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A B S T R A C T   

Rationale and objectives: To develop and validate a deep learning (DL) model to automatically 
diagnose muscle-invasive bladder cancer (MIBC) on MRI with Vision Transformer (ViT). 
Materials and methods: This multicenter retrospective study included patients with BC who re-
ported to two institutions between January 2016 and June 2020 (training dataset) and a third 
institution between May 2017 and May 2022 (test dataset). The diagnostic model for MIBC and 
the segmentation model for BC on MRI were developed using the training dataset with 5-fold 
cross-validation. ViT- and convolutional neural network (CNN)-based diagnostic models were 
developed and compared for diagnostic performance using the area under the curve (AUC). The 
performance of the diagnostic model with manual and auto-generated regions of interest (ROI-
manual and ROIauto, respectively) was validated on the test dataset and compared to that of ra-
diologists (three senior and three junior radiologists) using Vesical Imaging Reporting and Data 
System scoring. 
Results: The training and test datasets included 170 and 53 patients, respectively. Mean AUC of 
the top 10 ViT-based models with 5-fold cross-validation outperformed those of the CNN-based 
models (0.831 ± 0.003 vs. 0.713 ± 0.007–0.812 ± 0.006, p < .001). The diagnostic model 
with ROImanual achieved AUC of 0.872 (95 % CI: 0.777, 0.968), which was comparable to that of 
junior radiologists (AUC = 0.862, 0.873, and 0.930). Semi-automated diagnosis with the diag-
nostic model with ROIauto achieved AUC of 0.815 (95 % CI: 0.696, 0.935). 
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Conclusion: The DL model effectively diagnosed MIBC. The ViT-based model outperformed CNN- 
based models, highlighting its utility in medical image analysis.   

1. Introduction 

Bladder cancer (BC) is one of the most common malignancies globally and the sixth most common cancer in men [1]. The T stage, 
which indicates whether a tumor is non-muscle-invasive (T1 or lower) or muscle-invasive (T2 or higher), is important for determining 
the treatment strategy. The gold standard for differentiating non-muscle-invasive BC (NMIBC) from muscle-invasive BC (MIBC) is the 
pathological analysis of the sample obtained via transurethral resection of the bladder tumor (TURBT). However, the quality of 
samples obtained via TURBT often varies with the urologist. Additionally, a single TURBT may underdiagnose muscle invasion by 
20–30 % [2,3]. Therefore, MRI plays an important role in the preoperative evaluation of BC in clinical practice [4,5]. 

Vesical Imaging-Reporting and Data System (VI-RADS) is a standard imaging and diagnostic method for BC [6]. Although there are 
previous reports including radiomics research on its usefulness, substantial effort is required for in assessing BC, considering that BC is 
often multiple [7]. Moreover, inter-reader agreement varied in previous reports [8–10]. Therefore, an objective, highly accurate, and 
automated diagnostic model for diagnosing MIBC is warranted. 

Deep learning is highly advantageous in medical imaging and analysis because it can automatically extract and learn useful features 
from images, leading to improved performance and accuracy in various tasks [11]. A few recent studies have reported convolutional 
neural networks (CNN)-based deep learning models for predicting MIBC on MRI. However, they did not adequately assess the 
generalization of the models [12–14]. In addition, these studies require manual segmentation of the tumor and bladder or the entire 
tumor, which could be a critical barrier to clinical application. 

Vision Transformer (ViT) is a deep learning model that has revolutionized image analysis by employing self-attention mechanisms. 
CNN, which has been the mainstream methods in medical image analysis, extracts local patterns and features using convolutional 
layers, while ViT splits the entire image into small patches and learns their relationships at early layers; therefore, it is better than CNN 
for learning overall image relationship [15,16]. ViT achieves this by splitting the entire image into small patches and learning their 
relationships at early layers [15]. ViT outperforms CNNs on various tasks and has achieved state-of-the-art performance with several 
reports of its application in medical image analysis [17]. 

