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Abstract The sustainable production and utilization of lignocellulose biomass are indispensable for establishing 
sustainable societies. Trees and large-sized grasses are the major sources of lignocellulose biomass, while large-sized 
grasses greatly surpass trees in terms of lignocellulose biomass productivity. With an overall aim to improve lignocellulose 
usability, it is important to increase the lignin content and simplify lignin structures in biomass plants via lignin metabolic 
engineering. Rice (Oryza sativa) is not only a representative and important grass crop, but also is a model for large-sized 
grasses in biotechnology. This review outlines progress in lignin metabolic engineering in grasses, mainly rice, including 
characterization of the lignocellulose properties, the augmentation of lignin content and the simplification of lignin 
structures. These findings have broad applicability for the metabolic engineering of lignin in large-sized grass biomass plants.
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Introduction

In September 2015, the 2030 Agenda for Sustainable 
Development was adopted by the United Nations 
Sustainable Development Summit. The 2030 Agenda 
listed 17 Sustainable Development Goals to realize 
a sustainable world (https://www.mofa.go.jp/policy/
oda/sdgs/index.html (Accessed Oct 16, 2023)). Then, 
in December of the same year, the Paris Agreement—a 
multilateral agreement on climate change control—was 
adopted at the 21st Session of the Conference of the 
Parties to the United Nations Framework Convention on 
Climate Change. It requires all participating countries to 
put forth their best efforts to reduce CO2 emissions, with 
the aim of achieving global warming countermeasures 
(https://unfccc.int/process-and-meetings/the-paris-
agreement (Accessed Dec 29, 2023)). These frameworks 
are in line with the concept of a bioeconomy that 
aims to switch from fossil resources to sustainable 
biomass resources for various economic activities, by 

incorporating the idea of biotechnology in addition to 
global sustainability and renewability (Igarashi 2017). 
These activities are intrinsically consistent with the 
concept of the social common capital (Uzawa 2005).

Thus, the importance of renewable resources and 
energy as substitute for fossil energy and resources has 
increased over the past decade. In fact, the amount 
of electricity generated by solar and wind powers has 
increased substantially. However, their output fluctuates 
widely depending upon the weather conditions. In 
addition, electricity demand varies within a day, for 
example, between daytime and nighttime. The difference 
between the output fluctuations of solar and wind powers 
and the demand is compensated for by thermal power 
output adjustments. In this regard, the combustion of 
coal or other fossil fuels in thermal power plants must be 
reduced. The combustion of biomass as an alternative has 
recently attracted attention. Tree biomass combustion has 
increased by more than ten times during the last decade 
in Japan, and accounted for about 17.9% of total wood 
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consumption in 2021 in Japan (https://www.rinya.maff.
go.jp/j/kikaku/hakusyo/r4hakusyo/attach/pdf/index-6.
pdf (Accessed Nov 30, 2023)). In addition, biomass 
combustion is still indispensable to meet rural and local 
energy demands in some countries. Moreover, among 
the renewable resources, only biomass resources can 
supply organic compounds such as industrial feedstock 
and liquid fuels, as a substitute, for example, for naphtha. 
Taken together, biomass resources are critical for 
establishing a sustainable society.

Among biomass resources, lignocellulose biomass 
accounts for the highest proportion of renewable 
terrestrial biomass accumulated on earth. It can be 
classified into two categories, tree lignocellulose and 
non-tree lignocellulose mainly derived from grasses. The 
worldwide annual consumption of tree lignocellulose 
biomass is estimated to be about 2 billion tons (Umezawa 
2018). Trees are indispensable for the production of 
wood-based materials and paper, which accounted for 
half of the total tree lignocellulose biomass consumption, 
while the other half was burned as fuel in 2022 (Forestry 
Production and Trade, FAOSTAT, Food and Agriculture 
Organization of the United Nations, https://www.fao.
org/faostat/en/#data (Accessed Dec 1, 2023)). On the 
other hand, the production of lignocellulose biomass 
derived from non-tree sources, mainly grass biomass, 
is estimated to be about 3.6 billion tons per year, which 
is used as a soil improver, animal feed, solid fuel and so 
force, but largely disposed of by incineration and landfill 
(Tye et al. 2016).

The amount of lignocellulose biomass produced by 
large-sized grass biomass plants is estimated to range 
from 7 to 93 ton ha−1 yr−1, which significantly exceeds 
that produced by trees (less than 20 ton ha−1 yr−1) 
(Umezawa 2018). In addition, lignin is generally easier 
to isolate from grasses than from trees (Umezawa 2018). 
Bioeconomic activities in the future will require large 
amounts of biomass for use in energy and material 
production. Therefore, high-productivity biomass, 
especially large-sized grass biomass will be critically 
important. At present, a significant part of the tree 
biomass used for fuel is obtained by natural forest 
logging (Umezawa 2018). Therefore, it is crucial to 
establish sustainable systems for the production and 
utilization of grass biomass (Umezawa et al. 2020).

Lignocellulose biomass comprises secondary cell 
wall of vascular plants and is mainly composed of 
polysaccharides (cellulose and hemicelluloses) and 
lignin. For the efficient use of polysaccharides during 
processes such as pulping, forage digestion, and 
enzymatic saccharification, lignin that encrusts them has 
been considered an obstacle. On the other hand, lignin 
is also an important and potential aromatic feedstock 
(Abu-Omar et al. 2021; Gao and Mortimer 2022; Pazhany 
and Henry 2019; Rinaldi et al. 2016; Wang et al. 2022). 

