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Our aim is to challenge the principle of bivalence and dualism. In mathematical 

logic, there is true and false. However, looking at the world in general, it is not 

always possible to consider absolute true or false. What is believed in one country 
may not be believed in another, or may have completely opposite values. We want 

to constitute a means of thinking about this kind of world. Lukasiewicz logic and 

Kleene logic are many-valued logics, but there are'true'and'false'values in 

them, and they introduce intermediate values orundetermined. This is not what we 

are aiming for. What we have created does not contain'false'. We do not believe 

that there is only one implication. We dare to think of a way to analyze the world 

that embraces the antinomy. Hence, we assume that what we are aiming for is what 

we are told we cannot call logic. We do research on special concept'trice'. It play an 

important role with regard to this attempt. Therefore, the title is "On an algebraic 

system similar to logic using trice". We introduce the "stealth absorption law," an 

even weaker form of the roundabout absorption law. It's a modest concept that is 

likely to be overlooked by ordinary logic. However, it can be interpreted as a property 

that is meant to invalidate the premise. 

1 Preliminaries 

This section reviews the definitions and examples of the algebras used. 

A semilattice (S, *) is a set S with a single binary, idempotent, commutative and 

associative operation *・ 

a* a= a (idempotent) 

a*b=b*a ( commutative) 

a* (b * c) = (a* b) * c (associative) 

(1) 

(2) 

(3) 

Under the relation defined by aさ＊ b ⇔ a * b = b, any semilattice (S, *) is 

a partially ordered set (S, :S*). For A a nonempty set and n a positive integer, let 

(A, *1, *2,…，＊n) be an algebra with n binary operations, and (A, *i) be a semilattice 

for every i E {1, 2,…,n}. Then, (A, *1, *2,…, ＊叫 iscalled a n-semilattice. We 
denote each order on A by aさib <¢=⇒a *i b = b, respectively. 
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Definition 1 Let (A,＊ぃ＊2,...,*n) be an algebra with n binary operations, and 

let Sn be the symmetric group on {1, 2,…n}. An algebra (A, *1, *2,…, ＊砂 hasthe 
n-roundabout-absorption law if it satisfies the following n! identities: 

((((a *u(l) b) *u(2) b) *u(3) b)…＊u(n) b) = b. 

for all a, b E A and for all O" E Sn. 

(4) 

The 2-semilattice (A, *i, *2) which satisfies the 2-roundabout-absorption law is a lat-

tice. The operations *i and *2 are denoted by V and /¥. In this case, (A,さv)and 

(A,さ^） areexactly opposite ordered sets. Hence, only one of orders is to be consid-

ered. 
Let T be a set. If there is a semilattice, the order is derived, and if the order can be 

shown, the semilattice can be identified. We introduce three orders into T, However, 
condition, two elements of T have a least upper bound for each order, is required. 

Then, we can construct the set into a triple-semilattice. A concrete way to show 

the trice is to draw a Hasse diagram of the three orders. Note that only those with 

isomorphisms of three orders were considered here. 

The operations *i, *2 and *3 will be often denoted by V1, V2 and V3. We have 
used the operational symbols with arrows in previous papers, but refrain from doing 

so this time to avoid confusion (see [3] [4] [5] [6] [7]). This is because we use arrows 
for symbols of implication. 

Definition 2 A triple semilattice (T,＊ぃ＊2,*3) which satisfies the 3-roundabout-
absorption law is said to be a trice. 

Example 1 Let T be a set which consists of three points. We introduce three 

orders of Fig. 1. Then, T is a trice. This trice is called Lambda because of its shape. 

ーV
I
 

全

A
 

B
 

3
 

<＿

C
 

八八八
Figure 1: Lambda trice 

Next, we deal with the concept of complement. Let (S, *) be a semilattice with 

maximum, denote it by 1, that is, x ::;* 1 (x * 1 = 1) for all x E S. An element a'is 

a pseudocompliment of a E S iff I a* a'= 1 and I a* x = l implies that aさ＊ X.

Usually, this definition is written in terms of a dual concept with the order reversed 

(see [1] [2]). Please attention should be paid to the concept pseudocompliment of in 
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Heyting algebra. We deal with the case where there is exactly one pseudo-complement 

of x. We would like to assume from the outset that'is a one-to-one onto function 

from S to S such that x" = x and x'is a pseudocompliment of x. 

Let (T, VA, VB, V c) be a triple semilattice. The order derived from each of VA, VB and 

V c is written as印，三凡 Sc-Suppose (T, S心，（T,S2) and (T, S3) h ave maximum 

A, B and C respectively. Then, (T, VA, VB, V c) is called bounded. 

