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A B S T R A C T

Polymer crystallization has been treated as the formation mechanism of lamellae based on secondary
nucleation. This treatment has well explained many experimental results especially at a low supercooling. On
the other hand, it is also known that some experimental results cannot be fully explained by this model when
the degree of supercooling is large. This Feature Article reviews our recent studies on polymer crystallization
at a high supercooling. We have revealed the evidence of the crystallization process through the mesophase
at a higher supercooling. In addition, we have found the crystallization process with the nodular aggregation
near the glass transition temperature. These processes are of great interest for the understanding of polymer
crystallization.
1. Introduction

Most of polymers proceed crystallization by quenching from the
melt or by heating up from the glass. A typical crystalline morphology
for polymers is a thin crystalline plate, so-called lamellae, in the order
of nanometer [1,2]. The stacked lamellae constitute a spherulite in
the order of micrometer. Some crystalline polymers exhibit globular
crystallites, so-called nodules, by deep quenching [3–15]. Other char-
acteristic crystal morphologies include shish-kebab structure formed by
shear-induced crystallization [16–20]. The formation mechanisms of
these polymer crystalline structures have been investigated for the long
time for academic interests but also for industrial applications.

In order to understand the crystallization mechanism of polymers,
it is necessary to understand the formation mechanism of the lamellae.
The traditional model currently widely used in polymer crystallization
has been proposed by Lauritzen and Hoffman as the secondary nucle-
ation and growth process [2,21]. According to the model, the polymer
chains (stem), which extend to the thickness of the crystalline lamella,
are aligned with the growth surface of the lamella. The Lauritzen–
Hoffman’s (LH) model has explained many experimental results well
when the degree of supercooling is small. On the other hand, it is also
known that some experimental results cannot be fully explained by this
model when the degree of supercooling is large [15,22–45].

For some polymers crystallized at moderate supercooling, the ex-
istence of a crystallization mechanism through a metastable phase
has been clarified from the results of the temperature dependences
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of crystalline lamellar thickness and growth rate [35,41–47]. This
crystallization mechanism is an example of the Ostwald step rule, in
which a phase passes through a thermodynamically metastable phase
and then transforms to a stable phase.

Recently, it has been found that density fluctuations in several hun-
dred nanometers occur in some polymeric materials during the early
stage of crystallization near the glass transition temperature, which is
a high supercooling [39,48–51]. We have revealed that the fluctuations
come from the aggregation of the nodular crystallites [48–50]. These
interesting experimental results suggest that polymer crystallization
at a large degree of supercooling is not a simple first-order phase
transition from a supercooled liquid. In this Feature Article, we in-
troduce recent studies on polymer crystallization at middle and high
supercooling, that involves the formation of nodular aggregates.

2. Theoretical treatment

In this section, we describe two theories used in the Feature Article,
the scattering theory for a hierarchical structure [48], and the theory
of the nucleation and the growth transition mechanism proposed by
Kolmogorov [52], Johnson, Mehl [53] and Avrami [54–56] (KJMA
theory).

2.1. SAXS for hierarchical structure

We consider a situation where the entire sample with volume 𝑉 is
filled with 𝑁 small crystalline globules, called crystalline nodules. The
vailable online 7 May 2024
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Fig. 1. Illustrations for the density distribution functions of (a) the nodule covering
the entire sample, (b) the nodular aggregation region, and (c) the aggregated nodules.
Each volume fraction is depicted at the bottom right.

position of the 𝑖th nodule is expressed as 𝒓𝑖+𝑹𝑖, where 𝒓𝑖 is the center of
mass for the i-th nodule, and 𝑹𝒊 is the position from the center of mass
or the i-th nodule. Assuming all the nodules have the same shape, we
efine the density distribution function for the nodular shape as 𝜌p(𝑹𝒊),
hich indicates 1 inside the 𝑖th nodule and 0 outside that.

The density distribution function of the nodules covering the entire
ample, 𝜌n(𝒓), can be given by [48]

n(𝒓) = 𝜌a + (𝛥𝜌ac)𝜌s(𝒓) ∗ 𝜌p(𝒓) (1)

here ∗ indicates convolution, 𝜌𝑎 and 𝜌𝑐 indicate the densities of the
morphous and crystal, respectively, 𝛥𝜌𝑎𝑐 = 𝜌𝑐−𝜌𝑎, 𝜌s(𝒓) =

∑𝑁
𝑖 𝛿(𝒓−𝒓𝒊),

and 𝛿(𝑥) is delta function. The volume fraction of the packed nodules
n the sample is represented by 𝜓 = 𝑁𝑣∕𝑉 where 𝑣 is the volume of

each nodule. The illustration of 𝜌n(𝒓) is shown in Fig. 1a.
Next, in order to describe the nodular aggregation, we introduce

the distribution function of the region of the aggregated nodules, 𝜂(𝒓),
which indicates 1 inside the region and 0 outside that (Fig. 1b). Thus,
the position of the nodules in the aggregation regions during the crys-
tallization is given by 𝜂(𝒓)𝜌s(𝒓). The volume fraction of the aggregation
regions is represented by 𝜒 . The total distribution function 𝜌tot (𝒓) can
be described as [48]

𝜌tot (𝒓) = 𝜌a + (𝛥𝜌ac){𝜂(𝒓)𝜌s(𝒓)} ∗ 𝜌p(𝒓). (2)

The volume fraction of the nodules in the system corresponds to the
crystallinity 𝜙c = 𝜒𝜓 . The illustration of 𝜌tot (𝒓) is shown in Fig. 1c.

