$\operatorname{RIMS-1987}$

Cubic fourfolds with eleven cusps and a related moduli space

By

Shigeru MUKAI

 $\underline{\text{October } 2024}$

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

CUBIC FOURFOLDS WITH ELEVEN CUSPS AND A RELATED MODULI SPACE

SHIGERU MUKAI

To Manfred Lehn

ABSTRACT. First we construct a cubic 4-fold whose singularities are 11 cusps and which has an action of the Mathieu group M_{11} , all over the ternary field \mathbb{F}_3 . We next consider a certain moduli space of bundles on a supersingular K3 surface of Artin invariant one in characteristic 3. We show that it has 275 (-2) Mukai vectors which form the McLaughlin graph, and ask questions on it and on its relation with our M_{11} -cubic 4-fold.

We work over an algebraically closed field in characteristic 3, but varieties are mostly defined over \mathbb{F}_3 or \mathbb{F}_9 . A general inseparable triple covering

(1)
$$V \to \mathbb{P}^4_{(vwxyz)}, \quad \tau^3 = G(v, w, x, y, z), \quad \deg G = 3.$$

of the projective 4-space is a cubic 4-fold in $\mathbb{P}^5_{(\tau v w x y z)}$ with 11 cusps, i.e., simple singularities of type A_2 (since $c_4(\Omega_{\mathbb{P}^4}(3)) = 11$). An example with high symmetry is obtained from the Segre cubic 3-fold

$$Seg^{3}: \sum_{i=1}^{6} x_{i} = \sum_{1 \le i < j < k \le 6} x_{i}x_{j}x_{k} = 0,$$

which has the maximal number (=10) of nodes (e.g., [6]).

Example 1. The inseparable triple covering

(2)
$$Seg^4 \to \mathbb{P}^4, \quad \tau^3 = \sum_{1 \le i < j < k \le 6} x_i x_j x_k, \quad \text{with} \quad \mathbb{P}^4 : \sum_{i=1}^6 x_i = 0 \subset \mathbb{P}^5_{(x)},$$

with formal branch Seg^3 has 10 cusps over its nodes, and one more at $(x : \tau) = (111111 : -1)$.

The automorphism group \mathfrak{S}_6 of Seg^4 (and also of Seg^3) acts 11 cusps with two orbits of length 10 and 1. A little bit surprisingly there is a *more symmetric* cubic 4-fold with 11 cusps in the sense that the automorphism group acts transitively on the cusps.

The following is our main result of this note, and is regarded as a characteristic 3 analogue of the fact that the Fermat cubic 4-fold has an action of the Mathieu group M_{22} over \mathbb{F}_4 and the M_{22} -action on a set of 22 planes in it is (triply) transitive ([7], [4, p. 39]):

1

Partly supported by JSPS KAKENHI Grant Number JP20H00112 and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

SHIGERU MUKAI

Theorem 2. The cubic 4-fold

(3)
$$V: z^3 = \sum_{i \in \mathbb{Z}/5\mathbb{Z}} (x_{i-1}x_ix_{i+1} - x_{i-2}x_ix_{i+2}) \quad \text{in} \quad \mathbb{P}^5_{(xz)}$$

has an action of the Mathieu group M_{11} over \mathbb{F}_3 (via the extended ternary Golay code [12, 6, 6]). Moreover, V has cusps at 11 \mathbb{F}_3 -points¹, on which the M_{11} acts (quadruply) transitively. V is smooth elsewhere.

Two cubic 4-folds are closely related with a supersingular K3 surface of Artin invariant one, whose standard projective model is the Fermat quartic surface. Though it does not have an action of M_{11} , there is a chance for a suitable moduli space of bundles over it to have a birational action of M_{11} . In §3, we give an 8-dimensional candidate and ask two questions.