Moreover, lignin exhibits larger heating values than 
polysaccharides (Umezawa 2018; White 1987), and is, 
therefore, an important component when lignocellulose 
biomass is used for direct combustion. For example, 
lignin-derived substances in the waste liquor of pulp 
mills are valuable fuels that contribute significantly to the 
economics of pulp and paper industries. Therefore, lignin 
is important for the economy of the whole process of 
pulp and paper industries, even though lignin reduction 
may be beneficial for the pulping process (Umezawa 
2018).

It has long been believed that the mitigation of the 
recalcitrance of lignin is critically important for the 
utilization of lignocellulose polysaccharides. To alleviate 
the recalcitrance, many studies have aimed to produce 
various transgenic plants with reduced lignin content 
(Halpin 2019; Mahon and Mansfield 2019; Pazhany and 
Henry 2019). In addition, lignin metabolic engineering 
focusing on introduction of easily-degradable structures 
into lignin macromolecules without reducing total lignin 
content has received more attention, because this can 
avoid the plant growth penalty (Ha et al. 2021) caused 
by reduced lignin content (Chandrakanth et al. 2023; 
Gao and Mortimer 2022; Halpin 2019; Lebedev and 
Shestibratov 2021; Mahon and Mansfield 2019; Mottiar et 
al. 2016; Ralph et al. 2019; Rinaldi et al. 2016).

As for primary utilization of lignin, its structural 
complexity is a bottleneck. In addition, the lignin content 
of grasses is generally lower than that of trees (Umezawa 
2018). Therefore, structural simplification of lignin 
and augmentation of its content, especially in grasses, 
are important targets for lignin metabolic engineering 
(Umezawa 2018; Umezawa and Suzuki 2008; Umezawa 
et al. 2020). The structural modification of lignin may 
also be an effective way to increase the heating values of 
lignocellulose biomass, because p-hydroxyphenyl (H) 
lignin has a slightly larger heating value, followed by 
guaiacyl (G) lignin and syringyl (S) lignin (Takeda et al. 
2019b; Umezawa 2018).

This review outlines the recent advances in research 
on lignin metabolic engineering, focusing on the 
augmentation of lignin content and simplification of 
lignin structures in grasses, mainly rice (Oryza sativa) as 
a model for large-sized grass biomass plants.

Structure of grass lignin

Lignin is a heterologous phenylpropanoid polymer 
that is synthesized through the coupling of phenoxyl 
radicals formed from three monolignols [p-coumaryl 
(4-coumaryl), coniferyl, and sinapyl alcohols] and related 
phenolic compounds including γ-acylated monolignols 
and tricin, a flavone, and so force (Figure 1) (Boerjan et 
al. 2003; Li et al. 2024; Ralph et al. 2019; Rinaldi et al. 
2016; Vanholme et al. 2019). The aromatic compositions 
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and chemical structures of lignin vary among the 
major phylogenetic divisions of the plant kingdom (i.e., 
gymnosperms, angiosperms, and grasses), but they are 
similar within each group, albeit with some variations. 
In addition, the amounts and aromatic composition of 
lignin also vary considerably among organs, cell types, 
developmental stages, and within cell wall layers. The 
content and structures of lignin are influenced not only 
by the genetic background of each species (Wahyuni 
et al. 2019; Widyajayantie et al. 2022), but also by 
environmental and nutritional conditions including 
biotic and abiotic stresses (Cesarino 2019; Rinaldi et al. 
2016; Rivai et al. 2021).

Gymnosperm lignin is exclusively composed of G 
lignin with trace amounts of H lignin. Angiosperms 
produce both G and S lignin with small amounts of H 
lignin. Among angiosperms, grass family [Poaceae 
(Gramineae)] plants produce G and S lignin with slightly 
higher H lignin content than that of eudicots (Boerjan 
et al. 2003; Mansfield et al. 2012; Ralph et al. 2019; 
Vanholme et al. 2019), while grass lignin is significantly 

acylated, mainly at the γ-position of S lignin units, by 
p-coumaric acid and, to a lesser extent, by ferulic acid 
(Karlen et al. 2016, 2018; Ralph 2010). In addition, tricin 
is incorporated into lignin in grasses as a lignin monomer 
to produce another grass-characteristic lignin structure, 
flavonolignin or tricin-lignin units (del Río et al. 2012; 
Lam et al. 2023; Lam et al. 2021; Lan et al. 2015, 2016).

Evaluation of lignin content and structures is a 
fundamental task in lignin metabolic engineering. The 
metabolic engineering research activities produce a 
large number of transgenic plants and/or mutants to be 
analyzed, while the amounts of available plant samples 
are often very limited. Hence, high-throughput protocols 
for the lignin analyses are extremely valuable. The 
following high-throughput methods for the chemical 
degradation of lignin are available: thioacidolysis 
(Robinson and Mansfield 2009; Yamamura et al. 2012), 
nitrobenzene oxidation (Yamamura et al. 2010, 2021), 
and quantification of lignin (Hattori et al. 2012; Suzuki 
et al. 2009) and cell-wall bound p-hydroxycinnamates 
(Yamamura et al. 2011).