Definition 3 If there is a one-to-one onto function'from T to T so that for all 

x E T, x VA x'= A, x VB x'= B, x V c x'= C and x" = x then, we will 

call Tis common pseudocomplimented triple-semilattice (CPTS) and x'is 
c-p-compliment of x. 

Some examples of CPTS consisting of six points are shown below. 

Example 2 We introduce three orders of Fig. 2. We will call this Pantograph. 

~A ~B Sc 

A B C 

八 A訊〉bc B△ 
B A' C C B' A A C' B 

Figure 2: Pantograph trice 

Example 3 We introduce three orders of Fig. 3. We will call this Hexagon. 

A
 

A
 

VI 

□A
 

A

B

 

念

c
[

]〉

C

A

 
；口

B' C' 

Figure 3: Hexagon trice 

Pantograph of Example 2 and Hexagon of Example 3 are trices. Next examples are 

not trices. 
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Example 4 We introduce three orders of Fig. 4. This is not a trice but a CPTS. 
We will call this Umbrella. 

＜
 

$B Sc 

心 心心B

Figure 4: Umbrella triple-semilattice 

Example 5 We introduce three orders of Fig. 5. This is not a trice but a CPTS. 
We will call this Octahedron. 

~A こB ~c 

BぐB'Cぐ C A ~ A 

Figure 5: Octahedron triple-semilattice 

Also shown is an example of a six-piece set that does not satisfy the property of 
CPTS requirements. 

Example 6 We introduce three orders of Fig. 6. In this figure, x'is not c-p-

compliment of x (For example, B VA B'= B'f-A). However, we assume x" = x. 
This is not a CPTS but a trice. We will call this Tie. 

~A SB ~c 

文文
A

〈〉
Figure 6: Tie trice 
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2 Configuration of something like logic 

It is natural to think of logical operations such as V and八． inmathematical logic as 

algebraically organised. Boolean algebra was born from this. It has then been studied 

in connection with more generalised lattice and universal algebras. In mathematical 
logic, there are T (true) and F (false), and we have to decide between them. This is 
the principle of bivalence. If intermediate states are not taken into account, this can 

be seen as dualism. Multi-valued logic allows intermediate states, but true and false 

exist. 

We started with the three A B C options instead of true or false. We could 

consider more options, but it is reasonable to start with three. We have attempted 
to extend the binary operation on the two-point set to the three-point set, To do so, 

we algebraically apply A and B to the two terms T and F. However, we have not 

decided that A is true and B is false. We then attempted to make the treatment of 

B and C equivalent. Equivalent (or should we say symmetry) here means that B 

and C become isomorphic if they are interchanged. This setting is quite strict and 

limits the extension of operations. Note that A is given special treatment and is not 

required to be equivalent to B or C. 

We have extended the operations of disjunction V and implication→.The opera— 

tion of disjunction must be semi-lattice. On implication operation, we assume the el-

ement A must be right zero and left unitary. And we want to consider (X→ Y)→ Y 

as XV  Y. Since A is special, we denote VA  and→A・ The resulting results are shown 
in the following table. 

V A  A B C →A A B C 

A A A A A A B C 

B A B A B A A C 

C A A C C A B A 

Figure 7: disjunction VA  and implication→A 

Making Band C equivalent is a severe constraint. Hence, we cannot constitute an 

extension of conjunction /¥. Other operations are also difficult to extend meaningfully. 

By using this operation to create B VA  C = C VA  B = A, we expect to be able to 

express a phenomenon in which something is created out of nothing. Neither B 

nor C is an error or contradiction, but it would be mysterious to those who believe 

in A. (From nothing comes something? we would be happy to be the beginning 

consideration of the universe.) 

Similarly, we can create operations that treat A and C equivalently and treat B 

specially. We denote VB and→B・ See the following table (Fig. 8). In the same way, 

Ve and→c are also created (Fig. 9). 
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v B A B C → B A B C 

A A B B A B B C 

B B B B B A B C 

C B B C C A B B 

Figure 8: disjunction VB and implication→B 

Ve A B C →c A B C 

A A C C A C B C 

B C B C B A C C 

C C C C C A B C 

Figure 9: disjunction V c and implication→c 

Let O be the set { A, B, C}. Then, (0, VA, VB, V c) is Lambda trice of Example 1. 
In a world where only A and B appear, it goes without saying that VA is V for those 

who hold A to be true. And咋 playsthe role of/¥.This is the same as in ordinary 

binary logic. Symmetrically, for those who hold B to be true,咋 isthe V and VA is 
the/¥.Logic and algebra are closely related, and even weak logic is often related to 

lattice in structure. What we have created is not a lattice. Nor is it ordinary logic. 
We can create an interesting situation by including another option C. 

