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Smartphone usage during walking 
decreases the positive persistency 
in gait cycle variability
Shunpei Yano 1, Akihiro Nakamura 1, Yasuyuki Suzuki 1, Charles E. Smith 2 & 
Taishin Nomura 1,3*

Gait cycle variability during steady walking, described by the stride interval time series, has been 
used as a gait-stability-related measure. In particular, the positive persistency in the stride intervals 
with 1/f-like fluctuation and reduction of the persistency are the well-documented metrics that can 
characterize gait patterns of healthy young adults and elderly including patients with neurological 
diseases, respectively. Here, we examined effects of a dual task on gait cycle variability in healthy 
young adults, based on the mean and standard deviation statistics as well as the positive persistency 
of the stride intervals during steady walking on a treadmill. Specifically, three gait conditions were 
examined: control condition, non-cognitive task with holding a smartphone in front of the chest using 
their dominant hand and looking fixedly at a blank screen of the smartphone, and cognitive motor 
task with holding a smartphone as in the non-cognitive task and playing a puzzle game displayed on 
the smartphone by one-thumb operation. We showed that only the positive persistency, not the mean 
and standard deviation statistics, was affected by the cognitive and motor load of smartphone usage 
in the cognitive condition. More specifically, the positive persistency exhibited in the control and the 
non-cognitive conditions was significantly reduced in the cognitive condition. Our results suggest 
that the decrease in the positive persistency during the cognitive task, which might represent the 
deterioration of healthy gait pattern, is caused endogenously by the cognitive and motor load, not 
necessarily by the reduction of visual field as often hypothesized.

Falls are a public health issue in the aging and aged societies1,2. They could result in fatal and non-fatal injury 
and increase a risk of diminished quality of life after falls, particularly in older adults3. Moreover, falls of older 
adults impose a large economic burden in the U.S., which was about $50.0 billion as the annual medical cost 
attributable to fatal and nonfatal falls4, and probably also in other countries. Smartphone usage while walking, 
often referred to as the smartphone walking or the distracted walking, has become an extra dimension of a risk 
of falls for all generations, as smartphone ownership continues to climb5. Although smartphones made our lives 
dramatically convenient, it might also put us in danger. Kim et al. reported that people who are addicted to 
smartphones are more likely to have experienced falls compared with normal users6. Recent studies report that 
using a mobile phone to text while walking may compete with locomotor tasks, threat assessment and postural 
balance control mechanisms, which leads to an increased risk of accidental falls in young adults7–9. In this way, 
prevention of falls is a priority for our societies. Thus, development of measures that quantify gait stability for 
assessing a risk of falls is a pressing issue.

Gait cycle variability, i.e., fluctuation of the stride interval (stride time interval) from one stride to the next, 
is considered as one of the key indicators that contain crucial information about gait stability10,11. Older adults 
exhibit increased gait variability that is associated with fall history12, high-level gait disorders (HLGD)13 and 
neurodegenerative diseases14,15. However, very healthy older adults also exhibit increased gait variability16. Thus, it 
is difficult to quantify a risk of falls only by the magnitude (standard deviation or root mean square) of variability. 
Gait variability is not merely uncorrelated white noise but a time series with positive persistency with a 1/f-like 
power-law scaling, particularly in healthy young adults17,18. On the other hand, older adults exhibit less correlated, 
weaker positive persistency compared to young adults, which is associated with aging and neurodegenerative 
diseases14,17–19. In addition, HLGD patients with fall history exhibit less correlated variability than patients with 
no fall13 and the degree of reduction in the positive persistency is correlated with the severity of the disease20,21. 

