Mutually Orthogonal Quasigroup System and MOLS

Tomoko Adachi Shizuoka Institute of Science and Technology

E-mail: adachi.tomoko@sist.ac.jp

Abstract Restricted to a binary operator, quasigroups and Latin squares are equivalent. MOLS stands for mutually orthogonal Latin squares. In this paper, we describe about mutually orthogonal quasi-group system and MOLS.

1 Introduction

A quasigroup with a binary operator is equivalent to a Latin square. That is, there exists a bijection between the set of all quasigroups of order q with binary operators and the set of all Latin squares with a size of $q \times q$.

Mutually orthogonal Latin squares are written abbreviated as MOLS. For quasigroups with binary operators, a mutually orthogonal quasigroup system is equivalent to MOLS.

Much research has been done on Latin squares and MOLS. But few research has been done on quasigroups with *n*-ary operators. Especially, in the case of $n \geq 3$, very few research has been done.

In this paper, we research for the definitions and property related to quasigroups with n-ary operators, and we describe about mutually orthogonal quasigroup system.

2 Definitons and property for Latin squares

We suggest that readers who wish to learn more about the definitions and property related to Latin squares discussed in this section refer to [3] and [2].

Let $q(\geq 2)$ to be an integer and fixed.

Definition 2.1 (Latin square). A Latin square of order q is an $q \times q$ array in which q distinct symbols are arranged so that each symbol occurs in each row and column.

Definition 2.2 (Quasigroup). A set Q is called a quasigroup if there is a binary operation * defined in Q and if, when any two elements a, b of Q are given, the equations a * x = b and y * a = b each have exactly one solution.

Theorem 2.3. Evey multiplication table of a quasigroup is a Latin square and conversely, any bordered latin square is the multiplication table of a quasigroup.

We denote $L = ||a_{ij}||$, when an (i, j)-element of a Latin square L is written by a_{ij} as follows,

$$L = ||a_{ij}|| = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1q} \\ a_{21} & a_{22} & \cdots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{q1} & a_{q2} & \cdots & a_{qq} \end{bmatrix}$$

Definition 2.4 (Orthogonal). Let L_1 and L_2 be Latin squares of the same order, sau $q \ge 2$. We say that L_1 and L_2 are orthogonal if, when superimposed, each of the possible q^2 ordered pairs occurs exactly once. In the other word, two Latin squares $L_1 = ||a_{ij}||$ and $L_2 = ||b_{ij}||$ on q symbols are said to be orthogonal if evy ordered pair of symbols occurs exactly once among the q^2 pairs $(a_{ij}, b_{ij}), i, j = 1, 2, \dots, q$.

The descriptive term orthogonal mate for a Latin square L_2 which is orthogonal to a given Latin square L_1 was first by [6].

For example, the following two Latin squares L_1 and L_2 are orthogonal. For given a Latin square L_1 , L_2 is the orthogonal mate of L_1 .

$$L_1 = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}, L_2 = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

Definition 2.5 (MOLS). We say that a set $\{L_1, L_2, \dots, L_t\}$ of $t \ge 2$ Latin squares of order q is orthogonal if any two distinct squares are orthogonal, that is if L_i is orthogonal to L_j whenver $i \ne j$. Such a set of orthogonal squares is said to be a set of mutually orthogonal Latin squares (MOLS).

For example, the following set $\{L_1, L_2, L_3\}$ is MOLS.

$L_1 =$	Γ0	1	2	3	$, L_2 =$	[0	1	2	3	$, L_{3} =$	0	1	2	3]
	1	0	3	2		2	3	0	1		3	2	1	0
	2	3	0	1		3	2	1	0		1	0	3	2
	3	2	1	0		1	0	3	2		2	3	0	1

Definition 2.6 (N(q)). We denote the maximum possible number of MOLS of order q by N(q).

Theorem 2.7. For each $q \ge 2$, $N(q) \le q - 1$

Definition 2.8 (Complete). If we have a set of q - 1 MOLS of order q, then the set is said to be complete.

Utilizing the property of orthogonal Latin squares and MOLS, several constructions of Sudoku solutions are obtain [1, 4, 5].

Theorem 2.9 (Prime powers). For q a prime power the set of polynomials of the form $f_a(x, y) = ax + y$ with $a \neq 0 \in GF(q)$ represents a complete set of q - 1 MOLS of order q.

