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Abstract 

Boolos (1996) posed the puzzle "The hardest logic puzzle ever", and 
gave a solution in the style of biconditional questions. We first introduce 
a simple formalization of the puzzle consisting of questions, answerers, 
and answers in terms of propositional logic, and show its adequacy by the 
truth values (0, 1) semantics. We here pose a general form of the puzzle 
as an extension of Roberts (2001), and provide solutions to the instances. 
Our analysis reveals an essential condition for solvability of the puzzle in 
terms of the number of Random. 

1 Introduction 

George Boolos (1996) posed the puzzle "The hardest logic puzzle ever". The 
basic form of the puzzle comes from the well-known puzzles of Knights and 

Knaves from the book Logical Labyrinths [6], which often appear in logic or 
sociology of lying and truth-telling. For instance, one can find many examples 

[3] such as the film Labyrinth of Lucasfilm [9], the entrance examination of 

Cambridge University [5], and so on. 
To begin with, we quote the puzzle from Boolos [1]: 
"The puzzle: Three gods, A, B, and Care called, in some order, True, False, 

and Random. True always speaks truly, False always speaks falsely, but whether 
Random speaks truly or falsely is a completely random matter. Your task is 

to determine the identities of A, B, C by asking three yes-no questions; each 
question must be put to exactly one god. The gods understand English, but 

will answer all questions in their own language, in which the words for "yes" 
and "no" are "da" and "ja," in some order. You do not know which word means 

which ......... 

*This work was supported by the Research Institute for Mathematical Science, a Joint 
Usage/Research Center located in Kyoto University. This work was partly supported by 
Grants-in-Aid for Scientific Research KAKENHI (C) l 7K05343 and 20K03711. 
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Roberts [8] and Rabern-Rabern [7] provided a simpler solution in the style 
of embedded questions as follows. 

1. Ask god A: 

if I asked you if god B was Random, would you say da? 

2. Ask B or C朽

if I asked you if you always told the truth, would you say da? 

3. If I asked you if god A was Random, would you say da? 

We briefly review our methodology [2, 3, 4] for self-sufficiency. The method-
ology for solving the puzzles of Knights and Knaves from the book Logical 
Labyrinths [6] can be naturally extended to that for the hardest logic puzzle 
ever. For the extension, the binary relation between inhabitants and assertions 
should be replaced with a ternary form of questions, answerers, and answers. 
Firstly, let X be a propositional variable for a question, which means either true 
or false, respectively represented by 1 or 0. Secondly, let A, B be propositional 
variables for answerers A, B, which mean either1 True or False, respectively rep-
resented by 1 or 0. Lastly, let Y be a propositional variable for an answer. Here, 
an answer means either yes or no, respectively represented by 1 or 0. Instead, 
Y may also be used for the answer da or ja, whose meaning is either O or 1, but 
not fixed yet. 

If we ask a question X of an answerer A and obtain an answer Y, then the 
situation is depicted by the following diagram. 

X→ □□ → Y 

We formalize this relation of question-answerer-answer by the ternary form with 
the logical connective of bi-implication. 

X⇔ A⇔ Y 

Note trivial facts that⇔ is symmetric and associative and that a tautology is the 
unit. An adequacy of the formalization can be expounded by the truth values 
(0, 1) semantics. Let Prop be the set of propositions (formulae), and {O, 1} for 
the set of truth values. We write v for the assignment v : Prop→{O, l}. Now 
the consistent relation of question-answerer-answer is stated as follows: 

v(X⇔ A⇔ Y) = 1, 

under the assignment v such that v(A :=‘、True")= v(Y := "yes") = 1. This 
statement can be justified by the case analysis on A, as follows. 

1 In the puzzle of Boolos [1], one has Random in addition, but for the formalization here 
answerers are supposed to be either True or False. According to the solutions [1, 8, 7], Random 
can be handled by a certain strategy of asking questions which can be formalized here in terms 
of the ternary form. 
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• C邸 eA of‘、True":v(X⇔ Y) = 1 

X→ □亘□→ Y 

• C邸 eA of "False": v(X⇔ Y) =0 

X→ □丑□→ Y 

Let us formalize the embedded question [8, 7]. Recall the first one from the 
solution: 

• Ask god A Q1: if I asked you if god B was Random, would you say da? 

“X→区l→Y’'→ ［こ］ →？1 

where X := "B is Random", Y := "da". 

Now suppose that A's answer ? 1 is "da". Then this situation is formalized by 

the formula (X⇔ A ⇔ Y)⇔ A ⇔ Y, and hence for any assignment v we have 
the following equation 

v((X⇔ A⇔ Y)⇔ A⇔ Y) = v(X), 

since A⇔ A and Y ⇔ Y are tautologies. This implies that one can conclude 

V(X) ＝ 1. Analogously, we conclude v(X) ＝ 0 if the answer % is“ja”. • This 
is the reason why we can identify the truth value of X from ? 1 via a single 
question, even if we know neither the semantics of A nor that of "da" ("ja"). 