1. PRELIMINARY

The Mathieu group has a presentation

$$\langle a, b, c, | a^{11} = b^5 = c^4 = (ac)^3 = 1, a^b = a^4, b^c = b^2 \rangle$$

with 3 generators ([4, p.18]). The following is our starting point:

Lemma 3. ([1, Lemma 3.1]) The Klein's cubic form $\sum_{i \in \mathbb{Z}/5\mathbb{Z}} y_i^2 y_{i+1}$ is preserved by the linear $\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

transformations
$$A' = \operatorname{diag}[\zeta, \zeta^9, \zeta^4, \zeta^3, \zeta^5]$$
 and $B' = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$. It is not preserved

$$by C' = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & a_4 \\ a_3 & a_4 & a_0 & a_1 & a_2 \\ a_1 & a_2 & a_3 & a_4 & a_0 \\ a_4 & a_0 & a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 & a_0 & a_1 \end{pmatrix} but transformed under C' to \sum_{i \in \mathbb{Z}/5\mathbb{Z}} (y_i^2 y_{i+1} + y_i^3), where$$

 $a_1 = -(\zeta + 1)^2$, $a_3 = a_1^3$, $a_0 = a_3^3$, $a_2 = a_0^3$ and $a_4 = a_2^3$. In particular, $\sum_{i \in \mathbb{Z}/5\mathbb{Z}} y_i^2 y_{i+1}$ is invariant under the action of $M_{11} = \langle A', B', C' \rangle$ modulo cubes of linear forms.

Remark 4. The cubic 4-fold $\tau^3 - \sum_{i \in \mathbb{Z}/5\mathbb{Z}} y_i^2 y_{i+1} = 0 \subset \mathbb{P}^5_{(\tau y)}$ is interesting over the complex number field \mathbb{C} in the sense that its automorphism group PSL(2, 11) is maximal among all finite groups with a symplectic action on a smooth cubic 4-fold ([9]). Similar holds for for Klein's cubic 3-fold $\sum_{i \in \mathbb{Z}/5\mathbb{Z}} y_i^2 y_{i+1} = 0 \subset \mathbb{P}^4_{(y)}$ ([13]).

¹More precisely, the 11 cusps locate at

$$(x_0:\ldots:x_4:z) = (10000;0), (01000;0), (00100;0), (00010;0), (00001;0), (-1-1-1-1-1;0), (01-1-11;1), (101-1-1;1), (-1101-1;1), (-1-1101;1), (1-1-110;1), (-1-110;$$

which are the 11 points 1, 2, 3, 4, 5, 6 and a, b, c, d, e in the notation of Coxeter-Todd ([12]).

2

CUBICS-11CUSPS.TEX

We make the statement in the lemma into that over \mathbb{F}_3 by the following change of variables:

(4)

$$y_{0} = \zeta x_{0} + \zeta^{9} x_{1} + \zeta^{4} x_{2} + \zeta^{3} x_{3} + \zeta^{5} x_{4}$$

$$y_{1} = \zeta^{9} x_{0} + \zeta^{4} x_{1} + \zeta^{3} x_{2} + \zeta^{5} x_{3} + \zeta x_{4}$$

$$y_{2} = \zeta^{4} x_{0} + \zeta^{3} x_{1} + \zeta^{5} x_{2} + \zeta x_{3} + \zeta^{9} x_{4}$$

$$y_{3} = \zeta^{3} x_{0} + \zeta^{5} x_{1} + \zeta x_{2} + \zeta^{9} x_{3} + \zeta^{4} x_{4}$$

$$y_{4} = \zeta^{5} x_{0} + \zeta x_{1} + \zeta^{9} x_{2} + \zeta^{4} x_{3} + \zeta^{3} x_{4}$$

In fact, Klein's cubic form and the generators A', B', C' of M_{11} are transformed to

(5)
$$\sum_{i \in \mathbb{Z}/5\mathbb{Z}} (-x_i^3 + x_{i-1}x_ix_{i+1} - x_{i-2}x_ix_{i+2}),$$
$$A = \begin{pmatrix} -1 & -1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 1 & -1 & 1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \text{ and } C = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Thus we have the following reformulation over \mathbb{F}_3 of Adler's Lemma 3:

Lemma 5. The cubic form (5) of 5 variables is preserved by the linear transformations A and B. It is not preserved by C but transformed under C to

$$\sum_{i \in \mathbb{Z}/5\mathbb{Z}} (x_i^3 + x_{i-1}x_ix_{i+1} - x_{i-2}x_ix_{i+2}).$$

The original Lemma 3 is nothing but the expression by taking the eigenvectors of C as basis.

