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ABSTRACT. First we construct a cubic 4-fold whose singularities are 11 cusps and which has an 
action of the Mathieu group M 11, all over the ternary field lF 3 . We next consider a certain moduli 
space of bundles on a supersingular K3 surface of Artin invariant one in characteristic 3. We show 
that it has 275 (-2) Mukai vectors which form the McLaughlin graph, and ask questions on it and 
on its relation with our Mu -cubic 4-fold. 

We work over an algebraically closed field in characteristic 3, but varieties are mostly defined 
over IF 3 or IF 9 . A general inseparable triple covering 

(1) V--+ JlD(vwxyz)' T 3 = G(v,w,x,y,z), deg G = 3. 

of the projective 4-space is a cubic 4-fold in JlDf Tvwxyz) with 11 cusps, i.e., simple singularities of 

type A2 (since q(f2w4(3)) = 11). An example with high symmetry is obtained from the Segre 
cubic 3-fold 

6 

Seg3: LXi = L XiXjXk = 0, 
i=l l'.Si<j<k'.S6 

which has the maximal number (=10) of nodes (e.g., [6]). 

Example 1. The inseparable triple covering 

(2) Seg4 --+ JlD4, T 3 = L XiXjXk, 

l'.Si<j<k'.S6 

6 

with JlD4 : LXi = 0 C JlDfx)' 
i=l 

with formal branch Seg3 has 10 cusps over its nodes, and one more at (x: T) = (111111: -1). 

The automorphism group 65 of Seg4 (and also of Seg3 ) acts 11 cusps with two orbits oflength 
10 and 1. A little bit surprisingly there is a more symmetric cubic 4-fold with 11 cusps in the sense 
that the automorphism group acts transitively on the cusps. 

The following is our main result of this note, and is regarded as a characteristic 3 analogue 
of the fact that the Fermat cubic 4-fold has an action of the Mathieu group M22 over IF 4 and the 
M22-action on a set of 22 planes in it is (triply) transitive ([7], [4, p. 39]): 
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Sciences, an International Joint Usage/Research Center located in Kyoto University. 
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Theorem 2. The cubic 4-fold

(3) V : z3 =
∑

i∈Z/5Z

(xi−1xixi+1 − xi−2xixi+2) in P5
(xz)

has an action of the Mathieu group M11 over F3 (via the extended ternary Golay code [12, 6, 6]).
Moreover, V has cusps at 11 F3-points1, on which the M11 acts (quadruply) transitively. V is
smooth elsewhere.

Two cubic 4-folds are closely related with a supersingular K3 surface of Artin invariant one,
whose standard projective model is the Fermat quartic surface. Though it does not have an action
of M11, there is a chance for a suitable moduli space of bundles over it to have a birational action
of M11. In §3, we give an 8-dimensional candidate and ask two questions.

1. PRELIMINARY

The Mathieu group has a presentation

〈a, b, c, | a11 = b5 = c4 = (ac)3 = 1, ab = a4, bc = b2〉

with 3 generators ([4, p.18]). The following is our starting point:

Lemma 3. ([1, Lemma 3.1]) The Klein’s cubic form
∑

i∈Z/5Z y
2
i yi+1 is preserved by the linear

transformations A′ = diag[ζ, ζ9, ζ4, ζ3, ζ5] and B′ =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 . It is not preserved

by C ′ =


a0 a1 a2 a3 a4
a3 a4 a0 a1 a2
a1 a2 a3 a4 a0
a4 a0 a1 a2 a3
a2 a3 a4 a0 a1

 but transformed under C ′ to
∑

i∈Z/5Z(y2i yi+1 + y3i ), where

a1 = −(ζ + 1)2, a3 = a31, a0 = a33, a2 = a30 and a4 = a32. In particular,
∑

i∈Z/5Z y
2
i yi+1 is

invariant under the action of M11 = 〈A′, B′, C ′〉 modulo cubes of linear forms.

Remark 4. The cubic 4-fold τ3 −
∑

i∈Z/5Z y
2
i yi+1 = 0 ⊂ P5

(τy) is interesting over the complex
number field C in the sense that its automorphism group PSL(2, 11) is maximal among all finite
groups with a symplectic action on a smooth cubic 4-fold ([9]). Similar holds for for Klein’s cubic
3-fold

∑
i∈Z/5Z y

2
i yi+1 = 0 ⊂ P4

(y) ([13]).