Following our formalization we summarize the solution [8, 7] which consists 

of the questions Q1, Q2, Q3 in this order, depending on the answer ?1: 

1. Q1 (Ask god A: if I asked you if god B was Random, would you say da?) 

"B=R→区］ →da"→ロエ］ → ？1 

2.仙（Z:= C) if ? 1 = da（仙（Z:= B) otherwise (i.e. ? 1 = ja)) 

"Z=T→区］ →da"→口こ］ → ？2 

3. Q3(Z := C) (otherwise Q3(Z := B)) 

"A=R→区］ →da"→ ［戸］ → ？3 

As a solution we have 3! patterns consisting of R, T, or F for〈A,B,C〉,and23 

patterns〈?1,?2,？砂 foran answer to〈Q1,Q2, Q砂． Everycandidate for〈A,B,C〉
and〈Q1,Q2, Q砂， andthe correlation are compacted in the following Table 1. 
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Q2(C) 

ja 

da 
ja 

da 

Q2(B) 

da 
ja 

ja 

da 

Q坐立」
da 
da 
ja 
ja 

Q辺〗］
da 
da 
ja 
ja 

Table 1: Boolos'puzzle 

A finite or infinite sequence of questions is represented by binary trees just 
like formal proofs of Gentzen's sequent calculus. Let Z be True (T), False (F), 
or Random (R). Then the following question 

"B=Z→区］ →da" →［乙→？
is denoted simply by A: B = Z. We employ the binary tree below 

ja ~ da 
ふ： B1= Z1 J - A2 : B2 = Z2 

A:B=Z 
dalja 

to represent that if the answer ? of the question is da then the next question 
is A1 : B1 = Z1 and the answer of A1 is ja, and that if the answer ? is ja 
then the next question is A2 : B2 = Z2 and the answer of A2 is da. We use 
this tree representation of sequences of questions and answers. At a leaf if once 
each identity for every god in Gn is determined by T, F, or R, we stop ourselves 
邸 kingquestions and expand this leaf no longer. At every leaf if each god's 
identity for Gn is determined, then we ask no more questions and we say that 
the puzzle Gn is solved. 

In order to show the correctness of Table 1, we provide the following proof 
trees, which is verified by the case analysis of (A= R) V---,(A= R): 

C:A=R 
dalja ~ dalja ~ dalja 

C:A=R B:A=R B:A=R 
dalja 

C:C=T 
da|ja 

B:B=T 
dalja 

A:B=R 
dalja 

2
 

A general form of the puzzle 

We pose a general form of the puzzle. Let Gn = {A1,A公...，ふ｝ （n ：：：：： 1) be 
the set of gods where Ai (1 ::::; i::::; n) is Random (R), True (T), or False (F). Let 
X be T, F, or R. Then IGnlx denotes the number of X in Gn. Suppose that 
IG贔 <n.Now the following fundamental puzzle is suggested here. 
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1. Is it possible to identify the non-Random god in G設

2. In particular, is it possible to identify the non-Random god for the case 

where IG2IR = 1? 

Remarked that Roberts [8] posed the following even harder puzzles. 

(1) Suppose the puzzle is as before汽butnow two of the gods are Random, and 
the third is either True or False. Is it possible to identify the non-Random 
god, and whether they are True or False, in three questions? 

(2) Suppose the puzzle is as before, but one god is Random, and the other 
two may be either both True, or both False, or one True and one False; is 
it possible to identify all of the gods in three questions? 

The even harder puzzle (1) is now an instance of IG贔＝ 2.First we provide a 
solution to the puzzle (2) in four questions. Now the solution can be depicted 
by the following tree starting from A : B = R, which is verified by the case 
analysis on A =J R or A = R: 

• Case of da to the first question A : B = R: 

dalja 
C:B=T C:A=T 

dalja 

C:A=R 
dalja 

dalja 
C:B=T C:A=T 

dalja 

C:A=R 
dalja ．．． 

C:C=T 
dalja 

B:B=T dalja 
A:B=R 

• Case of ja to the first question A : B = R: 

da!Ja 
B:C=T B:A=T 

dalJa 

B:A=R 
da!Ja ... 

