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Many e�ect systems for algebraic e�ect handlers are designed to guarantee that all invoked e�ects are handled

adequately. However, respective researchers have developed their own e�ect systems that di�er in how to

represent the collections of e�ects that may happen. This situation results in blurring what is required for the

representation and manipulation of e�ect collections in a safe e�ect system.

In this work, we present a language _EA equipped with an e�ect system that abstracts the existing e�ect

systems for algebraic e�ect handlers. The e�ect system of _EA is parameterized over e�ect algebras, which

abstract the representation and manipulation of e�ect collections in safe e�ect systems. We prove the type-and-

e�ect safety of _EA by assuming that a given e�ect algebra meets certain properties called safety conditions.

As a result, we can obtain the safety properties of a concrete e�ect system by proving that an e�ect algebra

corresponding to the concrete system meets the safety conditions. We also show that e�ect algebras meeting

the safety conditions are expressive enough to accommodate some existing e�ect systems, each of which

represents e�ect collections in a di�erent style. Our framework can also di�erentiate the safety aspects of the

e�ect collections of the existing e�ect systems. To this end, we extend _EA and the safety conditions to lift

coercions and type-erasure semantics, propose other e�ect algebras including ones for which no e�ect system

has been studied in the literature, and compare which e�ect algebra is safe and which is not for the extensions.
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engineering→ Control structures; Functional languages.
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1 Introduction

1.1 Background: E�ect Systems for Algebraic E�ect Handlers

Algebraic e�ect handlers [Plotkin and Pretnar 2009, 2013] enable implementing user-de�ned com-
putational e�ects, such as mutable states, exceptions, backtracking, and generators, and structuring
programs with them in a modular way. A signi�cant aspect of algebraic e�ect handlers is composi-
tionality. Because of the algebraicity inherited from algebraic e�ects [Kammar et al. 2013; Plotkin
and Power 2003], they allow composing multiple e�ects easily, unlike some other approaches to
user-de�ned e�ects, such as monads [Moggi 1991; Wadler 1998]. Another bene�t of algebraic e�ect
handlers is to separate the interfaces and implementations of e�ects. For example, the manipulation
of mutable states is expressed by two operations to set a new state and get the current state.
While a program manipulates states via these operations, their implementation can be determined
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dynamically by installing e�ect handlers. This separation of interfaces from implementations allows
writing e�ectful programs in a modular manner.

A key property expected in a statically typed language with algebraic e�ect handlers is type-and-
e�ect safety. In the presence of e�ect handlers, type safety ensures that the type of an operation is
matched with that of its implementation provided by an e�ect handler. E�ect safety [Brachthäuser
et al. 2020]1 states that every operation call is handled appropriately (i.e., it is performed under an
e�ect handler that provides the called operation with an implementation). Ensuring e�ect safety is
crucial to guarantee the safety of programs as an “unhandled operation” makes programs get stuck.

Several researchers have proposed type-and-e�ect systems (e�ect systems for short) to guarantee
type-and-e�ect safety. The e�ect systems in the literature are classi�ed roughly into two groups
according to how they represent collections of e�ects that programs may invoke. Certain e�ect
systems adapt sets to represent such collections [Bauer and Pretnar 2013; Forster et al. 2017; Kammar
et al. 2013; Kammar and Pretnar 2017; Saleh et al. 2018; Sekiyama et al. 2020]. Another approach is
using rows [Biernacki et al. 2019; Hillerström and Lindley 2016; Leijen 2017; Xie et al. 2022], which
allow manipulating the collections of e�ects in a more structured manner. For example, the e�ect
system of Hillerström and Lindley [2016] can represent the presence and absence of e�ects in rows,
and that of Leijen [2017] allows the duplication of e�ects with the same name in one row.

However, several issues are posed by the current situation that the e�ect systems in the di�erent
styles have been studied independently. First, it blurs what manipulation of e�ect collections
are indispensable to give an e�ect system. Second, it is unclear what property an e�ect system
requires for e�ect collections and their manipulation to guarantee e�ect safety. The lack of clarity
in these matters causes the problem that designers of new e�ect systems grope in the dark for the
representations of e�ect collections, and even if they come up with an appropriate representation,
they need to prove the desired properties, such as e�ect safety, from scratch. The third issue is that,
when extending languages with new features, one needs to build the metatheory for each of the
representations.

1.2 Our Work

This work aims to reveal the essence of safe e�ect systems for e�ect handlers. Because we are
interested in the shared nature of such e�ect systems, we avoid choosing one concrete representation
of e�ect collections. Instead, we provide an e�ect system that abstracts over the representations of
e�ect collections and can derive concrete e�ect systems by instantiating them.

More speci�cally, our e�ect system is parameterized over constructors andmanipulations of e�ect
collections. In general, e�ect systems for algebraic e�ect handlers require two kinds of manipulation.
One is sube�ecting, which overapproximates e�ects to adjust the e�ects of di�erent expressions.
The other is the removal of e�ects. An installed e�ect handler removes the e�ect it handles and
forwards the remaining e�ects to outer e�ect handlers. We formulate such manipulation of e�ect
collections required by e�ect systems as e�ect algebras2 and ensure that our e�ect system relies
only on the manipulations allowed on them.
However, some e�ect algebras make the e�ect system unsound. For instance, the e�ect system

with an e�ect algebra that allows sube�ecting to remove some e�ects may typecheck unsafe
programs (e.g., ones that cause unhandled e�ects). To prevent the use of such e�ect algebras,
we formalize safety conditions, which are su�cient conditions on e�ect algebras to guarantee

1The notion of e�ect safety itself and its importance have been recognized before the name was coined [Kammar et al. 2013].
2The name “e�ect algebra” has been used to specify algebraic structures found in quantum mechanics [Foulis and Bennett

1994] or to specify an algebraic structure in sequencing e�ects [Ivaskovic et al. 2020; Katsumata 2014], but we decided

to use this name because the present work is far from quantum mechanics and is easily distinguished from the work on

sequencing e�ects (see Section 9 for a comparison between them).
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e�ect safety; we call e�ect algebras meeting the conditions safe. We prove that the e�ect system
instantiated with any safe e�ect algebra enjoys e�ect safety as well as type safety—therefore, one
can ensure the safety of their e�ect systems only by showing the safety of the corresponding e�ect
algebras. Furthermore, we also show what kind of unsafe programs each condition excludes.
To show that our framework is expressive enough to capture the essence shared among sound

e�ect systems in the literature, we provide three instances of our e�ect system. The instances
represent e�ect collections by sets and two styles of rows—called simple rows [Hillerström and
Lindley 2016] and scoped rows [Leijen 2017]. We de�ne e�ect algebras for these three instances and
prove their safety, which means that all the instances satisfy type-and-e�ect safety. We also show
that these instances indeed model the existing e�ect systems [Hillerström and Lindley 2016; Leijen
2017; Pretnar 2015].

Once it turns out that all the instances satisfy the desired property, what are di�erences among
them? How can they be compared? To answer these questions, we make two changes on the
language: introduction of lift coercions [Biernacki et al. 2018, 2019] and employment of a type-

erasure semantics [Biernacki et al. 2019].
Lift coercions are a construct to prevent an operation call from being handled by the closest e�ect

handler, introduced to avoid accidental handling, that is, unintended handling of operation calls. To
reason about the e�ect of lift coercions soundly, e�ect collections should be able to express how
many e�ect handlers need to be installed on e�ectful computation. E�ect collections represented by
sets or simple rows cannot express it because they collapse multiple occurrences of the same e�ect
into one. Thus, the instances with sets or simple rows result in being unsound. By contrast, scoped
rows can encode the number of necessary e�ect handlers due to the ability to duplicate e�ects. To
enhance the importance of being able to represent the number of necessary e�ect handlers in the
presence of lift coercions, we propose a new instance where e�ect collections are represented by
multisets. Because multisets record the multiplicities of the elements they contain, it is expected
that the instance with multisets, as well as that with scoped rows, satis�es type-and-e�ect safety
even in the presence of lift coercions. We show that it is the case by providing an additional safety
condition for lift coercions, proving that any instance of the e�ect system enjoys type-and-e�ect
safety if it meets the new safety condition as well as the original ones, and showing that the e�ect
algebra for scoped rows and the one for multisets meet both the additional and original safety
conditions.

The second change is to adopt a type-erasure semantics, which di�ers from the original semantics
in the e�ect comparison in the dynamic search for e�ect handlers: the original semantics takes
into account what type parameters e�ects accompany to identify e�ects, while the type-erasure
semantics does not. This nature of type-erasure semantics makes the instances with sets and
multisets unsound because it is in con�ict with the nature of sets and multisets that the order of
elements is ignored. The row-based instances can be adapted to the type-erasure semantics by
restricting the commutativity in rows. Even for sets and multisets, we can give type-and-e�ect safe
instances based on them if we admit restriction on swapping elements.

These extensions demonstrate the bene�t of the abstraction brought by e�ect algebras: it enables
a formal comparison among di�erent forms of e�ect collections. Speci�cally, the abstraction clari�es
what e�ect collections make the e�ect system unsound. As shown in Section 7, e�ect algebras
where the composition of e�ect collections is idempotent (resp. commutative) allow typechecking
programs causing unhandled e�ects in adopting lift coercions (resp. the type-erasure semantics).
This kind of formal comparison helps one �nd how in�uential the di�erent representations of e�ect
collections are on e�ect safety.
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The contributions of this work are summarized as follows.
• We introduce an abstract e�ect system for algebraic e�ect handlers. It abstracts over e�ect
algebras, which characterize the representation and manipulation of e�ect collections in the
e�ect system.

• We de�ne safety conditions that enforce the e�ect manipulation allowed by e�ect algebras to
be safe.

• We prove that e�ect systems instantiated by safe e�ect algebras are type-and-e�ect safe.
• We extend the e�ect system to lift coercions and type-erasure semantics, de�ne an additional
safety condition for each of them, and prove that an instance of each extension is type-and-
e�ect safe provided that the e�ect algebra in the instance meets the speci�ed conditions.

• We give four examples of safe e�ect algebras and their variants for the type-erasure semantics.
The e�ect system presented in this paper supposes deep e�ect handlers, but we also have adapted

the system to shallow e�ect handlers [Kammar et al. 2013]; readers interested in the formulation
for shallow e�ect handlers are referred to the supplementary material.
The rest of this paper is organized as follows. Section 2 reviews algebraic e�ect handlers and

the existing e�ect systems, and overviews our approach. Section 3 introduces our type-and-e�ect
language and e�ect algebras. We also show the instances based on sets and rows as their examples.
Section 4 presents our calculus with the abstract e�ect system. Section 5 states safety conditions,
explains their necessities, and proves the type-and-e�ect safety of the calculus under the safe
conditions. Section 6 shows that some existing e�ect systems can be modeled soundly by the
corresponding instances of our calculus. Section 7 extends our language and the safety conditions
to lift coercions and type-erasure semantics and Section 8 compares the e�ect algebras given in
the paper. Section 9 describes additional related works and Section 10 concludes this paper with
future works. This paper only states certain key properties. All the auxiliary lemmas, proofs, and
full de�nition are given in the supplementary material.

2 Overview

This section reviews algebraic e�ect handlers and the existing e�ect systems for them, and provides
an overview of our approach to abstracting the e�ect systems.