The one-dimensional scattering intensity in the isotropic system,
𝐼total(𝑞), can be given by 𝐼total(𝑞) = (1∕𝑉 )⟨∫ 𝜌tot (𝒓′)𝜌tot (𝒓+𝒓′)e−i𝒒⋅𝒓𝑑𝒓′𝑑𝒓⟩,
where the operator ⟨⟩ denotes the ensemble and orientational aver-
ages [48]:

𝐼total(𝑞) = (𝛥𝜌ac)2
{

𝜒(1 − 𝜒)𝜓2𝑆𝜂(𝑞)

+ 𝑣𝜓(1 − 𝜓)𝜒2𝑆n(𝑞)

+ 𝑣 𝜒(1 − 𝜒)𝜓(1 − 𝜓)𝑆𝜂(𝑞) ∗ 𝑆n(𝑞)
}

|𝛷(𝑞)|2,
(3)
2

(2𝜋)3
here 𝑆𝜂(𝑞), 𝑆n(𝑞) and 𝑣|𝛷(𝑞)|2 are the ensemble- and orientational-
veraged Fourier transforms of normalized correlation functions of the
istribution functions for 𝜂(𝒓), 𝜌s(𝒓) and 𝜌p(𝒓), respectively.

Assuming the size of the aggregation region is sufficiently larger
han the nodular size, 𝑆𝜂(𝑞) can be regarded as the delta function,
2𝜋)3𝛿(𝑞), for 𝑆n(𝑞), and |𝛷(𝑞)|2 can be regarded as unity for 𝑆𝜂(𝑞). Thus
q. (3) can be rewritten as [48]

total(𝑞) = (𝛥𝜌𝑎𝑐 )2
{

𝜒(1 − 𝜒)𝜓2𝑆𝜂(𝑞)

+ 𝜒𝜓(1 − 𝜓)𝑆n(𝑞)𝑣|𝛷(𝑞)|
2 } .

(4)

he term, (1−𝜓)𝑆n, in Eq. (4) is generally expressed as the interparticle
nterference term,  (𝑞).

The first and second terms in r.h.s. in Eq. (4) indicate the inten-
ities for the nodular aggregates, 𝐼aggregate(𝑞), and the nodules in the

aggregates, 𝐼nodules(𝑞), respectively. When invariant 𝑄 is defined by
𝑄 = ∫ ∞

0 𝑞2𝐼(𝑞)𝑑𝑞, the invariants for 𝐼total(𝑞), 𝐼aggregate(𝑞), and 𝐼nodule(𝑞)
for Eq. (4) are respectively given by [48]

𝑄total = 2𝜋2(𝛥𝜌𝑎𝑐 )2𝜙𝑐 (1 − 𝜙𝑐 ) (5)

𝑄aggregate = 2𝜋2(𝛥𝜌𝑎𝑐 )2𝜒(1 − 𝜒)𝜓2 (6)

𝑄nodule = 2𝜋2(𝛥𝜌𝑎𝑐 )2𝜒𝜓(1 − 𝜓). (7)

These equations satisfy 𝑄total = 𝑄aggregate +𝑄nodule.

2.2. KJMA theory

In this section, we describe the Kolmogorov–Johnson–Mehl–Avrami
(KJMA) theory [52–56], which describes the nucleation and growth
transition mechanism from a metastable phase to a stable phase in a
non-conservative system. The KJMA theory predicts the growth kinetics
of the stable phase given by

𝑋(𝑡) = 1 − exp(−𝐾𝑡𝑛𝑎 ) (8)

where 𝑋(𝑡) is the volume fraction of the stable domains, 𝐾 is a constant,
and 𝑛𝑎 is an Avrami exponent. The KJMA theory is actually widely used
in the analysis of polymer crystallization. In the following, we derive
the equal-time 𝑛-body correlation function, 𝐶𝑛(𝐱1, 𝑡, 𝐱2, 𝑡,… , 𝐱𝑛, 𝑡), for
the metastable region outside of the stable domains formed by the
𝑑-dimensional homogeneous nucleation and growth (HNG) kinetics
and inhomogeneous one (IHNG) referring to the Sekimoto’s theoretical
manner [50,57]. Moreover, we derive time-dependent volume fraction,
𝑋(𝑡), and the time-dependent structure factor, 𝑆(𝑞), for the stable
domains formed by each kinetics.

2.2.1. Homogeneous nucleation and growth process
We describe the equal-time correlation function,

𝐶H
𝑛 (𝐱1, 𝑡, 𝐱2, 𝑡,… , 𝐱𝑛, 𝑡), for the situation where the stable domain forms

by the HNG kinetics with a nucleation frequency 𝐼n and an isotropic
velocity 𝑣 (Fig. 2a), referring to the Sekimoto’s theoretical manner [57].

For 𝑛 = 1, 𝐶H
1 (𝐱, 𝑡) is represented as

𝐶H
1 (𝐱, 𝑡) = exp(−𝜇H𝑑 𝐼n𝑣

𝑑 𝑡𝑑+1), (9)

where 𝜇H𝑑=1 = 1 and 𝜇H𝑑=2 = 𝜇H𝑑=3 = 𝜋∕3.
For 𝑛 = 2, 𝐶H

2 (𝐱, 𝑡, 𝐱 + 𝐫, 𝑡) is represented as

𝐶H
2 (𝐱, 𝑡, 𝐱 + 𝐫, 𝑡) = [𝐶H

1 (𝐱, 𝑡)]
2 exp

(

𝐼n𝑣
𝑑 𝑡𝑑+1𝛹H

𝑑

(

|𝐫|
2𝑣𝑡

))

, (10)

here 𝛹H
𝑑 (𝑦) = 0 for 𝑦 ≥ 1 and for 𝑦 < 1

H
𝑑=1(𝑦) = (1 − 𝑦) (11)

H
𝑑=2(𝑦) =

2
3

(

arccos 𝑦 − 2𝑦
√

1 − 𝑦2 + 𝑦2 ln

√

1 − 𝑦2

𝑦

)

(12)

𝛹H (𝑦) = 𝜋 (1 − 𝑦)3(1 + 𝑦). (13)
𝑑=3 3
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Fig. 2. Illustrations of growth processes of (a) homogeneous nucleation and
rowth (HNG), (b) inhomogeneous nucleation and growth (IHNG), and (c)
nhomogeneous–homogeneous nucleation and growth (IH-HNG).