1More precisely, the 11 cusps locate at

(x0 : . . . : x4 : z) = (10000; 0), (01000; 0), (00100; 0), (00010; 0), (00001; 0), (−1− 1− 1− 1− 1; 0),

(01− 1− 11; 1), (101− 1− 1; 1), (−1101− 1; 1), (−1− 1101; 1), (1− 1− 110; 1),

which are the 11 points 1, 2, 3, 4, 5, 6 and a, b, c, d, e in the notation of Coxeter-Todd ([12]).
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We make the statement in the lemma into that over F3 by the following change of variables:

y0 = ζx0 + ζ9x1 + ζ4x2 + ζ3x3 + ζ5x4

y1 = ζ9x0 + ζ4x1 + ζ3x2 + ζ5x3 + ζx4

y2 = ζ4x0 + ζ3x1 + ζ5x2 + ζx3 + ζ9x4(4)

y3 = ζ3x0 + ζ5x1 + ζx2 + ζ9x3 + ζ4x4

y4 = ζ5x0 + ζx1 + ζ9x2 + ζ4x3 + ζ3x4

In fact, Klein’s cubic form and the generators A′, B′, C ′ of M11 are transformed to∑
i∈Z/5Z

(−x3i + xi−1xixi+1 − xi−2xixi+2),(5)

A =


−1 −1 0 0 1
−1 1 0 0 0
1 0 0 1 1
0 1 0 0 −1
1 −1 1 0 −1

 , B =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 and C =


0 0 −1 0 0
0 0 0 0 −1
0 −1 0 0 0
0 0 0 −1 0
−1 0 0 0 0

 .

Thus we have the following reformulation over F3 of Adler’s Lemma 3:

Lemma 5. The cubic form (5) of 5 variables is preserved by the linear transformations A and B.
It is not preserved by C but transformed under C to∑

i∈Z/5Z

(x3i + xi−1xixi+1 − xi−2xixi+2).

The original Lemma 3 is nothing but the expression by taking the eigenvectors of C as basis.

2. CUBIC 4-FOLDS WITH ACTION OF M11 OVER F3

2.1. Golay cocodes. Here, following [4] and [5], we understand the Mathieu group M11 is the
group of linear transformations of the ternary Golay code [11, 6, 5], which is a certain 6-dimensional
vector subspace C11 ⊂

⊕
i∈F11

F3 · ei of the 11-dimensional vector space with basis {ei | i ∈ F11}.
M11 acts on the basis as signed permutations, and is generated by the following three transforma-
tions A,B and C:

A : ei 7→ ei+1, B : ei 7→ e3i, (i ∈ F11)

C : e1 7→ −e5 7→ e9 7→ −e4 7→ e1; e3 7→ −e3;(6)
e6 7→ e10 7→ e8 7→ e7 7→ e6; e2 7→ e2.

The representation space V5 of Lemma 5 is the space of cocodes, namely, the quotient space(⊕
i∈F11

F3 · ei
)
/C11. Since C11 is a cyclic code with generating polynomial X5 + X4 − X3 +

X2−1 = 0, the space of cocodes is naturally identified with the finite field F243 as F3-vector space.
Though a standard choice of basis is {1, ζ, ζ2, ζ3, ζ4} as taken in [1], we take here {ζ, ζ9, ζ4, ζ3, ζ5}
as basis, instead.



4 SHIGERU MUKAI

2.2. From 5 variables to 6. We extend the cubic form in the previous section into that of 6 vari-
ables which is truly invariant under M11. For that purpose, we must extend the (linear) representa-
tion V5 ofM11 in the previous section to a 6-dimensional one V6 so that it contains anM11-invariant
vector ν∞ and we have an exact sequence

(7) 0→ F3 · ν∞ → V6 → V5 → 0

of M11-modules (which does not split).
Our construction of the V6 is again a space of cocodes. Now we consider the extended Golay

code [12, 6, 6], which is the extension of (perfect) Golay code [11, 6, 5] by zero-sum condition. We
consider it as a 6-dimensional subspace