2.1 Review: Algebraic E�ects and Handlers

Algebraic e�ect handlers are a means to implement user-de�ned e�ects in a modular way. The
interface of e�ects consists of operations, and their behavior is speci�ed by e�ect handlers.
For example, consider the following program that uses e�ect Choice (this paper uses ML-like

syntax to describe programs):

e�ect Choice :: {decide : Unit ⇒ Bool}

handleChoice

let x = if decide () then 20 else 10 in let y = if decide () then 5 else 0 in x − y

with { return z ↦→ z} ⊎ {decide z k ↦→ max (k true, k false)}

The �rst line declares e�ect label Choice with only one operation decide. As indicated by its type,
decide takes the unit value and returns a Boolean. The program invokes the operation in the third
line, determines numbers x and y depending on the results, and returns x − y �nally. To install an
e�ect handler, we use the handling construct handle–with.
In general, an expression handlel ewith h means that an expression e is executed under e�ect

handler h, which interprets the operations of e�ect label l invoked by e; we call e a handled expression.
An e�ect handler consists of one return clause and possibly several operation clauses. A return
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clause { return x ↦→ er }, which corresponds to { return z ↦→ z} in the example, is executed when a
handled expression evaluates to a value, which the body er references by x. An operation clause takes
the form {op x k ↦→ e}, which determines the implementation of operation op. When an operation
op is called with an argument v under an e�ect handler with operation clause {op x k ↦→ e}, the
reduction proceeds as follows. First, the remaining computation from the point of the operation call
up to the handle–with construct installing the e�ect handler is captured; such a computation is
called a delimited continuation. Then, the body e of the corresponding operation clause is executed
by passing the argument v as x and the delimited continuation as k.
In the example, the delimited continuation for the �rst call to decide is

handleChoice

let x = if □ then 20 else 10 in let y = if decide () then 5 else 0 in x − y

with { return z ↦→ z} ⊎ {decide z k ↦→ max (k true, k false)},

where □ denotes a hole. The functional form v1 of this delimited continuation is bound to variable k
in the operation clause of decide, and the program evaluates to max (v1 true, v1 false). The function
application v1 true �lls the hole of the delimited continuation with argument true. Thus, it reduces

handleChoice

let x = if true then 20 else 10 in let y = if decide () then 5 else 0 in x − y

with { return z ↦→ z} ⊎ {decide z k ↦→ max (k true, k false)},

where true comes from the argument. Then, it substitutes 20 for x, and then calls decide again. The
operation clause invokes the delimited continuation v2 captured by the second call with arguments
true and false. The applications v2 true and v2 false choose 5 and 0 as y and return the results of
20 − 5 and 20 − 0 (that is, 15 and 20), respectively. Then, the operation clause return max (15, 20)

as the result of v1 true. Similarly, the function application v1 false results in max (5, 10). Thus, the
entire program evaluates to max (max (15, 20), max (5, 10)) and then to 20 �nally.
While the operation clause in the above example uses captured continuations, e�ect handlers

can also discard them. Using this ability, we can implement exception handling, as the following
program that divides x by y if y is nonzero:

e�ect Exc :: {raise : Unit ⇒ Empty}

let g = _x : Int._y : Int. handleExc (if y = 0 then raise () else x/y)

with { return z ↦→ int_to_string z} ⊎ {raise p k ↦→ "divided by 0" }

In this example, Exc is an e�ect label consisting of one operation raise with type Unit ⇒ Empty.
Here, Empty is a type having no inhabitant, and we assume that an expression of this type can be
regarded as that of any type. The return clause of the e�ect handler means that, when the handled
expression evaluates to an integer, the handling construct returns its string version. Because the
operation clause for raise discards the continuations, the handling construct returns the string
"divided by 0" immediately once raise is called. Therefore, the operation call and e�ect handling
in this example correspond to excepting raising and handling, respectively.

2.2 E�ect Systems for Algebraic E�ects and Handlers

This section brie�y explains a role of e�ect systems for algebraic e�ect handlers and summarizes
the existing systems.
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2.2.1 A Role of E�ect Systems. A property ensured by many e�ect systems in the literature is e�ect
safety, which means that there is no unhandled operation. A simple example that breaks e�ect safety
is op v, which just invokes operation op. Because no e�ect handler for op is given—thus, there is
no way to interpret it—the program gets stuck. However, even if an operation call is enclosed by
handling constructs, e�ect safety can be broken. For example, consider the following program:

e�ect Exc :: {raise : Unit ⇒ Empty}

e�ect State :: {set : Int ⇒ Unit, get : Unit ⇒ Int}

let g = _x : Int. handleExc (if x = 0 then raise () else (let y = get ()/x in set y; y))

with { return z ↦→ int_to_string z} ⊎ {raise p k ↦→ "divided by 0" }

g 42 2

The e�ect label State is for mutable state, providing two operations set and get to update and get
the current values in the state. The function g divides the current value of the state (returned by
get) by x, sets the result to the state, and returns it if x is nonzero. All the operation calls in the
application g 42 2 at the last line are performed under the e�ect handler, but the call to get is not
handled. Hence, this example is not e�ect safe.
In general, the e�ect systems enjoying e�ect safety need to track which e�ect each expression

may invoke and which e�ect an e�ect handler targets. However, there are choices to represent
the e�ects caused by expressions. Thus far, mainly two styles of formalization of e�ect systems
have been studied: one is based on sets [Bauer and Pretnar 2013; Forster et al. 2017; Kammar et al.
2013; Kammar and Pretnar 2017; Saleh et al. 2018; Sekiyama et al. 2020], and the other is based on
rows [Biernacki et al. 2019; Hillerström and Lindley 2016; Leijen 2017; Xie et al. 2022].

2.2.2 Set-Based E�ect Systems. Set-based e�ect systems assign to an expression a set of e�ect labels
that the expression may invoke. For example, they assign to an operation call a set that includes the
e�ect label of the called operation. This is formalized as follows, where typing judgment Γ ⊢ e : A | B

means that expression e is of type A under typing context Γ and may invoke e�ects in set B:

Operation op : A ⇒ B belongs to e�ect l Γ ⊢ v : A | {}

Γ ⊢ op v : B | {l}

Sube�ecting, which is supported to unify the e�ects of multiple expressions (such as branches in
conditional expressions), is implemented by allowing the expansion of sets:

Γ ⊢ e : A | B B ⊆ B′

Γ ⊢ e : A | B′

In the presence of algebraic e�ect handlers, sets not only expand but also may shrink. Such
manipulation is performed in handling constructs:

Γ ⊢ e : A | B {l} ∪ B′ = B · · ·

Γ ⊢ handlel ewith h : B | B′

where the omitted premise states that h is a handler for e�ect l, translating a computation of type
A to type B. This inference rule is matched with the behavior of the handling constructs because
they can make handled e�ects l “unobservable.” The set-based e�ect systems de�ned in such a way
can soundly overapproximate the observable e�ects of programs and guarantee the e�ect safety of
expressions to which the empty set can be assigned.
For instance, consider the example in Section 2.2.1. A set-based e�ect system would assign the

set {Exc, State} to the handled expression if x = 0 then raise () else (let y = get ()/x in set y; y)
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because it calls operation raise of Exc or get and set of State. Because this expression is only
placed under the e�ect handler for Exc, the entire program g 42 2 could have set {State}. As this
set indicates that e�ect State may not be handled—and it is not actually—the e�ect system would
conclude that the program may not be e�ect safe. If the program were wrapped by a handling
construct with an e�ect handler for State, the empty set could be assigned to it; then, we could
conclude that the program is e�ect safe.

2.2.3 Row-Based E�ect Systems. Rows express collections of e�ect labels in a more structured way.
In a monomorphic setting, they are just sequences of e�ect labels, as ⟨l1, . . . , ln⟩, which is the row
consisting only of labels l1, . . . , ln. Rows are identi�ed up to the reordering of labels. For example,
⟨l1, l2⟩ equals ⟨l2, l1⟩.

3

Rows are often adapted in languages with e�ect polymorphism [Biernacki et al. 2019; Hillerström
and Lindley 2016; Leijen 2017]. In such languages, rows are allowed to end with e�ect variables d ,
such as ⟨l1, . . . , ln, d⟩, which means that an expression may invoke e�ects l1, . . . , ln as well as those
in an instance of e�ect variable d . This extension enables abstraction over rows by universally
quantifying e�ect variables. For example, consider function filtered_set, which, given an integer
list and a function 5 from integers to Booleans, �lters out the elements of the list using function
5 and then calls operation set of e�ect State on the remaining elements. Assume that the type of
functions from type A to type B with e�ects in row A is described as A →A B. Then, filtered_set
can be given type ∀d.(Int List× (Int →d Bool)) →⟨State,d ⟩ Unit. By instantiating d with ⟨l1, . . . , ln⟩,
this type can express that, when passed a function 5 that may cause e�ects l1, · · · , ln, filtered_set
may also cause them via the application of 5 .

Inference rules of the row-based e�ect systems are similar to those of set-based ones, except that
sube�ecting allows enlarging rows only when they do not end with e�ect variables (such rows are
called closed, while rows ending with e�ect variables are open [Hillerström and Lindley 2016]):

Γ ⊢ e : A | ⟨l1, . . . , ln⟩

Γ ⊢ e : A | ⟨l1, . . . , ln, A ⟩

Rows shrink in handling constructs where handled e�ects are removed:

Γ ⊢ e : A | A ⟨l, A ′⟩ = A · · ·

Γ ⊢ handlel ewith h : B | A ′

Similar to set-based ones, the row-based e�ect systems also ensure the e�ect safety of expressions
to which the empty row ⟨⟩ can be assigned. The reasoning about the example in Section 2.2.1 can
be done similarly to the case with simple rows.

These are the common core of the row-based e�ect systems, but they can be further classi�ed into
two groups depending on the formalism of rows. One is simple rows [Hillerström and Lindley 2016],
where each label can appear at most once in one row. In this formalism, any li in row ⟨l1, . . . , ln⟩

must be di�erent from lj for any j ≠ i. The other is scoped rows [Leijen 2017], where the same label
can appear in one row multiple times. Therefore, given a scoped row ⟨l1, . . . , ln⟩, any li is allowed
to be equivalent to some lj , unlike simple rows.

2.3 Our Work: Abstracting E�ect Systems

All e�ect systems based on sets, simple rows, or scoped rows exploit the structures of the respective
representations to augment and shrink the information about e�ects. However, it is not clear which
part of these structures essentially contributes to type-and-e�ect safety. To reveal it, we provide an
abstract model of e�ect collections and their manipulation and give an e�ect system relying only

3The label reordering might need to be restricted if e�ect labels are parameterized over, e.g., types, as discussed in Section 7.2.
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on the abstract model. We also state su�cient conditions on the abstract model to guarantee the
safety of our e�ect system. With the e�ect system depending only on the abstract nature of e�ect
collections, we reveal the essence of safe e�ect systems for algebraic e�ect handlers.
We abstract the e�ect collections and manipulation in the e�ect systems for algebraic e�ect

handlers by an e�ect algebra, which consists of an equivalence relation ∼ and a partial binary
operation ⊙4, which mean the equivalence over e�ects and e�ect concatenation, respectively (these
notations come from Morris and McKinna [2019]). For example, Y1 ⊙ Y2 ∼ Y3 intends to state that
the concatenation of e�ects Y1 and Y2 is equal to Y3. Our e�ect system is parameterized by e�ect
algebras and manipulate e�ect collections only through the operation ⊙ of a given e�ect algebra;
hence, it does not suppose any concrete e�ect manipulation.
To abstract over the representations of e�ect collections, our e�ect system assumes two e�ect

constructors. One is 0, which represents the empty collection and corresponds to the empty set
and row in the set- and row-based e�ect systems, respectively. The other constructor is (l)↑, which
constructs the e�ect collection composed only of e�ect label l.
With these abstractions, the inference rules that manipulate e�ect collections—i.e., those for

operation calls, sube�ecting, and handling constructs—are given as follows (here, we give only
informal rules; the formal rule corresponding to each informal one T_[RuleName0] is found in
Figure 5, named T_[RuleName] there.):

Operation op : A ⇒ B belongs to e�ect l Γ ⊢ v : A | 0

Γ ⊢ op v : B | (l)↑
T_Op0

Γ ⊢ e : A | Y Y ⊙ Y0 ∼ Y
′

Γ ⊢ e : A | Y′
T_Sub0

Γ ⊢ e : A | Y (l)↑ ⊙ Y′ ∼ Y · · ·

Γ ⊢ handlel ewith h : B | Y′
T_Handle0

The rule T_Op0 for operation calls simply injects the corresponding e�ect label into the e�ect
collection. The rule T_Sub0 allows subsumption with sube�ecting, which expands the e�ect Y of
an expression to Y′ by appending some e�ects Y0. The rule T_Handle0 for handling constructs
means that, if a handled expression may invoke e�ects in Y, only the remaining Y′ of excluding the
handled e�ect l from Y is observable from the outer context.
It is noteworthy that the above usage of e�ect algebras pays attention to the order of e�ects

appearing in e�ect collections. Speci�cally, the subsumption rule only allows appending extra
e�ects Y0 and does not allow prepending them, and the rule for handling constructs removes only
the handled e�ect label that occurs �rst in Y. This mirrors the nature of the e�ect handling that an
operation call is handled by the e�ect handler closest to the call. The importance of considering the
order of e�ects is con�rmed in, e.g., adopting a type-erasure semantics: as discussed in Section 7.2,
our e�ect system becomes unsound under the type-erasure semantics if a given e�ect algebra is
equipped with commutative ⊙, which makes the e�ect system insensitive to the order of e�ects.
While e�ect algebras are expressive enough to represent the manipulation of e�ect collections,

some e�ect algebras make the e�ect system unsafe. For example, consider an e�ect algebra where
(l)↑ ⊙ Y ∼ 0 holds. Given an operation op of the e�ect label l, the subsumption rule allows coercing
the e�ect (l)↑ of an operation call op v to 0. It means that the e�ect system can state that op v
invokes no unhandled operation, so the e�ect system with such an e�ect algebra is unsafe.

