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EMBEDDING HYPERBOLIC GROUPS INTO FINITELY 

PRESENTED INFINITE SIMPLE GROUPS 

JAMES BELK AND COLLIN BLEAK 

ABSTRACT. The Boone-Higman conjecture is that every recursively presented 
group with solvable word problem embeds in a finitely presented simple group. 
We discuss a brief history of this conjecture and work towards it. Along the 
way we describe some classes of finitely presented simple groups, and we briefly 
outline work of Belk, Bleak, Matucci, and Zaremsky showing that the broad 
class of hyperbolic groups embeds in a class of finitely presented simple groups. 

1. BOONE-HIGMAN CONJECTURE 

In this brief note, we trace through some history and constructions (both old 
and new) related to the Boone-Higman conjecture that every recursively presented 
group with solvable word problem embeds in a finitely presented simple group. 

We note that progress towards the conjecture has generally been hindered by our 

lack of knowledge (as mathematicians) of broad enough families of finitely presented 
simple groups to serve as hosts to Boone and Higman's conjectured embeddings, 
an issue that now seems to be easing. 

1.1. The word problem for finitely generated groups. In 1911 Max Dehn 
proposed several problems where progress would be needed before a meaningful 

theory of groups given by presentations could be developed [12]. One of these 
problems is now known as the word problem. 

Notation 1.1 (Word Problem). Given a finitely presented group 

G=〈X1,x2,...,XnI r1,r2,...,%〉

give a procedure by which one can determine, for any given product expression in-

volving the generators (and their inverses), whether or not the expression represents 
the identity of G. 

It turns out that the word problem is unsolvable in general. That is, there exist 
finitely presented groups for which there is no algorithm to decide whether a given 
word in the generators represents the identity. The first examples of such groups 

were given by Pyotr Novikov in 1955 [19] and independently by William Boone in 

1959 [6]. 

1.2. Key Word Problem Results. There are several key results in the area of 
the word problem for groups. We describe some of these here with some discussion. 

Firstly, and as mentioned above, the word problem cannot always be solved. 

Theorem 1.2 (Novikov 1955 [19] I Boone 1959 [6]). There exists a finitely presented 
group G with non-solvable word problem. 
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A second important insight is that the theory of groups with solvable word 
problem is linked with the theory of simple groups. 

Theorem 1.3 (Kuznetsov 1958 [15]). A finitely pTesented simple grnup G has 
solvable woTd prnblem. 

Prnof. Suppose 

G=〈X1,x2,...,XnI T1,r2,...,%〉

is a finite presentation of a simple group G, and w E (XU x-1) * is a word in the 

generators and their inverses. 
Set H to be the group presented as follows: 

H=〈XI r1, r2,..., rm, w〉.

Since G is simple, the group H is nontrivial if and only if w represents the identity 
in G. Now run two algorithms in parallel: Enumerate all consequences of relators 

in G and H. If w is a consequence of the relators in G then it represents the identity 
in G. If all the generators in X are consequences of the relations of H, then w is 
not the identity in G. One of these algorithms must terminate positively. ロ

And finally, the core result of Boone and Higman. 

Theorem 1.4 (Boone-Higman 1974 [8]). A finitely genemted grnup G has solvable 
woTd pmblem if and only if it embeds in a simple subgrnup of a finitely pTesented 
grnup. 

It is an interesting side story that it seems that Boone and Higman were not 
aware of Kuznetsov's Theorem until a comment of Richard Thompson at a confer-

ence in Irvine in 1969, which seems to have opened the door towards their work 
(this is discussed in [8]). In any case, Boone and Higman had already made their 

conjecture by 1973 (see [7]). 

1.3. The conjecture and a new result towards it. We are now in position to 

state the conjecture. 

Boone-Higman Conjecture (1973). A finitely generated group has solvable word 

problem if and only if it embeds in a finitely presented simple group. 

In the remainder of this note, we trace through the key ideas of a new theorem 
[2] which confirms the Boone-Higman conjecture for a natural first "broad" class 
of groups. 

Theorem 1.5 (Belk-Bleak-Matucci-Zaremsky). Every hyperbolic group embeds in 
a finitely presented simple group. 

