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abstract Deletion and insertion are interesting and common operations which often appear
in text editing. A language L C A* closed under the both operations forms a free submonoid
of A*. Tts base C' is called a strong code, which is a kind of bifix code. If strong code C' is
regular(resp. maximal), then its syntactic monoid Syn(C') is finite (resp. group). The class
of hyper-strong codes is a subclass of strong codes. A hyper-strong code C' and its syntactic
monoid Syn(C) is commutative.

1 Preliminaries

Let A be a finite nonempty set of letters, called an alphabet and let A* be the free monoid
generated by A under the operation of catenation with the identity called the empty word, de-
noted by 1. We call an element of A* a word over A. The free semigroup A* \ {1} generated
by A is denoted by A™. The catenation of two words x and y is denoted by xy. The length |w|
of a word w = ajas .. . a, with a; € A is the number n of occurrences of letters in w. Clearly,
|1| = 0. For a letter a in A, we let |w|, denote the number of occurrences of @ in w. We denote
{a € A|zay € L,z,y € A*} by alph(L).

A word u € A* is a prefix(resp. suffix) of a word w € A* if there is a word x € A* such
that w = ux(resp. w = zu). A word u € A* is a factor of a word w € A* if there exist words
z,y € A* such that w = zuy. Then a prefix (a suffix or a factor) v of w is called proper if
w # u.

A subset of A* is called a language over A. A nonempty language C' which is the set of free
generators of some submonoid M of A* is called a code over A. Then C'is called the base
of M and coincides with the minimal set Min(M) = (M \ 1) \ (M \ 1) of generators of
M. A nonempty language C' is called a prefix (or suffix) code if u,uv € C (resp.u,vu € C)
implies v = 1. C'is called a bifix code if C'is both a prefix code and a suffix code. A nonempty
language C' is called a hypercode code if uus . . . Upyi1, UVIULVy . . . UpVpUyy € C implies
010y ... v, = 1. The language A" = {w € A*||w| = n} with n > 1 is called a full uniform
code over A. A code C' is called maximal if C' U {w} is not a code for any w € A*\ C. A
nonempty subset of A" is called a uniform code over A. The symbols C and C are used for a
subset and a proper subset respectively.

A language L over A is called reflexive (resp. commutative) if uv € L implies vu € L (resp.
zuvy € L implies zvuy € L). The conjugacy class cl(w) of a word w is the set {vu|w = uv}
and w’ € cl(w) is called a conjugate of w.

Let N be a submonoid of a monoid M. N is right unitary (in M) if u,uv € N impliesv € N.
Left unitary is defined in a symmetric way. The submonoid N of M is biunitary if it is both left
and right unitary. Especially when M = A*, a submonoid N of A* is right unitary (resp. left
unitary, biunitary) if and only if the minimal set Ny = (N \ 1) \ (N \ 1)? of generators of N,
namely the base of IV, is a prefix code (resp. a suffix code, a bifix code) ([1] p.46).
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Let L be a subset of a monoid M, the congruence P;, = {(u,v) |for all z,y € M, zuy €
L < zvy € L} on M is called the principal congruence(or syntactic congruence) of L. We
write u = v (Pr) instead of (u,v) € Pr. The monoid M/ Py, is called the syntactic monoid of
L, denoted by Syn(L). The morphism o, of M onto Syn(L) is called the syntactic morphism
of L. o (w) is denoted by wy,. In particular when M = A*, a language L C A* is regular if
and only if Syn(L) is finite([1] p.46).

2 Strong Codes

A strong code C is the base of the identity 17, in the syntactic monoid Syn (L) of some
language L. Then we state some properties of strong codes.

2.1 definitions

At first, we give the definition of strong codes.
DEFINITION 2.1 [13] Acode C' C A"\ {0} is called a strong code if

(), ny2 € C* = Yoy, € C*
(i) z, 12y € C* = yyyp € C*

Here extractable codes and insertable codes are introduced below.

DEFINITION 2.2 Let C' C A"\ {0} be acode. Then, C is called an insertable (or extractable)
code if C satisfies the condition (i)( or (ii)).