Therefore, in this study, we aimed to develop and validate a clinically useful deep-learning model that automatically diagnoses 
MIBC using MRI, and to compare the diagnostic performance of ViT and CNN-based models. 

2. Materials and Methods 

This multicenter retrospective study adhered to the principles of the Declaration of Helsinki and the Standards for Reporting of 
Diagnostic Accuracy Studies guidelines [18]. Ethical approval was obtained from the institutional review boards of Kyoto University 
Hospital (Institution 1) (R2695-1), Japanese Red Cross Osaka Hospital (Institution 2) (J-0202), and Kyoto City Hospital (Institution 3) 
(R714). The requirement for informed consent was waived owing to the retrospective study design. 

2.1. Datasets 

The training dataset included the data of patients pathologically diagnosed with BC who underwent preoperative MRI at in-
stitutions 1 and 2 between January 2016 and June 2020. They had participated in a previous study on BC segmentation [19]. The 
external test dataset included the data of participants who underwent preoperative MRI at institution 3 between May 2017 and May 
2022. Muscle invasion was determined using the patient clinical and pathological records and according to the European Association 
of Urology guidelines [20]. This guideline recommends second TURBT for patients diagnosed with Ta or T1 on initial TURBT who are 

Abbreviations 

AUC = Area under the curve 
BC = Bladder cancer 
CNN = Convolutional neural network 
DWI = Diffusion-weighted image 
NMIBC = Non-Muscle-Invasive Bladder cancer 
MIBC = Muscle-invasive bladder cancer 
TURBT = Transurethral resection of bladder tumor 
T2WI = T2-weighted image 
VI-RADS = Vesical Imaging Reporting and Data System 
ViT = Vision Transformer  
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at high risk for residual tumor. The exclusion criteria were (a) prior treatment with TURBT or intravesical therapy within 6 months, (b) 
uncertain T-stage, (c) insufficient MRI sequences, (d) severe artifacts, and (e) no detectable BC on MRI. The final training dataset 
comprised 170 (institution 1, n = 84; institution 2, n = 86) out of the initial 322 patients with BC (institution 1, n = 168; institution 2, n 
= 154). The external test dataset consisted of the data of 53 of the 70 initially identified patients with BC (Fig. 1). The MRI acquisition 
and image preprocessing parameters are detailed in Appendices A and B and Table S1. Three-sequence MR images (Diffusion-weighted 
image [DWI] of b = 0 and 800 or 1000 s/mm2 and apparent diffusion coefficient [ADC] map) with the largest cross-section of the BC 
were used as input data, because DWI is the most useful sequence for diagnosing MIBC and considered the dominant sequence on 
VI-RADS [6]. Fig. 2 presents an overview of the study. 

2.2. Tumor segmentation 

The BCs were manually segmented on MRI using 3D Slicer (version 5.2.2) (https://www.slicer.org). For multiple BCs, the largest 
tumor was segmented. Two board-certified radiologists specializing in urogenital radiology determined the regions of interest (ROIs) 
by consensus: Y.M. and Y.K. (13-year experience each) for the training dataset and S.O. and Y.K. (11- and 13-year experiences, 
respectively) for the external test dataset. 

2.3. Data partition 

The training dataset was randomly split into five datasets on patient basis for developing the model with five-fold cross-validation. 
The external test dataset was only used to assess the diagnostic performance of the final model. 

2.4. Model development 

2.4.1. Segmentation model 
A segmentation model based was developed on the manually segmented ROIs for the training dataset using nnU-Net. U-Net is a 

promising fully CNN architecture for the segmentation of medical images, including those of BC, and nnU-Net is a U-Net-based se-
mantic segmentation algorithm that automatically adapts to a given dataset [19,21,22]. The input data were 3D three-sequence images 
(DWI of b = 0 and 800 or 1000 s/mm2 and ADC map). The default configurations of nnU-Net V2 (3D U-Net) were used for model 
training. For the external test dataset, the ROIs were generated manually and automatically using this model. 