To prevent the use of such e�ect algebras, we establish conditions on e�ect algebras; we call them
safety conditions and also call e�ect algebras meeting them safe. We prove that, given a safe e�ect
algebra, our e�ect system satis�es type and e�ect safety. We also demonstrate the expressibility

4We pose certain requirements on ∼ and ⊙ for e�ect safety in Section 3.
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f , g, x, y, z, p, k (variables) U, V,W, g, ], d (typelike variables) op (operation names)

l ∈ dom(Σlab) (label names) F ∈ dom(Σe� ) (e�ect constructors) C ∈ dom(Σlab) ∪ dom(Σe� )

K F Typ | Lab | E� (kinds) (,) F A | L | Y (typelikes)

A, B,C F g | A →Y B | ∀U : K .AY (types) L F ] | l Y I (labels)

Y F d | F Y I (e�ects) Ξ F ∅ | Ξ, l :: ∀" I : K I .f (e�ect contexts)

f F {} | f ⊎ {op : ∀# J : K J .A ⇒ B} (operation signatures)
Γ F ∅ | Γ, x : A | Γ, U : K (typing contexts)

Fig. 1. Typelike syntax over an label signature Σlab and an e�ect signature Σe� .

of our framework by providing e�ect algebras for sets, simple rows, and scoped rows from the
literature, as well as one for multisets, which are a new representation of e�ect collections.

3 Abstracting E�ects

This section introduces the core notions of our e�ect system: e�ect algebras, an abstract model of
e�ect collections and their manipulations. Because we aim at a formal e�ect system, we need to
decide the syntactic representation of e�ect collections manipulated by the e�ect system. However,
relying on speci�c representations prevents accommodating a variety of e�ect systems in the
literature. To address this problem, we parameterize our e�ect system over the representations of
e�ect collections and assume that the interface of their constructs is given by an e�ect signature.
Throughout this paper, we use the notation " I for a �nite sequence U0, . . . , Un with an index

set I = {0, . . . , =}, where U is any metavariable. We also write {" I } for the set consisting of the
elements of " I . Index sets are designated by I , J , and N . We omit index sets and write " simply
when they are not important (e.g., all the sequences of interest have the same length).

3.1 Syntax

We start by de�ning label and e�ect signatures, which specify available label names (the names of
e�ects) and e�ect collection constructors as well as their kinds, respectively. We then introduce the
syntax of types, e�ect labels, and e�ect collections using a given label and e�ect signature. Kinds,
ranged by K , are Typ for types, Lab for e�ect labels, or E� for e�ect collections.

De�nition 3.1 (Label Signatures). Given a set ( of label names, a label signature Σlab is a functional

relation whose domain dom(Σlab) is ( . The codomain of Σlab is the set of functional kinds of the form

Πi∈IKi → Lab for some I and K8∈I
8 (if I = ∅, it means Lab simply).

De�nition 3.2 (E�ect Signatures). Given a set ( of e�ect constructors, an e�ect signature Σe� is a

functional relation whose domain dom(Σe� ) is ( . The codomain of Σe� is the set of functional kinds of

the form Πi∈IKi → E� for some I and K8∈I
8 . (if I = ∅, it means E� simply).

De�nition 3.3 (Signatures). A signature Σ is the union of a label signature and an e�ect signature

(note that they are disjoint).

Hereinafter, the notationΠK I → K (or simply,ΠK → K) denotes an abbreviation ofΠi∈IKi → K ,
and C : ΠK → K denotes the pair ⟨C,ΠK → K⟩ for label name or e�ect constructor C.

Example 3.4 (Label Signatures of Exc and State). The label signature for label names Exc and
State used in Section 2.2.1 are given as {Exc : Lab, State : Lab}. The label State in Section 2.2.1
assumes the values of state to be integers, but, if one wants to parameterize label State over the
types of the state values, the signature of State changes to State : Typ → Lab. This signature
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indicates that State can take a type argument A that represents the type of the state values. We
call parameterized label names, as State of kind Typ → Lab, parametric e�ects, which facilitate the
reuse of program components as explained later.

The following is an e�ect signature for e�ect sets, e�ect collections implemented by sets.

Example 3.5 (E�ect Signature of E�ect Sets). The e�ect signature ΣSet
e�

of e�ect sets consists of the
pairs {} : E� (for the empty set), {−} : Lab → E� (for singleton sets), and −∪− : E� × E� → E�

(for set unions).5

Given a signature Σ = Σlab ⊎ Σe� , the syntax of types, ranged over by A, B, and C, e�ect labels
(or labels for short), ranged over by L, and e�ect collections (or e�ects for short), ranged over by Y,
is de�ned as in Figure 1. This work allows three kinds of polymorphism, that is, type, label, and
e�ect polymorphism. To simplify their presentation, we introduce a syntactic category that uni�es
types, labels, and e�ects; we call its entities typelikes [Biernacki et al. 2019], which are ranged over
by ( and ) . Typelikes are classi�ed into types, labels, and e�ects using the kind system presented
in Section 3.2. We use g , ], and d to designate type, label, and e�ect variables (i.e., typelike variables
with kind Typ, E� , and Lab), respectively, and U , V , and W in a general context.

Types consist of: type variables; function types A →Y B, which represent functions from type A
to B with e�ect Y; and polymorphic types ∀U : K .AY , which represent (suspended) computation
with e�ect Y abstracting over typelikes of kind K . We omit base types such as Int for simpli�cation,
but assume them and some operations on them (such as + for integers) in giving examples.
A label is a label variable or a label name, ranged over by l, possibly with type arguments. For

example, consider State : Typ → Lab given in Example 3.4. A label StateA represents mutable
state possessing the values of the type A. We can implement StateA using a state-passing e�ect
handler, which abstracts over type arguments A [Leijen 2017]. Thus, the e�ect handler can be
reused for di�erent type arguments.

E�ects are composed of e�ect variables and e�ect constructors, ranged over by F , given by Σe� .
As label names, e�ect constructors can take typelikes as arguments. For example, e�ect set {Exc}
is represented by F Exc where F is the constructor {−} for singleton sets.
E�ect contexts, ranged over by Ξ, are �nite sequences of declarations of e�ect label names.

Each label name l is associated with a type scheme of the form ∀" : K .f , where f is an operation
signature parameterized over typelike variables " of kinds K . In general, the functional kind
ΠK

′ → Lab of l in Σlab needs to be consistent with the kind of the type scheme, that is, K ′
= K ;

we will formalize this requirement in Section 5.2. An operation signature is a set of pairs of an
operation name op and its type ∀# : K .A ⇒ B. Here, A and B are the argument and return types of
the operation, respectively, and they are parameterized over # of kinds K . Namely, not only e�ect
labels but also operations can be parametric. For example, the e�ect context for nonparametric
e�ect labels Exc and State in Section 2.1 is given as

Exc :: {raise : Unit ⇒ Empty}, State :: {set : Int ⇒ Unit, get : Unit ⇒ Int} .

If one wants to parameterize label State over the types of the state values, and operation raise of
label Exc over return types (because it returns no value actually), the e�ect context can change to

Exc :: {raise : ∀U : Typ.Unit ⇒ U}, State :: ∀U : Typ.{set : U ⇒ Unit, get : Unit ⇒ U} .

A di�erence between parametric e�ects and operations is that, while e�ect handlers for parametric
e�ects can be typechecked depending on given type arguments, ones for parametric operations
must abstract over type arguments. See Sekiyama and Igarashi [2019] for detail.

5We use “–” for unnamed arguments. Multiple occurrences of “–” are distinguished from each other; the 8-th occurrence from

the left represents the 8-th argument.
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Kinding Γ ⊢ ( : K Γ ⊢ Y I : K I ⇐⇒ ∀i ∈ I .(Γ ⊢ (i : Ki)

⊢ Γ U : K ∈ Γ

Γ ⊢ U : K
K_Var

⊢ Γ C : ΠK → K0 ∈ Σ Γ ⊢ Y : K

Γ ⊢ C Y : K0

K_Cons

Γ ⊢ A : Typ Γ ⊢ Y : E� Γ ⊢ B : Typ

Γ ⊢ A →Y B : Typ
K_Fun

Γ, U : K ⊢ A : Typ Γ, U : K ⊢ Y : E�

Γ ⊢ ∀U : K .AY : Typ
K_Poly

Fig. 2. Kinding rules.

Typing contexts, ranged over by Γ, are �nite sequences of bindings of the form x : A or U : K .

3.2 Kind System

We show our kind system in Figure 2. We omit the rules for well-formedness of typing contexts
because they are de�ned as usual [Kawamata et al. 2024; Sekiyama et al. 2020]. The rules other
than K_Cons are standard or straightforward. When signature Σ assigns ΠK → K0 to label name
or e�ect constructor C, and typelike arguments Y are of the kinds K , respectively, the rule K_Cons
assigns kind K0 to the typelike C Y .

3.3 E�ect Algebras

Now, we de�ne e�ect algebras. In short, an e�ect algebra provides an e�ect signature Σe� , a partial
monoid on e�ects de�ned over Σe� , and a function (−)↑ that injects labels to e�ects, but more
formally, it also requires that each involved operation preserve well-formedness and kind-aware
typelike substitution make a homomorphism. In what follows, we denote the sets of types, e�ect
labels, and e�ect collections over a signature Σ by Typ(Σ), Lab(Σ), and E� (Σ), respectively (we
refer to the set of entities at kind K by K (Σ)).

De�nition 3.6 (Well-Formedness-Preserving Functions). Given a signature Σ, a (possibly partial)

function 5 ∈  8 (Σ)
8∈{1,...,=}

⇀ K (Σ) preserves well-formedness if

∀Γ, (1, . . . , (n . Γ ⊢ (1 : K1 ∧ · · · ∧ Γ ⊢ (n : Kn ∧ 5 ((1, . . . , (n) ∈ K (Σ) =⇒ Γ ⊢ 5 ((1, . . . , (n) : K .

Similarly, 5 ∈ K (Σ) preserves well-formedness if Γ ⊢ 5 : K for any Γ.

In what follows, we write U ↦→ ) ⊢ Y : K0 for a quadruple ⟨U,) , Y,K0⟩ such that ∃Γ1,K, Γ2. (∀(0 ∈
Y . Γ1, U : K, Γ2 ⊢ (0 : K0) ∧ Γ1 ⊢ ) : K ; it means that typelikes Y are well formed at kind K0 and
substituting typelike ) for typelike variable U in Y preserves their well-formedness.