.2.2. Inhomogeneous nucleation and growth process
It is considered the equal-time correlation function, 𝐶 IH

𝑛
𝐱1, 𝑡, 𝐱2, 𝑡,… , 𝐱𝑛, 𝑡), for the metastable region outside of the stable
omains formed by IHNG kinetics with nucleation number density 𝐽n
nd 𝑣 (Fig. 2b) [50].

For 𝑛 = 1,
IH
1 (𝐱, 𝑡) = exp(−𝜇IH𝑑 𝐽n𝑣

𝑑 𝑡𝑑+1) (14)

here 𝜇IH𝑑=1 = 2, 𝜇IH𝑑=2 = 𝜋, and 𝜇IH𝑑=3 = 4𝜋∕3.
For 𝑛 = 2,

IH
2 (𝐱, 𝑡, 𝐱 + 𝐫, 𝑡) = [𝐶 IH

1 (𝐱, 𝑡)]2 exp
(

𝐽n𝑣
𝑑 𝑡𝑑𝛹 IH

𝑑

(

|𝐫|
2𝑣𝑡

))

(15)

where 𝛹 IH
𝑑 (𝑦) = 0 for 𝑦 ≥ 1 and for 𝑦 < 1

𝛹 IH
𝑑=1(𝑦) = 2(1 − 𝑦) (16)

𝛹 IH
𝑑=2(𝑦) = 2

(

arcsin
√

1 − 𝑦2 − 𝑦2
√

1 − 𝑦2
)

(17)

IH
𝑑=3(𝑦) =

4𝜋
3
(1 − 𝑦)2

(

1 +
𝑦
2

)

. (18)

.2.3. Inhomogeneous–homogeneous nucleation and growth process
Here we consider kinetics of a situation in which the preformed

omains with radius 𝛬 growth by IHNG kinetics, and the new domains
row from the rest metastable region in the by HNG kinetics [50]. Here
e call the process as the inhomogeneous–homogeneous nucleation
nd growth process (IH-HNG) shown in Fig. 2c. This situation is not
pecial and can occur during the crystallization process in the presence
f the crystal nuclei formed by cooling or of the nucleating agents.

The fictive time 𝑡f is defined as 𝑡f = 𝛬∕𝑣. The equal-time correlation
unction, 𝐶 IH−H

𝑛 (𝐱, 𝑡), for the situation is given by [50]

IH−H
1 (𝐱, 𝑡) = 𝐶H

1 (𝐱, 𝑡)𝐶
IH
1 (𝐱, 𝑡′) (19)

nd
IH−H
2 (𝐱, 𝑡, 𝐱 + 𝐫, 𝑡) = 𝐶H

2 (𝐱, 𝑡, 𝐱 + 𝐫, 𝑡)𝐶 IH
2 (𝐱, 𝑡′, 𝐱 + 𝐫, 𝑡′) (20)

where 𝑡′ = 𝑡 + 𝑡f .

2.2.4. Volume fraction and scattering function for stable domains
The time-dependent volume fraction for the stable domain formed

by the HNG, IHNG or IH-HNG kinetics is given by [50,57]

𝑋(𝑡) = 1 − 𝐶𝑘1 (𝐱, 𝑡). (𝑘 = H, IH, IH-H) (21)

The derived equation is same as Eq. (8).
The scattering function for the metastable region, 𝑆𝑘meta(𝐪, 𝑡), in the

HNG system can be given by [57]

𝑆𝑘 (𝐪, 𝑡) = 𝑑𝐫e𝑖𝐪⋅𝐫𝐶𝑘(𝐱, 𝑡, 𝐱 + 𝐫, 𝑡) (22)
3

meta ∫ 2
= (2𝜋)𝑑 [𝐶𝑘1 (𝐱, 𝑡)]
2𝛿(𝐪) + 𝑆̃𝑘(𝐪, 𝑡) (23)

where

𝑆̃𝑘(𝐪, 𝑡) = ∫ 𝑑𝐫e𝑖𝐪⋅𝐫{𝐶𝑘2 (𝐱, 𝑡, 𝐱 + 𝐫, 𝑡) − [𝐶𝑘1 (𝐱, 𝑡)]
2}. (24)

Considering the Babinet’s principle, the structure factor for stable do-
mains, 𝑆𝑘(𝐪, 𝑡), can be given by

𝑆𝑘(𝐪, 𝑡) = (2𝜋)𝑑 [1 − 𝐶𝑘1 (𝐱, 𝑡)]
2𝛿(𝐪) + 𝑆̃𝑘(𝐪, 𝑡). (25)

For example, isotropic 𝑆𝑘(𝐪, 𝑡) for the three dimensional HNG sys-
tem, 𝑆H

𝑑=3(𝑞, 𝑡), can be written as [49]

𝑆H
𝑑=3(𝑞, 𝑡) = (2𝜋)3

[

𝑋H
𝑑=3(𝑡)

]2 𝛿(𝑞) + 𝑆̃H
𝑑=3(𝑞, 𝑡), (26)

here
H
𝑑=3(𝑡) = 1 − exp

(

−𝜋
3
𝐼n𝑣

3𝑡4
)