Figure 1. The cinnamate/monolignol pathway in grasses. Thick open arrow represents the major routes for lignin biosynthesis. C4H, cinnamate 
4-hydroxylase; C3H, p-coumarate 3-hydroxylase; CAldOMT, 5-hydroxyconiferaldehyde O-methyltransferase; 4CL, 4-hydroxycinnamate:CoA ligase; 
HCT, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-
CoA reductase; CAld5H, coniferaldehyde 5-hydroxylase; CAD, cinnamyl alcohol dehydrogenase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid 
O-methyltransferase; C3′H, p-coumaroyl-shikimate/quinate 3-hydroxylase; PAL, phenylalanine ammonia-lyase; PTAL, phenylalanine/tyrosine 
ammonia-lyase; CSE, caffeoylshikimate esterase; PRX, peroxidase; LAC, laccase; CHS, chalcone synthase; PMT, p-coumaroyl-CoA:monolignol 
transferase; APX, ascorbate peroxidase. Only the structures of *shikimate ester and **γ-p-coumaroylated sinapyl alcohol are shown.
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Reduction of lignin content

In plant secondary cell walls, lignin co-exists with 
cellulose and hemicelluloses and encrusts cellulose 
microfibrils to form lignocellulose suprastructure. 
Consequently, lignin impedes the access of 
polysaccharide-hydrolyzing enzymes to cellulose 
and hemicelluloses, and there is generally a negative 
correlation between the lignin content and the enzymatic 
saccharification efficiency of lignocellulose materials. 
Over the last two decades, many studies have tried 
to improve the saccharification efficiency and forage 
digestibility of lignocellulosic biomass by reducing the 
lignin content using metabolic engineering methods, 
aiming at the social realization of the utilization of 
lignocellulosic polysaccharides (Barros et al. 2019b; 
Bhatia et al. 2017; Halpin 2019; Mahon and Mansfield 
2019; Mottiar et al. 2016; Pazhany and Henry 2019; 
Rinaldi et al. 2016; Umezawa 2018; Wang et al. 2022).

Rice has been used as a model for large-sized grass 
biomass plants. Various transformants and mutants 
of rice (O. sativa L. ssp. japonica cv. Nipponbare) 
with lower lignin content and higher enzymatic 
saccharification efficiency compared with wild type 
control have been generated by knockdown or knockout 
of genes encoding enzymes in the cinnamate/monolignol 
pathway to produce lignin monomers (Umezawa 2010) 
(Figure 1) (Hattori et al. 2012; Koshiba et al. 2013a, 
2013b). For example, RNA interference (RNAi)-induced 
rice transformants with downregulated expression 
of O. sativa caffeic acid O-methyltransferase (COMT, 
or 5-hydroxyconiferaldehyde O-methyltransferase, 
CAldOMT) 1 (OsCOMT1) and the knockout mutants 
of the gene generated using the clustered regularly 
interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (CRISPR/Cas9) technique 
exhibited lower content of lignin, especially S lignin, and 
higher enzymatic saccharification efficiency compared 
with wild type (Koshiba et al. 2013a; Martin et al. 
2023). The culm of a cinnamyl alcohol dehydrogenase2 
(cad2) null mutant isolated from retrotransposon 
Tos17-insertion lines of rice (O. sativa L. ssp. japonica 
cv. Nipponbare) showed 16.1% higher enzymatic 
saccharification efficiency and 14.6% lower lignin content 
compared with those of the null segregant control 
(Koshiba et al. 2013b). The mutant exhibited brown-
colored midribs in addition to hulls and internodes, 
clearly indicating both brown midrib (bm) and gold hull 
and internode (gh) phenotypes. This was the first example 
of a bm mutant in a C3 grass plant. The downregulation 
of CAD of another C3 grass model plant, Brachypodium 
distachyon, was achieved by artificial microRNA-
mediated knockdown of BdCAD1, and this transformant 
also exhibited bm phenotype (Trabucco et al. 2013). 
Chemically induced BdCAD1 mutants exhibited an 

intense reddish-brown coloration in the spikelets, 
flowers, rachilla, nodes, and lemma of the plant (d’Yvoire 
et al. 2013). The genes encoding COMT (CAldOMT) 
are also responsible for bm phenotype in some grasses 
such as maize (Zea mays) and sorghum (Sorghum bicolor) 
(Barrière et al. 2004; Sattler et al. 2010).

In the current social situation, it is timely to reassess 
the global feasibility of bioethanol production from 
lignocellulose biomass, including the technoeconomic 
analysis of the whole process from biomass cultivation 
to bioethanol production. In this regard, lignin metabolic 
engineering to reduce lignin content in sugarcane (Dias 
et al. 2009; Jung et al. 2012, 2016) may be a practical 
strategy to increase its saccharification efficiency, because 
sugarcane bagasse is consumed as fuel in sugar factories 
and its surplus can be exploited for saccharification 
followed by fermentation to produce additional 
bioethanol.

