimiviridae and Allomimiviridae) 
were major players in the epilimnion of Lake Biwa in spring. 

In addition to the topology of HK97 MCPs, the dynamics 
of freshwater mirusviruses agreed with the differentiation
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Figure 3. Spatiotemporal community shifts and vertical distributions. (A) Accumulative RPKM values across five orders of nucleocytoviruses and 
mirusviruses per sample. Within each bar, the abundance contributions made by each order or mirusvirus are indicated by different colors. The 
environmental parameters were also indicated by the dashed line (chlorophyll a) and solid line (temperature). (B) NMDS plot of beta diversities across 
the samples. The pairwise beta diversities were derived by calculating Bray–Curtis dissimilarities based on the RPKMs from read mapping. Triangles 
refer to samples from the stratification period. Circles represent samples taken during water mixing. (C) Comparison of the beta diversities of samples 
from the epilimnion and hypolimnion. The Bray–Curtis dissimilarities indicate the beta diversities for each pair of samples in the epilimnion or 
hypolimnion. (D) Habitat preference of each MAG as determined by the indicator Pepi. As indicated by the dashed lines, MAGs with Pepi values >0.95 
and < 0.05 were defined as epilimnion- and hypolimnion-specific, respectively. 

of three subclades defined by the phylogeny of HK97 MCPs. 
The community dynamics of subclade1 exhibited a typical 
hypolimnion-specific pattern ( Fig. 4C), occurring only in the 
hypolimnion throughout the stratified period. In sharp contrast, 
subclade 2 was transient, occurring exclusively in the epilimnion 
in April (at the end of water mixing) but absent from both water 
layers during the stratified period. The members of subclade 3 
were typically epilimnion-specific and persistent. 

Discussion 
High-quality freshwater giant virus 
metagenome-assembled genomes assembled 
from long reads 
Although GVs exhibited high genetic diversity, they accounted 
for only ∼2.0% of all metagenomic reads (Fig. S5), much lower 
than the value reported for prokaryotes in the same size fraction 

(0.2–5 μm) of the same samples (60.4%) [16]. This combination 
of high diversity and low read abundance posed a challenge for 
reconstructing GV MAGs. Nevertheless, our pipeline (Fig. S3) suc-
cessfully captured such diversity in Lake Biwa as demonstrated 
by the inclusion of most viral polB genes in the MAGs (Fig. 1C). 
Although GV MAGs have been widely recovered using short-read 
sequencing [3–6], no long-read GV MAGs from freshwater lakes 
have previously been reported. Through comparisons with short-
read MAGs, we validated the performance of long reads in terms of 
the recovery of more continuous and complete GV MAGs (Fig. S6). 

Our spatiotemporal sample data focusing on an under-
investigated freshwater system expanded the known diversity 
of GVs, with many new species (97% of all species detected). A 
large proportion of MAGs had diverged from known reference 
species, primarily those with ocean-derived genomes [3–6]. 
Among those related to known GV references, most were closely 
related to freshwater-derived genomes, suggesting the existence
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Figure 4. Community dynamics of GVs across water depths. (A) Persistence of GVs with different habitat preferences. Epi, epilimnion community; 
hypo, hypolimnion community. (B) Community dynamics of the top four most-abundant epilimnion- and hypolimnion-specific nucleocytoviruses 
(determined by the maximum RPKMs across the samples). (C) Community dynamics of freshwater mirusviruses. Subclades of freshwater mirusviruses 
are indicated by the numbers in parentheses followed by the MAG IDs. In (B) and (C), the taxonomy and ID of each MAG are shown in the title of each 
box, and the background indicates the habitat preference. 

of ecological barriers between the GVs of freshwater and marine 
environments. Furthermore, we discovered mirusviruses in the 
freshwater lake. 