(27)

nd

̃H
𝑑=3(𝑞, 𝑡) = 4𝜋 exp(−2𝜋

3
𝐼n𝑣

3𝑡4)(2𝑣𝑡)3

×∫

1

0
𝑑𝑦𝑦2

sin(2𝑣𝑡𝑦𝑞)
2𝑣𝑡𝑦𝑞

{exp[𝐼n𝑣3𝑡4𝛹H
3 (𝑦)] − 1}. (28)

In addition, 𝑆𝑘(𝐪, 𝑡) for the three-dimensional IH-HNG system,
𝑆IH−H
𝑑=3 (𝑞, 𝑡), can be also written as [50]

IH−H
𝑑=3 (𝑞, 𝑡) = (2𝜋)3

[

𝑋IH−H
𝑑=3 (𝑡)

]2 𝛿(𝑞) + 𝑆̃IH−H
𝑑=3 (𝑞, 𝑡), (29)

here
IH−H
𝑑=3 (𝑡) = 1 − exp

(

−𝜋
3
𝐼n𝑣

3𝑡4 − 4𝜋
3
𝐽n𝑣

3𝑡′3
)

(30)

and

𝑆̃IH−H
𝑑=3 (𝑞, 𝑡) =

𝜋
[

1 −𝑋IH−H
𝑑=3 (𝑡)

]2 (2𝑣𝑡)3
[

∫

1

0
𝑑𝑦𝑦2

sin(2𝑣𝑡𝑦𝑞)
2𝑣𝑡𝑦𝑞

×
{

exp
[

𝐼n𝑣
3𝑡4𝛹H

3 (𝑦) + 𝐽n𝑣
3𝑡′3𝛹 IH

3 ( 𝑡
𝑡′
𝑦)
]

− 1
}

(31)

+∫

𝑡′∕𝑡

1
𝑑𝑦𝑦2

sin(2𝑣𝑡𝑦𝑞)
2𝑣𝑡𝑦𝑞

{exp[𝐽n𝑣3𝑡′3𝛹 IH
3 ( 𝑡

𝑡′
𝑦)] − 1}

]

.

3. Polymer crystallization at low or middle supercooling: Polymer
crystallization through mesophase

Micrometer scale morphologies of polymers crystallized at a very
low supercooling is hedrite or axiallite [1]. When the degree of super-
cooling increases, the morphology changes to spherulite. Spherulites
are observed in a wide temperature range. These morphologies consist
of the stacked crystalline lamellae in nano-meter size. The ordinary
polymer crystallization mechanism can be, therefore, understood as the
formation mechanism of the lamella.

The melting temperature, 𝑇m, of the crystalline lamella depends on
he lamellar thickness, 𝓁, because of the surface free energy between
he amorphous and crystal. The relation between 𝓁 and 𝑇m are given

by [1]

𝑇m = 𝑇 0
m −

2𝜁e𝑇 0
m

𝛥𝐻m𝓁
(32)

here 𝑇 0
𝑚 is the equilibrium melting temperature, which is the melting

emperature of the infinitely large crystal, 𝜁𝑒 is the folding surface
ree energy, and 𝛥𝐻m is the enthalpy difference between crystal and
morphous. This relation is well-known as the Gibbs–Thomson relation.

The thickness, 𝓁c, of lamellae formed at the crystallization temper-
ture, 𝑇c, is empirically known as [2]

c =
2𝜁e𝑇 0

m
0

+ 𝛿𝓁 (33)

𝛥𝐻m(𝑇m − 𝑇c)
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where 𝛿𝓁 is the constant excess thickness.
The growth mechanism of the spherulite can be regarded as that of

the lamella and has been treated as the secondary nucleation process on
the growth face of the formed crystalline lamella. The growth rate, 𝑢, of
lamella depends on the size of the secondary nucleus, and the secondary
nucleus thickens by passing through the critical nucleus [58–61]. The
growth rate of spherulite, 𝑢, at 𝑇c is given by [2]

𝑢 = 𝑢0𝛽 exp

[

−
𝐾G

𝑇c(𝑇 0
m − 𝑇c)

]

. (34)

where 𝑢0 is a constant, 𝑇 0
m is the equilibrium melting temperature,

nd 𝛽 is the Vogel–Fulcher–Tamman type diffusion term, given by
= exp(− 𝑈

𝑅(𝑇c−𝑇V)
), 𝑈 is a constant, 𝑅 is the ideal gas constant, and

𝑇𝑉 is the Vogel temperature. 𝐾G is given by

G =
𝑛R𝑏𝜁e𝜁s𝑇 0

m
𝑘B𝛥𝐻

(35)

where 𝜁s is the lateral surface free energy of the stem, 𝑘B is the
Boltzmann constant, and 𝑏 is the thickness of the stem added on the
ubstrate [2]. In Eq. (35), the value of 𝑛R is 𝑛R = 4 for the single
ucleation growth (Regime I) or 𝑛R = 2 for the multiple nucleation
rowth (Regime II) [2]. The temperature dependence of 𝑢 follows
q. (34). The diffusion term takes a smaller value as it approaches 𝑇g,
nd the exponential term takes a smaller value as it approaches 𝑇 0

m.
Therefore 𝑢 has a maximum value at a certain temperature between 𝑇g
nd 𝑇m.

On the other hand, Keller and co-workers have proposed the crys-
allization mechanism through the transient mesophase from the exper-
mental results of the single crystal of polyethylene (PE) formed under
igh pressure and high temperature [45,62]. Strobl and coworkers also
ave proposed the similar crystallization model from the temperature
ependences of 𝓁 and 𝑢 [35,46,47].

According to these models, the transient mesophase forms at the
rowth front of lamella below a temperature, 𝑇X, and transforms into
he thermodynamically stable crystal by thickening. We explain the
rystallization model through the mesophase based on the Keller’s
reatment [45] as follows [41–43].