C12 ⊂
⊕

i∈P1(F11)

F3 · ei

and take V6 as the quotient vector space
(⊕

i∈P1(F11)
F3 · ei

)
/C12. The code C12 is self-dual and

hence the space of cocodes and C12 are dual to each other. The set P1(F11) of indices are divided
into two parts:

Q = {0, 1, 3, 4, 5, 9} and N = {∞, 2, 6, 7, 8, X}, X := 10,

according as quadratic residue or non-residue. We denote the image of ei in the space of cocodes
by νi. We take νi, i ∈ Q \ {0} and ν∞ as its basis. M11 coincides with the stabilizer group of M12

at ν∞.
The ternary Golay codes C12 contains 12 elemants wj ∈ P1(F11), called total words, including

(8) w∞ = −
∑

i∈P1(F11)

ei and w0 =
∑
i∈Q

ei −
∑
i∈N

ei.

(Other total words wj’s are just the translations of w0.) Then M11 acts transitively on the set
wj ∈ P1(F11) of 12 total words. Hence we have the exact sequence (7) of M11-modules by setting

V6 =

 ⊕
i∈P1(F11)

F3 · ei

 /C12, V5 =

⊕
i∈F11

F3 · ei

 /C11

The extended transformation Ã, B̃ is defined by putting e∞ 7→ e∞, that is, just the trivial extension.
Only the extension C̃ of C is non-trivial, and it is induced by the permutation of the 12 total words:

(0∞)(12345)(6789X).

Proof of Theorem 2. The invariance under A and B are clear from that under A′ and B′. The linear
transformation C interchanges two total words w0 and w∞ in (8). It acts on x0, x1, x2, x3, x4 by
permutation composed with negative by (6). Hence, by Lemma 5, it transforms

(τ − x0 − x1 − x2 − x3 − x4)3 +
∑

i∈Z/5Z

(xi−1xixi+1 − xi−2xixi+2)
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into

(τ +x0 +x1 +x2 +x3 +x4)
3 + (x0 +x1 +x2 +x3 +x4)

3 +
∑

i∈Z/5Z

(xi−1xixi+1−xi−2xixi+2),

which means the desired invariance. �

3. CONJECTURAL SYMPLECTIC 8-FOLD AS MODULI OF BUNDLES ON FERMAT QUARTIC

3.1. Two questions. The Fermat quartic surface Fer4 :
∑4

1 x
4
i = 0 ⊂ P3

(x), has an action of the
finite unitary group PGU4(3). The action of a subgroup of index 4, namely, of U4(3) := PSU4(3)
is symplectic. Though U4(3) does not contain M11 as a subgroup, the moduli space MFer(v) of
(semi-)stable sheaves on the Fermat quartic Fer4 might have a birational action of M11, or even a
much larger finite simple group, for suitable Mukai vector v = (r, ∗, s) ∈ Z⊕ Pic⊕ Z. A hopeful
candidate, in view of symmetry of the Leech lattice, is 8-dimensional, i.e., 〈v2〉 = 6, and the group
containing M11 should be the McLaughlin group McL.

Question 6. Does the moduli space MFer(3, α,−3) have a birational action of McL, where α is a
(−12)-divisor class attached to Segre’s hemisystem (see §3.2)?

McL contains simple groups U4(3) and M11 as maximal subgroups, and hence is generated by
these two subgroups. The action of the former on the moduli is not surprising since its Q-twisted
expression is MFer(3, 0,−1) (Proposition 9). Seeking after an action of the latter, we pose the
following

Question 7. Is MFer(3, α,−3) birational to the conjectural LLSvS 8-fold (see [10] but only over
C under some condition) associated with the M11-cubic 4-fold V ?

3.2. Segre’s hemisystem and the McLaughlin graph in a Picard lattice. The Fermat quartic
surface Fer4 has 280 F9-(rational) points, with weight distribution 2: 24, 3: 64 and 4: 192. For
each F9-point p, the tangent plane Tp cuts out the union of 4 lines passing through p from Fer4.
Since every line has 10 F9-points, the number of lines in Fer4 is 280 × 4/10 = 112. The Picard
lattice is generated by these line classes. Its discriminant group Disc(Fer4) is isomorphic to Z/3⊕
Z/3 (see e.g. [8]).