A giant viruses community specific to the dark 
hypolimnion 
As observed for prokaryotes [16] and their viruses [47, 48], the 
GV community followed the physical structure of the season-
ally stratified lake water column (Fig. 3B). Most species exhibited 
clear niche specificity for either the epilimnion or hypolimnion 
(Figs S14–S16 and 3D). The activities of hypolimnion-specific GVs 
were characterized by their persistent yet active turnover (Fig. 4B), 

associated with drastic increases and decreases in abundance 
over a short period of time. For example, the relative abun-
dance of MAG 0019 increased fourfold from June to July and then 
declined in August (Fig. 4B). Similar dynamics have been previ-
ously observed in both GVs and their viruses (virophages) from 
hypolimnion samples of another freshwater lake [49]. Together 
with the observation that the viral host communities (microbial 
eukaryotes) are also vertically stratified [50], it is highly proba-
ble that hypolimnion-specific GVs actively infect hypolimnion-
specific hosts. Unfortunately, our attempts to infer the hosts using 
gene phylogeny and genomic similarities to the isolated viruses 
were unsuccessful due to the lack of useful reference genomes 
in the database. Previous studies have revealed the existence
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of deep-water specific microbiomes including prokaryotes, their 
viruses, and eukaryotes [7–10, 50–55]. The persistence and exclu-
sive presence of GV populations in the hypolimnion suggests that 
they are also part of a deep-water specific microbiome, likely 
playing important ecological roles in dark environments. 

In contrast to hypolimnion-specific GVs, epilimnion-specific 
GVs were more diverse (Fig. 3D) and typically transient (Fig. 4A), 
in agreement with the observed associations between the GVs 
and transient hosts including surface bloom-forming algae 
(Figs 3A and S14) [56, 57]. GVs have been widely studied in 
the context of algal blooms, especially in the oceans, where 
they play critical roles in bloom termination [58–60]. However, 
the major GVs involved in freshwater spring blooms remain 
largely unknown. A recent study isolated a bloom-associated 
imitervirus of the Allomimiviridae family from a freshwater 
lake [61], and another work characterized the GV community 
dynamics associated with algal blooms [11]. Our study revealed 
that mirusviruses and nucleocytoviruses of the orders Algavirales 
(family Prasinoviridae) and  Imitervirales (families Mesomimiviridae 
and Allomimiviridae) were among the most abundant GV lineages 
during the spring bloom of Lake Biwa. In contrast, members 
of Algavirales did not exhibit a significant presence during the 
autumn bloom (Fig. 3A). The results suggested that members of 
Algavirales may infect algae of the Cryptophyceae and Chrysophyceae 
classes, because they were exclusively dominant during spring 
bloom (Fig. S17). 

A previous study reported high vertical connectivity among GV 
communities in marine environments that were suggested to be 
associated with sinking algae [62]. However, our data reveal a dis-
connect between the epilimnion and hypolimnion GV communi-
ties. Algaviruses (0001 and 0003) that dominated in the epilimnion 
during the spring bloom in May (Fig. 3A) were rarely observed in 
the hypolimnion during the water stratification period (Fig. S14) 
despite that significant sinking algal fluxes have been observed 
in Lake Biwa [63, 64]. Among the algavirus populations in the 
hypolimnion, an algavirus (0047), different from those dominant 
in the epilimnion, was the most abundant throughout the lake 
stratification period (Fig. S16). These results suggest that the 
transportation of GVs from the epilimnion to hypolimnion asso-
ciating with algal cells sinking is limited in Lake Biwa. 

Ubiquitous freshwater mirusviruses across water 
depths 
GVs were previously known as large viruses of the phylum Nucleo-
cytoviricota. A recent oceanic survey discovered a new GV phylum, 
Mirusviricota [5], which highlighted the importance of linking the 
evolutionary paths of the two viral realms Varidnaviria and Duplod-
naviria [65]. The cited work reported that mirusviruses were abun-
dant and widespread in sunlit oceanic areas. However, it remained 
unclear whether mirusviruses existed in freshwater ecosystems 
and aphotic regions. A recent work reported mirusvirus genomic 
fossils in the genomes of various eukaryotes including freshwater 
algae and cellular slime molds of soil, suggesting that their habi-
tats are broad [34]. The recovery of mirusvirus genomes from Lake 
Biwa has firmly established their existence and activity in fresh-
water systems. The phylogenetic inference of the marker gene 
(Fig. 2A) suggests that the freshwater mirusviruses form a distinct 
lineage that is placed outside the marine clade. The placement of 
subclade3 within the clade E03 of endogenous mirusvirus HK97 
MCPs detected from algae of the class Cryptophyceae suggests 
that these algae may be hosts for mirusviruses of subclade3. The 
unique gene repertoires (Table S4; Fig. S11) of our freshwater 

mirusviruses also demonstrate an untapped source of genetic 
diversity. 