Meanwhile, these application-oriented studies 
aiming to reduce the lignin content and to exploit 
lignocellulosic polysaccharides have also provided new 
information about lignin biosynthetic mechanisms 
including the revision of the pathways to produce 
lignin monomers and the elucidation of the regulatory 
systems by transcription factors (Cesarino et al. 2016; 
Coomey et al. 2020; Deng and Lu 2017; Li et al. 2024; 
Miyamoto et al. 2020b; Nakano et al. 2015; Ohtani and 
Demura 2019; Rao and Dixon 2018; Xiao et al. 2021; Yao 
et al. 2021; Yoon et al. 2015; Zhang et al. 2020; Zhang 
et al. 2021; Zhong and Ye 2015). Moreover, these studies 
have provided new information about the assembly of 
lignocellulose components or supramolecular structures. 
For example, despite the general negative correlation 
between lignin content and enzymatic saccharification 
efficiency of lignocellulose materials, the parenchyma-
rich inner part of the Erianthus arundinaceus internode 
did not show a negative correlation between the 
enzymatic saccharification efficiency and lignin content 
(Yamamura et al. 2013). This material showed distinct 
behavior in alkaline delignification from those of the 
outer part of the Erianthus internode as well as both 
parts of the sugarcane (Saccharum spp.) internode 
(Miyamoto et al. 2018). Studies of transgenic plants 
are expected to provide more direct information about 
lignocellulose supramolecular structures. Several 
studies have attempted to analyze the supramolecular 
structure of lignocellulose in lignin-related mutants and 
transformants of Nicotiana tabacum and Arabidopsis 
(Arabidopsis thaliana) (Carmona et al. 2015; Liu et 
al. 2016; Ruel et al. 2002, 2009). In rice, the above-
mentioned OsCAD2- and OsCAldOMT1 (OsCOM1)-
deficient mutants and their double-knockout mutants 
were subjected to characterization of lignocellulose 
supramolecular structures (Martin et al. 2019, 2023). 
The disruption of both OsCAldOMT1 and OsCAD2 
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evidently affected the supramolecular structure, but the 
effects differed between the two genes. Compared with 
the deficiency of OsCAD2, that of OsCAldOMT1 more 
prominently affected the lignocellulose supramolecular 
structures, resulting in higher cellulose mobility as 
primarily gauged by nuclear magnetic relaxation, at 
least for both mutants cultivated under employed 
conditions. These findings indicated that the two 
enzymes play differential roles in the formation of 
lignocellulose supramolecular structures (Martin et al. 
2019, 2023). Another study showed that downregulation 
of OsMYB103L (synonym for OsMYB103) that can alter 
OsCAD2 gene expression (Hirano et al. 2013) lead to 
changes in cellulose assembly (Wu et al. 2021).

The elucidation of lignocellulose supramolecular 
structures is an important goal in the field of cell wall 
science and lignocellulose science, both in terms of basic 
and applied science. Mutants in which the lignocellulose 
supramolecular structures are altered and/or the 
lignin content and structures are modified will play an 
important role in such research.

Augmentation of lignin content

Breeding to augment the lignin content in biomass could 
improve its suitability as solid biomass fuel and increase 
the efficiency of the lignin biorefinery process (Scully 
et al. 2016; Umezawa 2013, 2018; Umezawa and Suzuki 
2008; Umezawa et al. 2020). This is because lignin has 
larger heating values than polysaccharides and represents 
a potent source of valuable aromatic chemicals (Gao and 
Mortimer 2022; Mottiar et al. 2016; Pazhany and Henry 
2019; Rinaldi et al. 2016; Umezawa 2018; White 1987). 
Two strategies for this purpose using rice (O. sativa L. 
ssp. japonica cv. Nipponbare) have been reported; the 
heterologous expression and endogenous overexpression 
of transcriptional activator genes (Koshiba et al. 2017; 
Umezawa 2013; Umezawa et al. 2020), and the knockout 
of endogenous transcriptional repressors (Miyamoto et 
al. 2019, 2020a; Umezawa et al. 2020).

Heterologous expression of three A. thaliana MYBs 
(AtMYB55, AtMYB61, and AtMYB63) in rice resulted 
in culms with increased lignin content (about 1.5-
fold higher than that in control plants) (Koshiba et 
al. 2017). An in-depth lignin analysis suggested that 
heterologous expression of AtMYB61 in rice increased 
the lignin content mainly by enriching S units as 
well as p-coumarate and tricin moieties in the lignin 
polymers, both of which are characteristic components 
of grass lignin (Koshiba et al. 2017). Similar results were 
reported for Z. mays MYB167. Heterologous expression 
of ZmMYB167 in Brachypodium increased the lignin 
content (ca. 7% to 13%) and S lignin content (ca. 11% 
to 16%), and increased the content of cell wall-bound 
p-coumaric acid (ca. 15% to 24%) compared with 

controls, while its overexpression in maize produced 
transgenic plants with increased lignin (ca. 4% to 13%), 
p-coumaric acid (ca. 8% to 52%), and ferulic acid 
(ca. 13% to 38%) content (Bhatia et al. 2019). Similar 
studies on sorghum aiming to increase energy content 
in biomass plants were reported; the lignin content was 
augmented by overexpression of SbMYB60 encoding a 
S. bicolor transcriptional activator in sorghum (Scully 
et al. 2016). Meanwhile, another study determined the 
lignin content of 30 Indonesian sorghum accessions, and 
identified those with high lignin content (Wahyuni et al. 
2019). Recently, heterologous expression of ZmMYB167 
gene in Miscanthus sinensis was reported. Unlike the 
heterologous expression of AtMYB61 in rice and of 
ZmMYB167 in Brachypodium and the overexpression 
of ZmMYB167 in maize, the heterologous expression 
of ZmMYB167 in Miscanthus did not alter lignin 
composition or phenolic compounds, but increased the 
lignin content by ca. 15–24% compared with control 
plants, resulting in improved total energy levels of 
Miscanthus biomass, equivalent to 10% higher energy 
yield per hectare (Bhatia et al. 2023).