Segre’s hemisystem is a set H of 56 lines, among the 112, which covers Fer4(F9) doubly, that
is, every F9-point is contained in exactly two members of H . There are 648 hemisystems and they
are divided into 4 orbits of length 162 by the action of U4(3). These 4 orbits corresponds to the
four elements of norm 2/3 modulo 2Z in the discriminant group Disc(Fer4) as we will see below.
We chose one of them. Then the intersection size |H ∩H ′| of two among our 162 hemisystems are
either 20 or 32 ([3, §10.34]).

Proposition 8. ([3, §10.61]) The graph with the following three types of vertices and a suitable
adjacency is a strongly regular graph srg(275, 112, 30, 56), isomorphic to the McLaughlin graph:
(i)∞, (ii) the 112 lines in Fer4 and (iii) the 162 hemisystems.

We realize this graph inside the extended Picard lattice U(−1)⊕PicFer4 of the Fermat quartic
surface, or more precisely, in the sublattice (3, α,−3)⊥, which is expected to be the Picard lattice
of the conjectural moduli symplectic 8-fold ([11], [14], [15] but only over C). Here U denotes the
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standard hyperbolic lattice of rank 2. The intersection pairing (D.D′) on the Picard lattice extends
to the orthogonal sum Z⊕ Pic⊕ Z obviously but with changing the sign of U , namely,

(9) 〈(r,D, s), (r′, D′, s′)〉 = −rs′ + (D.D′)− sr′, (r, s), (r′, s′) ∈ U(−1).

Now we define a divisor class for a hemisystem H . Consider the sum
∑

m∈H m of its all members
in the Picard grup PicFer4. Then we have

(10) (
∑
m∈H

m. l) =

{
8 if l ∈ H ,
20 otherwise.

In particular,
∑

m∈H m is divisible by 4 in the Picard group. So we define

αH := 2h− 1

4

∑
m∈H

m ∈ PicFer4,

where h is the hyperplane section class of Fer4. Since (αH .l) is divisible by 3 for all lines l,
αH/3 defines an element in the discriminant group, whose norm is 2/3 since (α2

H) = −12. The
following is equivalent to the preceding proposition:

Proposition 9. The graph on the following three types of (−2)-vectors in (3, 0,−1)⊥⊗Q, adjacent
when non-orthogonal, is isomorphic to the McLaughlin graph:

• (3, h, 1),
• (0, l, 0) for the 112 lines l in Fer4 and
• (1,−αH

3 ,
1
3) for the 162 hemisystems H chosen as above.

Geometrically, these are the Mukai vectors of the rank 3 bundle TP3(−1) restricted to Fer4,
torsion sheaves supported on lines and Q-line bundles on Fer4, respectively.

Now we fix a hemisystem F among our 162, put α = αF and take twist by tensor product of
the Q-line bundle OFer(α3 ). Then all the vertices in the proposition become integral. Since the the
tensor of a line bundle preserves the inner product (9), we have

Corollary 10. The graph on the following three types of (−2) Mukai vectors in (3, α,−3)⊥, adja-
cent when non-orthogonal, is isomorphic to the McLaughlin graph:

• (3, h+ α,−3),
• (0, l, ∗) for the 112 lines l in Fer4 and
• (1, α−αH

3 , ∗∗) for the 162 hemisystems H ,
where ∗ is equal to 0 if l ∈ F and 1 otherwise, and ∗∗ is equal to 1,−1,−2 according as H =
F, |H ∩ F | = 20 and |H ∩ F | = 32.

Proof. α−αH is divisible by 3 since both α/3 and αH/3 defines the same element in Disc(Fer4).
Hence the vertices are Mukai vectors of a rank 3 bundles, torsion sheaves and the 162 line bundles
OFer(α−αH

3 ). �

Remark 11. The McLaughlin graph is realized in the Leech lattice Λ using a triangle of type 223
([4, p.100]). Hence the corollary can be proved using the construction of Λ from the Niemeier
lattice of type 12A2 in the way of Borcherds [2].
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Remark 12. Two more strongly regular graphs are similarly realized by taking (−2) Mukai vectors
as their vertices in characteristic 2 and 5, which will be discussed elsewhere.
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