2.4.2. Diagnostic model 
A diagnostic model was developed based on ViT (ViT-L/16) pre-trained on ImageNet using the PyTorch framework (Figure S1) [15, 

23]. Five-fold cross-validation was applied during training; the hyperparameters are provided in Appendix C. For comparison, 5-fold 
cross-validation was performed using 10 representative CNN-based models with the same hyperparameters as the ViT-based model: 
VGG16, ResNet34, ResNet50, ResNet101, DenseNet121, and EfficientNet (B0, B1, B2, B3, and B4) [24–27]. The mean AUCs of the top 
10 of the 40 sets of models during cross-validation were compared. The source code for our ViT-based model is available at https:// 
github.com/YasKurata/BC_ViT. 

Fig. 1. Flowchart of patient inclusion for the study.  
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2.5. Model evaluation 

The ViT-based model with the lowest mean loss for the 5-fold cross-validation was adopted as the final model. To evaluate the final 
model using the external test dataset, an ensemble method was used with five models developed by 5-fold cross-validation. 

Fig. 2. Overview of the study. 
We developed a deep learning model to predict muscle invasion in bladder cancer (BC) using MRI. First, we developed a segmentation model for 
automated segmentation of BC on MR images and a diagnosis model to detect MIBC using a training dataset with 5-fold cross-validation. The 
training dataset consisted of the data of patients with BC from two institutions; the BCs were manually segmented using MRI. We compared the 
diagnostic performances of the ViT- and CNN-based models. Second, the model was evaluated using an external test dataset. We created input data 
using manual and automated (using the developed model) segmentation of the BC. For each input data point, the diagnostic model predicted 
whether the tumor was MIBC or NMIBC. The diagnostic performance of the model was compared with that of radiologists using VI-RADS scoring. 
BC: Bladder cancer; ViT: Vision Transformer; CNN: Convolutional neural network; MIBC: Muscle-invasive bladder cancer; NMIBC: Non-muscle 
invasive bladder cancer; and VI-RADS: Vesical Imaging Reporting and Data System. 

Table 1 
Patient characteristics.   

Training dataset Test dataset p-value 

Number of patients 170 53  
Age (years, mean ± SD) 73.6 ± 9.0 73.2 ± 10.3 0.81 
Sex   0.56 

Male 136 (80) 40 (75)  
Female 34 (20) 13 (25)  

Pathological T stage   0.74 
Ta 59 (35) 17 (32)  
T1 49 (29) 14 (26)  
T2 36 (21) 14 (26)  
T3 21 (12) 8 (15)  
T4 5 (3) 0 (0)  

Histological grade   0.58 
High 136 (80) 46 (87)  
Low 30 (18) 6 (11)  
Others 4 (2) 1 (2)  

Muscle invasion   0.51 
MIBC 62 (36) 22 (42)  
NMIBC 108 (64) 31 (58)  

Unless otherwise stated, data are presented as the number of patients with percentages in parentheses. 
SD: standard deviation. 
MIBC: muscle-invasive bladder cancer. 
NMIBC: non-muscle invasive bladder cancer. 
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2.6. VI-RADS scoring by radiologists 

Three experienced urogenital radiologists (R1, R2, and R3) with 14, 30, and 15 years of experience, respectively, and three junior 
radiologists (R4, R5, and R6) with three, four, and three years of experience in radiology, respectively, assessed the bladder MRI of the 
external test dataset using VI-RADS criteria [6]. The radiologists referred to all the available slices and sequences including T1 and 
T2-weighted image (T2WI) and DWI. Prior to the evaluation, all the readers were educated about the VI-RADS criteria through 10 
practice cases that were not part of the external test dataset. 

2.7. Statistical analysis 

The statistical analyses were performed using JMP Pro (version 16; SAS Institute Inc.) and EZR (version 1.61; Saitama Medical 
Center, Jichi Medical University, Saitama, Japan) [28]. The patient characteristics were compared using t-tests for continuous vari-
ables and Fisher’s exact tests for categorical variables. The models were evaluated for sensitivity, specificity, accuracy, positive and 
negative predictive values, and area under the curve (AUC) to diagnose MIBC. The Youden index was used to set the cutoffs. The mean 
AUCs of the diagnostic models were compared using t-test. Interobserver agreement was calculated using weighted Cohen’s kappa 
statistics, with values of 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00 representing fair, moderate, substantial, and excellent 
agreement, respectively [29]. P < .05 denoted statistical significance. 