The knockout of endogenous transcriptional 
repressors also lead to increased lignin content. 
Rice mutants in which the transcriptional repressor 
OsMYB108 gene was defected using CRISPR/Cas9-
mediated genome editing exhibited increased total 
lignin content with preferential enrichment of the grass-
characteristic γ-p-coumaroylated and flavonolignin 
units (Miyamoto et al. 2019). When other putative 
transcriptional repressor genes, OsWRKY36 and 
OsWRKY102, were knocked out using CRISPR/Cas9-
mediated genome editing (Miyamoto et al. 2020a), the 
single mutations of OsWRKY36 and OsWRKY102 
significantly increased lignin content by up to 28% and 
32%, respectively. The knockout effect was integrated 
in the OsWRKY36/OsWRKY102-double-mutant 
lines, showing even higher lignin content (by up to 
41% compared with controls). Unlike the OsMYB108 
mutants, in depth lignin analyses showed that the relative 
abundance of guaiacyl units and p-coumarate residues in 
lignin were slightly higher and lower, respectively, in the 
WRKY mutants than in the wild-type lignin, revealing 
that the functions of OsWRKY36 and OsWRKY102 
differ from that of OsMYB108 (Miyamoto et al. 2020a). 
These results strongly suggested that the WRKYs and 
their close homologs are promising breeding targets for 
improving the utilization properties of grass biomass 
using conventional screening of non-transgenic mutant 
lines as well as genome-editing-mediated mutation.

Furthermore, lignin plays significant roles in 
mitigating the effects of biotic and abiotic stresses 
(Cesarino 2019; Choi et al. 2023; Dabravolski and 
Isayenkov 2023; Dong et al. 2022; Miedes et al. 2014; 
Moura et al. 2010; Pratyusha and Sarada 2022; Wang 
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et al. 2022; Yu et al. 2023b). It was also reported that 
lignin is the predominant cell wall factor that enhances 
lodging resistance in rice (Liu et al. 2018). In this regard, 
many studies have aimed to increase lignin content in 
rice by manipulating the expression of genes encoding 
regulatory proteins and enzymes and have reported 
mitigation of biotic and abiotic stresses.

For example, overexpression of OsTF1L, an O. sativa 
homeodomain-leucine zipper transcription factor 
gene, in rice promoted lignin biosynthesis and stomatal 
closure, which improved drought tolerance (Bang et 
al. 2019). Overexpression of OsbHLH034, an O. sativa 
jasmonate-responsive basic helix–loop–helix (bHLH)-
type transcription factor gene, in rice induced bacterial 
blight resistance via an increase in lignin biosynthesis 
(Onohata and Gomi 2020). Overexpression of OsNAC055 
encoding an O. sativa transcription factor that directly 
activates the O. sativa lignin biosynthetic genes, 
OsCCR10 and OsCAD2, increased the lignin content in 
rice straw. This transcription factor was found to regulate 
gibberellin-mediated lignin biosynthesis in rice straw 
(Liu et al. 2022). Ectopic expression of OsDhn-Rab16D 
(OsjDHN5), an O. sativa dehydrin gene, in rice increased 
lignin biosynthesis under drought stress (Tiwari et al. 
2019). Heterologous expression of SiMYB16, a foxtail 
millet (Setaria italica) MYB-like transcription factor 
gene, in rice led to increased lignin content under a 
salt-stress treatment (Yu et al. 2023a). Transgenic rice 
plants overexpressing OsNAC17 that promotes lignin 
accumulation in leaves and roots showed drought-
tolerant phenotype compared with non-transgenic plants 
(Jung et al. 2022). O. sativa cinnamoyl-CoA reductase 
10 (OsCCR10) gene was found to be directly activated 
by OsNAC5 transcription factor, and the overexpression 
of OsCCR10 in rice resulted in higher lignin content in 
roots and improved drought tolerance at the vegetative 
stages of growth compared with non-transgenic controls 
(Bang et al. 2022). Overexpression of OsGRP3 encoding 
an O. sativa glycine-rich RNA-binding protein in rice 
enhanced lignin accumulation and drought tolerance (Xu 
et al. 2022). Knockout of OsIDD2, an O. sativa zinc finger 
and indeterminate domain (IDD) family transcription 
factor gene, produced rice mutants with slightly larger 
lignin content (Huang et al. 2018). Knockout of OsMYB7 
increased the lignin content in lamina joints of rice, and 
OsMYB7 was found to determine the leaf angle at the 
late developmental stage of lamina joints in rice (Kim et 
al. 2023). Some rice mutants also show elevated lignin 
content. Rice dwarf mutants with 2- to 3-fold increases 
in the content of total phenolic components including 
lignin in parenchyma cell walls of internodes were 
designated as ectopic deposition of phenolic components1 
(edp1), although the responsible gene has not yet been 
identified (Sato et al. 2011).

Grasses, especially rice, contain large amounts of 

silicon, which plays important roles in mitigating the 
effects of various biotic and abiotic stresses (Chack 
et al. 2023; Ma et al. 2011; Singh et al. 2021; Van Soest 
2006). There is also a correlation between silicon 
content and lignin content in rice. Ma et al. identified 
silicon transporters, OsLsi1 and OsLsi2, in rice (Ma et 
al. 2006, 2007), and OsLsi1-deficient mutants exhibited 
higher lignin content and much lower silicon content 
in culms compared with wild type (Suzuki et al. 2012). 
In addition, wild-type rice grown under a hydroponic 
condition without silicon also exhibited a similar 
phenotype to the mutants, i.e., higher lignin content 
and very low silicon content compared with controls 
cultivated under conditions with sufficient silicon supply 
(Suzuki et al. 2012). Hydroponically grown sorghum 
with a limited supply of silicon also exhibited increased 
lignin content (Rivai et al. 2022). In addition, mature 
entire shoots of B. distachyon low-silicon 1 (Bdlsi1-1) 
mutant also exhibited small but significant increases 
in lignin content compared with the wild-type control, 
although the lignin content in leaves, stems, spikelets, 
and entire shoots at the ripening growth stage was similar 
in the mutant and wild type (Głazowska et al. 2018).