2. Cubic 4-folds with action of M_{11} over \mathbb{F}_3

2.1. **Golay cocodes.** Here, following [4] and [5], we understand the Mathieu group M_{11} is the group of linear transformations of the ternary Golay code [11, 6, 5], which is a certain 6-dimensional vector subspace $C_{11} \subset \bigoplus_{i \in \mathbb{F}_{11}} \mathbb{F}_3 \cdot e_i$ of the 11-dimensional vector space with basis $\{e_i \mid i \in \mathbb{F}_{11}\}$. M_{11} acts on the basis as signed permutations, and is generated by the following three transformations A, B and C:

(6)

$$A: e_i \mapsto e_{i+1}, \quad B: e_i \mapsto e_{3i}, (i \in \mathbb{F}_{11})$$

$$C: e_1 \mapsto -e_5 \mapsto e_9 \mapsto -e_4 \mapsto e_1; \ e_3 \mapsto -e_3;$$

$$e_6 \mapsto e_{10} \mapsto e_8 \mapsto e_7 \mapsto e_6; \ e_2 \mapsto e_2.$$

The representation space V_5 of Lemma 5 is the space of cocodes, namely, the quotient space $\left(\bigoplus_{i \in \mathbb{F}_{11}} \mathbb{F}_3 \cdot e_i\right) / \mathcal{C}_{11}$. Since \mathcal{C}_{11} is a cyclic code with generating polynomial $X^5 + X^4 - X^3 + X^2 - 1 = 0$, the space of cocodes is naturally identified with the finite field \mathbb{F}_{243} as \mathbb{F}_3 -vector space. Though a standard choice of basis is $\{1, \zeta, \zeta^2, \zeta^3, \zeta^4\}$ as taken in [1], we take here $\{\zeta, \zeta^9, \zeta^4, \zeta^3, \zeta^5\}$ as basis, instead.

SHIGERU MUKAI

2.2. From 5 variables to 6. We extend the cubic form in the previous section into that of 6 variables which is truly invariant under M_{11} . For that purpose, we must extend the (linear) representation V_5 of M_{11} in the previous section to a 6-dimensional one V_6 so that it contains an M_{11} -invariant vector ν_{∞} and we have an exact sequence

(7)
$$0 \to \mathbb{F}_3 \cdot \nu_\infty \to V_6 \to V_5 \to 0$$

of M_{11} -modules (which does not split).

Our construction of the V_6 is again a space of cocodes. Now we consider the extended Golay code [12, 6, 6], which is the extension of (perfect) Golay code [11, 6, 5] by zero-sum condition. We consider it as a 6-dimensional subspace

$$\mathcal{C}_{12} \subset \bigoplus_{i \in \mathbb{P}^1(\mathbb{F}_{11})} \mathbb{F}_3 \cdot e_i$$

and take V_6 as the quotient vector space $\left(\bigoplus_{i \in \mathbb{P}^1(\mathbb{F}_{11})} \mathbb{F}_3 \cdot e_i\right) / \mathcal{C}_{12}$. The code \mathcal{C}_{12} is self-dual and hence the space of cocodes and \mathcal{C}_{12} are dual to each other. The set $\mathbb{P}^1(\mathbb{F}_{11})$ of indices are divided into two parts:

$$Q = \{0, 1, 3, 4, 5, 9\}$$
 and $N = \{\infty, 2, 6, 7, 8, X\}, X := 10,$

according as quadratic residue or non-residue. We denote the image of e_i in the space of cocodes by ν_i . We take $\nu_i, i \in Q \setminus \{0\}$ and ν_{∞} as its basis. M_{11} coincides with the stabilizer group of M_{12} at ν_{∞} .