OPEN

1Department of Mechanical Science and Bioengineering, Osaka University, Osaka 5608531, Japan. 2Department 
of Statistics, North Carolina State University, Raleigh, NC  27695‑8203, USA. 3Department of Informatics, Kyoto 
University, Kyoto 606‑8501, Japan. *email: taishin@i.kyoto-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-66727-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16410  | https://doi.org/10.1038/s41598-024-66727-1

www.nature.com/scientificreports/

Thus, the positive persistency can reflect the state of the neuromotor system as a nonlinear dynamical system, 
and it can be a biomarker to quantify the endogenous fall risk, gait stability and disease severity. However, we 
should note that the positive persistency in the stride intervals has been confirmed its predictive validity as a 
metric for gait stability merely in observational studies22.

Gait is not merely an automated motor activity that utilizes higher-level cognitive input23–25. A risk of falls 
increases among older adults with impaired cognitive function26 and patients with neurodegenerative diseases27,28, 
indicating cortical contributions to the control of upright posture29 and bipedal walking30, as revealed by activities 
and structure of the brain31. Moreover, older adults tend to encounter difficulties with performing a secondary 
cognitive task while walking, i.e., dual task walking32, which is often quantified by the magnitude of performance 
decline when conducting two tasks simultaneously32,33. In this way, difficulties in dual task walking in older 
adults can be characterized by larger performance declines, compared to young adults34. Declined performance 
in dual task walking have been related to increased fall risk35. Decline in performance and increase in fall risk 
might be caused when neural resources used for gait control become limited, i.e., when the neural resources are 
devoted to non-motor tasks31. The well-documented fact that dual tasks and attention demanding tasks during 
walking alter the gait variability, which indicates that the gait variability is one of the gait performances affected by 
higher-level cognitive functions in gait control. Previous studies using dual task walking suggested that cognitive 
load can affect gait performance even in healthy young adults36–39 as well as in older adults32,33,40–42. These studies 
investigated mean and magnitude of gait cycle variability, but there is little study that examined the effect of dual 
task on the positive persistency in the gait cycle variability. To be precise, there are several studies investigating 
the effect of cognitive load on the positive persistency in the gait variability43,44, but they have focused mainly on 
elderly people. That is, although it may seem that there are already many research reports examining the effect 
of dual task on the positive persistency in the gait cycle variability focused on healthy young adults, it is not the 
case. The current study aimed to provide firm evidence on this issue, using stride interval time series data with 
enough length for assessing the positive persistency, based on the scaling exponent of power-law distributed 
fluctuation, which can be achieved by the conventional detrended fluctuation analysis (DFA).

In the case of smartphone walking as one of the dual task walking paradigms, it is believed that the reduction 
of visual field and deterioration of awareness for surroundings lead to accidental falls45. In addition, it is expected 
that the cognitive load imposed by the smartphone usage could also lead to falls as described above. In this study, 
we investigated effects of smartphone usage while walking on the temporal dynamics of gait cycle variability, 
particularly on the positive persistency in the variability. Unlike previous studies that focused on the magnitude of 
gait variability36,37,39, this study focused on the temporal pattern of gait variability. In particular, we hypothesized 
that smartphone usage decreases the positive persistency in gait cycle variability. Specifically, we examined a 
possibility that it is the cognitive load by active use of a smartphone, but not just by the non-cognitive motor 
requirement to hold a smartphone in front of the body, that causes reduction of the visual field and deterioration 
of awareness for surroundings, decreases the positive persistency in gait cycle variability. Note that preliminary 
observations of this study have been reported elsewhere46. Based on the well-documented positive correlation 
between the decreased positive persistency and the fall risk in older adults and patients with neurodegenerative 
diseases, decrease in the positive persistency during smartphone walking would suggest that smartphone usage 
during walking decreases gait adaptability, and possibly increases a risk of falls.

Methods
Participants
Forty-four volunteers (22.6 ± 2.1 years, 39 males, 5 females) participated in this study. Participants signed an 
informed consent form approved by the ethical committee for human studies at Graduate School of Engineering 
Science, Osaka University. This study has been performed in accordance with the Declaration of Helsinki. All 
participants were free of disorders that impact gait.