Those experiments with mutants and hydroponically 
grown plants were probably well controlled and revealed 
the negative correlation between lignin content and 
silicon content. In contrast, experiments under biotic 
or abiotic stresses have yielded somewhat controversial 
results. There are reports of increased lignin content 
in rice amended with silicon under the biotic stress 
(the inoculation of a root-knot nematode Meloidogyne 
graminicola) (Zhan et al. 2018) and in wheat (Triticum 
aestivum) flag leaves supplied with silicon under 
the biotic stress (the inoculation of a pathogen that 
causes rice blast, Pyricularia oryzae) (Araújo et al. 
2019). In addition, lignin content was increased in rice 
leaves inoculated with P. oryzae, and the increase was 
enhanced after silicon application (Ng et al. 2019). On 
the other hand, although increased lignin content of cell 
wall fraction in root-apex transition zone of rice was 
observed by the application of aluminium stress, the 
increase was suppressed by the addition of silicon (Jiang 
et al. 2022). These different results regarding changes in 
lignin content may be at least partly due to differences in 
cultivation and/or stress conditions and parts of the plant 
collected for analysis among different studies.

Simplification of lignin structures

The complexity of lignin structures has long been a 
challenging bottleneck in its utilization as an industrial 
aromatic feedstock. In particular, lignin structures are 
more complex in grasses than in gymnosperms and 
eudicots (del Río et al. 2022; Ralph et al. 2019; Umezawa 
2018). Therefore, the simplification of lignin structures 
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is an important target of lignin metabolic engineering 
in grasses. Lignin structures can be simplified by 
controlling the lignin biosynthetic pathways to produce 
only H, G, or S lignin units (Gao and Mortimer 2022; 
Umezawa 2018; Umezawa et al. 2020). Such controls 
lead not only to simplification of the ratio of the units, 
but also to simplification of the population of lignin 
substructures namely intermonomer linkage structures. 
For example, S lignin unit inherently contains neither 
β-5, 5-5′, nor 4-O-5′ substructures and composed of 
more β-O-4 substructures, so it is simpler and more 
linear than G and H lignin units (Ralph et al. 2019; 
Umezawa 2018). Moreover, the simplification of lignin 
aromatic composition leads to a slight increase in its 
heating value. A higher number of methoxy groups in the 
lignin aromatic nuclei slightly reduces the heating value. 
Therefore, H lignin is estimated to have a larger heating 
values than G lignin, while S lignin has the lowest heating 
value (Takeda et al. 2019b; Umezawa 2018).

Gymnosperm lignin is composed exclusively of G 
lignin with trace amounts of H lignin, while eudicot 
lignin is composed of both G and S lignin with smaller 
amounts of H lignin. Like eudicot lignin, grass lignin 
also consists of G and S lignin but with slightly larger 
amounts of H lignin (Boerjan et al. 2003; Mansfield 
et al. 2012; Ralph et al. 2019; Vanholme et al. 2019). 
Furthermore, grass lignin is significantly acylated 
mainly by p-coumaric acid (Karlen et al. 2016, 2018; 
Ralph 2010), and contains flavonolignin or tricin-
lignin units (del Río et al. 2012; Lam et al. 2023; Lam 
et al. 2021; Lan et al. 2015, 2016). Many metabolic 
engineering studies of eudicot lignin biosynthesis have 
been reported, and have produced various transgenic 
plants/mutants with elevated H, G, and S lignin content 
(Mahon and Mansfield 2019; Martarello et al. 2023; 
Pazhany and Henry 2019; Ralph et al. 2019; Rinaldi 
et al. 2016; Umezawa 2018; Wang et al. 2022). Some 
of them exclusively produced H (Bonawitz et al. 2014; 
Franke et al. 2002; Weng et al. 2010), G (Ciesielski et al. 
2014; Meyer et al. 1998), and S lignin (Ciesielski et al. 
2014) by knockout of the C3′H gene, knockout of the 
CAld5H gene, and upregulation of the CAld5H gene, 
respectively. However, most of those studies aimed to 
characterize gene functions and improve the usability of 
lignocellulose polysaccharides.

Although fewer studies have focused on grasses than 
on eudicots, there are a number that have successfully 
simplified the aromatic composition of grass lignin. 
To increase the S lignin content, rice transformants 
overexpressing OsCAld5H1 (CYP84A5), encoding 
coniferaldehyde 5-hydroxylase (CAld5H;=ferulate 
5-hydroxylase, F5H), which is located in the S lignin 
biosynthetic shunt in the monolignol biosynthetic 
pathway (Figure 1), were generated. The S units were 
enriched by 2.3-fold in the rice transformants compared 