3. Results 

3.1. Patient characteristics 

The patient characteristics are presented in Table 1. The training dataset consisted of the data of 170 patients (mean age, 73.6 ±
9.0; 136 males and 34 females), and the external test dataset included the data of 53 patients (mean age, 73.2 ± 10.3; 40 males and 13 
females). In total, 62 of 170 patients in the training dataset and 22 of 53 patients in the external test dataset had MIBC. No statistically 
significant differences were observed in the clinical characteristics between the training and external test datasets. 

3.2. Model development 

The mean AUCs for the 5-fold cross-validation of the top 10 ViT- and CNN-based models on the training dataset are listed in Table 2. 
Of the CNN-based models, the ResNet34 and EfficientNet had the lowest (0.713 ± 0.007) and highest (0.812 ± 0.006) mean AUCs, 
respectively. These results indicate that larger models do not always demonstrate better diagnostic performance. The ViT-based model 
significantly outperformed other CNN-based models (p < .001 for all the CNN-based models). The mean AUC of the final model for the 
5-fold cross-validation was 0.862 ± 0.084 (Appendix C). 

3.3. Model evaluation 

The ViT-based final model revealed AUC, sensitivity, specificity, accuracy, positive predictive value, and negative predictive values 
of 0.872 (95 % confidence interval [CI]:0.777, 0.968), 0.864 (19/22) (95 % CI: 0.0651, 0.971), 0.806 (25/31) (95 % CI:0.625, 0.925), 
0.830 (44/53) (95 % CI:0.702, 0.919), 0.760 (19/25) (95 % CI:0.549, 0.906), and 0.893 (25/28) (95 % CI:0.718, 0.977), respectively, 

Table 2 
Mean AUC of the top 10 ViT and CNN-based models for 5- 
fold cross-validation on the training dataset.  

Base model Mean AUC 

ViT 0.831 ± 0.003 
Vgg16 0.765 ± 0.004 
ResNet34 0.713 ± 0.007 
ResNet50 0.732 ± 0.004 
ResNet101 0.727 ± 0.007 
Densenet121 0.725 ± 0.004 
EfficientNet B0 0.758 ± 0.010 
EfficientNet B1 0.771 ± 0.006 
EfficientNet B2 0.794 ± 0.005 
EfficientNet B3 0.741 ± 0.005 
EfficientNet B4 0.812 ± 0.006 

Data are presented as mean ± standard deviation. The 
mean AUC of the ViT-based model was significantly 
higher than that of all CNN-based models (p < .001). 
AUC: Area under the curve. 
ViT: Vision transformer. 
CNN: Convolutional neural network. 
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for the external test dataset. Fig. 3 shows the receiver operating characteristic (ROC) curve and calibration plot. Table S2a presents the 
confusion matrix for the final model. 

3.4. Diagnostic performance of radiologists 

The diagnostic performances of the radiologists for the external test dataset with different thresholds (VI-RADS ≥3 and VI-RADS 
≥4) are presented in Table 3. The AUCs of the experienced radiologists were 0.909 (95 % CI: 0,827, 0.991), 0.973 (95 % CI: 0.931, 
1.00), and 0.931 (95 % CI: 0.866, 0.966). The AUCs of the junior radiologists were 0.930 (95 % CI: 0.857, 1.00), 0.873 (95 % CI: 0.780, 
0.967), and 0.862 (95 % CI: 0.761, 0.963). The ROC curves for the VI-RADS scores of the radiologists are shown in Fig. 4. The 
interobserver agreement of the experienced radiologists was excellent (κ = 0.81− 0.90), whereas that of the junior radiologists was 
substantial (κ = 0.68− 0.78). The overall interobserver agreement was substantial to excellent (κ = 0.61–0.90) (Table S3). Repre-
sentative BC cases from the external test dataset are shown in Fig. 5. 