De�nition 3.7 (E�ect algebras). Given a label signature Σlab, an e�ect algebra is a quintuple

⟨Σe� , ⊙, 0, (−)
↑,∼⟩ satisfying the following, where we let Σ = Σlab ⊎ Σe� .

• ⊙ ∈ E� (Σ) × E� (Σ) ⇀ E� (Σ), 0 ∈ E� (Σ), and (−)↑ ∈ Lab(Σ) → E� (Σ) preserve well-

formedness. Furthermore, ∼ is an equivalence relation on E� (Σ) and preserves well-formedness,

that is, ∀Y1, Y2. Y1 ∼ Y2 =⇒ (∀Γ. Γ ⊢ Y1 : E� ⇐⇒ Γ ⊢ Y2 : E�).

• ⟨E� (Σ), ⊙, 0⟩ is a partial monoid under ∼, that is, the following holds:

– ∀Y ∈ E� (Σ). Y ⊙ 0 ∼ Y ∧ 0 ⊙ Y ∼ Y; and

– ∀Y1, Y2, Y3 ∈ E� (Σ).

(Y1 ⊙ Y2) ⊙ Y3 ∈ E� (Σ) ∨ Y1 ⊙(Y2 ⊙ Y3) ∈ E� (Σ) =⇒ (Y1 ⊙ Y2) ⊙ Y3 ∼ Y1 ⊙(Y2 ⊙ Y3).

• Typelike substitution respecting well-formedness is a homomorphism for ⊙, (−)↑, and ∼, that is,

the following holds:

– ∀U, (, Y1, Y2 . U ↦→ ( ⊢ Y1, Y2 : E� ∧ Y1 ⊙ Y2 ∈ E� (Σ) =⇒ (Y1 ⊙ Y2) [(/U] = Y1 [(/U] ⊙ Y2 [(/U];
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– ∀U, (, L. U ↦→ ( ⊢ L : Lab =⇒ (L)↑ [(/U] = (L[(/U])↑; and

– ∀U, (, Y1, Y2 . U ↦→ ( ⊢ Y1, Y2 : E� ∧ Y1 ∼ Y2 =⇒ Y1 [(/U] ∼ Y2 [(/U].

For example, an e�ect algebra for e�ect sets can be given as follows.

Example 3.8 (E�ect Sets). An e�ect algebra EASet for e�ect sets is a tuple ⟨Σ
Set
e�
,−∪−, {}, {−},∼Set⟩

where ∼Set is the least equivalence relation satisfying the following rules:

Y ∪ {} ∼Set Y Y1 ∪ Y2 ∼Set Y2 ∪ Y1 Y ∪ Y ∼Set Y

(Y1 ∪ Y2) ∪ Y3 ∼Set Y1 ∪ (Y2 ∪ Y3)

Y1 ∼Set Y2 Y3 ∼Set Y4

Y1 ∪ Y3 ∼Set Y2 ∪ Y4

These rules re�ect that the union operator in sets has the identity element {} and satis�es commu-
tativity, idempotence, associativity, and compatibility.

We also show an instance for simple rows and scoped rows.

Example 3.9 (Simple Rows). The e�ect signature ΣRow
e�

for simple rows is the set of ⟨⟩ : E� and

⟨− | −⟩ : Lab × E� → E� . An e�ect algebra EASimpR for them is ⟨ΣRow
e�

, ⊙SimpR, ⟨⟩, ⟨− | ⟨⟩⟩,∼SimpR⟩

where

Y1 ⊙SimpR Y2
def
=

{

⟨L1 | ⟨· · · ⟨Ln | Y2⟩⟩⟩ (if Y1 = ⟨L1 | ⟨· · · ⟨Ln | ⟨⟩⟩⟩⟩)

Y1 (if Y1 = ⟨L1 | ⟨· · · ⟨Ln | d⟩⟩⟩ and Y2 = ⟨⟩)

and ∼SimpR is the least equivalence relation satisfying the following.

Y1 ∼SimpR Y2

⟨L | Y1⟩ ∼SimpR ⟨L | Y2⟩

L1 ≠ L2

⟨L1 | ⟨L2 | Y⟩⟩ ∼SimpR ⟨L2 | ⟨L1 | Y⟩⟩ ⟨L | Y⟩ ∼SimpR ⟨L | ⟨L | Y⟩⟩

Note that the de�nition of Y1 ⊙SimpR Y2 depends on whether e�ect Y1 ends with an e�ect variable.
If it does, Y2 must be empty because simple rows ending with e�ect variables cannot be extended.
Otherwise, Y1 ⊙SimpR Y2 simply concatenates Y1 and Y2.

The �rst rule of ∼SimpR means that the results of adding the same label to equivalent e�ects are
also equivalent. The remaining two rules allow reordering di�erent labels and collapsing multiple
occurrences of the same label into one, respectively. The collapsing of multiple occurrences re�ects
the characteristic of simple rows that the same label appears at most once in a row because it means
that two or more occurrences of a label cannot be distinguished from one occurrence of it.

Example 3.10 (Scoped Rows). An e�ect algebra EAScpR for scoped rows is de�ned in a way similar
to that for simple rows. The only di�erence is in the de�nition of equivalence ∼ScpR. The equivalence
∼ScpR for scoped rows is de�ned as the least equivalence relation satisfying the following rules:

Y1 ∼ScpR Y2

⟨L | Y1⟩ ∼ScpR ⟨L | Y2⟩

L1 ≠ L2

⟨L1 | ⟨L2 | Y⟩⟩ ∼ScpR ⟨L2 | ⟨L1 | Y⟩⟩

Unlike simple rows, scoped rows are distinguished if they have di�erent numbers of occurrences
of some label.

4 _EA: A Calculus with Abstract E�ect System

This section shows the syntax, semantics, and type-and-e�ect system of our language _EA. It
is similar to the call-by-value polymorphic _-calculi with algebraic e�ect handlers in the litera-
ture [Biernacki et al. 2018; Leijen 2017; Sekiyama et al. 2020] except that it is parameterized over
e�ect algebras. Throughout this and the next sections, we �x a label signature Σlab, e�ect algebra
⟨Σe� , ⊙, 0, (−)

↑,∼⟩ over Σlab, and e�ect context Ξ, which are given as parameters.
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e F v | v1 v2 | v ( | let x = e1 in e2 | handlel Y I ewith h (expressions)

v F x | fun (f , x, e) | ΛU : K .e | opl Y I Z
J (values)

h F { return x ↦→ e} | h ⊎ {op # J : K J p k ↦→ e} (handlers)
E F □ | let x = E in e | handlel Y I Ewith h (evaluation contexts)

Fig. 3. Program syntax of _EA.

4.1 Syntax

We show the program syntax of _EA in Figure 3.
Expressions, ranged over e, are composed of: values; function applications v1 v2; typelike appli-

cations v ( ; let-bindings let x = e1 in e2; and handling expressions handlel Y I ewith h. Values are:

variables x; recursive functions fun (f , x, e); typelike abstractions ΛU : K .e; or operations opl Y I Z
J .

An operation opl Y I Z
J accompanies two typelike sequences Y I and Z J , which are parameters of

e�ect label l and operation op, respectively. We write _x .e for fun (f , x, e) when variable f does
not occur free in expression e.

An e�ect handler for label name l possesses one return clause and clauses for the operations of l.
For a return clause { return x ↦→ e}, the body e is executed once a handled expression evaluates to
a value v; x is used to refer to the value v. For an operation clause {op # : K p k ↦→ e}, the body
e is executed once a handled expression calls operation op. Typelike variables # , variable p, and
variable k are replaced by typelike parameters attached to the operation call, the argument of the
call, and the delimited continuation from the call up to the handling expression installing the e�ect
handler, respectively.

Evaluation contexts, ranged over by E, are de�ned in a standard manner. They may wrap a hole
□ by let-constructs and handling constructs.

4.2 Operational Semantics

The operational semantics of _EA is de�ned in Figure 4. Following Biernacki et al. [2018], it uses
the notion of freeness, which helps de�ne the operational semantics of lift coercions in Section 7.1.
Figure 4 de�nes 0-freeness of labels [Biernacki et al. 2018]. The judgment 0−free(L, E), which is
read as “an label L is 0-free in an evaluation context E,” means that any operation of L called under
E is not handled. For example, 0−free(L,□) and 0−free(L, handleL′ let x = □ in ewith h) hold (if
L ≠ L′). This is as expected because any operation of L called under the evaluation context □ or
handleL′ let x = □ in ewith h is never handled. By contrast, 0−free(L, handleL let x = □ in ewith h)

does not hold as any operation of L called under handleL let x = □ in ewith h is handled by h. The
operational semantics of _EA uses this notion to ensure that every call to an operation of e�ect
label L is handled by the innermost L’s e�ect handler enclosing the operation call. We generalize
0-freeness to =-freeness for an arbitrary natural number = in introducing lift coercions (Section 7.1).
We show the operational semantics of _EA in Figure 4. The semantics comprises two binary

relations: the reduction relation ↦−→ and the evaluation relation −→. The reduction relation de�nes
the basic computation; in contrast, the evaluation relation gives a way of reducing subexpressions.
The reduction relation is de�ned by �ve rules. Function applications, typelike applications,

let-bindings are reduced as usual. The remaining are the standard rules to reduce handling expres-
sions. Consider an expression handlel Y I ewith h. If the handled expression e is a value v, the rule
R_Handle1 reduces the handling expression to the body er of the return clause { return x ↦→ er }

of h by substituting v for x in er . The other rule R_Handle2 is used when e calls an operation
op of label name l, that is, e takes the form E[opl Y I Z

J v] for some E, Z J , and v (it is guaranteed
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Freeness of labels n−free(L, E)

0−free(L,□)

n−free(L, E)

n−free(L, let x = E in e)

n−free(L, E) L ≠ L′

n−free(L, handleL′ Ewith h)

Reduction e ↦−→ e′

fun (f , x, e) v ↦−→ e[fun (f , x, e)/f ] [v/x]
R_App

(ΛU : K .e) ( ↦−→ e[(/U]
R_TApp

let x = v in e ↦−→ e[v/x]
R_Let

return x ↦→ er ∈ h

handlel Y I vwith h ↦−→ er [v/x]
R_Handle1

op # J : K J p k ↦→ e ∈ h vcont = _z.handlel Y I E[z]with h 0−free(l Y I , E)

handlel Y I E[opl Y I Z
J v]with h ↦−→ e[Z J/# J ] [v/p] [vcont/k]

R_Handle2

Evaluation e −→ e′

e1 ↦−→ e2

E[e1] −→ E[e2]
E_Eval

Fig. 4. Operational semantics of _EA.

by the type-and-e�ect system that the typelike arguments to l in the operation call are Y I ). The
reduction rule R_Handle2 assumes 0−free(l Y I , E), which ensures that h is the e�ect handler closest
to the operation call among the ones for l Y I . After substituting the argument typelikes Z J , the
argument value v, and the captured delimited continuation vcont (which installs the e�ect handler h
on the captured evaluation context E because e�ect handlers in _EA are deep) for the corresponding
variables of op’s operation clause in h, the evaluation proceeds to reducing the clause’s body.

The evaluation relation only has one rule E_Eval. It means that the evaluation of an entire
program proceeds by decomposing it into a redex e and an evaluation context E, reducing e to an
expression e′, and then �lling the hole of E with the reduction result e′.

4.3 Type-and-E�ect System

We show the type-and-e�ect system of _EA in Figure 5. Typing judgments are of the form Γ ⊢ e : A | Y,
meaning that an expression e is typed atA under a typing context Γ and the evaluation of emay cause
e�ect Y. The rules for variables, function abstractions, function applications, typelike abstractions,
typelike applications, and let-bindings are standard.

