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Abstract Restricted to a binary operator, quasigroups and Latin 

squares are equivalent. MOLS stands for mutually orthogonal Latin 

squares. In this paper, we describe about mutually orthogonal quasi-

group system and MOLS. 

1 Introduction 

A quasigroup with a binary operator is equivalent to a Latin square. 

That is, there exists a bijection between the set of all quasigroups of 

order q with binary operators and the set of all Latin squares with a size 

of q X q. 

Mutually orthogonal Latin squares are written abbreviated as MOLS. 

For quasigroups with binary operators, a mutually orthogonal quasi-

group system is equivalent to MOLS. 

Much research has been done on Latin squares and MOLS. But few 

research has been done on quasigroups with n-ary operators. Especially, 

in the case of n 2: 3, very few research has been done. 

In this paper, we research for the definitions and property related 

to quasigroups with n-ary operators, and we describe about mutually 

orthogonal quasigroup system. 

2 Definitons and property for Latin squares 

We suggest that readers who wish to learn more about the definitions 

and property related to Latin squares discussed in this section refer to 

[3] and [2]. 

Let qk 2) to be an integer and fixed. 
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Definition 2.1 (Latin square). A Latin square of order q is an qxq array 

in which q distinct symbols are arranged so that each symbol occurs in 

each row and column. 

Definition 2.2 (Quasigroup). A set Q is called a quasigroup if there is 

a binary operation * defined in Q and if, when any two elements a, b of 

Q are given, the equations a * x = b and y * a = b each have exactly one 

solution. 

Theorem 2.3. Evey multiplication table of a quasigroup is a Latin 

square and conversely, any bordered latin square is the multiplication 

table of a quasigroup. 

We denote L = I laij 11, when an (i, j)-element of a Latin square L is 

written by aij as follows, 
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Definition 2.4 (Orthogonal). Let L1 and L2 be Latin squares of the 

same order, sau q 2: 2. We say that L1 and L2 are orthogonal if, when 
superimposed, each of the possible q2 ordered pairs occurs exactly once. 

In the other word, two Latin squares L1 = llaijll and L2 = llbi』|onq 

symbols are said to be orthogonal if evry ordered pair of symbols occurs 
2 exactly once among the q"L pairs (ai_i, bi_i) ij,bij), i,j = 1,2,・・・,q. 

The descriptive term orthogonal mate for a Latin square L2 which 

is orthogonal to a given Latin square L1 was first by [6]. 
For example, the following two Latin squares L1 and L2 are orthog-

onal. For given a Latin square L1, L2 is the orthogonal mate of L1・

Ll = [>] ［l,L2 = ［［ } [l 
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Definition 2.5 (MOLS). We say that a set {L1, L2,.. ・, Lt} oft ~ 2 

Latin squares of order q is orthogonal if any two distinct squares are 

orthogonal, that is ifムisorthogonal to Lj whenver i -/= j. Such a set 

of orthogonal squares is said to be a set of mutually orthogonal Latin 

squares (MOLS). 

For example, the following set {Li, L2, L叶isMOLS. 
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Definition 2.6 (N(q)). We denote the maximum possible number of 

MOLS of order q by N(q). 

Theorem 2.7. For each q 2: 2, N(q)::S q-1 

Definition 2.8 (Complete). If we have a set of q -l MOLS of order q, 

then the set is said to be complete. 

Utilizing the property of orthogonal Latin squares and MOLS, sev-

eral constructions of Sudoku solutions are obtain [1, 4, 5]. 

Theorem 2.9 (Prime powers). For q a prime power the set of polyno-

mials of the form fa(x, y) = ax+ y with a -I O E GF(q) represents a 
complete set of q -l MOLS of order q. 

Theorem 2.10 (Nonprime powers). If there is a pair of MOLS of order 

q1 and a pair of MOLS of order q2, then there is a pair of MOLS of order 

q1q2 

Theorem 2.11 (Nonprime powers). If q = 0, 1, 3 (mod 4), then N(q) ~ 

2. 
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Theorem 2.12 (Nonprime powers). For all q except 2 and 6, there is 

a pair of MOLS of order q; that is, for all q except 2 and 6, N(q) 2: 2. 

Theorem 2.13 (Nonprirne powers). Let q1 x q2 x ・ ・ ・ x qr be the fac-

torization of q into distinct prime powers with q1く卯<..．＜ qr.Then 

N(q) 2:: q1 -1 

Theorem 2.14 (Nonprime powers). For q1, q2 2: 2, it holds that N(q叩）ミ

min{N(q1), N(q2)}. 