Let us now consider the implications. What we have created is a world with 

three kinds of implications. Using→A,→Band→c above, (0,→A，→B,→c) is an 
algebra. This will be called L-I (Lambda-Implications). You may find it odd that 

there are multiple implications. But we can envisage a case where the three countries 

have different values and different implications. With this approach, two kinds of 

implications can be considered in binary logic. Let O be the set {A, B}, and restrict 
operations VA and VB to the range of 0, (0, VA, V叫 canbe regarded as lattice. 
This is isomorphic to (0, V，八）， withO as {T, F}. In the case of dualism, it might 

be interesting to say that there are'honest implication'→T （→A) and'underworld 

implication'→F （→砂

→T T
 

F
 

→F T
 

F
 

T

F

 

T

T

 

F

T

 

T

F

 

F

T

 

F

F

 

Figure 10: dualism-implications 

The number of binary logical operations was 22x2. With→T and →F, all binary 

logical operations can be constructed. It is clear from Y→T (X→FY) =X↑Y. 



100

Let us return to a non-dualistic world, that is, the case of O = {A, B, C}. The 
number of binary operations on O is 33x3. Let (0,→A，→氏→c)be L-1. With 

→A,→Band→c, all binary operations on O can be constructed. It is functionally 
complete with respect to→A,→Band→c-Details of proof are omitted. The basic 

operations (replacement, rotation) are constructed, and specific configurations can 
be made by combining them. (The rotaion is Post's negation functor). 

3 Stealth-absorption law 

Consider a concept that weakens definition 1. 

... 
Definition 4 Let (A,＊ぃ＊2,...,*n) be an algebra with n binary operations, and 

let Sn be the symmetric group on {1, 2,…n}. An algebra (A,*1,＊か…，＊砂 hasthe 
n-stealth-absorption law if there exists a function f from Sn x A to A such that 

((((a *u(l) b) *u(2) b) *u(3) b)… *u(n) b) = f((l，b) 

for all a, b E A and for all(lE Sn. 

(5) 

The final result is not determined to be b and depends on the order of operations. 

But it means that the effect of the first variable a has disappeared. 

In case that (L, V，八） isa lattice, (XV Y) /¥ Y = Y holds. That is, if (D, VA, V幻
is a lattice, then (X VA Y)咋 Y = Y. When X VA Y = (X→Ay)→A Y and 

X咋 Y=(X→By)→BY,then ((((X→Ay)→Ay)→By)→BY)= Y. From 
this expression, ((X→Ay)→B Y) = Y might be expected. Unfortunately, it does 
not hold. However, the following proposition holds. 

p roposition 1 In the case of binary logic, let n be {T, F}. If→T and →Fare 

dualism-implications in Figure 10, then (D,→ゎ→砂 has2-stealth-absorption law. 

Consider the case on a 3-point set. 

Let D be the three points {T, F, I}. And determine→T and →F as in the following 

figure. This→r is the implication of Lukasiewicz logic. And→F is the flip side 

of the T and F roles in→T・ Note that the disjunction XV  Y of Lukasiewicz logic 

corresponds to (X→T Y)→r Y. Then (D,→ゎ→F)has 2-stealth-absorption low. 

→T I T F
-F
 

→F I T F
 T I T 

T T 
F

F

 

F

F

 

F
 

T
 

F I T T T F I T F
 

Figure 11: Lukasiewicz-implications 

Let n be the three points set{T, F, U}. And determine→rand→F as in the 

following figure. This→r is the implication of Kleene logic. And→F is the flip side 
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of the T and F roles in→T・ Then (f1,→T，→F) doesn't have 2-stealth-absorption 

low. 

F

F

U

T

 ー
f

T

U

F

 

→e I T U F 

□ 
Figure 12: Kleene-implications 

Proposition 2 Let n be the three point set {A, B, C} and let (0,→A，→B，→c) 
be L-1. Then, (D,→A，→氏→c)has 3-stealth-absorption law. 

Proposition 1 and Proposition 2 are the result obtained by examining all the cases. 

4 Extension of truth value 

Extending truth values to improve on already existing logic has often been used. 

Lukasiewicz logic is an extension from two-valued logic to three-valued logic. It 
was extended to n-valued logic. It was further extended to infinitely many valued. 