2. HYPERBOLIC GROUPS 

Motivated by a construction and algorithm of Dehn, a class of groups with a 
very fast (linear time) algorithm for solving the word problem was defined. As we 

will describe in Subsection 2.2, this class eventually became known as the hyperbolic 
grnups. 
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2.1. Surface groups and Dehn's algorithm. Max Dehn in 1911 proposed the 
word problem as being one of three fundamental problems for finitely presented 

groups. He also gave an elegant solution to the word problem for Gs = 1r1 (S, *) for 
S a closed orientable surface of genus at least 2. 

c
 

c
 

a
 

a
 Gs=〈a,b, c, d I aba―1b-1cdc―ld―1〉

When the genus of S is greater than one there is a presentation of Gs with 
"small cancellation properties" which enable a very fast algorithm to solve the 

word problem for the group. We call such a presentation a Dehn presentation. 
The key ingredient for a Dehn presentation is that each basic relator of the 

presentation represents two circular relators (for the example presentation of Gs 
above, reading around the octagon from any start position in the two basic direc-

tions). Then, the overall set of created circular relators must not share any long 
overlapping common word: any maximal common substrings of two such circular 

relators must have length less than half the length of each of the circular relators 
involved. For the presentation of Gs above, any two strings read off two different 

ways from the octagon can never share a common substring longer than one letter, 

and 1/8 < 1/2. 

2.2. Dehn presentations and hyperbolic groups. The class of groups which 
admit a Dehn presentation became a well-studied class of groups over time. Inspired 
from various existing mathematical theories including hyperbolic geometry and low-

dimensional topology (including Max Dehn's results for surface groups) Gromov 

found a beautiful geometric interpretation of these groups [14]. Gromov understood 
that these are precisely those groups which act "geometrically" (with a properly 
discontinuous and cocompact action by isometries) on hyperbolic spaces, and called 

the resulting class of groups hyperbolic groups. 
Suppose 

G=〈XIR〉

is a Dehn presentation for G. As from this presentation, no two induced circular 

relators overlap on a long substring of either relator, we have that any w E (XU 
x-1)* with w =c le must contain some long substring which is from one of the 

relators, or, a freely cancelling pair of letters. In the first case one replaces the 
found partial relator by the inverse of its complementary part, which is a shorter 

word, without changing the element the string represents. In the second case, one 
carries out a free cancellation, also reducing the length of the word. Now simply 
repeat such reductions until the whole word collapses: this is Dehn's algorithm. 

By way of example, below, we follow Dehn's algorithm for a short word equivalent 

to the identity from the presentation of Gs. 

Example 2.1 (Dehn's algorithm by example). 

Gs=〈a,b, c, d I aba―lb―1cdc―ld―1〉
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d―1acdc―ld―1aba―la―lb―1cdc―1 

d―1acdc―ld―1aba―lb―la―ld 

d―1acdc―ld―1aba―lb―la―ld 

d―1aa―ld 

d―ld 

e 

Theorem 2.2 (Gromov 1987, Ollivier 2005). With overwhelming probability, a 
random group in the few relator model with various lengths is hyperbolic. 

Thus, hyperbolic groups form a natural first "port-of-call" for verifying the 

Boone-Higman conjecture: a vast class of groups essentially defined by the property 
of having a nice solution to the word problem. 

3. HOMEOMORPHISM GROUPS OF CANTOR SPACE 

3.1. Cantor space It. A Cantor space is any space which is homeomorphic to the 
usual middle-thirds Cantor set. By a theorem of Brouwer, any compact, totally 

disconnected metrizable space without isolated points is a Cantor space. 
A basic example of a Cantor space is the infinite product It = {O, 1 }w, whose 
points are infinite binary sequences. Given a finite binary sequence a, the cor-
responding cone C。isthe set of all points that have a as a prefix. Under the 
homeomorphism from It to the middle-thirds Cantor set, these map to subsets 
which are similar to the whole Cantor set: 

三 三
Coo C01 三C1 

Note that the clopen sets in It (i.e. the sets that are both closed and open) are 
precisely the sets that are finite unions of cones. 

Any two cones in It have a canonical homeomorphism between them. 