The ternary Golay codes C_{12} contains 12 elemants $w_j \in \mathbb{P}^1(\mathbb{F}_{11})$, called *total words*, including

(8)
$$w_{\infty} = -\sum_{i \in \mathbb{P}^1(\mathbb{F}_{11})} e_i \quad \text{and} \quad w_0 = \sum_{i \in Q} e_i - \sum_{i \in N} e_i.$$

(Other total words w_j 's are just the translations of w_0 .) Then M_{11} acts transitively on the set $w_j \in \mathbb{P}^1(\mathbb{F}_{11})$ of 12 total words. Hence we have the exact sequence (7) of M_{11} -modules by setting

$$V_6 = \left(\bigoplus_{i \in \mathbb{P}^1(\mathbb{F}_{11})} \mathbb{F}_3 \cdot e_i\right) / \mathcal{C}_{12}, \quad V_5 = \left(\bigoplus_{i \in \mathbb{F}_{11}} \mathbb{F}_3 \cdot e_i\right) / \mathcal{C}_{11}$$

The extended transformation \tilde{A}, \tilde{B} is defined by putting $e_{\infty} \mapsto e_{\infty}$, that is, just the trivial extension. Only the extension \tilde{C} of C is non-trivial, and it is induced by the permutation of the 12 total words:

 $(0\infty)(12345)(6789X).$

Proof of Theorem 2. The invariance under A and B are clear from that under A' and B'. The linear transformation C interchanges two total words w_0 and w_∞ in (8). It acts on x_0, x_1, x_2, x_3, x_4 by permutation composed with negative by (6). Hence, by Lemma 5, it transforms

$$(\tau - x_0 - x_1 - x_2 - x_3 - x_4)^3 + \sum_{i \in \mathbb{Z}/5\mathbb{Z}} (x_{i-1}x_ix_{i+1} - x_{i-2}x_ix_{i+2})$$

into

$$(\tau + x_0 + x_1 + x_2 + x_3 + x_4)^3 + (x_0 + x_1 + x_2 + x_3 + x_4)^3 + \sum_{i \in \mathbb{Z}/5\mathbb{Z}} (x_{i-1}x_ix_{i+1} - x_{i-2}x_ix_{i+2}),$$

which means the desired invariance.

3. CONJECTURAL SYMPLECTIC 8-FOLD AS MODULI OF BUNDLES ON FERMAT QUARTIC

3.1. Two questions. The Fermat quartic surface $Fer_4 : \sum_{1}^{4} x_i^4 = 0 \subset \mathbb{P}^3_{(x)}$, has an action of the finite unitary group $PGU_4(3)$. The action of a subgroup of index 4, namely, of $U_4(3) := PSU_4(3)$ is symplectic. Though $U_4(3)$ does not contain M_{11} as a subgroup, the moduli space $\overline{M}_{Fer}(v)$ of (semi-)stable sheaves on the Fermat quartic Fer_4 might have a birational action of M_{11} , or even a much larger finite simple group, for suitable Mukai vector $v = (r, *, s) \in \mathbb{Z} \oplus \text{Pic} \oplus \mathbb{Z}$. A hopeful candidate, in view of symmetry of the Leech lattice, is 8-dimensional, i.e., $\langle v^2 \rangle = 6$, and the group containing M_{11} should be the McLaughlin group McL.

Question 6. Does the moduli space $\overline{M}_{Fer}(3, \alpha, -3)$ have a birational action of McL, where α is a (-12)-divisor class attached to Segre's hemisystem (see §3.2)?

McL contains simple groups $U_4(3)$ and M_{11} as maximal subgroups, and hence is generated by these two subgroups. The action of the former on the moduli is not surprising since its Q-twisted expression is $\overline{M}_{Fer}(3, 0, -1)$ (Proposition 9). Seeking after an action of the latter, we pose the following

Question 7. Is $\overline{M}_{Fer}(3, \alpha, -3)$ birational to the conjectural LLSvS 8-fold (see [10] but only over \mathbb{C} under some condition) associated with the M_{11} -cubic 4-fold V?