We found one circular mirusvirus genome (0074) confined to 
the dark hypolimnion (Fig. 4C), possibly infecting hypolimnion-
specific hosts. A previous oceanic survey of GVs across water 
columns from surface to 5500 m did not detect any mirusvirus 
genome below the photic layer [6]. Recent studies have reported 
that the protist Aurantiochytrium limacinum (Labyrinthulea) [66] 
and green algae Cymbomonas tetramitiformis [67] are highly prob-
able hosts of mirusviruses. However, these organisms typically 
inhabit sunlit regions. Our observation of a hypolimnion-specific 
mirusvirus highlights the potential roles of mirusviruses as com-
ponents of the deep-water specific microbiomes of freshwater 
ecosystems. 

Giant virus rhodopsins in a dark environment 
Our results suggest that GV rhodopsins might have light-
independent functions as we observed their broad distribution 
across various habitat preferences and taxonomic groups, 
including mirusviruses (Fig. S13). The viral type-1 rhodopsins 
of nucleocytoviruses [68–73] were previously thought to be 
involved in light absorption and sensing, in turn influencing 
the behaviors of photosynthetic hosts during infection. HeRs are 
actively expressed in marine mirusviruses, especially those of 
sunlit oceans [5]. Initial characterization of HeRs suggested light-
sensory activity [74]. However, a recent work has pointed to a 
different perspective on their roles as all HeRs in theionarchaeal 
(archaeal) genomes were identified in light-insufficient environ-
ments [75]. Our report of rhodopsin genes among hypolimnion-
specific GVs suggest previously under-investigated functions in 
dark habitats. 

Potential high dispersal rates of giant viruses 
We recovered three imiterviruses (Fig. S8) from Lake Biwa that 
were nearly identical (ANIs of 99.2%, 98.2%, and 98.2%) to those 
of Lake Lanier in North America [4], suggesting a recent dispersal 
event between two lakes ∼11 220 km apart. In terms of microbial 
dispersal, prokaryotes have been the foci of previous studies. 
However, a vigorous debate continues regarding whether these 
microbes are globally distributed at the species level [76–79]. 
Although GV dispersal has not been well-studied, a few long-
distance dispersal events across continents have been suggested 
[80]. Two mimiviruses with nearly identical genomes (ANI of 
∼99.9%) have been isolated in Japan [81] and  the UK [82]. Two mar-
seilleviruses sharing ∼98.5% of ANIs have been isolated in China 
(GenBank MG827395) and France [83]. Although these observa-
tions imply long-distance GV dispersal, a recent study revealed a 
high degree of endemism among lakes of the two poles and within 
each polar region [84]. Quantitative studies on the dispersal vs. 
local diversification rates of GVs will aid further understanding of 
the processes shaping the global biogeography of GVs. Deep lakes, 
given their high levels of physical isolation, would serve as useful 
models for such quantitative studies. 

Conclusion 
Using a combination of spatiotemporal sampling and long-read 
metagenomics, we revealed previously under-investigated diver-
sity of freshwater GVs, as evidenced by 285 new species and the 
discovery of viruses of the phylum Mirusviricota in a freshwater 
lake. We demonstrated the habitat preferences and community 
dynamics of GVs. Most nucleocytoviruses and mirusviruses could 
be clearly classified as being specific to either the epilimnion
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or hypolimnion. Epilimnion specialists tended to be transient, 
whereas hypolimnion specialists were typically more persistent. 
These distinctive dynamic patterns suggest that GVs employ 
diverse ecological strategies, and our work paves the way towards 
a better understanding of the roles played by GVs in microbial 
ecosystems. Specifically, the strong seasonality in the epilimnion 
suggests that GVs make significant contributions to the plankton 
community shift in the lake. Not only nucleocytoviruses but 
also mirusviruses are major players during the spring bloom. 
Conversely, persistent hypolimnion specialists that nonetheless 
exhibit active turnover suggest that GVs also play unique and 
important roles in the hypolimnion-specific microbial ecosystem. 
Furthermore, our observation of nearly identical GVs in lakes of 
different continents suggests a ubiquitous distribution of GVs at 
the species level, highlighting the role of dispersal in shaping the 
global distributions of GV communities. In light of this, we call for 
research on GV host interactions, diversity, and biogeography in 
freshwater lakes worldwide, providing key insights into the eco-
evolution of GVs in such unique ecosystems. 
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