3 Definitons and property for quasigroups with 

n-ary operators 

We suggest that readers who wish to learn more about the definitions 

and property related to quasigroups discussed in this section refer to [7]. 

Let n(：：：：：： 2) to be an integer and fixed. Generally, when A is an n-

ary operation on a non-empty set G, we write A(x1心2,・ ・ ・, Xn), for any 

elements x1,x2, ・ ・ ・,xn E G. Especially, when A is a binary operation 

on a non-empty set G, we often write x * y instead of A(x, y), for any 

elements x, y E G. 

Definition 3.1 (n-aray Groupoid). An n-ary groupoid (G, A) is a non-

empty set G together with an n-ary operation A. 

Definition 3.2 (order). The order of an n-ary groupoid (G,A) is car-

dinarity IGI of the carrier set G. An n-ary groupoid (G, A) is said to be 

finite if its order is finite. 

Definition 3.3 (Binary Quasigroup). A binary groupoid (Q, o) is called 

a quasigroup if for any ordered pair (a, b) E Q2 there exist unique solu-

tions x, y E Q to the equations x o a= band a o y = b. 

Definition 3.4 (n-ary Quasigroup). An n-ary groupoid (Q, A) with n-

ary operation A such that in the equality A(x1,x2, ・ ・ ・,xn) = Xn+l the 

fact of knowing any n elements of the set { x1, x2, ・ ・ ・, Xn心n+l}uniquely 

speccifies the remaining one element is called an n-ary quasigroup. 
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Definition 3.5 (Isotopism of isotopy). An n-ary groupoid (G, J) is an 
isotope of an n-ary groupoid (G, g) (in other words (G, f) is an isotopic 
image of (G, g)), if there exsit permutations μぃμ2,・ ・ ・, μn, μ of the set 
G such that 

知 1,x2,・ ・ ・,xn) = μ―lg(μ立 1,μ四 2,・ ・ ・, μnxn) 

for all x1, x2, ・ ・ ・, Xn E G. We can also write this fact in the form 

(G, f) = (G, g)T where T = (μ研2,・ ・ ・, μn, μ). The ordered (n + 1)-
tuple T is called isotopy of n-ary groupoids. 

Example 3.6. We give an example of a ternary quasigroup (Q,A) 

of order 4 using four binary operators A。,A1,A2, A3 on the set Q = 
{O, 1, 2, 3}. 

At first, we give the following four binary operators A。,A1,A2, A3 on 
the set Q = {O, 1, 2, 3}. These multiplication tables are all Latin squares 
of order 4. Hence, the set Q = {O, 1, 2, 3} is a quasigroup with each 

binary operator Ai (i = 0, 1, 2, 3). That is, (Q, Ao), (Q, A1), (Q, A叫，
(Q, A3) are four quasigroups of order 4, 

A
O
-
o
1
2
3
 

坐
0

1

2

3

3
-
2
3
0
1
 

2
-
3
2
1
0
 

1
-
0
1
2
3
 

〇＿

1

0

3

2

3
-
3
0
1
2
 

2
-
2
3
0
1
 

1
-
1
2
3
0
 

0
-
0
1
2
3
 

A
l
-
o
1
2
3
 

他
0

1

2

3

3
-
0
1
2
3
 

2
-
1
0
3
2
 

1
-
2
3
0
1
 

0
-
3
2
1
0
 

3
-
1
2
3
0
 

2
-
0
1
2
3
 

1
-
3
0
1
2
 

〇

-
2
3
0
1

Next, the ternary operator A of the set Q = {O, 1, 2, 3} is gven by 
A(i,j,k) = Ai(j,k). For example, we have A(l,2,3) = A1(2,3) = 0. 

Therefore, (Q, A) is a ternary quasigroup of order 4. 
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4 Orthogonallity of quasigroups with binary op-

erations 

We suggest that readers who wish to learn more about orthogonallity of 

quasigroups with binary operations discussed in this section refer to [3] 

and [7]. 

In this section, we let G is a groupoid, Q is a quasigroup, A, B, 

ふ，A2,・ ・ ・, At are binary operators on G or Q. In this section, we 
rewrite the definitions and property for Latin squares in section 2, in 

the terms of quasigroups with binary operations. 

Definition 4.1 (Binary Orthogorality). Two binary groupoids (G, A) 

and (G, B) are called orthogonal, if the system of equations 

{ A(x,y) ＝ a 
B(x,y) = b 

has a unique solution (xo, Yo) for any fixed pair of elements a, b E G. 