3.2. Segre's hemisystem and the McLaughlin graph in a Picard lattice. The Fermat quartic surface Fer_4 has 280 \mathbb{F}_9 -(rational) points, with weight distribution 2: 24, 3: 64 and 4: 192. For each \mathbb{F}_9 -point p, the tangent plane T_p cuts out the union of 4 lines passing through p from Fer_4 . Since every line has 10 \mathbb{F}_9 -points, the number of lines in Fer_4 is $280 \times 4/10 = 112$. The Picard lattice is generated by these line classes. Its discriminant group $\text{Disc}(Fer_4)$ is isomorphic to $\mathbb{Z}/3 \oplus \mathbb{Z}/3$ (see e.g. [8]).

Segre's hemisystem is a set H of 56 lines, among the 112, which covers $Fer_4(\mathbb{F}_9)$ doubly, that is, every \mathbb{F}_9 -point is contained in exactly two members of H. There are 648 hemisystems and they are divided into 4 orbits of length 162 by the action of $U_4(3)$. These 4 orbits corresponds to the four elements of norm 2/3 modulo $2\mathbb{Z}$ in the discriminant group $\text{Disc}(Fer_4)$ as we will see below. We chose one of them. Then the intersection size $|H \cap H'|$ of two among our 162 hemisystems are either 20 or 32 ([3, §10.34]).

Proposition 8. ([3, §10.61]) The graph with the following three types of vertices and a suitable adjacency is a strongly regular graph srg(275, 112, 30, 56), isomorphic to the McLaughlin graph: (i) ∞ , (ii) the 112 lines in Fer₄ and (iii) the 162 hemisystems.

We realize this graph inside the extended Picard lattice $U(-1) \oplus \text{Pic } Fer_4$ of the Fermat quartic surface, or more precisely, in the sublattice $(3, \alpha, -3)^{\perp}$, which is expected to be the Picard lattice of the conjectural moduli symplectic 8-fold ([11], [14], [15] but only over \mathbb{C}). Here U denotes the

SHIGERU MUKAI

standard hyperbolic lattice of rank 2. The intersection pairing (D.D') on the Picard lattice extends to the orthogonal sum $\mathbb{Z} \oplus \operatorname{Pic} \oplus \mathbb{Z}$ obviously but with changing the sign of U, namely,

(9)
$$\langle (r, D, s), (r', D', s') \rangle = -rs' + (D, D') - sr', \quad (r, s), (r', s') \in U(-1).$$

Now we define a divisor class for a hemisystem H. Consider the sum $\sum_{m \in H} m$ of its all members in the Picard grup $\operatorname{Pic} Fer_4$. Then we have

(10)
$$\left(\sum_{m\in H} m.\,l\right) = \begin{cases} 8 & \text{if } l\in H,\\ 20 & \text{otherwise} \end{cases}$$

In particular, $\sum_{m \in H} m$ is divisible by 4 in the Picard group. So we define

$$\alpha_H := 2h - \frac{1}{4} \sum_{m \in H} m \in \operatorname{Pic} Fer_4,$$

where h is the hyperplane section class of Fer_4 . Since (α_H, l) is divisible by 3 for all lines l, $\alpha_H/3$ defines an element in the discriminant group, whose norm is 2/3 since $(\alpha_H^2) = -12$. The following is equivalent to the preceding proposition:

Proposition 9. The graph on the following three types of (-2)-vectors in $(3, 0, -1)^{\perp} \otimes \mathbb{Q}$, adjacent when non-orthogonal, is isomorphic to the McLaughlin graph:

- (3, h, 1),
- (0, l, 0) for the 112 lines l in Fer₄ and
- $(1, -\frac{\alpha_H}{3}, \frac{1}{3})$ for the 162 hemisystems H chosen as above.

Geometrically, these are the Mukai vectors of the rank 3 bundle $T_{\mathbb{P}^3}(-1)$ restricted to Fer_4 , torsion sheaves supported on lines and \mathbb{Q} -line bundles on Fer_4 , respectively.