／ 
乏 ．．．．．．．． 三

C。 C11 

Specifically, the canonical homeomorphism from Ca to Cfj maps each sequence in 

Ca to the sequence in C/j obtained by replacing the prefix a with the prefix (3. 

3.2. The rational group尻 Iff: It→It is a homeomorphism and C。isa cone 
in the domain, the local action of f on Ca is the map !a: It→It that fits into a 
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commutative square 

f 
Ca—c(3 

～↓ ↓～ 
C)  C 
fa 

where the vertical maps are canonical homeomorphisms, and C(3is the smallest 

cone that contains f(Ca), A homeomorphism f is rational if it has only finitely 
many different local actions. 

In 2000, Grigorchuk, Nekrashevych, and Suschanskff observed that the rational 
homeomorphisms of It form a group under composition, which they refer to as the 
rational group !Ji! (see [13]). Though we have defined !Ji! using the binary alphabet 
{O, 1 }, they showed that the group !Ji!d determined by any finite alphabet with 
d ~ 2 letters is isomorphic to the binary group. They also showed that rational 

homeomorphisms could be described in a certain way using finite-state transducers, 
with one state for each of the local actions, as in the example below. 

1/11 

On infinite rooted binary tree, 

0/0 1/10 ニ—°〗
iteratively. 

Belk, Hyde, and Matucci later proved that the group f/l is simple, but not finitely 
generated [3]. 
A rational homeomorphism is synchronous if it maps each cone in the domain 

to a cone in the range (so each local action fa is a homeomorphism). Synchro-
nous rational homeomorphisms in和 actas automorphisms of the infinite d-ary 
tree, of which the d-ary Cantor space {O,..., d -1 }w is the boundary. Groups 
of synchronous rational homeomorphisms include the famous Grigorchuk group 

of intermediate growth, as well as other self-similar groups. On the other hand, 
Thompson's groups F, T, and V act one: by homeomorphisms which are rational 

but not necessarily synchronous. 

3.3. Contracting groups. A group G :::;和 ofsynchronous rational homeomor-
phisms is self-similar if every local action of every element of G again lies in G. The 

theory of self-similar groups has been developed extensively by Nekrashevych [16], 
and includes groups such as the Grigorchuk group, the Gupta-Sidki groups, and 
iterated monodromy groups for holomorphic functions. 

The most important class of self-similar groups are the contracting groups. Here 
a group G:::;和 iscontracting if the union N of the cores of its elements is finite, 
where the core of a rational homeomorphism f is the set of local actions of f that 
occur on infinitely many different cones. In this case, the finite set N is called the 
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nucleus of G. Nekrashevych has developed notions of limit spaces and partial self-
coverings for contracting self-similar groups, revealing deep connections between 

these groups and the theory of dynamical systems. 
If G:::;和 isa self-similar group, the corresponding Rover-Nekrashevych group 
凶Gis the subgroup of和 generatedby G and the d-ary Thompson group Vd. 
Such groups were investigated by Scott [22, 23, 24], and then Rover [21], and the 

connection to self-similar groups was made by Nekrashevych [18]. 

Theorem 3.1 (Nekrashevych 2018 [17]). If G :::;ぬ isa contracting self-similar 
group, then VdG is finitely presented. 

4. HYPERBOLIC IN RATIONAL 

In 2021, the authors and Francesco Matucci proved the following theorem. 

Theorem 4.1 (Belk-Bleak-Matucci 2021 [1]). Every hyperbolic group G embeds 
in the rational group尻．

The key idea is to consider the action of G on a certain totally disconnected 

boundary ohG defined by Gromov, known as the horofunction boundary. In the 
case where this boundary is a Cantor space and the action is faithful, we construct a 

homeomorphism 8心→{0, 1 }w that conjugates G into吸 (IfohG is not a Cantor 
space or the action is not faithful, this can be rectified by replacing G with the free 

product G * F:叫
The construction of the homeomorphism oh G→{O, l}w involves realizing邸
as the boundary of a certain tree, which we call the tree of atoms. For a hyperbolic 

group G, this tree has the structure of a self-similar tree, as defined below, which 
is fundamental to the proof of rationality. 