3.5. Diagnostic performance of model for semi-automated diagnosis 

The segmentation model trained using the training dataset with nnU-Net automatically detected BC in 48/53 cases for the external 
test dataset (Fig. S2). Four of the five bladder tumors that were not automatically detected were extremely small (4–10 mm). The other 
tumor was MIBC, that did not exhibit a high signal intensity on DWI. In these cases, manual ROIs were used as the input data for the 
diagnostic model. The final ViT-based model using these ROIs showed AUC, sensitivity, specificity, accuracy, positive predictive value, 
and negative predictive values of 0.815 (95 % CI:0.696, 0.935), 0.909 (20/22) (95 % CI: 0.708, 0.989), 0.677 (21/31) (95 % CI:0.486, 
0.833), 0.774 [41/53] (95 % CI:0.638, 0.877), 0.667 (20/30) (95 % CI:0.472, 0.827), and 0.913 (21/23) (95 % CI:0.720, 0.989), 
respectively, for the external test dataset. Fig. 6 shows the ROC curve and calibration plot for the semi-automated diagnostic model. 
Table S2b presents the confusion matrix of the semi-automated diagnostic model. 

4. Discussion 

We developed an automated model to diagnose MIBC by integrating automatic segmentation and diagnostic models. Our model 
showed high diagnostic performance with high sensitivity and good calibration, which could allow for automated screening and risk 
stratification of muscle invasion in BC. This could reduce the efforts of radiologists in preoperative MRI evaluation. In addition, the 
ViT-based model outperformed the CNN-based models, demonstrating the usefulness of ViT in medical image analysis. 

The diagnostic performance of our diagnostic model was comparable to that of well-trained junior radiologists. Moreover, no 
previous study has reported a diagnostic performance and versatility comparable to those of our model using an appropriate external 
test dataset. Li et al. reported two deep-learning models for diagnosing MIBC [12,14]. They used a CNN-based model to detect MIBC 
and achieved a high diagnostic performance (AUCs, 0.932 and 0.861) on an external test dataset. However, a non-negligible risk of 
overestimating the diagnostic performance of their model could exist owing to selection bias associated with the skewed T-stage 
distribution in their external test dataset. The test dataset included the data of 28 (Ta:7, T1:0, T2 ≤: 21, MIBC/NMIBC = 21/7) and 55 
(Ta:20, T1:3, T2 ≤: 32, MIBC/NMIBC = 32/23) cases. In general, the prevalence of MIBC is approximately 25 %, which is quite 

Fig. 3. Receiver operating characteristic (ROC) curve and calibration plot for the Vision Transformer-based diagnosis model for the external 
test dataset. 
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different from the prevalence of MIBC based on the test datasets [30]. Notably, the extremely few T1 cases in both the reports should 
have affected the results because it would have been easy for the developed model to differentiate between Ta and MIBC. Further, their 
model used T2WI as input data and required a full tumor ROI on T2WI, whereas our model only required an ROI of one slice on DWI. 
This simplified the proposed model and made it more practical. Since T2WI generally provides anatomical information better than 
DWI, if both T2WI and DWI could be used as input data, the diagnostic ability of the model could be improved. However, accurate 
registration of T2WI and DWI would be a challenge due to changes in the urine volume during image acquisition. Therefore, we 
focused on DWI, the dominant sequence of VI-RADS, as our input data based on the assumption that DWI (b = 0 s/mm2) and ADC map, 
which are easy to register with DWI (b = 1000 s/mm2), and also contain anatomical information to some extent. 