The rule T_Sub allows subsumption by subtyping. We show the subtyping relation Γ ⊢ A <: B for
values and the one Γ ⊢ A | Y1 <: B | Y2 for computations at the bottom of Figure 5. The subtyping
rules are standard except for the sube�ecting Γ ⊢ Y1 < Y2, which is used in the rule ST_Comp for
the second subtyping relation. The sube�ecting is de�ned via the given e�ect algebra:

Γ ⊢ Y1 < Y2
def
= ∃Y. Y1 ⊙ Y ∼ Y2 ∧ (∀Y′ ∈ {Y1, Y2, Y}. Γ ⊢ Y′ : E�) .

The rule T_Op typechecks operation opl Y I Z
J if op belongs to e�ect label l, and if the kinds of

typelike arguments Y I and Z J are matched with those of parameters of l in the e�ect context Ξ.
The operation is given a function type determined by the argument and return type of op in Ξ and
typelike arguments Y I and Z J . Because every call to the operation only invokes e�ect label l Y I , the
latent e�ect of the function type is given by injecting l Y I via (−)↑.
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Typing Γ ⊢ e : A | Y

⊢ Γ x : A ∈ Γ

Γ ⊢ x : A | 0
T_Var

Γ, f : A →Y B, x : A ⊢ e : B | Y

Γ ⊢ fun (f , x, e) : A →Y B | 0
T_Abs

Γ ⊢ v1 : A →Y B | 0 Γ ⊢ v2 : A | 0

Γ ⊢ v1 v2 : B | Y
T_App

Γ, U : K ⊢ e : A | Y

Γ ⊢ ΛU : K .e : ∀U : K .AY | 0
T_TAbs

Γ ⊢ v : ∀U : K .AY | 0 Γ ⊢ ( : K

Γ ⊢ v ( : A[(/U] | Y [(/U]
T_TApp

Γ ⊢ e1 : A | Y Γ, x : A ⊢ e2 : B | Y

Γ ⊢ let x = e1 in e2 : B | Y
T_Let

Γ ⊢ e : A | Y Γ ⊢ A | Y <: A′ | Y′

Γ ⊢ e : A′ | Y′
T_Sub

l :: ∀" I : K I .f ∈ Ξ op : ∀# J : K ′J .A ⇒ B ∈ f [Y I/" I ]

⊢ Γ Γ ⊢ Y I : K I
Γ ⊢ Z J : K ′J

Γ ⊢ opl Y I Z
J : (A[Z J/# J ]) →(l Y I )↑ (B[Z I/# I ]) | 0

T_Op

Γ ⊢ e : A | Y′ l :: ∀" I : K I .f ∈ Ξ Γ ⊢ Y I : K I

Γ ⊢f [Y I /" I ] h : A ⇒Y B (l Y I )↑ ⊙ Y ∼ Y′

Γ ⊢ handlel Y I ewith h : B | Y
T_Handling

Handler Typing Γ ⊢f h : A ⇒Y B

Γ, x : A ⊢ er : B | Y

Γ ⊢{} { return x ↦→ er } : A ⇒Y B
H_Return

f = f ′ ⊎ {op : ∀# J : K J .A′ ⇒ B′}

Γ ⊢f ′ h : A ⇒Y B Γ, # J : K J , p : A′, k : B′ →Y B ⊢ e : B | Y

Γ ⊢f h ⊎ {op # J : K J p k ↦→ e} : A ⇒Y B
H_Op

Subtyping Γ ⊢ A <: B Γ ⊢ A | Y1 <: B | Y2

Γ ⊢ A : Typ

Γ ⊢ A <: A
ST_Refl

Γ ⊢ A2 <: A1 Γ ⊢ B1 | Y1 <: B2 | Y2

Γ ⊢ A1 →Y1 B1 <: A2 →Y2 B2
ST_Fun

Γ, U : K ⊢ A1 | Y1 <: A2 | Y2

Γ ⊢ ∀U : K .A1
Y1
<: ∀U : K .A2

Y2
ST_Poly

Γ ⊢ A1 <: B Γ ⊢ Y1 < Y2

Γ ⊢ A | Y1 <: B | Y2
ST_Comp

Fig. 5. Type-and-e�ect system of _EA.

The rule T_Handling is for handling expressions. Assume that a handled expression e is of
type A and has e�ect Y′. If it is handled by an e�ect handler for e�ect label l Y I , the operations of
l Y I become unobservable from the outer context. Thus, the e�ect Y of the handling expression is
the result of removing label l Y I from e�ect Y′. This “label-removing manipulation” is represented
as Γ ⊢ (l Y I )↑ ⊙ Y ∼ Y′. Therefore, the result Y of the label-removing manipulation depends on the
given e�ect algebra. For example, if the e�ect algebra EASimpR for simple rows is given, the result
of removing the label Exc from the e�ect ⟨Exc | ⟨Exc | ⟨Choice | ⟨⟩⟩⟩⟩ can be ⟨Choice | ⟨⟩⟩ because
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⟨Exc | ⟨⟩⟩ ⊙SimpR⟨Choice | ⟨⟩⟩ ∼SimpR ⟨Exc | ⟨Exc | ⟨Choice | ⟨⟩⟩⟩⟩ holds (recall that simple rows
can collapse multiple occurrences of the same label into one). On the contrary, the removing result
in the algebra EAScpR for scoped rows can be ⟨Exc | ⟨Choice | ⟨⟩⟩⟩ but cannot be ⟨Choice | ⟨⟩⟩.

The type B of the handling expression is determined by handler h: typing judgments for handlers
take the form Γ ⊢f h : A ⇒Y B, which means that handler h transforms computation of type
A involving an e�ect label with operation signature f to that of type B with e�ect Y. The rules
H_Return andH_Op are for return and operation clauses and re�ect the reduction rules R_Handle1
and R_Handle2, respectively. Note that the return type of a continuation variable k equals the
type B of the handling expression as the e�ect handlers in _EA are deep [Kammar et al. 2013].

5 Safety Properties

This section shows the safety properties of _EA. The proofs rely on safety conditions, which are
requirements on e�ect algebras. Under the assumption that a given e�ect algebra meets the safety
conditions, we prove type-and-e�ect safety of _EA.

5.1 Safety Conditions

To prove type-and-e�ect safety, a given e�ect algebra must meet safety conditions shown in the
following. We write Y1 < Y2 to state that Y1 ⊙ Y ∼ Y2 for some Y.

De�nition 5.1 (Safety Conditions).
(1) For any L, (L)↑ < 0 does not hold.

(2) If (L)↑ < Y and (L′)↑ ⊙ Y′ ∼ Y and L ≠ L′, then (L)↑ < Y′.

Condition (1) disallows the sube�ecting to hide an invoked e�ect label L as if it were not
performed. Condition (2) means that, if an expression invoking a label L is given an e�ect Y, and an
e�ect handler for a di�erent label L′ handles the expression, then the information of L still remains
in the e�ect Y′ assigned to the handling expression (that is, it is observable from the outer context).

To understand problems excluded by safety conditions (1) and (2), we consider e�ect algebras that
violate one of the conditions, and then show unsafe programs being typeable under the algebras.

Example 5.2 (Unsafe E�ect Algebras).
E�ect algebra violating safety condition (1) Consider an e�ect algebra such that ∅ ⊢ (l)↑<0

holds for some l. Clearly, this e�ect algebra violates safety condition (1). In this case, ∅ ⊢

opl v : A | 0 can be derived for some A (if opl v is well typed) because opl v is given the e�ect

(l)↑ and the sube�ecting ∅ ⊢ (l)↑ < 0 holds. However, the operation call is not handled.
E�ect algebra violating safety condition (2) Consider an e�ect algebra such that safety con-

dition (1), (l)↑ < (l′)↑, and (l′)↑ ⊙ 0 ∼ (l′)↑ hold for some l and l′ such that l ≠ l′. This e�ect
algebra must violate safety condition (2): if safety condition (2) were met, we would have
(l)↑ < 0, but it is contradictory with safety condition (1).
This e�ect algebra allows assigning the empty e�ect 0 to the expression handlel′ opl vwith h

as illustrated by the following typing derivation, but the operation call in it is not handled.

· · · (l′)↑ ⊙ 0 ∼ (l′)↑

∅ ⊢ opl v : A | (l)↑ ∅ ⊢ A | (l)↑ <: A | (l′)↑

∅ ⊢ opl v : A | (l′)↑
T_Sub

∅ ⊢ handlel′ opl vwith h : B | 0
T_Handling

Note that the e�ect algebras EASet, EASimpR, EAScpR, for which the e�ect safety has been shown
in the literature, meet the safety conditions.

Theorem 5.3. The e�ect algebras EASet, EASimpR, and EAScpR meet safety conditions (1) and (2).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 252. Publication date: August 2024.



Abstracting E�ect Systems for Algebraic E�ect Handlers 252:17

5.2 Type-and-E�ect Safety

This section shows type-and-e�ect safety. To prove it, we assume that an e�ect algebra meets the
safety conditions and an e�ect context is proper, which means that it is consistent with a given
label signature Σlab and the types of operations in it are well formed.

De�nition 5.4 (Proper E�ect Contexts). An e�ect context Ξ is proper if, for any l :: ∀" I : K I .f ∈ Ξ,

the following holds:

• l : ΠK I → Lab ∈ Σlab;

• the type schemes ∀" 0
I0 : K0

I0 .f0 associated with l by Ξ are uniquely determined; and

• for any op : ∀# J : K0
J .A ⇒ B ∈ f and C ∈ {A, B}, " I : K I , # J : K0

J ⊢ C : Typ.

5.2.1 Type Safety. The statement of type safety is as follows. We write −→∗ for the re�exive,
transitive closure of −→ and e −̸→ to denote that there is no e′ such that e −→ e′.

Lemma 5.5 (Type Safety). If ∅ ⊢ e : A | Y and e −→∗ e′ −̸→, then one of the following holds:

• e′ = v for some value v such that ∅ ⊢ v : A | Y; or

• e′ = E[opl Y I Z
J v] for some E, l, Y I , op, Z J , and v such that 0−free(l Y I , E).

While the type safety guarantees that the result of a program, if any, has the same type as the
program, it does not ensure that all operations are handled even if the e�ect 0, which denotes that
no unhandled operation remains, is assigned to the program: as shown shortly, the latter property
is guaranteed by e�ect safety.
Type safety is proven via progress and preservation as usual [Wright and Felleisen 1994].

Lemma 5.6 (Progress). If ∅ ⊢ e : A | Y, then one of the following holds: e is a value; e −→ e′ for some

e′; or e = E[opl Y I Z
J v] for some E, l, Y I , op, Z J , and v such that 0−free(l Y I , E).

Lemma 5.7 (Preservation). If ∅ ⊢ e : A | Y and e −→ e′, then ∅ ⊢ e′ : A | Y.

5.2.2 E�ect Safety. E�ect safety is stated as follows.

Lemma 5.8 (E�ect Safety). If Γ ⊢ e : A | 0, then there exist no E, l, Y I , op, Z J , and v such that both

e = E[opl Y I Z
J v] and 0−free(l Y I , E) hold.

This lemma means, if an expression is assigned to 0, no unhandled operation call remains there.

5.2.3 Type-and-E�ect Safety. We obtain type-and-e�ect safety—terminating programs with e�ect
0 always evaluates to values—as a corollary from type safety and e�ect safety.

Theorem 5.9 (Type-and-E�ect Safety). If ∅ ⊢ e : A | 0 and e −→∗ e′ −̸→, then e′ = v for some v.

Corollary 5.10. The e�ect system instantiated by the e�ect algebra EASet, EASimpR, or EAScpR meets

the type-and-e�ect safety (that is, any well-typed program terminates at a value unless it diverges).