4.1. Self-Similar Trees. The definition of a self-similar tree is technical, but the 

main idea is that a self-similar tree is an infinite, rooted tree with finitely many 
"types" of nodes, where nodes of the same type are related in a certain way. Here 

is a typical example: 

In this case, there are two types of nodes (indicated by red and blue dots), where 

each blue node has one red and one blue child, and each red node has one red and 
two blue children. 
In the picture above, the children of each node have a left-to-right order, but this 

is not necessarily part of the structure of a self-similar tree. Instead, if two nodes 
have the same type, a self-similar tree specifies a finite set of isomorphisms between 

the subtrees rooted at those nodes. These isomorphisms form a groupoid, and are 
closed under taking restrictions. (This is the technical part of the definition.) 



7

HYPERBOLIC INTO SIMPLE 

If T is a self-similar tree, its boundary 8T is a compact, totally disconnected 
metrizable space. The notion of a "rational homeomorphism" can be extended to 

homeomorphisms of 8T by defining what it means for a homeomorphism to have 
finitely many local actions. 

Theorem 4.2 (Belk-Bleak-Matucci 2021 [1]). If the boundary 8T of a self-similar 

tree has no isolated points, then its group of rational homeomorphisms is isomorphic 
to勿．

4.2. The Tree of Atoms. To prove that every hyperbolic group G embeds into忽
we must show that G acts faithfully by rational homeomorphisms on the boundary 

of some self-similar tree. This tree is the tree of atoms, whose boundary is the 
horofunction boundary 8hG of G. 

The tree of atoms and horofunction boundary can be defined for any locally 
finite graph X. To do so, fix a base vertex in X, and for each n ~ 0 let Bn be the 

n-ball centered at the base vertex, including both vertices and edges. Given any 
vertex v in X, the corresponding vector field on Bn is obtained by orienting each 

edge of Bn in the direction that points towards v: 

That is, each edge of Bn is oriented so that its terminal vertex is closer to v than 
its initial vertex. Edges whose two endpoints have the same distance from v are 

not oriented. 
Different vertices in X correspond to different vector fields on Bn, but there are 

only finitely many possibilities. The set of all vertices v that determine a given 

vector field on Bn is an nth-level atom. There are finitely many such atoms, and 
these form a partition of the vertices of X. 
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In the example above, X has been partitioned into eleven 1st-level atoms, with the 
highlighted atom corresponding to the indicated vector field on B1. Each of these 

atoms is subdivided further at level two. 

The tree of atoms for X is the rooted tree of all infinite atoms in X. The root 
is the unique 0th-level atom, which is the whole graph X. In the above example, 

this root has ten children, corresponding to the ten infinite atoms, each of these 
1st-level nodes has three children, and so forth. 
The boundary of the tree of atoms is the horofunction boundary 8凶 ofX, as 

defined by Gromov. This space is totally disconnected and compact, and if X is 
hyperbolic there is a finite-to-one surjection from 8hX to the Gromov boundary 8X 

(see [20]). 

Theorem 4.3 (Belk-Bleak-Matucci 2021 [1]). If G is a hyperbolic group acting 

geometrically on X, then the tree of atoms for X has the structure of a self-similar 

tree, and elements of G act as rational homeomoT'f)hisms o瓜 X.

In particular, if Xis a Cayley graph of G, then G acts geometrically on X, and 

we write 8hG for the corresponding horofunction boundary (though 8hG depends 
on the generating set chosen for the Cayley graph). As long as 8hG has no isolated 

points and G acts faithfully on 8心， thistheorem gives an embedding of G into the 
rational group. As mentioned above, these two conditions can always be assured 

by replacing G with G * F2. 

5. HYPERBOLIC IN SIMPLE 

In upcoming work, the authors together with Francesco Matucci and Matthew 
Zaremsky establish the Boone-Higman conjecture for hyperbolic groups. 

Theorem 5.1 (Belk-Bleak-Matucci-Zaremsky 2023 [2]). Every hyperbolic group 

G embeds into a finitely presented simple group. 

The key idea is to consider the group [[G]] of all piecewise-G homeomorphisms of 

the horofunction boundary 8hG. Here a homeomorphism f of 8心 ispiecewise-G 
if there exists a finite partition of 8hG into clopen sets such that f agrees with an 
element of G on each set from the partition. 