Our study demonstrates that the ViT-based model outperforms CNN-based models in terms of diagnostic performance. ViT has 
demonstrated state-of-the-art performance on various vision tasks including image classification, object detection, and semantic 
segmentation [15,17,31,32]. ViT is also gaining attention in medical image analysis, and some reports have indicated its potential to 
replace CNNs [33]. ViT has less inductive bias than CNN, and requires large datasets to outperform CNN [15]. This makes it difficult to 
apply ViT to medical image analysis, where large amounts of data are generally difficult to obtain. However, transfer learning or 
self-supervised pretraining can reportedly help overcome this difficulty [33]. In this study, we achieved a high diagnostic performance 
with relatively small datasets using a ViT-based model pretrained on ImageNet [23]. 

Our semi-automated diagnostic model also performs automated segmentation followed by automated diagnosis. In a previous study 
that attempted automated diagnosis, MIBC was diagnosed using a CNN-based model with automated segmentation of the BC and 
bladder on T2WI. The diagnostic performance of their model on the external test dataset was significantly lower than that of our model 
(AUC = 0.628 vs. 0.815) [13]. Our automatic segmentation model was unable to detect very small tumors, tumors, or parts of tumors 

Table 3 
Diagnostic performance of the radiologists and diagnostic model for the external test dataset.  

Reader Sensitivity Specificity Accuracy PPV NPV AUC 

R1      0.909 (0.827, 
0.991) 

VI-RADS ≥3 86.4 [19/22] (65.1, 
97.1) 

90.3 [28/31] (74.2, 
98.0) 

88.7 [47/53] (77.0, 
95.7) 

86.4 [19/22] (65.1, 
97.1) 

90.3 [28/31] (74.2, 
98.0)  

VI-RADS ≥4 86.4 [19/22] (65.1, 
97.1) 

93.5 [29/31] (78.6, 
99.2) 

90.6 [48/53] (79.3, 
96.9) 

90.5 [19/21] (69.6, 
98.8) 

90.6 [29/32] (75.0, 
98.0)  

R2      0.973 (0.931, 
1.00) 

VI-RADS ≥3 95.5 [21/22] (77.2, 
99.9) 

90.3 [28/31] (74.2, 
98.0) 

92.5 [49/53] (81.8, 
97.9) 

87.5 [21/24] (67.6, 
97.3) 

96.6 [28/29] (82.2, 
99.9)  

VI-RADS ≥4 81.8 [18/22] (59.7, 
94.8) 

100.0 [31/31] (83.8, 
100.0) 

92.5 [49/53] (81.8, 
97.9) 

100.0 [18/18] (74.0, 
100.0) 

88.6 [31/35] (73.3, 
96.8)  

R3      0.931 (0.866, 
0.996) 

VI-RADS ≥3 95.5 [21/22] (77.2, 
99.9) 

71.0 [22/31] (52.0, 
85.8) 

81.1 [43/53] (68.0, 
90.6) 

70.0 [21/30] (50.6, 
85.3) 

95.7 [22/23] (78.1, 
99.9)  

VI-RADS ≥4 77.3 [17/22] (54.6, 
92.2) 

93.5 [29/31] (78.6, 
99.2) 

86.8 [46/53] (74.7, 
94.5) 

89.5 [17/19] (66.9, 
98.7) 

85.3 [29/34] (68.9, 
95.0)  

R4      0.930 (0.857, 
1.00) 

VI-RADS ≥3 90.9 [20/22] (70.8, 
98.9) 

80.6 [25/31] (62.5, 
92.5) 

84.9 [45/53] (72.4, 
93.3) 

76.9 [20/26] (56.4, 
91.0) 

92.6 [25/27] (75.7, 
99.1)  

VI-RADS ≥4 81.8 [18/22] (59.7, 
94.8) 

96.8 [30/31] (83.3, 
99.9) 

90.6 [48/53] (79.3, 
96.9) 

94.7 [18/19] (74.0, 
99.9) 

88.2 [30/34] (72.5, 
96.7)  

R5      0.873 (0.780, 
0.967) 

VI-RADS ≥3 100.0 [22/22] (78.1, 
100.0) 

38.7 [12/31] (21.8, 
57.8) 

64.2 [34/53] (49.8, 
76.9) 

53.7 [22/41] (37.4, 
69.3) 

100.0 [12/12] (64.0, 
100.0)  