First, the transitions between liquid and crystal, LC, between
esophase and liquid, LM, and between mesohpase and crystal, MC,

re considered. The transition temperatures of LC, LM, and MC are
ritten as 𝑇LC, 𝑇LM, and 𝑇MC, respectively, where 𝑇LC = 𝑇m. Since these

emperature depends on 𝓁, the 𝓁-dependent transition temperatures are
iven by [45]

𝛼 = 𝑇 0
𝛼 −

2𝜁e,𝛼𝑇 0
𝛼

𝛥𝐻𝛼𝓁
(𝛼 = LC,LM,MC) (36)

where 𝛥𝐻𝛼 and 𝑇 0
𝛼 are the enthalpy difference between two phases

nd the equilibrium transition temperature of each phase. 𝜁e,LC and
e,LM are the folding surface free energies of the crystal and mesophase,
espectively, and 𝜁e,MC is defined as 𝜁e,MC = 𝜁e,LC − 𝜁e,LM.

The 𝓁–𝑇𝛼 diagram based on Eq. (36) is shown in Fig. 3. The three
transition lines intersect at the triple point, 𝑇X and 𝓁X. When the
polymer crystallized at 𝑇c > 𝑇X, the crystalline lamella directly forms
and thickens to 𝓁c (see case I in Fig. 3). This process is the classic
process that has been considered for a long time, and the growth rate
is described by Eq. (34).

On the other hand, when 𝑇c < 𝑇X, the mesomorphic stem firstly
forms at the growth front of lamella, thickens to a thickness on the
MC transition line, transforms into the crystalline stem, and slightly
thickens to 𝓁c given as [42]

𝓁c =
2𝜁e,MC𝑇 0

MC

𝛥𝐻MC(𝑇 0
MC − 𝑇c)

+ 𝛿𝓁, (37)

(see case II in Fig. 3). Since the growth rate at 𝑇c < 𝑇X has been con-
sidered as that of the mesophase, the growth rate 𝑢 becomes [43,45]

= 𝑢0𝛽 exp

[

−
𝐾G,LM
0

]

, (38)
4

𝑇c(𝑇LM − 𝑇c)
Fig. 3. Illustrations for the 𝓁−1–𝑇𝛼 phase diagram based on Eq. (36). Thick solid lines
ndicates the 𝓁-dependences of the transition temperatures of 𝑇LC, 𝑇LM, and 𝑇MC in
q. (36). Thick broken line indicates the 𝑇c-dependences of 𝓁c obtained by Eqs. (33)
nd (37).

here

G,LM =
2𝑏𝜁e,LM𝜁s,LM𝑇 0

LM
𝑘𝐵𝛥𝐻LM

, (39)

and 𝜁𝑠,LM is the lateral surface free energy of the mesomorphic stem.
The existence of the crystallization process through the mesophase

has been confirmed in some polymers, PE [45,62,63], syndiotactic
polypropylene (sPP) [35,46,47,64], poly(𝜖-caprolactone) [65–67], iso-
tactic polystylene [68], poly(L-lactide) [69], poly(buthylene terephtha-
late) (PBT) [7,41–44], and poly(buthylene naphthalate) (PBN) [70,71].
Among them, the 𝑇 -dependences of 𝓁 and 𝑢 for PBT [42,43] is shown
in Fig. 4. The results of PBT directly show the existence of 𝑇X in both
the 𝑇 -dependences of 𝓁 and 𝑢.

The transient mesophase of PBT at the growth front at 𝑇c < 𝑇X may
be the smectic phase formed near its 𝑇g [72]. The smectic phase of PBT
is formed when stretched below 𝑇g, and it immediately transforms into
crystals with annealing above 𝑇g [72]. The temperature dependence of
crystalline size in PBT crystallized near 𝑇g can be also explained by the
crystallization through the mesophase [7].

Poly(buthylene naphthalate) (PBN) also forms the smectic phase
near its 𝑇g [70]. The amorphous-smectic-crystal transition process is
directly observed during rapid deep quenching process in PBN [71].
These results might support a transient mesophase formed at the
growth front is a smectic phase.

As described above, the crystallization process through the
mesophase appears as the degree of supercooling increases. This pro-
cess can be treated as the lamella formation process based on the
secondary nucleation mechanism.

4. Polymer crystallization near the glass transition temperature

As mentioned in the Section 3, the lamellar structure forms by the
secondary nucleation growth even in the crystallization process through
the mesophase. However, in the crystallization process near 𝑇g, there
are phenomena that cannot be explained by the lamella formation
process based on the secondary nucleation mechanism. Some polymers
crystallized near their 𝑇g at high supercooling exhibit the nodular
crystalline morphology rather than the lamella [3–15], and the density
fluctuations are suggested or reported during the early stage of polymer
crystallization [22–26,28–34,36,39,40,51]. The origins of the nodular
crystal formation and the density fluctuations have not been sufficiently

understood.
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Fig. 4. 𝑇 -dependences of (a) the lamellar thicknesses, 𝓁 and 𝓁c [42], and (b) the
growth rate, 𝑢 [43], for PBT. In (a), open circles indicate 𝑇c(𝓁c) [42], filled circles
ndicate 𝑇LC(𝓁) and 𝑇MC(𝓁) [42], and the thick and thin solid lines indicate MC and

LC transition lines, and the thick and thin broken curves indicate the 𝑇c-dependences
of 𝓁c with Eqs. (33) and (37), respectively.