Since G acts by rational homeomorphisms of 8hG, the same holds for [[G]]. The 
authors together with Matucci and Zaremsky prove that this group is contracting, 
and by a generalization of Nekrasevych's finite presentability theorem for Rover-

Nekrashevych groups it follows that [[G]] is finitely presented. 



9

HYPERBOLIC INTO SIMPLE 

Unfortunately, [[G]] is not typically a simple group, though it does have simple 
commutator subgroup. However, the first author and Matthew Zaremsky have 
defined a class of finitely presented simple groups called twisted Br-in-Thompson 

grnups [5] into which the group [[G]] can be shown to embed. 

5.1. Contracting Asynchronous Groups. If His a group of homeomorphisms 

of a Cantor space X, we say that His full if every piecewise-H homeomorphism of 
X is an element of H. This terminology comes from the theory of etale groupoids, 
where H is full if and only if it is the topological full group of the corresponding 

groupoid of germs. For example, the Thompson groups Vd are full, as is any Rover-
Nekrashevych group. If G is a hyperbolic group, then [[G]] is a full group of 

homeomorphisms of the horofunction boundary 8心
The authors together with Matucci and Zaremsky prove the following generaliza-
tion of Nekrashevych's theorem on the finite presentability of Rover-Nekrashevych 

groups. 

Theorem 5.2 (Belk-Bleak-Matucci-Zaremsky 2023 [2]). Let T be a self-similar-

tree whose bounda可 8Tis a Cantor space, and let H be a grnup of rational home-
omor-phisms of 8T. If Vr is minimal and H is full, contracting, and contains V:ゎ
then H is finitely presented. 

Here好 isa naturally defined Thompson-like group of homeomorphisms asso-
dated to T, consisting of all homeomorphisms that piecewise agree with the iso-

morphisms between subtrees that define the self-similar structure. The group Vr 
is minimal if the orbit of every point in 8T is dense. The requirement that Vr is 

minimal ensures that Vr is itself finitely presented. 
In the case of a hyperbolic group G, we prove that the action of G on its horo-
function boundary 8心 iscontracting, and it follows that the same holds for the 
group [[G]] of piecewise-G homeomorphisms. The group [[G]] is full and contains 

Vr, where Tis the tree of atoms for G. Finally, we can ensure Vr is minimal by 
replacing G with G * F2, if necessary. It follows that [[G]] is finitely presented. 

5.2. Twisted Brin-Thompson groups. In 2022, the first author and Matthew 

Zaremsky introduced a new class of groups called twisted Brin-Thompson groups 

[5], which are a variation on the higher-dimensional Thompson groups n V defined 
by Brin [9, 10]. 

Specifically, if S is any countable set, letむ bethe Cantor space ITs e:, where 
Q: = {O, 1}竺 IfG is any group of permutations of S, then the restricted wreath 
product W = V I G =（怠V)><1 G acts on炉 byh omeomorphisms. The twisted 
卵 n-Thompsongrnup SVc is the group of all homeomorphisms of Q:8 which are 
piecewise-W. 

Belk and Zaremsky prove that SVc is always simple, and give conditions under 

which it is finitely presented [5]. These conditions were later improved by Zaremsky, 
yielding the following theorem. 

Theorem 5.3 (Zaremsky 2022 [25]). Let G be a finitely presented, oligomorphic 

grnup of per-mutations of a set S. Suppose the stabilizer-in G of any finite subset of 
S is finitely generated. Then G embeds as a subgrnup of a finitely presented simple 
grnup, namely the twisted Br-in-Thompson grnup SVc. 

Here G is oligomorphic if the induced action of G on Sk has finitely many orbits 

for every k ~ 1. Oligomorphic groups were introduced by Peter Cameron [11]. 
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It is easy to see that any full group of homeomorphisms of a Cantor space acts 
oligomorphically on any one orbit. In particular, if G is a non-elementary hyperbolic 
group acting faithfully on ohG we obtain a faithful oligomorphic action of [[G]] on 

a certain countable dense subset of ohG. Using an argument of the first author, 

James Hyde, and Francesco Matucci [4], the stabilizers of finite sets in this action 
are finitely generated, so it follows from the above theorem that [[G]] embeds into 

a finitely presented simple group. 
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