VI-RADS ≥4 95.5 [21/22] (77.2, 
99.9) 

77.4 [24/31] (58.9, 
90.4) 

84.9 [45/53] (72.4, 
93.3) 

75.0 [21/28] (55.1, 
89.3) 

96.0 [24/25] (79.6, 
99.9)  

R6      0.862 (0.761, 
0.963) 

VI-RADS ≥3 90.9 [20/22] (70.8, 
98.9) 

51.6 [16/31] (33.1, 
69.8) 

67.9 [36/53] (53.7, 
80.1) 

57.1 [20/35] (39.4, 
73.7) 

88.9 [16/18] (65.3, 
98.6)  

VI-RADS ≥4 77.3 [17/22] (54.6, 
92.2) 

80.6 [25/31] (62.5, 
92.5) 

79.2 [42/53] (65.9, 
89.2) 

73.9 [17/23] (51.6, 
89.8) 

83.3 [25/30] (65.3, 
94.4)  

Diagnostic 
model 

0.864 [19/22] 
(0.651, 0.971) 

0.806 [25/31] 
(0.625, 0.925) 

0.830 [44/53] 
(0.702, 0.919) 

0.760 [19/25] 
(0.549, 0.906) 

0.893 [25/28] 
(0.718, 0.977) 

0.872 (0.777, 
0.968) 

Data in parentheses are 95 % confidence intervals. 
Data in brackets are raw data. 
VI-RADS: Vesical Imaging Reporting and Data System. 
PPV: Positive predictive value. 
NPV: Negative predictive value. 
AUC: Area under the curve. 
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that did not show a distinctly high signal intensity on DWI. Very small tumors are less likely to be MIBC. Therefore, it is not a major 
concern even if they cannot be detected in diagnosing MIBC. Actually, tumors with sizes of <10 mm had a VI-RADS score of 1 [6]. The 
low accuracy of the automatic segmentation of BC without clear high signal intensity on DWI may have contributed to the lower 
diagnostic performance of our semi-automated diagnostic model compared with our diagnosis model using manual ROIs. Although the 
addition of T2WI to DWI for automatic BC segmentation can improve the segmentation performance, accurate registration of T2WI and 
DWI would be challenging as mentioned above. However, if T2WI can be used as input data with non-rigid registration, the seg-
mentation and diagnostic performance of semi-automated diagnostic models may be further improved. 

Nonetheless, our study had several limitations. First, our study was retrospective and had a small sample size for deep learning. 
Incorporating a greater number of cases into the training dataset may improve the diagnostic performance of the model. As the 
diagnostic performance of the model approaches that of senior radiologists, the clinical utility of the model could be further enhanced. 
Furthermore, despite the validation of our model using multivendor MRI data from an external institution, it is imperative to conduct 
additional validation with a more extensive prospective cohort. Second, VI-RADS scoring for the external test dataset was performed 
using biparametric MRI, which included T2WI and DWI and not dynamic contrast-enhanced (DCE) images. Although multiparametric 
MRI is recommended for conventional VI-RADS scoring, the dominant sequence in VI-RADS scoring is DWI, and DCE images play an 
auxiliary role when DWI are difficult to diagnose due to strong artifact. Moreover, recent reports have demonstrated biparametric 
protocol to have a diagnostic accuracy comparable to that of the standard multiparametric protocol [34–36]. Besides, our test dataset 
excluded patients with strong artifacts. Therefore, it is unlikely that the VI-RADS scoring using biparametric MRI affected the diag-
nostic performance of a radiologist. Third, this study used TURBT results as the gold standard, which carries the risk of under-
diagnosing muscle invasion. However, by including only cases staged according to the European Association of Urology guidelines, we 
believe we have minimized the likelihood of underdiagnosing muscle invasion. Fourth, although our model achieved higher diagnostic 
performance compared to the previous reports, it did not reach that of the senior radiologists. One reason could be that we used a single 
slice of BC as the input data for the diagnostic model. While this will reduce the effort required when applying the model in actual 
clinical practice, there is a potential for improved diagnostic performance by inputting the ROI of the entire tumor. We believe further 
investigation is necessary regarding this aspect in future studies. 