When two binary quasigroups (Q, A) and (Q, B) are orthogonal, and 

LA,LB are the multiplication tables of quasigroups (Q,A), (Q,B), re-

spectively, two Latin squares LA and LB are orthogonal. 

Definition 4.2 (Basis square). A Latin square for which an orthogonal 

Latin square exsists is called a basis square. 

Definition 4.3 (Mutual Orthogonarity). A set of quasigroups {(Q, A1), 

(Q, A2), ・ ・ ・, (Q, At)} over Q is called to be a mutually orthogonal quasi-

group system when Ai and Aj are orthogonal for any i, j where i -/= j. 

When a set {(Q,A1), (Q,A2), ・ ・ ・, (Q,At)} over Q is a mutually 

orthogonal quasigroup system, and each Li is the multiplication table 

of each quasigroup (Q, A』fori = 1,2,・・・,t, a set {L1, L2,・・・,Lt} is 

MOLS. 

Definition 4.4 (N(q)). We denote by N(q) the largest number N such 
that there exists a mutually orthogonal quasigroup system {(Q,A1), 

(Q,A叫，• • •, (Q, At)} where q = IQI. 
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The above definition is equivalent to Definition 2.6 in Section 2. 

Theorem 4.5. The followings hold. 

• N(q)'.S (q -1); 

• If q is prime, then N(q) = (q -l); 

• N(q叩） 2min{N(q1), N（q2)}, in particular, if q = q1 ・ ・ ・ qt is the 
canonical decomposition of q, then N (q) 2 min{ q1 -1, ・ ・ ・, qt -1}; 

• N(q) 2 ql0/143 -2; 

• N(q) 2 3, if q rf_ {2, 3, 6, 10}; 

• N(q) 2 6 whenever q > 90; 

• N(q) 2 q101148 for sufficiently large q. 

5 Orthogonallity of quasigroups with n-ary op-

erations 

Finally, we describe about mutually orthogonal quasigroups with n-ary 

operations. In this section, we let G is a groupoid, Q is a quasigroup, 

Ji, h, ・ ・ ・, fn, A, B, Care n-ary operators on G or Q. 
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The above definition is can use in the both cases whenever the set G 

is finite or infinite. When the set G is finite, that is IGI = q, there exist 
(q門！ systems.
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Example 5.3. We give an example of mutually orthogonal ternary 

groupoids (G, A), (G, B), (G, C) of order 4. 

At first, we give four binary operators A。,A1,A2, A3 on the set G = 
{O, 1, 2, 3}, such as Example 3.6. The ternary operator A of the set 

G = {O, 1, 2, 3} is gven by A(i,j, k) = Ai(j, k). Then, (G, A) is a ternary 

groupoid of order 4. Moreover, we note that each multiplication table of 

each binary operation Ai (i = 0, 1, 2, 3) is Latin square of order 4. and 

(G, A) is also a ternary quasigroup of order 4. 

Secondly, we give the following four binary operators B。,B1,B2,B3
on the set G = {O, 1, 2, 3}, as follows. These multiplication tables of 

binary operations Bi (i = 0, 1, 2, 3) are no Latin squares, but are all 
closed in G = {0,1,2,3}. Hence, (G,Bo), (G,B1), (G,B2), (G,B3) are 
binary groupoids, not quasigroups. The ternary operator B of the set 

G = {O, 1, 2, 3} is gven by B(i,j, k) = Bi(j, k). Then, (G, B) is a ternary 

groupoid of order 4. 
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Thirdly, we give the following four binary operators C,。,C1,C2,C3
on the set G = {O, 1, 2, 3}, as follows. These multiplication tables of 

binary operations Ci (i = 0, 1, 2, 3) are no Latin squares, but are all 
closed in G = {O, 1, 2, 3}. Hence, (G, Co), (G, Cか(G,C叫，（G,C3) are 

binary groupoids, not quasigroups. The ternary operator C of the set 

G = {O, 1, 2, 3} is gven by C(i,j, k) = Ci(j, k). Then, (G, C) is a ternary 

groupoid of order 4. 
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Therefore, the three ternaray groupoids (G,A), (G,B), (G,C) are 

mutually orthogonal, since the following system of equations 

{ ；冒’9Xこ'9XX3]：al 2 

C(x1,x2，⑬） ＝a3 

has a unique solution for any 3-tuple (a1, a2, a3) E G包
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