Theorem 2.10 (Nonprime powers). If there is a pair of MOLS of order q_1 and a pair of MOLS of order q_2 , then there is a pair of MOLS of order q_1q_2

Theorem 2.11 (Nonprime powers). If $q \equiv 0, 1, 3 \pmod{4}$, then $N(q) \geq 2$.

Theorem 2.12 (Nonprime powers). For all q except 2 and 6, there is a pair of MOLS of order q; that is, for all q except 2 and 6, $N(q) \ge 2$.

Theorem 2.13 (Nonprime powers). Let $q_1 \times q_2 \times \cdots \times q_r$ be the factorization of q into distinct prime powers with $q_1 < q_2 < \cdots < q_r$. Then $N(q) \ge q_1 - 1$

Theorem 2.14 (Nonprime powers). For $q_1, q_2 \ge 2$, it holds that $N(q_1q_2) \ge min\{N(q_1), N(q_2)\}$.

3 Definitons and property for quasigroups with *n*-ary operators

We suggest that readers who wish to learn more about the definitions and property related to quasigroups discussed in this section refer to [7].

Let $n(\geq 2)$ to be an integer and fixed. Generally, when A is an *n*-ary operation on a non-empty set G, we write $A(x_1, x_2, \dots, x_n)$, for any elements $x_1, x_2, \dots, x_n \in G$. Especially, when A is a binary operation on a non-empty set G, we often write x * y instead of A(x, y), for any elements $x, y \in G$.

Definition 3.1 (*n*-aray Groupoid). An *n*-ary groupoid (G, A) is a nonempty set G together with an *n*-ary operation A.

Definition 3.2 (order). The order of an *n*-ary groupoid (G, A) is cardinarity |G| of the carrier set G. An *n*-ary groupoid (G, A) is said to be finite if its order is finite.

Definition 3.3 (Binary Quasigroup). A binary groupoid (Q, \circ) is called a *quasigroup* if for any ordered pair $(a, b) \in Q^2$ there exist unique solutions $x, y \in Q$ to the equations $x \circ a = b$ and $a \circ y = b$.

Definition 3.4 (*n*-ary Quasigroup). An *n*-ary groupoid (Q, A) with *n*-ary operation A such that in the equality $A(x_1, x_2, \dots, x_n) = x_{n+1}$ the fact of knowing any *n* elements of the set $\{x_1, x_2, \dots, x_n, x_{n+1}\}$ uniquely speccifies the remaining one element is called an *n*-ary quasigroup.

Definition 3.5 (Isotopism of isotopy). An *n*-ary groupoid (G, f) is an isotope of an *n*-ary groupoid (G, g) (in other words (G, f) is an isotopic image of (G, g)), if there exsit permutations $\mu_1, \mu_2, \dots, \mu_n, \mu$ of the set G such that

$$f(x_1, x_2, \cdots, x_n) = \mu^{-1}g(\mu_1 x_1, \mu_2 x_2, \cdots, \mu_n x_n)$$

for all $x_1, x_2, \dots, x_n \in G$. We can also write this fact in the form (G, f) = (G, g)T where $T = (\mu_1, \mu_2, \dots, \mu_n, \mu)$. The ordered (n + 1)-tuple T is called isotopy of n-ary groupoids.

Example 3.6. We give an example of a ternary quasigroup (Q, A) of order 4 using four binary operators A_0, A_1, A_2, A_3 on the set $Q = \{0, 1, 2, 3\}$.

At first, we give the following four binary operators A_0, A_1, A_2, A_3 on the set $Q = \{0, 1, 2, 3\}$. These multiplication tables are all Latin squares of order 4. Hence, the set $Q = \{0, 1, 2, 3\}$ is a quasigroup with each binary operator A_i (i = 0, 1, 2, 3). That is, (Q, A_0) , (Q, A_1) , (Q, A_2) , (Q, A_3) are four quasigroups of order 4,

3
2
3
0
1
3
0
1
2
3
<u>-</u> 32L) <u>2</u> L)32

Next, the ternary operator A of the set $Q = \{0, 1, 2, 3\}$ is given by $A(i, j, k) = A_i(j, k)$. For example, we have $A(1, 2, 3) = A_1(2, 3) = 0$. Therefore, (Q, A) is a ternary quasigroup of order 4.