Apparatus and environment
Participants walked on an indoor treadmill (Bertec, Ohio, US) while wearing a safety harness to reduce a risk of 
injury due to falls. A Bluetooth-compatible 3-dimentionl accelerometer (TSND151, ATR-Promotions Co., Ltd., 
Kyoto, Japan) was taped on the right calcaneus. Range for measuring acceleration was set to ± 8G (G = 9.81 m/
s2) and resolution was then 0.24 mG. The size of accelerometer is 40 mm × 50 mm × 14 mm and it weights 27 g. 
Raw acceleration data were recorded at 1000 Hz during walking.

Procedure
The experiment consisted of three gait conditions: control, non-cognitive and cognitive conditions. The self-
selected preferred walking speed was used commonly across all three conditions for each participant. To this 
end, participants went through a preliminary run, going through each of three gait conditions for 1–2 min prior 
to the experiment, and decided on the preferred walking speed by which they could walk most comfortably. 
Because of the way of selecting walking speed, the walking speed adopted for three conditions tended to be 
too low for the healthy young individuals for the control condition. During the control condition, participants 
were instructed to walk steadily facing straight ahead. In the non-cognitive task condition, participants walked 
while holding a smartphone in front of their chest using their dominant hand and looking fixedly at a blank 
screen of the smartphone. This condition was set for the purpose of discriminating the effect of the non-
cognitive motor requirement to hold the smartphone together with a reduction of the visual field from the 
effect of a cognitive load that was superposed on this condition. In the cognitive task condition, participants 
walked while holding a smartphone as in the non-cognitive task and playing a puzzle game 2048 (Solebon 
LLC) displayed on the smartphone by one-thumb operation. In each condition, participants walked for 30 min, 
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with 20 min non-walking breaks between conditions. See Fig. 1A that illustrates the experimental procedure, 
including a human subject performing the cognitive task on the treadmill. The first 12 participants walked in the 
sequential order of control, non-cognitive task, and cognitive task conditions. This was because we expected that 
walking steadily on the treadmill for 30 min with the non-cognitive and cognitive tasks might not be easy, and 
performing easier tasks first and then performing the most difficult cognitive task at the end after adapting the 
non-cognitive task would be helpful for performing three tasks safely. However, we found that this was not the 
case, and participants could perform the cognitive task with no difficulty nor danger from the beginning. Thus, 
we instructed the next 12 participants to perform the tasks in the reverse order, namely in the order of cognitive 
task, non-cognitive task and control conditions to keep balance for the conditions. Then, the sequential order of 
conditions for the remaining 20 participants were allocated pseudo randomly. Specifically, each of the following 
sequential orders, control-cognitive-noncognitive, cognitive-control-noncognitive, noncognitive-cognitive-
control, and noncognitive-control-cognitive, was used randomly with equal probability. Namely, 5 out of the 
20 participants performed trials with 3 conditions using the one of those 4 sequential orders. Note that no 
instruction for prioritization of one of the tasks (walking vs other tasks) was given in non-cognitive and cognitive 
task conditions. In order to overcome the problematic issue caused by the substandard experimental design 
for the sequential order, we examined possible effects of the sequential orders statistically in the data analysis.

Cognitive task
In the cognitive task condition, participants played the puzzle game 2048 as a cognitive task. 2048 is a game 
played on a gray 4-by-4 square grid with tiles numbered with powers of 2. Every turn, a player moves tiles up, 
down, left or right direction by swiping a screen of the smartphone. Tiles slide as far as possible in the chosen 
direction until they are stopped by either another tile or the edge of the grid. If tiles with an identical number 
collide, they will merge into a single tile numbered with their sum. Then, a tile of value 2 or 4 appears randomly 
at a vacant grid. The primary goal of the game is to create a tile that is numbered with the value 2048. The game 
ends when there are no vacant grids and no adjacent tiles with identical numbers. Players need to swipe the 
screen of the smartphone with their finger for moving tiles. In this study, participants were instructed to perform 
it by one-thumb operation. Therefore, this cognitive task is also an attention-demanding “motor” task. In this 
way, participants were instructed to play the game and walk simultaneously and to restart the game when the 
game ends during the measurement.