with the control (Takeda et al. 2017). To increase the G 
lignin content, RNAi-mediated knockdown and CRISPR/
Cas9-mediated loss-of function techniques were used 
to impair the function of OsCAld5H1 in rice. Both the 
knockdown transformants and knockout mutants 
exhibited elevated G lignin content, with 1.2- and 1.5-
fold enrichment of G lignin units compared with 
the control, respectively (Takeda et al. 2017, 2019a). 
Interestingly, however, the lignin in the OsCAld5H1-
knockout mutans still contained considerable numbers 
of S units. In-depth lignin analyses revealed that the 
enrichment of G units in lignin of the mutants was 
limited to the non-γ-p-coumaroylated units, whereas 
the grass-characteristic γ-p-coumaroylated lignin units 
were almost unaffected. This result strongly suggested 
that CAld5H is mainly involved in the production of 
non-γ-p-coumaroylated S lignin units, common to both 
eudicots and grasses, but not in the production of the 
grass-characteristic γ-p-coumaroylated S units, at least 
in rice (Takeda et al. 2017, 2019a). In contrast, increased 
amounts of H lignin, lignin-associated ferulates, and 
tricin were detected in transgenic maize in which 
C3′H (ZmC3H1) was down-regulated using RNAi 
technology (Fornalé et al. 2015). The H lignin enriched 
rice plants were produced by RNAi- and CRISPR/Cas9-
mediated techniques to impair the function of OsC3′H1 
(CYP98A4) (Takeda et al. 2018). The transcript level of 
OsC3′H1 in the RNAi-mediated OsC3′H1-knockdown 
rice lines was about 0.5% of that in the control, and the 
transformants were able to reach maturity and set seeds, 
whereas CRISPR/Cas9-mediated OsC3′H1-knockout 
rice mutants were severely dwarfed and sterile. The 
lignin of mature OsC3′H-knockdown RNAi lines was 
largely enriched in H units (by 8-fold); the enrichment 
of H units was limited to non-acylated lignin units, with 
grass-specific γ-p-coumaroylated lignin units remaining 
apparently unchanged, similar to the case of the 
OsCAld5H1 deficiency (Takeda et al. 2018).

These rice transgenic lines with distinct H/G/S 
aromatic unit ratios were used to study the impact 
of lignin composition on the chemical reactivity, 
enzymatic saccharification efficiency, and calorific 
value of rice lignocellulose (Takeda et al. 2019b). 
The H-lignin-enriched rice transgenic line showed 
significantly enhanced enzymatic saccharification 
efficiency after alkali and acid pretreatments, and even 
with no pretreatment. The S-lignin-enriched rice 
transgenic line displayed enhanced saccharification 
efficiency after a hot water pretreatment. However, 
although analyses of synthetic lignins (dehydrogenation 
polymer, DHP) comprising only H, G, or S units showed 
that H-DHP had highest heating value, followed by 
G-DHP and S-DHP in that order, the transgenic lines 
with higher proportions of H or G units did not show 
increased heating values. This may be ascribed at 
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least in part, to incomplete simplification of lignin 
aromatic composition. These strategies to increase 
lignin content and to simplify lignin structures are also 
applicable to large-sized grass biomass plants, such as 
sorghum, switchgrass (Panicum virgatum), Miscanthus 
and Erianthus. When S. bicolor F5H (SbF5H) was 
overexpressed in sorghum, the transformant produced 
lignin with increased S lignin content and an increased 
ratio of S/G lignin, while plant growth and development 
remained relatively unaffected (Tetreault et al. 2020). 
Because the structures of grass lignin are more complex 
than those of gymnosperm and eudicot lignins, the 
thorough simplification of grass lignin structures is 
critical for the utilization of high biomass-producing 
large-sized grass biomass plants in the future. To 
achieve this goal, it will be important to elucidate the 
mechanisms of the formation of grass-characteristic 
lignin structures, such as p-coumaroylated lignin and 
flavonolignin units. In this regard, Lam et al. successfully 
eliminated the p-coumaroylated lignin unit in rice as 
described below (Lam et al. 2024).

As mentioned above, the γ-hydroxycinnamoylated 
S lignin units (mainly p-coumaroyl and feruloyl 
at a lesser extent) are characteristic of grass lignin 
structures (Karlen et al. 2016, 2018; Ralph 2010). 
The acylated units result from the coupling of radicals 
formed from γ-hydroxycinnamoylmonolignols and 
non-γ-acylated monolignols (Ralph 2010). In addition, 
hydroxycinnamates are found in grass cell walls at 
the C5 position of the arabinofuranosyl moiety of the 
xylan backbone. These esters are mainly ferulates, 
with a smaller proportion of p-coumarates (Buanafina 
2009; Chandrakanth et al. 2023; Ralph et al. 2004). 
In relation to the formation of acylated lignin, 
the enzymes that acylate monolignols to produce 
γ-hydroxycinnamoylmonolignols, p-coumaroyl-
CoA:monolignol transferase (PMT) and feruloyl-
CoA:monolignol transferase (FMT) (Chandrakanth et 
al. 2023), have been identified in several grasses: rice (O. 
sativa), OsPMT1 (formerly OsPMT) (Lam et al. 2024; 
Smith et al. 2022; Withers et al. 2012), OsPMT2 (Lam 
et al. 2024), and OsFMT1 (Karlen et al. 2016; Smith et 
al. 2022); maize (Z. mays): ZmPMT (Marita et al. 2014) 
and ZmFMT (Smith et al. 2022); Brachypodium (B. 
distachyon): BdPMT1 (Karlen et al. 2016; Petrik et al. 
2014) and BdPMT2 (Sibout et al. 2016); sorghum (S. 
bicolor): SbPMT (Smith et al. 2022) and SbFMT (Smith et 
al. 2022); and switchgrass (P. virgatum): PvPMT (Smith 
et al. 2022) and PvFMT (Smith et al. 2022). OsPMT1 and 
OsPMT2 function redundantly. In the ospmt1 ospmt2 
double-knockout mutant, p-coumarate units were 
undetectable in the lignin, and the lignin structure was 
successfully simplified by the elimination of p-coumaroyl 
decoration (Lam et al. 2024).