In conclusion, we developed a deep learning model that automatically diagnoses MIBC with high accuracy and enables automated 
risk stratification of BC muscle invasion. Additionally, we have demonstrated the utility of ViT, highlighting its significance in deep 
learning research for medical image analysis. 
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Fig. 4. Receiver operating characteristic (ROC) curves for the radiologists. (A) ROC curves of R1 (blue line), R2 (green line), R3 (orange line), and 
the diagnosis model (red dotted line). (B) ROC curves of R4 (blue line), R5 (green line), R6 (orange line), and the diagnosis model (red dotted line). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Three representative cases of bladder cancer (BC) in the external test dataset. Left to right: Diffusion-weighted images (b = 0 s/mm2), 
diffusion-weighted images (b = 1000 s/mm2), apparent diffusion coefficient map, and manually segmented region of interest in the BC. (A) Male 
patient in his 60s with MIBC. Pelvic MRI revealed an exophytic tumor without a stalk on the posterior bladder wall. All six radiologists assigned a VI- 
RADS score of 4. The output of the ViT-based diagnostic model was 0.976, which is a strong indicator of MIBC. (B) Male patient in his 60s with 
NMIBC. Pelvic MRI revealed a slightly exophytic tumor without a stalk on the anterior wall of the bladder. Four radiologists assigned a VI-RADS 
score of 4, and the other two radiologists assigned a VI-RADS score of 3. The output of the ViT-based diagnostic model was 0.301, which is indicative 
of NMIBC. (C) Female patient in her 70s with NMIBC. Pelvic MRI revealed an exophytic tumor with a stalk on the right lateral wall of the bladder. 
All six radiologists assigned a VI-RADS score of 2. The output of the ViT-based diagnostic model was 0.515, which was more suggestive of MIBC. BC: 
Bladder cancer; MIBC: Muscle-invasive bladder cancer; NMIBC: Non-muscle invasive bladder cancer; VI-RADS: Vesical Imaging Reporting and Data 
System; and ViT: Vision Transformer. 

Fig. 6. Receiver operating characteristic (ROC) curve and calibration plot of the Vision Transformer-based semi-automatic diagnosis model for the 
external test dataset. 
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[20] M. Babjuk, M. Burger, E.M. Compérat, et al., European association of Urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) - 
2019 update, Eur. Urol. 76 (5) (2019) 639–657. 

[21] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, arXiv [cs.CV] (2015). http://arxiv.org/abs/1505.04597. 
[22] F. Isensee, P.F. Jaeger, S.A.A. Kohl, J. Petersen, K.H. Maier-Hein, nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation, 

Nat Methods. Nature Publishing Group 18 (2) (2020) 203–211. 
[23] R. Wightman, PyTorch Image Models, GitHub repository, GitHub, 2019, https://doi.org/10.5281/zenodo.4414861. 
[24] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv [cs.CV] (2014). http://arxiv.org/abs/1409.1556. 
[25] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 

770–778. 
[26] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, 2017 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) (2017) 2261–2269. 
[27] M. Tan, Q.V. Le, EfficientNet: rethinking model scaling for convolutional neural networks, arXiv [cs.LG] (2019). http://arxiv.org/abs/1905.11946. 
[28] Y. Kanda, Investigation of the freely available easy-to-use software “EZR” for medical statistics, Bone Marrow Transplant. 48 (3) (2013) 452–458. 
[29] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical data, Biometrics 33 (1) (1977) 159–174. 
[30] A.M. Kamat, N.M. Hahn, J.A. Efstathiou, et al., Bladder cancer, Lancet. 388 (10061) (2016) 2796–2810. 
[31] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, Deformable detr: deformable transformers for end-to-end object detection, arXiv preprint arXiv (2010) 04159. 
[32] S. Zheng, J. Lu, H. Zhao, et al., Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers, Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition (2021) 6881–6890. 
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