Data analysis
Acceleration data were processed using MATLAB (Mathworks, Natick, MA). Statistical analyses were performed 
in R (The R Project for Statistical Computing).

Figure 1.   Acquiring stride intervals (SIs) from acceleration data. (A) Experimental procedure, including a 
human subject performing the cognitive task. (B) Example of accelerometer data in the direction of heel to toe 
for about 4 s. The heel to toe direction in the local coordinate of accelerometer is shown as upward direction in 
this graph. The green line and red circles are the acceleration threshold and the identified heel-strike timings, 
respectively. Heel-strike timings were defined as the data points which crossed the acceleration threshold value 
in the upward direction. The stride intervals (SIs), corresponding to the time between any two adjacent heel-
strike timings, were computed to obtain SI time series. (C) Example of SI time series data for 500 strides during 
control task.
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Extraction of stride intervals
We analyzed data of the acceleration in the direction of heel to toe in the local coordinate of the accelerometer. 
In order to minimize any start-up and end-up transient effects, we removed the first and last 30 s data from each 
time series data. The measured acceleration data were filtered with a 4th order low-pass Butterworth filter with a 
cut off frequency of 50 Hz. Figure 1B shows such a low-pass filtered acceleration time series. Positive and negative 
acceleration peaks, which correspond to the directions of toe to heel and heel to toe respectively, were observed 
before and after the heel strike timing. Therefore, we identified a data point that crossed an acceleration threshold 
value between two adjacent acceleration peaks as the heel-strike timing. The acceleration threshold values were 
determined visually for each acceleration time series. Time intervals between two successive identified heel-strike 
timings were calculated to obtain the stride interval (SI) time series. Figure 1C exemplifies such a SI time series.

Stride interval correlations
To determine the degree of positive persistency in the SI time series, we applied a detrended fluctuation analysis 
(DFA) to each time series dataset. DFA is a modified random-walk analysis that utilizes the fact that a time series 
with long-range correlation become self-similar process by simple integration25,47. DFA has two advantages: it 
reduces noise effects and is insensitive to non-stationarities because the DFA process removes local trends25. 
To this end, we integrated a SI time series x(k) with k being the stride number, k = 1, · · · ,N  , where N  is the 
total number of strides. Then, the integrated time series was separated into windows of length n , and then we 
computed a local trend function yn,i(k)  in the i-th window to obtain yn(k) that connects sequentially the ordered 
local trend functions yn,i(k) across all windows ( i = 1, · · · ,N/n ). The average of the root mean square of y(k) 
about local trend yn(k) was computed as

for a variety of window sizes n . The function F(n) represents a relationship between the average fluctuation F(n) 
as a function of window size n . Typically, F(n) will increase with n. The fluctuations can be characterized by the 
scaling exponent α , which is determined by the slope of the linear relationship between logF(n) and logn . For the 
original process x(k) in which the value at one time step has no correlation with any previous values, i.e., white 
noise, the integrated process is a classical Brownian motion, for which α = 0.5. In the case of α > 0.5, the process 
has a positive persistency, and if the relation between logF(n) and logn is truly linear, the process is said to be 
long-range correlated. In this study, we used a 2nd order polynomial fit (in the least squares sense) to evaluate 
the local trends and F(n) for the window sizes spanning 6–500 cycles. The scaling exponent was computed by a 
linear regression line evaluated for the scaling regions spanning 30–200 cycles.