Now we fix a hemisystem F among our 162, put $\alpha = \alpha_F$ and take twist by tensor product of the Q-line bundle $\mathcal{O}_{Fer}(\frac{\alpha}{3})$. Then all the vertices in the proposition become integral. Since the the tensor of a line bundle preserves the inner product (9), we have

Corollary 10. The graph on the following three types of (-2) Mukai vectors in $(3, \alpha, -3)^{\perp}$, adjacent when non-orthogonal, is isomorphic to the McLaughlin graph:

- $(3, h + \alpha, -3)$,
- (0, l, *) for the 112 lines l in Fer₄ and
 (1, α-α_H/3, **) for the 162 hemisystems H,

where * is equal to 0 if $l \in F$ and 1 otherwise, and ** is equal to 1, -1, -2 according as H = $F, |H \cap F| = 20 \text{ and } |H \cap F| = 32.$

Proof. $\alpha - \alpha_H$ is divisible by 3 since both $\alpha/3$ and $\alpha_H/3$ defines the same element in Disc(*Fer*₄). Hence the vertices are Mukai vectors of a rank 3 bundles, torsion sheaves and the 162 line bundles $\mathcal{O}_{Fer}(\frac{\alpha-\alpha_H}{3}).$

Remark 11. The McLaughlin graph is realized in the Leech lattice Λ using a triangle of type 223 ([4, p.100]). Hence the corollary can be proved using the construction of Λ from the Niemeier lattice of type $12A_2$ in the way of Borcherds [2].

CUBICS-11CUSPS.TEX

Remark 12. Two more strongly regular graphs are similarly realized by taking (-2) Mukai vectors as their vertices in characteristic 2 and 5, which will be discussed elsewhere.

REFERENCES

- [1] Adler, A.: The Mathieu group M_{11} and the modular curve X(11), Proc. London Math. Soc. **74**(1997), 1–28.
- [2] Borcherds, R.E.: The Leech lattice, Proc. Royal Soc. A398(1985), 365–376.
- [3] Brouwer, A.E. and Maldeghem, F. Van: Strongly regular graph, Cambridge Univ, Press, 2022.
- [4] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Willson, R.A.: Atlas of finite groups, Clarendon Press, Oxford, 1985.
- [5] Conway, J. and Sloane, N.: Sphere packings, lattices and groups, 2nd edition, Grundlehren der Mathematischen Wissenschaften 290, Springer–Verlag, New York 1988.
- [6] Dolgachev, I.: Corrado Segre and nodal cubic threefolds, in "From Classical to Modern Algebraic Geometry", G. Casnati et al. (eds.), Springer Int'l Publ., Switzerland, 2016, pp. 429–450.
- [7] Jónsson, W. and McKay, J.: More about the Mathieu group M_{22} , Canad. J. Math., 28(1976), 929–937.
- [8] Kondo, S. and Shimada, I.: The automorphism group of a supersingular K3 surface of Artin invariant 1 in characteristic 3, Int'l Math. Res. Notices, 2014(2014), 1885–1924.
- [9] Laza, R. and Zheng, Z.: Automorphisms and periods of cubic fourfolds, Math, Z. 300(2022), 1455–1507.
- [10] Lehn, M., Lehn, Ch., Sorger, Ch. and van Straten, D.: Twisted cubics on cubic fourfolds, J. Reine Angew. Math. 731(2017), 87–128.
- [11] Mukai, S.: On the moduli space of bundles on K3 surfaces. I, in "Vector Bundles on Algebraic Varieties (Bombay, 1984)", Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413.
 - eds, J. Keum and S. Kondo, Contemp. Math. 422(2007), 187–211.
- [12] Todd, J.A.: On representations of the Mathieu groups as collineation groups, J. London Math. Soc. 34(1959), 406–416.
- [13] Wei, L. and Yu, X.: Automorphism groups of smooth cubic threefolds, J. Math. Soc. Japan, 74(2020), 1327–1343.
- [14] Yoshioka, K.: Irreducibility of moduli spaces of vector bundles on K3 surfaces, arXiv:math/9907001.
- [15] Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321(2001) 817-884.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN *Email address*: mukai@kurims.kyoto-u.ac.jp

Current address: Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing 100190, China