Recently the density fluctuations have been detected by the small
angle X-ray scattering (SAXS) during the early stage of crystallization
near 𝑇g for poly(trimethylene terephthalate) (PTT) [39,48,49] and
syndiotactic polypropylene (sPP) [50] as shown in Fig. 5. 𝑇g and 𝑇 0

m
or PTT are 𝑇g = 45 ◦C and 𝑇 0

m = 290 ◦C [44], and for sPP (𝑀𝑤 =
174,000, 𝑟𝑟𝑟𝑟 = 0.85) are 𝑇g = −3.5 ◦C and 𝑇 0

m = 182 ◦C [73].
The crystalline morphologies of PTT [39] and sPP [8,9] crystal-

lized near 𝑇g have been observed by transmission electron microscope
(TEM) and atomic force microscopy (AFM), respectively. Both of the
morphologies are the nodules in tens nm rather than the lamellae.

We have clarified that the origin of the density fluctuations near 𝑇g
is the correlation between aggregates of the nodules and have proposed
the crystallization process with the nodular aggregation near 𝑇g [48–
50]. These results might be a key of the polymer crystallization at high
supercooling. In this section, we review these research results for PTT
and sPP [48–50].

We have investigated the isothermal crystallization process of PTT
at 𝑇c near 𝑇g from its molten state by simultaneous small angle X-
ray scattering (SAXS) and wide angle x-ray diffraction (WAXD). Fig. 6
shows the WAXD profiles of isothermal crystallization processes at
𝑇𝑐 = 60 ◦C for PTT and at 𝑇𝑐 = 5 ◦C for sPP. The WAXD profiles in
ig. 6a for PTT show the only amorphous halo just after quenching.
he Bragg peaks of triclinic crystalline structure [74] increase and
he amorphous halo decreases with time. Crystallinity 𝜙W

c can be
calculated from the WAXD profiles 𝐼W(𝑞) by the equation 𝐼W(𝑞) =

W W W W W
5

1 − 𝜙c )𝐼halo(𝑞) + 𝜙c 𝛴𝐼Bragg(𝑞), where 𝐼halo(𝑞) is the amorphous halo v
for the complete amorphous and 𝛴𝐼WBragg(𝑞) is the sum of the Bragg
peaks for the complete crystal. Fig. 7 shows 𝑡c-dependent 𝜙W

c of PTT
crystallized at 𝑇𝑐 = 60 ◦C.

The WAXD profiles in Fig. 6b for sPP show an amorphous halo
and very small Bragg peaks just after quenching. The Bragg peaks at
𝑡c = 0 sec originate from the nucleation during quenching. The WAXD
profiles for sPP can be expressed by the sum of amorphous, crystalline
Form I, and mesophase. It is noted that the mesophase in sPP detected
by WAXD is the different from the transient mesophase formed at
the growth front discussed in Section 3. The chain conformation in
the mesophase of sPP is trans-planar [75–84] and that in Form I is
𝑠(2/1)2 [85–87]. The component ratio of Form I and mesophase does
not change with 𝑡c [50]. This result indicates that Form I and the
mesophase simultaneously form during the isothermal crystallization.
Here, the sum of the components of Form I and the mesophase is
written as 𝜙W

c . Fig. 7 shows 𝑡c-dependent 𝜙W
c of sPP crystallized at

𝑇c = 5 ◦C.
Fig. 5 shows the SAXS profiles 𝐼S(𝑞) of the isothermal crystallization

process at 𝑇c = 60 ◦C for PTT [49] and at 𝑇c = 5 ◦C for sPP [50]. Since
𝐼S(𝑞) for both PTT and sPP shows different behaviors in the low- and
high-𝑞 regions, 𝐼S(𝑞) can be given by 𝐼S(𝑞) = 𝐼L(𝑞) + 𝐼H(𝑞), where 𝐼L(𝑞)
nd 𝐼H(𝑞) represent 𝐼S(𝑞) at 𝑞 < 0.02 Å−1 and 𝑞 > 0.02 Å−1, respectively.

For PTT, the intensity 𝐼L(𝑞) decreases with 𝑞, and increases with 𝑡c
ntil 260 s and then decreases after 260 s. On the other hand, 𝐼H(𝑞)
as a peak against 𝑞, and monotonically increases with 𝑡c. Similar to
he behavior of PTT, 𝐼L(𝑞) in sPP increases and then decreases with
c, and 𝐼H(𝑞) monotonically increases with 𝑡c. As mentioned above, the
orphologies of PTT and sPP are the nodule, and thus the peak of
H(𝑞) corresponds to a periodic correlation among the nodules. 𝐼L(𝑞)
nd 𝐼H(𝑞) comes from the correlation between the nodular aggregates
nd that between the nodules in each aggregate, respectively [48].

According to the discussion in Section 2.1, 𝐼S(𝑞), 𝐼L(𝑞), and 𝐼H(𝑞)
orresponds with 𝐼total(𝑞), 𝐼aggregate(𝑞), and 𝐼nodule(𝑞), respectively.
huang and coworker have analyzed the 𝐼H(𝑞) behavior during the
rystallization [39]. According to their analysis, 𝐼H(𝑞) can be fitted
ell by applying the Percus–Yevick approximation [88] of the hard

pheres model to  (𝑞) and the ellipsoidal shape to |𝛷(𝑞)|2 in Eq. (4).
he fitting result leads that the distribution of the crystalline nodules

n the aggregation region is discrete and random, and is consistent with
he TEM image.