Statistical tests
A multivariate repeated measures analysis with one within-subject factor (conditions) and one between-subject 
factor (orders) was conducted to evaluate the effects of the two factors and their interaction on our three 
dependent variables, mean of the SI referred to as mean SI, standard deviation of the SI referred to as SD of SI, 
scaling exponent α of the SI, using a tool developed recently41. Upon finding significant multivariate effects, 
one-way repeated measures ANOVAs were conducted for each dependent variable to identify which specific 
variables contributed to these effects. For significant ANOVA results, post-hoc pairwise comparisons using 
Bonferroni corrected paired t-tests were performed. A p value less than 0.05 was considered to be statistically 
significant in these tests.

Results
The selected preferred walking speeds were between 0.8 and 1.2 m/s. One participant was derailed from the 
treadmill-belt shortly after the trial began in the cognitive task. However, because the participant could restart 
walking soon, we used data after the restart for the analysis. Figure 2A exemplifies the stride interval time series 
during each of the three conditions for a representative participant. While there were no markedly differences 
in the waveforms, it seems that the SI variability during the cognitive task might include less slow oscillatory 
components compared to the other two conditions (Fig. 2A). Indeed, the plots for DFA for this participant 
exhibited a shallower slope for the cognitive task, compared to the slopes that were close to unity for the other 
conditions (Fig. 2B). The observations shown in Fig. 2 were commonly shared by the other participants.

The multivariate method, two-way repeated measures MANOVA showed significant multivariate effects for 
the variable (conditions) with levels of control, non-cognitive, and cognitive (modified ANOVA-type statistic, 
MATS = 7.958, p = 0.016), indicating substantial overall impacts of these conditions on the dependent variables: 
mean SI, standard deviation (SD) of SI and scaling exponent α. Our findings indicate that the variable (orders) 
denoting the order of conditions had a minimal impact on the outcomes. Notably, the test statistics related to the 
order effects (MATS = 49.347, p = 0.376) and also the interaction between the variable conditions and variable 
orders (MATS = 13.999, p = 0.429) were not significant, suggesting that the sequence in which conditions were 
experienced by participants did not meaningfully alter their responses across the measured variables. Note that 
MATS denotes modified ANOVA Type Statistic48. The dependent variables, mean SI and SD of SI, were the only 
ones found to be significantly correlated (r = 0.36, p < 0.001).

Subsequent one-way repeated measures ANOVAs for each dependent variable revealed significant effects 
of the conditions variable. Specifically, for the scaling exponent α, there were significant differences observed 
across the control, non-cognitive, and cognitive conditions (F(2) = 9.704, p = 0.0002) as summarized in Table 1 
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and Fig. 3. As a result of the one-way repeated measures ANOVA, the main effect of the conditions variable was 
not significant for the response variable of mean SI (F(2) = 2.071, p = 0.132) and for the response variable of SD 
of SI (F(2) = 0.176, p = 0.839) as shown in Fig. 3A,B. Bonferroni corrected paired t-tests indicated significant 
differences between control and cognitive conditions (t(43) = 3.89, p < 0.001), and non-cognitive and cognitive 
(t(43) = 2.66, p < 0.005) for the scaling exponent α as shown in Fig. 3C. No significant differences were found 
between control and non-cognitive conditions (t(43) = 2.01, p = 0.153).

Discussion
We examined the effects of a dual task on gait cycle variability that was characterized by the mean SI and SD of 
SI statistics as well as the positive persistency (scaling exponent α) of the stride interval (SI) time series during 
walking on a treadmill. Specifically, three gait conditions were examined: control condition, non-cognitive task 

Figure 2.   Examples of stride interval time series (A) and DFA plots (B) for a representative participant during 
each of three walking conditions. Solid lines in (B) represent the linear regression line for the plots of  logF(n) 
vs logn for the scaling region. DFA shows that the stride interval fluctuations F(n) increase with the shallower 
slope with time scale n increases in the cognitive task condition, compared to the other conditions. For this 
participant, the scaling exponent α was 0.72 for the cognitive task, whereas it was 0.94 for the non-cognitive task 
and 1.11 for the control.

Table 1.   One-way repeated measures ANOVAs outcomes.