Note that when C satisfies the condition (ii), we can easily check that C* is biunitary(and
thus free). Indeed, uv = luv,u € C* implies v = lv € C* and wv = wvl,v € C* implies
u = lu € C*. Then the minimal set C' = (C*\ 1) \ (C* \ 1)? of generators of C* becomes a
bifix code. Therefore both strong codes and extractable codes are necessarily bifix codes.

Remark that an insertable submonoid M of A*, the minimal set of generators of M is not
necessarily a code. For example, If C' = {a2, a3}, then the submonoid C* is insertable but its
minimal set C' of generators is not necessarily a code.

A strong code C'is described as the base of the identity Pp-class 1, = {w € A* |w = 1(P.)}
of the syntactic monoids Syn(L) of some language L.

PROPOSITION 2.1 [13] LetL C A*. Then C'= (1 \ 1)\ (1 \ 1)?is a strong code if it is
not empty. Conversely, if C' C A" is a strong code, then there exists a language L C A* such
that I, = C*.

Moreover if a strong code C'is finite, the following proposition holds.

PROPOSITION 2.2 [13] Let C be a finite strong code over A and B = alph(C). Then,
C = B" for some positive integer n, that is, C' is a full uniform code over B.

EXAMPLE 2.1 (1) A singleton {w} with w € {a}* is a strong code. {w} with w €
A"\ U,ea{a}" is not a strong code but it is an extractable code. Therefore there exist fi-
nite extractable codes which are not full uniform codes.

(2) The conjugacy class cl(ab) of ab is an extractable code but not a strong code.

(3) {a™b™|n is an integer} is an (context-free) extractable code but not a strong code.

(4) a*b and ba* are (regular) insertable codes but not strong codes.



PROPOSITION 2.3 [18] Let C be a code over A. Then the following conditions are equiv-
alent:

(1) C* is reflexive;

(2) C'is a maximal strong code over A;

(3) C* is a Pg«-class, Syn(C*) is a group.

Note that the condition (2) is equivalent to the following condition (2’):
(2”) C'is a strong code over A and alph(C) = A.

Indeed, if a € A\ alph(C), then C' U {a} is a code. This contradicts to the condition
(2). Hence alph(C) = A. Conversely, suppose the condition (2), that is A = alph(C).
We show that C' U {w} with any w = ajas...ar & Cla; € A,1 < i < k) cannot be a
code. For any a; € A, a;y; € C* for some y; € A* because C* is reflexive. Therefore
WYk - Yay1) = QG- QYk .. - Yoy1 = C1C2...Cp € C* forsome ¢; € C(1 < j < m).
Since C* is reflexive again, (y ... yay1)w = cicy...c;, € C* for some ¢; € C(1 < j < n).
Therefore cics . .. cpyw = wddy ... ¢, € C*. This proves that C'U {w} is not a code.

2.2 Insertion and Deletion

Let L be a language over A. A language L is called ins-closed if u = wjuy € Landv € L
imply wjvup € L. A language L is called del-closed if u = wjvup € L and v € L imply
urug € L [4].

Let L be a del-closed language. Then, Since L is biunitary, the minimal set C' = min(L) of
generators of L is a bifix code and L = C*.

Let L be an ins-closed language. Then, 1 € L and L? C L implies Since L is a submonoid
of A*.

PROPOSITION 2.4  Let L # () be an ins-closed and del-closed language over A. Then
L = C* for some strong code C'.

Proof) As we stated above, L is a submonoid of A* and its minimal set C' of generators is a
(bifix) code. C satisfies the conditions of a strong code. g

2.3 Roots of Strong Codes

Let L be a strong code over A. We define a relation p on the free submonoid C* of A* as
follows:

upv if and only if there exist m € C* x1, 19 € A* such that u = x5 and v = xymx,.

Let p the reflexive and transitive closure of p.
DEFINITION 2.3 [18] Let C be a strong code over A. The root of C'is the set:

R(C) = {c € C"|Ve, € Ct(e1pc) — ¢ = c}.
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PROPOSITION 2.5 [18] Let C be a strong code over A. Then the following conditions are
equivalent:

(1) C'is maximal;

(2) R(C) is reflexive;

EXAMPLE 2.2 Let X be an alphabet and let & = {@|a € X} be its copy. The Dyck language
Dy, over X is generated by the context-free grammar ({S},X U X, P, S), where

S =S —aSaS(ael).