4 Orthogonallity of quasigroups with binary operations

We suggest that readers who wish to learn more about orthogonallity of quasigroups with binary operations discussed in this section refer to [3] and [7].

In this section, we let G is a groupoid, Q is a quasigroup, A, B, A_1, A_2, \dots, A_t are binary operators on G or Q. In this section, we rewrite the definitions and property for Latin squares in section 2, in the terms of quasigroups with binary operations.

Definition 4.1 (Binary Orthogorality). Two binary groupoids (G, A) and (G, B) are called orthogonal, if the system of equations

$$\begin{cases} A(x,y) = a\\ B(x,y) = b \end{cases}$$

has a unique solution (x_0, y_0) for any fixed pair of elements $a, b \in G$.

When two binary quasigroups (Q, A) and (Q, B) are orthogonal, and L_A, L_B are the multiplication tables of quasigroups (Q, A), (Q, B), respectively, two Latin squares L_A and L_B are orthogonal.

Definition 4.2 (Basis square). A Latin square for which an orthogonal Latin square exsists is called a basis square.

Definition 4.3 (Mutual Orthogonarity). A set of quasigroups $\{(Q, A_1), (Q, A_2), \dots, (Q, A_t)\}$ over Q is called to be a mutually orthogonal quasigroup system when A_i and A_j are orthogonal for any i, j where $i \neq j$.

When a set $\{(Q, A_1), (Q, A_2), \dots, (Q, A_t)\}$ over Q is a mutually orthogonal quasigroup system, and each L_i is the multiplication table of each quasigroup (Q, A_i) for $i = 1, 2, \dots, t$, a set $\{L_1, L_2, \dots, L_t\}$ is MOLS.

Definition 4.4 (N(q)). We denote by N(q) the largest number N such that there exists a mutually orthogonal quasigroup system $\{(Q, A_1), (Q, A_2), \dots, (Q, A_t)\}$ where q = |Q|.

The above definition is equivalent to Definition 2.6 in Section 2.

Theorem 4.5. The followings hold.

- $N(q) \leq (q-1);$
- If q is prime, then N(q) = (q-1);
- $N(q_1q_2) \ge min\{N(q_1), N(q_2)\}$, in particular, if $q = q_1 \cdots q_t$ is the canonical decomposition of q, then $N(q) \ge min\{q_1 1, \cdots, q_t 1\}$;
- $N(q) \ge q^{10/143} 2;$
- $N(q) \ge 3$, if $q \notin \{2, 3, 6, 10\}$;
- $N(q) \ge 6$ whenever q > 90;
- $N(q) \ge q^{10/148}$ for sufficiently large q.

5 Orthogonallity of quasigroups with *n*-ary operations

Finally, we describe about mutually orthogonal quasigroups with *n*-ary operations. In this section, we let G is a groupoid, Q is a quasigroup, $f_1, f_2, \dots, f_n, A, B, C$ are *n*-ary operators on G or Q.

Definition 5.1 (*n*-aray Orthogonality). *n*-aray groupoids $(G, f_1), (G, f_2), cdots, (G, f_n)$ are called orthogonal, if for any fixed *n*-tuple a_1, a_2, \dots, a_n the following system of equations

 $\begin{cases} f_1(x_1, x_2, \cdots, x_n) = a_1 \\ f_2(x_1, x_2, \cdots, x_n) = a_2 \\ \vdots \\ f_n(x_1, x_2, \cdots, x_n) = a_n \\ \vdots \\ nue \text{ solution.} \end{cases}$

has a unique solution.

The above definition is can use in the both cases whenever the set G is finite or infinite. When the set G is finite, that is |G| = q, there exist $(q^n)!$ systems.

Definition 5.2. For fixed k $(2 \leq k \leq n)$, *n*-aray groupoids (G, f_1) , (G, f_2) , *cdots*, (G, f_k) given on a set G of order m are called orthogonal if the system of equations

 $\begin{cases} f_1(x_1, x_2, \cdots, x_n) = a_1 \\ f_2(x_1, x_2, \cdots, x_n) = a_2 \\ \vdots \\ f_k(x_1, x_2, \cdots, x_n) = a_k \end{cases}$

has exactly m^{n-k} solutions for any k-tuple a_1, a_2, \dots, a_k , where $a_1, a_2, \dots, a_k \in G$.