Variables df F p-value

Mean SI 2 2.071 0.132

Standard deviation of SI 2 0.176 0.839

Scaling exponent α 2 9.704 0.0002

Figure 3.   Box plots for the mean (A), the standard deviation (B) and the scaling exponent α of DFA (C) of 
stride intervals for each condition. One-way repeated measures ANOVAs for each dependent variable revealed 
significant effects of the conditions variable. Asterisks indicate statistically significant differences between 
conditions (*p ≤ 0.05 , ** p ≤ 0.01 ). See text for further details.
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with holding a smartphone in front of the chest using their dominant hand and looking fixedly at a blank screen 
of the smartphone, and cognitive task with holding a smartphone as in the non-cognitive task and playing a 
puzzle game 2048 displayed on the smartphone by one-thumb operation. We showed that only the positive 
persistency quantified by the DFA scaling exponent α, but not the mean SI and SD of SI statistics, was affected 
by the cognitive and motor load of smartphone usage (Fig. 3, Table 1). More specifically, the positive persistency 
exhibited in the control and the non-cognitive conditions was significantly reduced in the cognitive condition. 
Some healthy participants in our study (seven out of 44) exhibited the scaling exponent slightly greater than 1.0. 
The most probable cause of the large exponent might be associated with the range (interval) used for the linear 
regression in DFA, where we used 30–200 cycles in this study. A use of larger upper cycle number for the DFA 
regression should result in a smaller exponent, since the positive persistency should be lost for any bounded 
process for a certain large time scale.

In this study, the mean SI and the SD of SI of the SI time series were not affected neither by the reduction of 
visual field nor by the cognitive load (Fig. 3A,B and Table 1). Our results are consistent with previous studies 
showing that healthy young adults exhibited no significant difference in the SD of SI by cognitive load30,49. On 
the other hand, other studies reported an increase in the SI during walking with a cognitive task38. Based on the 
assumption that attentional resources are limited50, changes in gait caused by dual tasks occur when cognitive 
resources necessary to perform two tasks simultaneously exceed a total capacity51,52. Beurskens et al. suggested 
that easy cognitive tasks, such that cognitive resource needed to perform the two tasks does not exceed total 
capacity, do not cause change in gait performance34. Playing 2048 used in the study might not be challenging 
enough to reach such a central capacity limit, because this task requires players only to swipe a screen and move 
a tile in horizontal and vertical directions. Therefore, our results might not contradict the previous studies that 
report the cognitive-load-induced increase in the SD of SI.

Playing 2048 is also an attention demanding motor task. Several studies reported that the SI were not affected 
by the motor task such as pressing electric buttons as many times as possible53 and transferring coins from the 
pocket attached on the right or left side of the hip to the pocket on the opposite side54. On the other hand, some 
studies reported effects of a motor task on the mean SI while walking with buttoning up four shirt buttons 
with a preferred hand55. As mentioned above for the cognitive load with and without significant effects, it was 
shown that the reduction of the SD of SI was correlated with better scores of a “catch game”, which is a attention 
demanding motor task, but the correlation did not exist for finger tapping, which is not a attention demanding 
motor task56. In this regard, playing 2048 might be a relatively simple and less attention-demanding motor task, 
because it needs only to swipe a screen of the smartphone and participants do not need to consider where to 
tap and how to control distance and direction of the swipe, leading to the absence of the changes in the mean SI 
and SD of SI statistics in our study.