Furthermore, the formation kinetics of the aggregation region dur-
ng the crystallization can be discussed in detail using the invariants 𝑄
s mentioned in Section 2.1. The 𝑡c-dependences of 𝑄 for 𝐼S(𝑞), 𝐼L(𝑞)
nd 𝐼H(𝑞) correspond with 𝑄total, 𝑄aggregate, and 𝑄nodule, respectively.
hese 𝑄 behaviors give the volume fractions of the aggregates of
rystalline nodules, 𝜒 , that of the nodules in the aggregation region, 𝜓 ,
nd crystallinity 𝜙c using Eqs. (5)–(7). Assuming constant 𝜓 , the values
f 𝜒 , 𝜒Q, 𝜓 , 𝜓Q, and 𝜙c, 𝜙

Q
c , can be calculated from the invariants of

L(𝑞) and 𝐼H(𝑞) [48]. 𝑡𝑐 -dependent 𝜒Q, 𝜓Q, and 𝜙Q
c for PTT and sPP are

hown in Fig. 7. The 𝑡𝑐 -dependence of 𝜙Q
𝑐 quantitatively agrees with

hat of 𝜙W
𝑐 .

We focus on the kinetics of the time evolution of 𝜒 in Fig. 7,
nd discuss the kinetics by the KJMA theory discussed in Section 2.2.
he time evolution of 𝜒 for PTT can be expressed by Eq. (8) with
a = 4, that is, the kinetics of the nodular aggregate formation is three-
imensional HNG. This fitting result gives the value of 𝐼n𝑣3 at 𝑇c for
TT using Eq. (27). On the other hand, the 𝜒 for sPP is expressed by
q. (8) with 𝑛a = 2.1. The reason of the low value of 𝑛a for sPP is
he nucleation during quenching as discussed in the WAXD result. The
ultifaceted aggregates with a diameter of several tens of nanometers

n sPP quenched just above 𝑇g have been found by AFM [8,9]. In order
o remove the influence of this nucleation, calculations considering the
H-HNG process in Section 2.2.3 are necessary [50]. The 𝑡c-dependence
f 𝜒 for sPP can be fitted by Eq. (30), and the fitting result gives the

3 3
alues of 𝐼n𝑣 , 𝐽n𝑣 , and 𝑡f at 𝑇c for sPP. These fitting results shows that
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Fig. 5. SAXS profiles 𝐼S(𝑞) as a function of 𝑡c for PTT crystallized at 60 ◦C from the melt (a) until and (b) after 280 sec [49], and for sPP crystallized at 5 ◦C from the melt (a)
ntil and (b) after 60 min [50]. The solid curves in (a) and (b) are the theoretical curves obtained using 𝑆H

𝑑=3(𝑞) with 𝑣 = 2.3 Ås−1. and 𝐼n = 1.26 × 10−11 Å
−3
s−1. The solid curves

n (c) and (d) are the theoretical curves obtained using 𝑆 IH−H
𝑑=3 (𝑞) with 𝑡f = 24.1 min, 𝑣 = 7.1 Åmin−1. and 𝐼n = 1.22 × 10−11 Å

−3
min−1, and 𝐽n = 1.00 × 10−9 Å

−3
.

t

𝐼

o
t
r

he formation kinetics of the nodular aggregates is three-dimensional
NG.

In order to examine the validity of these results, we also discuss the
AXS profiles. The fact that the aggregate formation is of HNG type
llows a deeper analysis of 𝑡𝑐 -dependent 𝐼L(𝑞), which is the correlation
f the nodular aggregation regions. 𝐼L(𝑞) corresponds with the first
erm in Eq. (4), 𝐼aggregate(𝑞), and does with 𝑆̃H

𝑑=3(𝑞, 𝑡) in Eq. (28) as
iscussed in Section 2.2. The fitting of 𝑆̃H

𝑑=3(𝑞, 𝑡) to 𝐼L(𝑞) for PTT,
hown in Figs. 5a and 5b, can obtain the aggregate growth rate 𝑣 and
ucleation frequency 𝐼n. Fig. 8 shows the temperature dependences of 𝑣
nd 𝐼𝑛 obtained from SAXS results performed at various crystallization
emperatures 𝑇c for PTT.

On the other hand, 𝐼L(𝑞) for sPP also can be fitted using 𝑆̃IH−H
𝑑=3 (𝑞, 𝑡)

or IH-HNG (Eq. (31)) in Figs. 5c and 5d. Fig. 8 also shows 𝑣 for sPP
t 𝑇c = 5 ◦C. The values of 𝑣 = 7.1 Å/min and 𝑡f = 24.1 min give
he preformed aggregate size 𝛬 = 171 Å. The value of 𝛬 is of the
ame order as the size of the multifaceted aggregate reported by the
ther groups [8,9]. This correspondence supports the validity of the
pplication of the IH-HNG process to sPP.

These values of 𝑣 and 𝐼n are compared with the spherulite growth
ate 𝑢 obtained by optical microscopy at high temperatures in Fig. 8.
he secondary nucleation type spherulitic growth rate, 𝑢, for polymer

s well written by Eq. (34) with 𝑛R = 2. The fitting growth rate curve
n Fig. 8 shows that the 𝑇c-dependence of 𝑣 is a natural extrapolation
6

f that of 𝑢 to the high supercooling region.
The homogeneous nucleation rate, 𝐼n, for the chain-folded crys-
alline lamella is given as [2].

n = 𝐼n0𝛽 exp

[

−
𝐾I

𝑇c(𝑇 0
m − 𝑇c)2

]

(40)

where

𝐾I =
32𝜁𝑒𝜁2𝑠 (𝑇

0
𝑚)

2

𝑘𝐵𝛥𝐻2
m

(41)

The relation between 𝜁𝑠 and 𝛥𝐻 is given as the Thomas–Staveley (TS)
relation [89,90], 𝜁𝑠 = 𝛼TS

√

𝑎𝑏𝛥𝐻m, where 𝛼TS is constant depending
n material properties and 𝑎 is the width of the stem. Assuming 𝑎 ≒ 𝑏,
he combination among 𝐾G with 𝑛R = 2 for Regime II, 𝐾I, and the TS
elation leads [49]
𝐾I
𝐾G

= 16𝛼TS𝑇 0
m. (42)

The value of 𝛼TS is estimated as 0.3-0.4 for ordinary organic materi-
als [89] and 0.1-0.3 for polymers [43,90]. Thus the 𝑇c-dependence of
𝐼n for PTT in Fig. 8 also can be represented by the parameters estimated
for the lamellar growth 𝑢 with 𝛼TS = 0.27 [49]. The results of 𝑣, 𝑢 and 𝐼n
show that the nucleation rate and growth rate of the aggregation region
composed of the discretely located nodules can be described using the
parameter estimated for the ordinary lamellar growth.