6 Formal Relationships between _EA and The Existing Systems

This section shows that _EA soundly models the key aspects of the existing e�ect systems. As
targets, we select the e�ect systems of Pretnar [2015], Hillerström et al. [2017], and Leijen [2017],
which employ sets, simple rows, and scoped rows, respectively, to represent e�ect collections. We
call them Eff, Links, and Koka because they model the core part of the programming languages
E� [Bauer and Pretnar 2021], Links [Lindley et al. 2023], and Koka [Leijen 2024], respectively.6

6The core e�ect system of Links was �rst presented by Hillerström and Lindley [2016], but it seems to have a minor �aw in

the typing of sequential composition. We thus refer to Hillerström et al. [2017] where the �aw is �xed.
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Table 1. Comparison of the e�ectful aspects in _EA and the existing works. The mark ✗ means “not supported,”
and “explicit*” in the column “polymorphism” for Links indicates that Links supports not only explicit type
and e�ect polymorphism, but also row polymorphism in the style of Rémy [1994] at the e�ect-level.

e�ect collections collected e�ects e�ect contexts’ assignment polymorphism

_EA e�ect algebras label global explicit
Eff sets operation global ✗

Links simple rows operation local explicit*
Koka scoped rows label global implicit

6.1 Di�erences between _EA and The Selected Systems

We aim to establish the formal connection between each of the existing systems and _EA, but there
exist some gaps between them. First, the existing systems adopt their own syntax not only for e�ects
but also for types and programs, which hinders the formal comparison. To address this problem, we
de�ne a syntactic translation TE from each E of the selected systems to the instance of _EA with the
corresponding e�ect algebra. For example, operation calls in Eff take the form op(E,~.2), carrying
continuations ~.2 . The translator TEff converts it to the expression let~ = op; TEff (E) inTEff (2) in
_EA using some appropriate label l. Readers interested in the complete de�nitions of the translations
are referred to the supplementary material.
The remaining gaps between _EA and the existing systems are summarized in Table 1. Because

addressing the gaps other than the representation of e�ect collections is beyond the scope of the
present work, we impose certain assumptions on the existing systems for the comparison. In what
follows, we detail the gaps and how we address them.

Collected e�ects. In _EA, e�ect collections gather e�ect labels, which are sets of operations of
some speci�c e�ects. For example, the e�ect for state can be expressed by a label State equipped
with operations get and set for getting and updating, respectively, the current state. In this style,
which we call label-based, an operation call is given an e�ect collection including the e�ect label
to which the called operation belongs, and a handler is required to handle all the operations of
a speci�ed label. _EA and Koka employ the label-based style. By contrast, Eff and Links adopt
the operation-based style, where e�ect collections gather operations. In this style, an operation
call is given an e�ect collection including the called operation (not labels), and e�ect handlers can
implement any operation freely. To address this di�erence, when translating Eff and Links in the
operation-based style to _EA in the label-based style, we assume that some labels are given and any
e�ect collection appearing in Eff and Links can be decomposed into a subset of the given labels.

E�ect contexts’ assignment. Our language _EA supposes that an e�ect context Ξ is �xed during
typechecking one program. We call this assignment of Ξ global. Eff and Koka employ the same
assignment style for e�ect contexts. In contrast, in Links, e�ect contexts can change during the
typechecking. For example, consider the following program.

handle (if ask () then 0 else (handle ask () + 1with { return x ↦→ x} ⊎ {ask z k ↦→ k 2}))

with { return x ↦→ x} ⊎ {ask z k ↦→ k true}

In this program, both ask operation calls take the unit value, but the �rst and second ones return
Booleans and integers, respectively. This program cannot be typechecked if an e�ect context is
globally �xed. Links can typecheck it because Links allows enclosing handlers to modify e�ect
contexts; namely, e�ect contexts are assigned locally. To address the local assignment of e�ect
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contexts, we assume that every operation has a unique, closed type in Links, which enables
determining the types of operations globally.

Polymorphism. The languages _EA, Links, and Koka support type and e�ect polymorphism.
Among them, only the polymorphism in Koka is implicit, that is, no term constructor for type ab-
straction and application is given. Unfortunately, it is not straightforward to translate a program (or
its typing derivation) with implicit polymorphism in Koka to one with explicit polymorphism in _EA
while preserving the meaning of the program because Koka does not adopt value restriction [Tofte
1990; Wright 1995]. Our approach to this di�erence in polymorphism is simply to forbid the use
of implicit polymorphism in Koka and instead introduce explicit polymorphism by equipping
Koka with term constructors for type abstraction and application as in _EA and Links. It is also
noteworthy that Links supports more advanced polymorphism, inspired by row polymorphism
proposed by Rémy [1994]. It introduces presence types, which can state that a speci�c label is
present or absent in a row, presence polymorphism, and e�ect variables constrained by which labels
are present or absent. This form of polymorphism facilitates solving uni�cation problems in the
composition of e�ect handlers [Hillerström and Lindley 2016]. Our translation from Links to _EA
addresses these unique features in Links as follows: �rst, present labels remain in the translated
row but labels with the absent �ag do not; second, the constraints on e�ect variables are ignored;
third, we assume that programs to be translated do not use presence polymorphism. We left the
support for presence polymorphism as future work: it seems to be motivated by uni�cation and
type inference, which are beyond the scope of the present work.

6.2 Type-and-E�ect Preservation of Translations

We show that the translations preserve well-typedness under the aforementioned assumptions.

Theorem 6.1. Let (E,A) ∈ {(Eff, EASet), (Links, EASimpR), (Koka, EAScpR)}. If a program 2 in the

system E is well typed at an e�ect n , then TE (2) is well typed at e�ect TE (n) in _EA with A.

This result guarantees that, for each E of the selected systems, the programs in E can be safely
executed in the semantics of _EA. In other words, _EA can work as an intermediate language that
ensures type-and-e�ect safety. Note that the equivalence relation on scoped rows in Koka is more
restrictive than ∼ScpR in EAScpR because the row equivalence in Koka allows swapping e�ect labels
l1 Y1 and l2 Y2 only if l ≠ l′, whereas ∼ScpR allows their swapping if the label names l1 and l2, or the
type arguments Y1 and Y2 are di�erent. This gap does not prevent proving Theorem 6.1 because it
only means that _EA with EAScpR may accept more programs than Koka. We will show an e�ect
algebra with the row equivalence in Koka in Section 7.2.

7 Extensions of _EA

This section extends _EA and safety conditions to lift coercions and type-erasure semantics. We also
introduce e�ect algebras safe for these extensions (including a new one based on multisets) and
discuss how adaptable each e�ect representation addressed in this paper—sets, multisets, simple
rows, and scoped rows—is for the extensions.

7.1 Li� Coercions

This section shows an extension to lift coercions [Biernacki et al. 2018, 2019] (also known as in-
jection [Leijen 2018] or masking [Leijen 2024]). Given an e�ect label, a lift coercion forbids the
innermost handler for the label to handle any operation of the label. They can prevent accidental
handling, a situation that an e�ect handler handles an operation call against the programmer’s in-
tention. This paper focuses on how _EA is extended with lift coercions; see the prior work [Biernacki
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e F · · · | [e]L (expressions) E F · · · | [E]L (evaluation contexts)

Freeness of labels n−free(L, E)

(n + 1)−free(L, E)

n−free(L, handleL Ewith h)

n−free(L, E)

n + 1−free(L, [E]L)

n−free(L, E) L ≠ L′

n−free(L, [E]L′ )

Reduction e ↦−→ e′

[v]L ↦−→ v
R_Lift

Typing Γ ⊢ e : A | Y

Γ ⊢ e : A | Y′ Γ ⊢ L : Lab (L)↑ ⊙ Y′ ∼ Y

Γ ⊢ [e]L : A | Y
T_Lift

Fig. 6. The extension for li� coercions.

et al. 2018, 2019; Leijen 2018] for the detail of the accidental handling and how lift coercions work
to address it. We also show that the e�ect algebras EASet and EASimpR are unsafe in the extension
and that EAScpR and a new e�ect algebra for multisets are safe. Note that Biernacki et al. [2019]
introduce coercions in other forms. We do not support them because they can be encoded with lift
coercions (if label polymorphism is not used) [Biernacki et al. 2018, 2019].

7.1.1 Extending _EA to Li� Coercions. We show the extended part of _EA in Figure 6. Expressions
and evaluation contexts are extended with lift coercions [–]L. To de�ne the semantics of lift
coercions, we generalize 0-freeness to =-freeness for an arbitrary natural number = by following
Biernacki et al. [2018]. The predicate n−free(L, E) is de�ned by the rules in Figure 6 in addition to
the ones given previously (Figure 4). Intuitively, n−free(L, E) means that, for an operation op of L,
the operation call in E[opL Z

J v] will be handled by the (n + 1)-th innermost enclosing handler for
L. For example, 1−free(L, [□]L) and 0−free(L, handleL [□]L with h1) hold. Because the semantics
of the e�ect handling (speci�cally, the reduction rule R_Handle2 in Figure 4) requires the label of
the handled operation call to be 0-free in the evaluation context enclosing the operation call, the
operation call in handleL handleL [opL v]L with h1 with h2 will be handled by h2. If a lift coercion
is given a value, it returns the value as it is (R_Lift). The type-and-e�ect system is extended with
the rule T_Lift, which allows the information Y′ of e�ects of an expression e to pass through the
innermost e�ect handler for a label L by prepending L to Y′.

7.1.2 Safety Conditions and Type-and-E�ect Safety. To ensure the safety of programs in the presence
of lift coercions, we introduce a new safety condition in addition to the ones given in Section 5.

De�nition 7.1 (Safety Condition for Lift Coercions). The safety condition added for lift coercions is:

(3) If (L)↑ ⊙ Y1 ∼ (L1)
↑ ⊙ · · · ⊙(Ln)

↑ ⊙(L)↑ ⊙ Y2 and L ≠ Li for any i, then Y1 ∼ (L1)
↑ ⊙ · · · ⊙(Ln)

↑ ⊙ Y2.

This new condition can be understood as follows. First, let Y2 be an e�ect of an expression e. Then,
the e�ect of the expression [· · · [[e]L]Ln · · · ]L1 is given as (L1)

↑ ⊙ · · · ⊙(Ln)
↑ ⊙(L)↑ ⊙ Y2. Assume

that the expression is handled by an e�ect handler for L and the remaining e�ect is Y1. Then,
Y1 should retain the information that e is surrounded by lift coercions for L1, · · · , Ln because the
handling expressionmay be enclosed by e�ect handlers for L1, · · · , Ln. Such information is described
by (L1)

↑ ⊙ · · · ⊙(Ln)
↑ ⊙ Y2. Thus, safety condition (3) requires Y1 ∼ (L1)

↑ ⊙ · · · ⊙(Ln)
↑ ⊙ Y2.

To see the importance of the new safety condition more concretely, we show that the e�ect
algebras EASet and EASimpR violate this new condition and then present how they make some
unsafe programs typeable.
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Theorem 7.2 (Unsafe E�ect Algebras with Lift Coercions). The e�ect algebras EASet and EASimpR

do not meet safety condition (3). Furthermore, there exists an expression that is well typed under EASet

and EASimpR and gets stuck.

Proof. We consider only EASet here; a similar discussion can be applied to EASimpR. Recall that
the operation ⊙ in EASet is implemented by the set union, so it meets idempotence: {L} ∪ {L} ∼ {L}.
Furthermore, we can use the empty set as the identity element, so {L} ∪ {L} ∼ {L} ∪ {}. If safety
condition (3) was met, {L} ∼ {} (where {L}, {}, and 0 are taken as Y1, Y2, and n, respectively, in
De�nition 7.1). However, the equivalence does not hold.
As a program that is typeable under EASet, consider handleExc [raiseExc Unit ()]Exc with h where

Exc :: {raise : ∀U : Typ.Unit ⇒ U}. This program can be typechecked under an appropriate
assumption as illustrated by the following typing derivation:

· · · {Exc} ∪ {} ∼ {Exc}

∅ ⊢ raiseExc Unit () : A | {Exc} {Exc} ∪ {Exc} ∼ {Exc}

∅ ⊢ [raiseExc Unit ()]Exc : A | {Exc}
T_Lift

∅ ⊢ handleExc [raiseExc Unit ()]Exc with h : B | {}
T_Handling

However, the call to raise is not handled as it needs to be handled by the second closest handler.
■

In contrast, the e�ect algebra EAScpR for scoped rows satis�es safety condition (3). The point is
that ⊙ScpR in EAScpR is not idempotent. Therefore, they can represent as the information of e�ects
how many lift coercions are used and how many e�ect handlers are necessary to handle expression.
This observation gives us a new e�ect algebra with multisets. Multisets can have multiple instances
of the same element and their sum operation is also nonidempotent. Thus, we can expect—and it is
the case—that the algebra for multisets meets safety condition (3) as well as the other conditions.