Grass-characteristic lignin biosynthetic 
pathways

The formation of hydroxycinnamoylmonolignol is 
a step in a grass-characteristic pathway leading to 
hydroxycinnamoylated lignin units. Several studies 
over the last decade have provided new insight into the 
formation of the monolignols used in the biosynthesis 
of hydroxycinnamoylmonolignols. As mentioned 
above, although the OsCAld5H1-overexpression 
(Takeda et al. 2017), OsCAld5H1-knockdown/knockout 
(Takeda et al. 2017, 2019a), and OsC3′H-knockdown 
(Takeda et al. 2018) in rice efficiently modified the 
aromatic compositions to augment S, G, and H units, 
respectively, none of the transformants/mutants 
produced lignin composed of a single type of aromatic 
units. This contrasts sharply with the results obtained in 
Arabidopsis. For example, A. thaliana CAld5H-deficient 
fah1 mutants produced lignins exclusively composed 
of G units (Ciesielski et al. 2014; Meyer et al. 1998), 
the far1-derived transformant in which AtCAld5H was 
overexpressed made lignins consisting only of S units 
(Ciesielski et al. 2014), and the Arabidopsis C3′H-
deficient ref8 mutant produced essentially only H units 
(Bonawitz et al. 2014; Franke et al. 2002; Weng et al. 
2010). Interestingly, the in-depth lignin analysis showed 
that the modification of the abundance of the H, G and S 
units of the OsCAld5H1-deficient/overexpressed (Takeda 
et al. 2019a, 2017) and OsC3′H-deficient (Takeda et 
al. 2018) transgenic/mutant rice lines was because of 
changes in the content of non-γ-p-coumaroylated G 
and S units, whereas the content of γ-p-coumaroylated 
G and S units were largely unaffected. Moreover, in 
rice, the heterologous expression of AtMYB61 (Koshiba 
et al. 2017) and knockout of OsMYB108 (Miyamoto et 
al. 2019) resulted in the specific augmentation of γ-p-
coumaroylated G and S units. Taken altogether, the 
results of those studies showed that rice, and possibly 
other grasses, has a parallel monolignol pathway 
to produce the grass-specific γ-p-coumaroylated 
monolignols; this pathway differs from the C3′H- and 
CAld5H-dependent conventional pathway that produces 
non-γ-p-coumaroylated monolignols (Umezawa et al. 
2020). The mechanisms of the formation of monolignols 
used in the biosynthesis of γ-p-coumaroylated 
monolignols remain to be elucidated. In this regard, 
phenylalanine/tyrosine ammonia-lyase (PTAL) (Barros 
et al. 2016) and ascorbate peroxidase (APX/C3H), 
which has C3H activity to hydroxylate p-coumaric acid 
to afford caffeic acid (Barros et al. 2019a), are likely to 
be at least partly responsible for the formation of γ-p-
coumaroylated monolignols (Chandrakanth et al. 
2023). In addition, it was recently reported that two O. 
sativa 4-coumrate:CoA ligases, Os4CL3 and Os4CL4, 
play differential roles in the biosynthesis of non-γ-p-
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coumaroylated monolignols and γ-p-coumaroylated 
monolignols, providing further support for the existence 
of dual pathways (Afifi et al. 2022).

Studies during the last decade have shown that the 
flavone tricin is incorporated into lignin in grasses as 
a lignin monomer to produce a grass-characteristic 
lignin structures, namely tricin-lignin or flavonolignin 
units (del Río et al. 2012; Lam et al. 2023; Lam et al. 
2021, 2022; Lan et al. 2015, 2016). In this regard, the 
OsROMT9 (=OsCOMT1 and OsCAldOMT1)-knockout 
rice mutant showed a 46% reduction in soluble tricin 
accumulation compared with wild type, which strongly 
suggested that OsROMT9 is the major OMT involved in 
tricin biosynthesis (Lam et al. 2015). This was in line with 
the reduced levels of the tricin-lignin (flavonolignin) 
units in a maize mutant (brown midrib3, bm3) of 
ZmOMT, a maize homolog of OsCOMT1 (Fornalé et 
al. 2017), and in a sorghum mutant (brown midrib12, 
bmr12) of SbOMT, a sorghum homolog of OsCOMT1 
(Eudes et al. 2017). Biochemical analyses confirmed the 
dual function of OsCAldOMT1 (OsROMT9); one is 
the role as a key enzyme to produce sinapyl alcohol in S 
lignin synthesis, and the other is the dual methylation of 
flavone precursors to produce tricin in rice (Lam et al. 
2023; Lam et al. 2019, 2021; Umezawa et al. 2020).

Concluding remarks

Large-sized grasses are the important sources of 
lignocellulose biomass for the establishment of 
sustainable society because of their very high biomass 
productivity. However, the structures of grass lignin 
are more complex than those of gymnosperm and 
angiosperm lignins. Furthermore, in general, the 
lignin content is slightly lower in grasses than in 
gymnosperm and angiosperm trees. Hence, the 
structural simplification and augmentation of lignin 
content in grasses are important targets for grass lignin 
metabolic engineering. Recent research in this field has 
provided the basic knowledge about how to increase the 
lignin content and simplify its structure. These studies 
also revealed the presence of a new grass pathway or 
pathways leading to the grass-characteristic lignin 
structures, although final conclusions await further 
studies. Furthermore, research on lignin structures and 
biosynthesis in grasses has made substantial contribution 
to related scientific fields such as crop breeding, plant 
pathology, plant nutrition, and soil science, as well as 
plant physiology.
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