Dy; is a free submonoid of (X U X)* and its base DP; is a strong code over ¥ U 3. If || = n,
then Dy(resp. DPy,) is often denoted by D,,(resp. DP,,).
DP,, is not a regular language. The root of DP,, is the set R(DP,,) = {ad|a € X}

PROPOSITION 2.6 [18] Let C be a strong code over A. If the root R(C) is finite, the
there exist a Dyck language D), C (A;)* and a homomorphism f : (4;)* — A* such that
C* = f(Dy)

The following corollary and proposition give a necessary condition and a sufficient condition
that a strong code has a finite root, respectively.

COROLLARY 2.1 [18] Let C be a strong code over A. If the root R(C') is finite, then C* is
context-free.

PROPOSITION 2.7 [18] Let C be a strong code over A. If C' is regular, then the root R(C')
is finite.

Zhang conjectured that a strong code has a finite root if and only if it is a simple language.
Whereas Harging-Smith[2] proved the following theorem in 1973. In the theorem, Let 7 =<
A; R > be a finitely generated presentation of a group G, and ¥ = A U A™! be the set of
generators and their inverses. The word problem W P(w) of 7 is the set of all words on ¥
which are equal to the identity. The reduced word problem W Py(7) of 7 is the set W P(m) \
W P(m)¥X*. The set W () of irreducible words is the set W P(7) \ XTW P(7r)L+

DEFINITION 2.4 A context-free grammar G = (V, X, P, S) in Greibach normal form is said
to be a simple grammar if forall A € N,a € ¥,and o, 8 € V*,

A — aa, and A — afimlpy o = 3.
A simple language is a language generated by a simple grammar.

THEOREM 2.1 [2] The reduced word problem W Py(7) of a finitely generated group presen-
tation 7 is a simple language if and only if the set of irreducible words W (7) is finite.

EXAMPLE 2.3 The language L = {w||w|, = |w|y} over A = {a, b} is ins-closed and del-
closed. L is a free submonoid of A*. Its base C' = min(L) is a maximal strong code of even
length over A. The root R(C') of C'is the set R(C) = {ab,ba}



3 Hyper-strong codes

A hyper-strong code is referred in the literature [18], but its definition is not described. Here
we give the definition of hyper-strong codes below.

DEFINITION 3.1 [18] Letn be a positive integer. A code C C AT\ {0} is called a n-strong
code if

() 2122 . T Y1Y2 - YnYns1 € CF = nZ1Y2T2 - . YnTpYns1 € CF
(i) z122. . . Tn, YIT1Y2T2 - - - YnTnYnt1 € CF = Y1ya ... YnYni1 € C*

A 1-strong code is a strong code, and vice versa. An (n + 1)-strong code is an n-strong code.
C is called a hyper-strong code if C' is n-strong code for each integer n > 0.

PROPOSITION 3.1 [18] LetC be acode over A = alph(C'). Then the following conditions
are equivalent:

(1) C'is a maximal hyper-strong code over A;

(2) C* is commutative;

(3) C* is a Pg«~class, Syn(C™) is a commutative group. (4) R(C) is commutative;

PROPOSITION 3.2  Every commutative code is a hypercode.
PROPOSITION 3.3 [3] Every hypercode is finite.

COROLLARY 3.1 Let C be a maximal hyper-strong code over A. R(C) is finite.

The following is an example which is a hyper-strong code but is not a strong code.

EXAMPLE 3.1 Let ¥ be an alphabet and let ¥ = {@|a € 3} be its copy. The semi-Dyck
language D§, over ¥ is generated by the context-free grammar ({S}, X U X, P, S), where

S —¢e, 8 —alSas, S — aSaS (a € X).

DY is a free submonoid of (X U X)* and its base DP%, is a hyper-strong code over Y U ¥.. If
|| = n, then DY, (resp. DPY,) is often denoted by D/, (resp. DP?).

DP' is a hyper-strong code and not a regular language. The root of DP’, is the set R(DP’,) =
{ad,aa|a € X} and is a commutative code.
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