Example 7.3 (E�ect Multisets). The e�ect signature ΣMSet
e�

of e�ect multisets is given by {} : E� ,
{−} : Lab → E� , and −⊔− : E� × E� → E� (which is the sum operation for multisets). An

e�ect algebra EAMSet for multisets is de�ned by ⟨ΣMSet
e�

,−⊔−, {}, {−},∼MSet⟩ where ∼MSet is the
least equivalence relation satisfying the same rules as ∼Set except for the idempotence rule.

Theorem 7.4. The e�ect algebras EAScpR and EAMSet meet safety conditions (1)–(3).

The type-and-e�ect safety of _EA with lift coercions is proven similarly to Theorem 5.9 provided
that an e�ect algebra meets safety conditions (1)–(3).

Theorem 7.5 (Type-and-E�ect Safety). Assume that a given e�ect algebra meets safety conditions (1)–

(3). If ∅ ⊢ e : A | 0 and e −→∗ e′ −̸→, then e′ = v for some v.

7.2 Type-Erasure Semantics

This section shows an adaption of _EA to type-erasure semantics, which is di�erent from those
given in Sections 4 and 7.1 in that it does not rely on type arguments of label names in seeking e�ect
handlers matching with called operations. Type erasure semantics is helpful to develop e�cient
implementations of e�ect handlers with parametric e�ects [Biernacki et al. 2019].

7.2.1 Formal Definition of Type-Erasure Semantics. The part modi�ed to support the type-erasure
semantics is shown in Figure 7. The label freeness in the type-erasure semantics refers only to
label names, while the original de�nition in Figure 4 refers to entire labels. The only change in the
semantics is that the reduction rule R_Handle2 is replaced by R_Handle2’ presented in Figure 7.
For instance, consider an expression handleState Int (handleState Bool (setStateA v)with h1)with h2. In
the original semantics, it depends on the type argument A which of h1 and h2 handles the operation
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Freeness of label names n−free(l, E)

0−free(l,□)

n−free(l, E)

n−free(l, let x = E in e)

n−free(l, E) l ≠ l′

n−free(l, handlel′ Y I Ewith h)

Reduction e ↦−→ e′

op # J : K J p k ↦→ e ∈ h vcont = _z.handlel Y I E[z]with h 0−free(l, E)

handlel Y I E[opl Y′I Z
J v]with h ↦−→ e[Z J/# J ] [v/p] [vcont/k]

R_Handle2’

Fig. 7. Type-erasure semantics.

call. By contrast, in the type-erasure semantics, the handler h1 will be chosen regardless of A. The
type-and-e�ect system is not changed.

7.2.2 Safety Conditions and Type-and-E�ect Safety. To ensure the safety in the type-erasure se-
mantics, we need an additional safety condition.

De�nition 7.6 (Safety Condition for Type-Erasure). The safety condition added for the type-erasure

semantics is: (4) If (l Y1
I )↑ < Y and (l Y2

I )↑ ⊙ Y′ ∼ Y, then Y1
I
= Y2

I .

To understand this condition, assume that an operation of label name l is called with typelike
parameters Y1

I and some e�ect Y1 such that (l Y1
I )↑<Y is assigned to the operation call via subtyping.

When the operation call is handled by an e�ect handler for e�ect label l Y2
I , the typelike parameters

Y1
I for the operation call and Y2

I for the handler must be matched. None of the e�ect algebras
EASet, EASimpR, EAScpR, and EAMSet presented thus far meets this new condition, and, even worse,
they can accept some programs unsafe in the type-erasure semantics.

Theorem 7.7 (Unsafe E�ect Algebras in Type-Erasure Semantics). The e�ect algebras EASet, EAMSet,

EASimpR, and EAScpR do not meet safety condition (4). Furthermore, there exists an expression that is

well typed under these algebras and gets stuck.

Proof. Here we focus on the e�ect algebra EASet, but a similar discussion can be applied to the
other algebras. Recall that ⊙ in EASet is implemented by the union operation for sets, and therefore
it is commutative (i.e., it allows exchanging labels in a set no matter what label names and what
type arguments are in the labels). Hence, for example, {l Int} ∪ {l Bool} ∼Set {l Bool} ∪ {l Int} for
a label name l taking one type parameter. It means that EASet violates safety condition (4).
To give a program that is typeable under EASet but unsafe in the type-erasure semantics, consider

the following which uses an e�ect label Writer :: ∀U : Typ.{tell : U ⇒ Unit}:

handleWriter Int handleWriter Bool

tellWriter Int 42

with { return x ↦→ 0} ⊎ {tell p k ↦→ if p then 0 else 42}

with { return x ↦→ x} ⊎ {tell p k ↦→ p}

This program is well typed because
• the operation call tellWriter Int 42 can have e�ect {Writer Bool} ∪ {Writer Int} via sube�ecting
{Writer Int}< {Writer Bool} ∪ {Writer Int} (which holds becauseWriter Int andWriter Bool

are exchangeable),
• the inner handling expression is well typed and its e�ect is {Writer Int}, and
• the outer one is well typed and its e�ect is {}.
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Table 2. Comparison of the e�ect algebras.

Lift coercions Adaptable to type-erasure Multiple e�ect variables

EASet ✗ ✓ ✓

EAMSet ✓ ✓ ✓

EASimpR ✗ ✓ ✗

EAScpR ✓ ✓ ✗

Note that this typing rests on the fact that the inner handler assumes that the argument variable
p of its tell clause will be replaced by Boolean values as indicated by the type argument Bool to
Writer. However, the variable p will be replaced by integer 42 and the program will get stuck. ■

The proof of Theorem 7.7 relies on the commutativity of ⊙ in each e�ect algebra. This observation
indicates that an e�ect algebra with noncommutative ⊙ can be safe even in the type-erasure
semantics. In fact, the previous work [Biernacki et al. 2019; Leijen 2017, 2018] has given an instance
of such an e�ect algebra. By following it, we can adapt the e�ect algebras de�ned thus far to be
safe in the type-erasure semantics; we call the e�ect collections in such e�ect algebras erasable.

Example 7.8 (Erasable E�ect Algebras). An e�ect algebra EAESet for erasable sets is de�ned
similarly to EASet. The only di�erence is that the equivalence relation ∼ESet of EAESet is de�ned as
∼Set, but the commutativity rule used in the de�nition of ∼Set is replaced with

l1 ≠ l2

{l1 Y1
I1 } ∪ {l2 Y2

I2 } ∼ESet {l2 Y2
I2 } ∪ {l1 Y1

I1 }

which only allows exchanging labels with di�erent names. E�ect algebras EAESet, EAEMSet, and
EAEScpR for erasable sets, multisets, and scoped rows, respectively, are de�ned similarly.

Theorem 7.9. The e�ect algebras EAESet, EAEMSet, EAESimpR, and EAEScpR meet safety conditions (1),

(2), and (4).

Note that some equivalence properties holding on nonerasable e�ect collections do not hold
on erasable ones. For instance, {Writer Int} ∪ {Writer Bool} ∼ {Writer Bool} ∪ {Writer Int} and
d1 ∪ d2 ∼ d2 ∪ d1 do not hold in erasable sets. The latter equivalence is not allowed because d1 and
d2 may be replaced with, e.g., {Writer Int} and {Writer Bool}, respectively. This limitation could
be relaxed by supporting quali�ed types [Jones 1992].
Finally, we can prove the type-and-e�ect safety of _EA with the type-erasure semantics as

Theorem 5.9 provided that an e�ect algebra meets safety conditions (1), (2), and (4).

Theorem7.10 (Type-and-E�ect Safety). Assume that a given e�ect algebrameets safety conditions (1),

(2), and (4). If ∅ ⊢ e : A | 0 and e −→∗ e′ −̸→, then e′ = v for some v.

7.3 Mixing Li� Coercions and Type-Erasure Semantics

It is easy to extend _EA with both lift coercions and type-erasure semantics and prove its type-and-
e�ect safety if a given e�ect algebra is assumed to meet safety conditions (1)–(4). Among the e�ect
algebras presented in the paper, only EAEScpR satis�es these conditions, and so _EA instantiated
with it is type-and-e�ect safe. See the supplementary material for the detail of the combination.

8 Comparison of E�ect Algebras

In this section, we discuss how di�erent the e�ect algebras EASet, EAMSet, EASimpR, and EAScpR are;
it is summarized in Table 2. The �rst column in Table 2 presents whether the e�ect algebras are safe
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in the presence of lift coercions. As shown in Section 7.1, EASet and EASimpR are unsafe and EAMSet

and EAScpR are safe. The second column indicates whether the e�ect algebras can be adapted to the
type-erasure semantics. As discussed in Section 7.2, none of the compared e�ect algebras is safe as
it is, but all of them become safe if we can admit restricting the commutativity of the concatenation
on e�ect collections. The third column shows whether each e�ect algebra allows multiple e�ect
variables to appear in one e�ect collection. While EASimpR and EAScpR disallow it because e�ect
variables can appear only at the end of rows, neither EASet nor EAMSet has such a restriction.

Allowing multiple e�ect variables in one e�ect collection in EASet and EAMSet leads to more
powerful abstraction of e�ect collections. For example, consider a module interface IntSet for
integer sets, which is given using EASet:

∃U : Typ.∃d : E� .{ empty : U, add : Int →{} U →{} U, · · · , choose : U →d Int,

accumulate : ∀V : Typ.∀d ′ : E� .(Unit →d ∪ d ′ V) →d ′ V List }

In this type, type variable U is an abstract type representing integer sets, and the �elds represent
the operations on integer sets. The interface IntSet requires modules to implement, in addition to
the basic operations on sets (e.g., the empty set empty and the addition of integers to sets add), two
additional functions for nondeterministic computation. The function choose nondeterministically
chooses one of the elements of a given integer set. Its type U →d Int says that a call to choose

causes the abstract e�ect d (and only the choose can cause d). Thus, the e�ect d expresses that
nondeterministic choice has been performed. The other function accumulate collects all the results
of the nondeterministic computations triggered by choose. It takes as an argument a function that
may call choose to perform nondeterministic choice (it is indicated by the latent e�ect of the type
Unit →d ∪ d ′ V) and use the chosen integer to compute the �nal result. The type of the �nal result
is parameterized by type variable V , and accumulate’s return type V List means that all the �nal
results are accumulated into a list. Even though the argument function may perform the e�ect d
for nondeterministic choice, d does not appear in the result type of accumulate. This is because
accumulate “handles” the e�ect d . Furthermore, the argument function may perform an additional
e�ect d ′, which is propagated to the caller of accumulate. For example, consider the following
program:

let x = add 2 (add 1 (add 0 (add (−1) empty))) in

accumulate Bool {} (_y : Unit.0 < (choose x))

This example constructs the set {2, 1, 0,−1}, computes whether each integer picked up by choose

from the set is greater than 0, and accumulates the results into a list. Thus, it may return the
list [0 < 2; 0 < 2; 0 < 0; 0 < −1], that is, [true; true; false; false]. Note that the type variable V is
instantiated with Bool as the argument function returns a Boolean value, and d ′ is instantiated
with the empty e�ect set {} as the argument function only performs nondeterministic choice. If an
argument function of accumulate raises an exception, like:

let x = add 2 (add 1 (add 0 (add (−1) empty))) in

accumulate Bool {Exc} (_y : Unit.let z = choose x in if z < 0 then raiseExc Bool () else 0 < z)

then the e�ect variable d ′ is instantiated with {Exc} as the argument function calls the operation
raise of Exc, and the evaluation of this program would result in carrying out raise because the set
x contains −1.