Example 5.3. We give an example of mutually orthogonal ternary groupoids (G, A), (G, B), (G, C) of order 4.

At first, we give four binary operators A_0, A_1, A_2, A_3 on the set $G = \{0, 1, 2, 3\}$, such as Example 3.6. The ternary operator A of the set $G = \{0, 1, 2, 3\}$ is given by $A(i, j, k) = A_i(j, k)$. Then, (G, A) is a ternary groupoid of order 4. Moreover, we note that each multiplication table of each binary operation A_i (i = 0, 1, 2, 3) is Latin square of order 4. and (G, A) is also a ternary quasigroup of order 4.

Secondly, we give the following four binary operators B_0, B_1, B_2, B_3 on the set $G = \{0, 1, 2, 3\}$, as follows. These multiplication tables of binary operations B_i (i = 0, 1, 2, 3) are no Latin squares, but are all closed in $G = \{0, 1, 2, 3\}$. Hence, $(G, B_0), (G, B_1), (G, B_2), (G, B_3)$ are binary groupoids, not quasigroups. The ternary operator B of the set $G = \{0, 1, 2, 3\}$ is given by $B(i, j, k) = B_i(j, k)$. Then, (G, B) is a ternary groupoid of order 4.

B_0	0	1	2	3	B_1	1	0	1	2	3
0	3	0	1	3	0		2	1	1	0
1	0	2	3	0	1		2	3	3	0
2	1	2	1	3	2		0	2	1	3
3	1	1	2	2	3		0	0	3	1
B_2	0	1	2	3	Ba	3	0	1	2	3
0	1	2	0	0	0		3	3	2	2
1	2	0	3	1	1		0	1	2	1
0										
2	0	2	3	2	2		0	2	0	3

Thirdly, we give the following four binary operators C_0, C_1, C_2, C_3 on the set $G = \{0, 1, 2, 3\}$, as follows. These multiplication tables of binary operations C_i (i = 0, 1, 2, 3) are no Latin squares, but are all closed in $G = \{0, 1, 2, 3\}$. Hence, (G, C_0) , (G, C_1) , (G, C_2) , (G, C_3) are binary groupoids, not quasigroups. The ternary operator C of the set $G = \{0, 1, 2, 3\}$ is given by $C(i, j, k) = C_i(j, k)$. Then, (G, C) is a ternary groupoid of order 4.

C_0	0	1	2	3	C_1	0	1	2	3
0	3	1	2	0	0	1	2	1	3
1	2	1	1	2	1	1	2	3	1
2	0	1	0	1	2	0	2	2	0
3	3	1	2	3	3	1	3	1	1
C_{2}	0	1	2	3	C_3	0	1	2	3
$\frac{-2}{0}$	3	3	0	0	0	2	1	0	0
1	2	1	0	1	1	2	0	2	3
2	3	3	2	0	2	3	3	2	0

Therefore, the three ternaray groupoids (G, A), (G, B), (G, C) are mutually orthogonal, since the following system of equations

 $\begin{cases} A(x_1, x_2, x_3) = a_1 \\ B(x_1, x_2, x_3) = a_2 \\ C(x_1, x_2, x_3) = a_3 \end{cases}$

has a unique solution for any 3-tuple $(a_1, a_2, a_3) \in G^3$.

References

- D. Keedwell (2010); Constructions of complete sets of orthogonal diagonal Sudoku squares, Australasian Journal of Combinatorics, Vol. 47, pp. 227–238.
- [2] D. Keedwell and J. Dénes (2015); Latin Squares and their applications, (second edition), North-Holland publications.
- [3] C. F. Laywine and G. L. Mullen (1998); Discrete Mathematics Using Latin Squares, John Weiley & Sons, INC.

- [4] J. Lorch (2009); Mutually orthogonal families of linear sudoku solutions, Journal of the Australian Mathematical Society, Vol. 87, pp. 409–420.
- [5] J. Lorch (2010); Orthogonal combings of linear sudoku solutions, Australasian Journal of Combinatorics, Vol. 47, pp. 247–264.
- [6] E. T. Parker (1963); Computer investigation of orthogonal Latin squares of order ten. *Proc. Sympos. Appl. Math.*, Vol. 15, pp. 73-81.
- [7] V. Shcherbacov (2017); *Elements of Quasigroup Theory and Applications*, Chapman and Hall/CRC.