The temporal structure of SI variability characterized by the scaling exponent α was affected by the usage of 
a smartphone in the cognitive task, but not by the reduction of visual field in the non-cognitive task. There were 
several studies that examined the effect of dual-tasking on temporal and spatial structure of gait variability57. 
Some studies reported that no significant difference was induced by a dual tasking in both the mean SI and 
SD of SI statistics as well as the scaling exponent α during walking50. Other studies reported that healthy and 
cognitively impaired older adults exhibited increased SD of SI by dual tasking of letter fluency task, where only 
healthy adults showed a reduction of the scaling exponent α43. It is interesting that the cognitive and attention-
demanding motor task in this study affected the scaling exponent α, but not the mean SI and SD of SI statistics. 
As discussed above, the cognitive and motor load might not be challenging enough to affect the mean SI and 
SD of SI statistics, and compared to the mean SI and SD of SI, our results suggest that the positive persistency 
characterized by the scaling exponent α is a more sensitive biomarker to quantify available central capacity.

Falls during walking caused by usages of a smartphone are a healthcare issue9. However, possible causes of 
such falls have yet to be understood well. Our results suggest that the gait instability during the cognitive task was 
induced endogenously by the cognitive and motor load, not necessarily exogenously by the reduction of visual 
field as often hypothesized. A number of previous studies show that the positive persistency in the SI variability 
is correlated with endogenous fall history14 and the severities of neurological disease21, suggesting that it can be 
a biomarker to quantify the fall risk and gait stability15,24. Indeed, a previous study showed a correlation between 
the reduction of local dynamic stability, which was evaluated by Lyapunov exponent, and the reduction of the 
scaling exponent α58,59. Therefore, the positive persistency characterized by the scaling exponent α could be a 
good index that reflects endogenous gait stability/instability and a risk of falls. Because exogenous factors, such 
as stepped surface and surrounding pedestrians, could cause a fall easily, increase in the fall incident during 
walking with usages of a smartphone9 might be due to both endogenous and exogenous factors. However, note 
that the mechanisms of how the positive persistency is generated through a control process for stabilizing gait 
has yet to be clarified60–62, and thus also mechanisms of how the positive persistency is declined that lead to an 
increase in a risk of falls has not yet been established61.

This study has several limitations. The first limitation is about the experimental setup. That is, a thorough 
depiction of the secondary task outcomes was essential. The cognitive task performance and/or hand movement 
alongside gait should have been monitored to accurately assess dual-task performance. Because of the lack of the 
monitoring, quantitative characterization of the dual-task performance in this study created ambiguity. That is, 
the motor task in the non-cognitive task and that in the cognitive task may not be equivalent. Moreover, scores 
of the smartphone game, which were difficult to be recorded for repeated trials during every gait task, might have 
affected the level of cognitive task. The second limitation is a generalization of the current study to the real-world 
problem of smartphone walking. To keep walking on the treadmill, participants were imposed to walk at the 
constant speed whereas they keep and/or change gait speed actively during walking in the natural environment. 
Additionally, although we set a comfortable belt speed for each participant for all walking conditions, participants 
could walk at different speeds in a walking condition dependent manner in the real-world situation. Moreover, 
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kinetics63 and kinematics64 of treadmill walking are slightly different from over-ground walking. Therefore, 
experiments on ground with more natural environment may lead to different outcomes.

Another limitation is a possible derailment from the treadmill. In this study, one participant derailed from the 
treadmill in the lateral direction during the cognitive task. Although the belt of the treadmill is sufficiently wide 
for performing steady gait, it might not be wide enough for smartphone walking for some people. The narrow 
path width seems to be a cause of relatively large variability of stride width detected by naked-eye observations. 
This could be another cause for the exponent α greater than unity for some cases in this study. Thus, examination 
of fluctuation in the heel strike positions would be an interesting future issue.

Further studies are still needed to understand mechanisms of how the positive persistency in health 
is generated and how it is reduced by diseases as well as by cognitive load. Measuring and accessing 
electroencephalogram-based brain activity during dual-tasking is one of the possible approaches for obtaining 
better understanding25. Moreover, several modeling studies have suggested that neural mechanisms of phase 
resetting control that modulate gait cycle play a key role for the emergence of the positive persistency61,62. Thus, 
examining a correlation between the phase resetting capability and the positive persistency is also an important 
issue to be addressed in the future study.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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