The type interface IntSet exploits the bene�t of EASet that multiple e�ect variables can appear in
one e�ect collection. First, it is noteworthy that abstracting the concrete e�ect for nondeterministic
choice by the e�ect variable d enables abstracting module implementations over not only what
e�ect labels are used in the implementations but also how many labels are used there; we provide
certain implementations of IntSet with di�erent numbers of e�ect labels in the supplementary
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material. Furthermore, IntSet allows argument functions of accumulate to perform any e�ect d ′

besides d by unifying d and d ′ via ∪. Neither the e�ect algebra EASimpR nor EAScpR allows this
uni�cation because only one e�ect variable may appear in a row.
However, this is not the end of the story: some existing works have discussed bene�ts of using

rows as e�ect collections. Hillerström and Lindley [2016] demonstrated that simple rows with
row polymorphism in the style of Rémy [1994] are useful to solve the uni�cation occurring in the
composition of e�ect handlers. Leijen [2017] implemented a sound and complete type inference for
the e�ect system with polymorphism by utilizing scoped rows. The current form of our theoretical
framework, e�ect algebras, does not provide a means to discuss uni�cation and type inference for
algebraic e�ects and handlers, and it is left open how we can address it in an abstract manner.

9 Related Work

We have explained the existing e�ect systems for e�ect handlers in Section 2, compared some of
them with the instances of our e�ect system in Section 6. We will also discuss what aspect of e�ect
handlers our framework does not support in Section 10. In this section, we discuss the di�erences
between our abstract e�ect system and the existing generic e�ect systems proposed to deal with
various e�ects in one framework. We also compare e�ect algebras with the abstract theory of rows
introduced by Morris and McKinna [2019].

Generic e�ect systems. Although, as far as we know, there is no prior work on abstracting e�ect
systems for e�ect handlers with nor without algebraic structures, the research on generic e�ect
systems that can reason about the use of a wide range of e�ects (such as �le resource usage, memory
usage and management, and exception checking) has been conducted. Marino and Millstein [2009]
proposed a monomorphic type-and-e�ect system that tracks a set of capabilities (or privileges)
to perform e�ectful operations such as memory manipulation and exception raising. Their e�ect
system is generic in that it is parameterized over the forms of capabilities as well as the adjustments
and checkings of capabilities per context. It assumes that capabilities are gathered into a set
and its typing discipline relies on the set operations (e.g., the sube�ecting is implemented by set
inclusion). Rytz et al. [2012] generalized Marino and Millstein’s e�ect system by allowing the use
of a join semilattice to represent collections of capabilities and introducing e�ect polymorphism.
Join-semilattices are underlying structures of e�ects in e�ect systems for may analysis. In such a
system, the join operation ⊔ and the ordering relation ⊑ in a join semilattice are used to merge
multiple e�ects into one and to introduce e�ect overapproximation as sube�ecting, respectively.
As ⊑ can be induced by ⊔ (G ⊑ ~ ⇐⇒ G ⊔ ~ = ~), we de�ne the sube�ecting < using ⊙ in an
e�ect algebra (Y1 < Y2 ⇐⇒ ∃Y. Y1 ⊙ Y ∼ Y2). Thus, the role of ⊙ is similar to that of ⊔, but ⊙ is not
required to be commutative nor idempotent, unlike ⊔ (note that join operations are characterized
by associativity, commutativity, and idempotence). In fact, ⊙ in the e�ect algebra EAScpR or EAMSet

is nonidempotent, which is key to support lift coercions (Section 7.1.2), and ⊙ in each of the e�ect
algebras being safe in the type-erasure semantics is noncommutative (Section 7.2.2).

Recent developments of generic e�ect systems have focused on sequential e�ect systems [Atkey
2009; Gordon 2017, 2021; Ivaskovic et al. 2020; Katsumata 2014; Mycroft et al. 2016; Tate 2013],
which aim to reason about the properties where the order of e�ects matters (e.g., whether no closed
�le will be read nor written). An approach common in the prior work on sequential e�ect systems
is to introduce sequential composition ⊲, an operation to compose e�ects happening sequentially.
For example, given expressions e1 with e�ect Y1 and e2 with Y2, the e�ect of a let-expression let x =

e1 in e2 is given by Y1⊲Y2. The sequential composition can be characterized as a (partial) monoid. Thus,
it might look similar to ⊙ in an e�ect algebra, but their roles are signi�cantly di�erent: ⊙ is used to
expand (i.e., overapproximate) e�ects and remove speci�c labels from e�ects, whereas the sequential
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composition ⊲ is used to compose the e�ects of expressions executed sequentially. In fact, if we were
to use ⊙ to sequence e�ects, the safety of _EA in the type-erasure semantics would not hold even in
the e�ect algebra EAEScpR for erasable scoped rows. For example, assume that an expression let x =

e1 in e2 is given e�ect Y1 ⊙ Y2 if the e�ects Y1 and Y2 are assigned to e1 and e2. Then, the expression

e
def
= let x = tellWriter Bool true in tellWriter Int 1 could have the e�ect {Writer Bool} ⊔ {Writer Int}

under EAEScpR. Thus, the expression handleWriter Int (handleWriter Bool ewith h1)with h2 would be
well typed (for some appropriate e�ect handlers h1 and h2), although it may get stuck in the
type-erasure semantics because the operation call tellWriter Int 1 will be handled by the e�ect handler
h1 for Writer Bool. Readers might wonder why ⊙ cannot work as a sequential composition despite
the fact that join operations, which are also used to overapproximate e�ects, can. We think that
this is because the assumptions on ⊙ are weaker than those on join operations as discussed above.
Making ⊙ in e�ect algebras and ⊲ in sequential e�ect systems coexist is a promising future direction,
motivated by the recent study on sequential e�ect systems for control operators [Gordon 2020;
Sekiyama and Unno 2023; Song et al. 2022].

Abstracting rows. Morris and McKinna [2019] proposed an algebraic theory of rows to abstract
type systems for extensible data types including records and variants. Morris andMcKinna separates
the syntactic representations of rows from their models. The former is called a row theory, which is
a triple of ⟨R,∼R,⇒⟩ where R is the set of syntactic representations of rows, ∼R is an equivalence
relation on R, and⇒ is an entailment relation on row predicates (speci�cally, row equivalence and
containment). It supposes a row concatenation operation ⊙R and de�nes row containment using
the concatenation operation, as we de�ned sube�ecting using the e�ect composition operation
⊙. The latter, the models of rows, are formulated as a partial monoid ⟨M, ·, n⟩, which works as a
model of a row theory ⟨R,∼R,⇒⟩ if there is a mapping from ⟨R,∼R,⇒⟩ to the monoid such that
the row concatenation operation ⊙R is interpreted by the monoid operation · and the entailment
relation⇒ is by the logical implication on the equality on M.

As easily found from the above description, our e�ect algebras are similar toMorris andMcKinna’s
abstract theory of rows. Roughly speaking, e�ect algebras can be viewed as ones that unify a row
theory with its model, but the uni�ed form helps simplify the de�nition of e�ect algebras—we
would have to pose some further safety conditions on a mapping from the syntax of e�ects to their
model if we were to separate them. Furthermore, there are a few minor di�erences between e�ect
algebras and Morris and McKinna’s abstract theory of rows. First, e�ect algebras do not include
the entailment of predicates because Morris and McKinna introduced it for implementing quali�ed
types, but we do not support them. Second, e�ect algebras assume a label injection operation (−)↑,
which is crucial to state certain safety conditions such as condition (1) in De�nition 5.1. Third, e�ect
algebras de�ne an equivalence relation as a binary relation on e�ects, while Morris and McKinna
restricts the use of an row equivalence relation ∼R to the form (− ⊙R −) ∼R −. The more �exible
use of the equivalence relation in e�ect algebras simpli�es the presentation of safety conditions.
For example, if we were to adopt an equivalence relation in the ternary style, safety condition (3)
introduced for lift coercions in De�nition 7.1 would have to be written like:

∃{Y′0, . . . , Y
′
n}. (∀8 ∈ {0, . . . , = − 1}.(!8 )

↑ ⊙ Y′8+1 ∼ Y
′
8 ) ∧

(!)↑ ⊙ Y1 ∼ Y
′
0 ∧ (!)↑ ⊙ Y2 ∼ Y

′
= ∧ ! ∉ {!1, . . . , !=}

=⇒ ∃{Y′0, . . . , Y
′
=}.(∀8 ∈ {0, . . . , = − 1}.(!8 )

↑ ⊙ Y′8+1 ∼ Y
′
8 ) ∧

0 ⊙ Y1 ∼ Y
′
0 ∧ 0 ⊙ Y2 ∼ Y

′
= ,

which is more complicated than the one presented in De�nition 7.1.
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10 Conclusion and Future Work

In this paper, we give _EA equipped with the abstract e�ect system that can be instantiated to
concrete e�ect systems, de�ne safety conditions on e�ect algebras, and prove the type-and-e�ect
safety of _EA by assuming that a given e�ect algebra satis�es the conditions. As far as we know, no
research formalizes the di�erences among e�ect systems for e�ect handlers nor the requirements
for the e�ect systems to prove safety properties. We reveal these essences via the abstraction
of e�ect systems by e�ect algebras, and the formalization of the safety conditions. The safety
conditions added for lift coercions or type-erasure semantics clarify the di�erences among e�ect
algebras. In the rest of the paper, we discuss possible directions for future work.

Abstraction of handling mechanisms. Although the framework in the paper targets deep e�ect
handlers, adapting it to shallow e�ect handlers is easy. In fact, we have provided this adaption and
proved its safety under the same safety conditions as the ones given in the main paper; interested
readers are referred to the supplementary material. In the literature, there are other proposals of the
e�ect handling, especially for resolving the problem with accidental handling without relying on lift
coercions. For instance, local e�ects [Biernacki et al. 2019], tunneling [Zhang and Myers 2019], and
lexically scoped e�ect handlers [Biernacki et al. 2020; Brachthäuser et al. 2020] have been proposed.
These approaches can be applied to address the accidental handling, but they employ signi�cantly
di�erent styles. For example, lexically scoped e�ect handlers can enable a new notion of e�ect
polymorphism, called contextual polymorphism [Brachthäuser et al. 2020]. Exploring abstraction to
accommodate all of these mechanisms is a challenging but interesting direction.

Abstraction for uni�cation and type inference. As mentioned in Section 6, our framework has not
yet exposed the essential roles of rows in their main application—uni�cation and type inference.
One of our ambitious goals for future research is to give a theoretical framework that can discover
di�erences among e�ect representations in uni�cation and type-inference, which have been well
explored with concrete e�ect representations, such as sets [Pretnar 2014], simple rows [Hillerström
and Lindley 2016], and scoped rows [Leijen 2017], but not in an abstract manner.

Abstraction of constrained e�ect collections. Another interesting direction is to abstract constrained
e�ect collections. For example, Hillerström and Lindley [2016] introduce Rémy’s row polymorphism,
which can state that some labels are present or absent in row variables, for e�ective uni�cation and
Tang et al. [2024] propose an e�ect system that allows type abstraction over subtyping constraints
on row variables. Row constraints have been extensively studied for programming with records
and variants [Cardelli and Mitchell 1989; Harper and Pierce 1991; Jones 1992; Rémy 1994]. Morris
and McKinna [2019] proposed a type system which treats rows and constraints on them abstractly.
Integrating the idea of their work with our framework is a promising approach.

Abstraction of implementation techniques. One approach to implementing e�ect handlers is to
apply type-directed translation into an intermediate language [Hillerström et al. 2017; Leijen 2017;
Schuster et al. 2022; Xie et al. 2020]. Exploring the type-directed translations and optimizations
proposed thus far, such as a selective translation into continuation passing style (CPS) [Leijen 2017],
in an abstract manner may lead to a common implementation infrastructure for languages with
di�erent e�ect systems or give an insight into the in�uence of e�ect representations on e�ciency.
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