C:C=T 

dalja 
B:C=T B:A=T 

dalja 

B:A=R 
dalja 

dalja 

A:B=R 
B:B=T 

dal1a 

By the tree, for instance, the sequence of da, da, da, da from A : B = R to 
C: B = T means that C = T, A=  R, and B = T. The sequence of da,ja,ja,ja 
means that C = F, B = R, and A=  F. The sequence ja, da, da, da means that 
B = T, A=  R, and C = T, and ja,ja,ja,ja means that B = F, C = R, and 
A=  F. The result is summarized in the following Table 2. 

Next, we show that Roberts'puzzle (1) is not solvable. Before this, we 
prove that it is impossible to identify the non-Random god for the puzzle G2 

with IG叫R = 1. 

Lemma 1伍＝ ｛A, B} with IG2IR = IG叶r;F = 1 is not solvable. 

Proof. Toward a contradiction, suppose that there exists a finite tree of questions 
and answers for G2 such that every leaf determines the identities of A and B 
consistently, i.e., either A = T / F and B = R, or A = Rand B = T / F. Consider 

20f course, this is the hardest logic puzzle ever [l]. 
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|| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | 
Q1 d d d d d d d d j j j j j j j j 

Q2 d d d d j j j j d d d d j j j j 

Q3 d d j j d d j j d d j j d d j j 

Q4 d j d j d j d j d j d j d j d j 

A R R T F R R T F R、 R T F R R T F 
B T F R R T F R R T T T T F F F F 
c T T T T F F F F T F R、 R T F R R 

Table 2: Roberts'puzzle (2) where d denotes da and j does ja 

the case of A = T / F and B = R. One leaf of the finite tree says that A = T / F 
and B = R via da/ ja to some question to A. The last question must be asked 
to non-Random A, since B is Random that answers randomly. For this result, 
previously we must recognize that A is not Random. In order to recognize 
A = T / F, we have to ask some question Q x to some X E G2 that cannot be B, 
since Bis Random. Of course, one can ask B. The answer is, however, random. 
We have to ask A again, but A's identity had not been determined yet, which 
leads to an infinite tree. From the contradiction, we cannot have a finite tree 

that solves G2 with IG加＝ IG2lr;F= 1. ロ

Lemma 2 It is not solvable that G1 = {A} where A is either T / F or R. 

Proof. By case analysis where A is either T / F or R, following the similar pattern 
to lemma 1. ロ
In the same way, one can give a general answer to Roberts'puzzle (1). 

Lemma 3 It is not solvable for n ：：：：： 2幼は Gn皿幼 kら,IR= (n―1) and 

IGnlT/F = 1. 

The puzzle G2 = {A, B} with IG叶R = IG贔＝ 1is not solvable, however we 
should remark that there exists an infinite tree such that every finite fragment 
of the tree determines whether either A = T, B = R or A = R, B = T. 

Lemma 4 First the following question "A = R→区］ →da" is asked to A: 

“A= R→区］ →da"→亡エ］ → da/ja 

Next, the following question "B = R→匝l→da" is asked to B in both cases 
of da/ja: 

“B=R→回］→ da’'→亡亙］ → da/ja 

Repeat this process in this order. If we obtain a sequence of (ja)'da for some 
odd i, then A=  T, B = R. If we obtain a sequence of (ja)ida for some even i, 
then A = R, B = T. 

Proof. Consider an infinite tree starting from A : (A = R) together with case 
analysis on A = R or A = T, as follows: 
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• C邸 eA = T, i.e., B = R: 
......  

ja 
A : (A = R) J - A : (A = R) 

ja 

B: (B = R) 
dalja 

A: (A= R) 
ja 

• C邸 eA=  R, i.e., B = T: 

...... 
A: (A= R) 

dalja 
A: (A= R) 

dalja 

J a.  
B : (B = R) J.. B : (B = R) 

Ja 

A: (A= R) 
dalja 

From this analysis, we obtain the following infinite tree which involves an infinite 
sequence of ja, ja, ja,..., and the finite fragments mean either A = R for (ja)ida 
with even i, or A=  T for (ja)ida with odd i, if obtained: 

B: (B = R) 
~ dalja 

A: (A= R) 
dalja 

B: (B = R) 
dalja 

A: (A= R) 
dalja 

口

We conjecture that it should be unsolvable that G4 = {A, B, C, D} with IC贔＝
|G伽＝ 2.

Conjecture 1 G4 = {A, B, C, D} is not solvable where IG4lr = IC畑＝ 2.

We should remark that the method of Lamma 4 can be applied to Conjecture 
1 as well. 

Lemma 5 There exists an infinite tree for Conjecture 1 such that the finite 
fragments determines each identity of G4. 