We summarize the experimental results and discussion in Sections 3
and 4. The lamellar growth through the transient mesophase can be
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a

Fig. 6. WAXD profiles 𝐼W(𝑞) as a function of 𝑡c (a) for PTT [49] crystallized at 60 ◦C
from the melt and (b) for sPP [50] crystallized at 5 ◦C from the melt. Thick solid curves
are experimentally obtained data. A thick dotted curve is the estimated amorphous halo.
Thin solid curves in (a) and (b) are the Bragg peaks corresponding to the crystals of
PTT and sPP, respectively. Thin broken curves in (b) are the mesophase intensities of
sPP.

Fig. 7. 𝑡c-dependent crystallinity, 𝜙c, and volume fraction of aggregation region, 𝜒 , for
PTT and sPP. Open circles, squares, and triangles indicate 𝜒Q, 𝜙Q

c , and 𝜒W, respectively,
in PTT [49]. Filled circles, squares, and triangles indicate 𝜒Q, 𝜙Q

c , and 𝜙W
c , respectively,

in sPP [50].

treated as secondary nucleation as mentioned in Section 3. On the
other hand, as shown in Section 4, the crystallization process with
the nodular aggregation proceeds near 𝑇g, and the kinetics of the
crystallization process with the nodular aggregation is similar to that
of the lamellar crystallization at the low and middle supercooling.
These experimental results might indicate that the transient mesophase
formed in lamellar formation process is not directly related to the nod-
ule formation process. These discussions provide a following possible
scenario for polymer crystallization. The precursor or embryo forms in
front of the growth face of the aggregation region or the lamella. The
precursor is incorporated and transforms into a part of the crystalline
lamella well above 𝑇g, while it transforms into the crystalline nodule
without transforming into the lamellae near 𝑇g.

The homogeneous nucleation process near 𝑇g has been detected for
7

many polymers by fast differential scanning calorimetry(fast-DSC) [15].
Fig. 8. 𝑇c-dependences of (a) the growth rates of the nodular aggregates, 𝑣, and of the
spherulites 𝑢, and (b) the nucleation frequency of the nodular aggregates, 𝐼n, in PTT
nd sPP. Open circles, squares, and triangles indicate 𝑣 [49], 𝐼n [49], and 𝑢 [44,49] in

PTT, respectively. Filled circles and triangles indicate 𝑣 and 𝑢 in sPP [50], respectively.
The thin and thick solid curves in (a) indicate the 𝑣 curves calculated using Eq. (34)
for PTT and sPP, The thin broken curve in (b) indicates the 𝐼n-curves calculated using
Eqs. (40) and (42).

Our results strongly suggest that the homogeneous nucleation detected
by fast-DSC comes from the formation of the aggregation regions of
the nodules. Recently the relation between the morphologies and the
crystallization kinetics in PBT has been investigated by fast-DSC and
AFM [91]. These results show that the HNG occurs near 𝑇g and that
the morphology formed during this process is nodule. Furthermore it
has been concluded that the nodular formation near 𝑇g is due to the
rigid-amorphous surrounding the nodules [91]. The strong relation be-
tween morphology of the single crystal and the diffusion of amorphous
surrounding it has been also reported [92–94].

Some interesting observations have also been reported regarding the
lamellar morphology formed at middle supercooling. The lamellae com-
posed of the crystalline nodules (small globules) have been observed by
electron microscopy [64,95,96]. Strobl have proposed the model that
the lamellae form with attaching the small globules at the growth front
through the mesophase [35]. Miyoshi and coworkers [37,38] have re-
ported using nuclear magnetic resonance (NMR) techniques that there
are chain foldings even in the nodules of isotactic polypropylene and
that the NMR results are direct evidence of the cooperative coarsening
of the nodules.

These results are consistent with our scenario. Muthukumar’s model
explains the early stage of nucleation by precursor ‘‘baby nuclei’’
followed by a cooperative coarsening of these multiple nuclei on the
basis of the entropic effect of the polymer chain between baby nuclei by
theoretical and simulation methods [30–32]. Our experimental results
indicate that the nodules easily form around the already formed nodu-
lar aggregates. Understanding of the formation mechanism of nodular
aggregates might require the consideration of the entropic effects of
polymer chains.

It is unique that the nucleation and growth mechanism of the
aggregate of the ‘‘discretely’’ located nodules and that of the spherulite
are the same since the general crystallization models are based on the
attachment of molecules to the growth front. Complete understanding
of these results require a unified crystal growth mechanism which
can treat both nodular aggregation and lamellar growth. The two-
step crystallization process with forming precursors has been discussed
in the other system [97–107]. It is also important to investigate the

relation between our results and the two-step crystallization process.
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5. Summary

In this Feature Article, we have summarized resent experimental
results of polymer crystallization at middle and high supercooling. The
results clarify following findings. The crystallization through the tran-
sient mesophase proceeds at middle supercooling, and its mechanism
can be explained by the lamella formation mechanism extended by
the Ostwald step rule. The crystallization process with the nodular
aggregation proceeds near 𝑇g. The growth rate of the aggregates is a
natural extrapolation of that of lamella to the high supercooling region.
These findings are of great interest for the understanding of polymer
crystallization.
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