Proof. First consider the case of A=  R. The puzzle G3 = {B,C,D} with 
|G珈＝ 1and IC韮＝ 2is solvable, and for this let I:; be the following tree: 

D:(C=R) C:(D=R) 

B:(C=R) 
dalja 

Here, da, da means C = R; da, ja does B = R; ja, da does D = R; and ja, ja 
does B = R. Now following the method of Lamma 4, we can construct an 
infinite tree for Conjecture 1 as follows: 

T
 

~ A: (A= R) 

A: (A= R) 
dalja 

A: (A= R) 
dalja 
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Observe that we recognize A = R if da is obtained from the first question 
A: (A= R). Then the finite tree~ can be adopted to determine every identity 
of G4. Otherwise, we obtain ja and then we still have A =  R or A =  T. Hence, 
we can repeat this process infinitely, so that every identity of G4 is determined 
if we obtain a finite sequence of (ja)ida for some i :2: 0. ロ
We should remark that the proof method of Lemma 5 can be applied to construct 
infinite trees for the puzzle G2n with IG叫R= n and IG叫T/F = n, since 
IG2n-1IR = n -1 is solvable from Lemma 7 below. 

Finally, we show a solvable one, and the following solution can be applied to 
more general cases such as G5 = {A,B, C, D,E} with IG両＝ 2and IG叶T/F= 
3. Moreover, the solution can be naturally extended to Gn with IG贔 <n/2.

Lemma 6 Gs= {A,B,C,D,E} with IG虚＝ 2and IG面＝ 3is solvable. 

Proof. By case analysis on A = R or A cJ R, and for each case, case analysis 
on C = R or C cJ R, and B = R or B cJ R as well. After the following two 
questions A : (B = R) and either C : (D = R) or B : (D = R) depending on 
dalja, one can recognize that E =Tor D = T. 

dalja 
E: （C=R) D: （C=R) 

dalja 

dalja 

dalja E:(C=R) --,J- D:(C=R) dalja 

dalja 
C: (D = R) B: (D = R) 

dalja 
A: (B = R) 

See Table 3 that is obtained from the following trees both of which contain at 
most five questions such that Q1 := (B = R), Q2 := (D = R), Q3 := (C = R), 
Q4 := (B = R), and Qs := (A= R). 

• Case of da from A : (B = R): 

E, (A= R) E, (A= R) D, (A = R) D, (A = R) 

E, (B = R) E, (B = R) D, (B = R) D, (B = R) 

E, (C= R) D, (C=R) 

C, (D =R) 

A : （B = R) 

• C邸 eof ja from A: (B = R): 

E, (A = R) E, (A = R) 

E, (C = R) D, (C = R) 

B, (D=  R) 

D, (A = R) D, (A = R) 

E, (B = R) E, (B = R) D, (B = R) D, (B = R) 

E, (C = R) D, (C = R) 

C, (D=  R) 

E, (C=R) 

A, (B= R) 

D, (C=R) 

B, (D =R) 

口

Lemma 7 The puzzle G2n+1 with IG年 1IR = n is solvable for n：：：：： L 

Proof. See Table 1 for the case of n = 1, and Lemma 6 for n = 2. For n > 2 
we can take exactly the same pattern for the solution such that A2n = T or 
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|| 1 2 3 4 5 6 7 8 9 10 11 12 | 
Q1 d d d d d d d d d d d d 

Q2 d d d d d d j j j j j j 

Q3 d d d j j j d d d j j j 

Q4 d j j d d j d j j d d j 

Q5 d j d j d j d j 

A T R T R T R T R T R T R 
B R T T R R T R T T R R T 
C R R R T T T R R R、 T T T 
D T T R T R R T T T T T T 
E T T T T T T T T R、 T R、 R 

|| 13 14 15 16 17 18 19 20 21 22 23 24 | 
Q1 j j j j j j j j j j j j 

Q2 d d d d d d j j j j j j 

Q3 d d d j j j d d d j j j 

Q4 d j j d d j d j j d d j 

Q5 d j d j d j d j 

A T R T R T R T R T R T R 
B R T T R R T R T T R R T 
C R R R T T T R R R T T T 
D T T R T R R T T T T T T 
E T T T T T T T T R T R、 R 

Table 3: G5 with IG5IR = 2 and IG5lr = 3 where -means Q5 is needless 
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A加＋1= T for G加＋1= {Ai, A2, A3,..., A2n, A2n+l}，邸 follows:

A加＋1: (A2n-l = R) A加： （A2n-l = R) 
A2n-l : (A2n = R) 

A5 : (A6 = R) A4 : (A6 = R) A5 : (A6 = R) A4 : (A6 = R) 

A3 : (A4 = R) A2 :（山＝ R)

ふ：（A2= R) 

口

Proposition 1 The puzzle Gn with゚：：：：： IG贔く ln/2」issolvable for n ;;::: 1. 

Proof. The solution follows from Lemma 7. ロ
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