Extensions to infinite continua, such as fuzzy logic, had also been considered. Four-
valued and six-valued logic exists in an attempt to generalise Kleene logic, which is a 

three-valued logic. What is absent from our Lambda up to this point is the concept 

of negation. To add the concept of negation, we also try to extend truth-values. If 

we add its negation to three values that are not in a negation relationship with each 

other, we have six values. It is possible to create something desirable that has six 

truths. Examples 2, 3, 4, and 5 can appear here. Example 6 is listed for comparison. 

In the previous section, when considering (0, VA, V8, Ve) to (0，→A，→B,→c), we 
considered (X→ Y)→Y = X V Y to be valid. In the 6-valued case, that is not 

possible. However, since we already have the negation operation, we can use X → 
Y = X'VY to construct it. Let O = {A, B, C, A', B', C'}. When (0, VA, V8, Ve) is 
Pantograph of Example 2, we will also call (0,→A，→氏→c),which is composed from 

it, P-1 (Pantograph-implications) if there is no confusion. Similarly, H-1 (Hexagon-
implications), U-1 (Umbrella -implications), 0-1 (Octahedron-implications) and T-1 

(Tie-implications) are also constructed. 

→A A B C A' B' C' 

A A C' B' A' B' C' 

B A A B' B' B' A 

C A C' A C' A C' 

A' A A A A A A 

B' A B A C' A C' 

C' A A C B' B' A 

→ B A B C A' B' C' 

A B B A' A' A' B 

B C' B A' A' B' C' 

C C' B B B C' C' 

A' A B B B C' C' 

B' B B B B B B 

C' B B C A' A' B 

→c A B C A' B' C' 

A C A' C A' C A' 

B B' C C C B' B' 

C B' A' C A' B' C' 

A' A C C C B' B' 

B' C B C A' C A' 

C' C C C C C C 

Figure 13: Pantograph-implications 
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→A A B C A' B' C' → B A B C A' B' C' →c A B C A' B' C' 

A A B C A' B' C' A B B A' A' A' B A C A' C A' C A' 

B A A B' B' B' A B A B C A' B' C' B B' C C C B' B' 

C A C' A C' A C' C C' B B B C' C' C A B C A' B' C' 

A' A A A A A A A' A B B B A C' A' A C C C B' A 

B' A B A B A C' B' B B B B B B B' C B C A' C B 

C' A A C C B' A C' B B C A' C B C' C C C C C C 

Figure 14: Hexagon-implications 

→A A B C A' B' C' → B A B C A' B' C' → c A B C A' B' C' 

A A A A A' A A A B B B A' B B A C C C A' C C 

B A A A A B' A B B B B B B' B B C C C C B' C 

C A A A A A c・ C B B B B B C' C C C C C C c• 
A' A A A A A A A' A B B B B B A' A C C C C C 

B' A B A A A A B' B B B B B B B' C B C C C C 

C' A A C A A A C' B B C B B B C' C C C C C C 

Figure 15: Umbrella-implications 

→A A B C A' B' C' →B A B C A' B' C' →c A B C A' B' C' 

A A B C A' B' C' A B B B A' A' B A C C C A' C A' 

B A A A B' B' A B A B C A' B' C' B C C C C B' B' 

C A A A C' A C' C B B B B C' C' C A B C A' B' C' 

A' A A A A A A A' A B B B A B A' A C C C C A 

B' A B A B A A B' B B B B B B B' C B C C C B 

C' A A C C A A C' B B C B C B C' C C C C C C 

Figure 16: Octahedron-implications 

→ A A B C A' B' C' → B A B C A' B' C' → C A B C A' B' C' 

A A A' A' A' B' C' A A' B A' A' A' B A A' A' C A' C A' 

B A B' B' B' B' A B B' B B' A' B' C' B B' B' C C B' B' 

C A C' C' C' A C' C C' B C' B C' C' C C' C' C A' B' C' 

A' A A A A A A A' A B B' A' B' C' A' A C' C A' B' C' 

B' A B A' A' B' C' B' B B B B B B B' C' B C A' B' C' 

C' A A' C A' B' C' C' B' B C A' B' C' C' C C C C C C 

Figure 17: Tie-implications 

Let n = { A, B, C, A', B', C'}. The table below shows the status of whether 3-

stealth absorption low is satisfied when the algebras (D, VA, V 8, V c) are P-1, H-1, 
U-1, 0-1 and T-1. Looking at this table, if trice and CPTS hold, it is expected that 
3-stealth absorption low will hold, but the relationship is not clear. 
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trice? CPTS? 3 stealth-absorption law? 

P-1 

゜゜ ゜H-I 

゜゜ ゜U-I X 

゜ ゜0-I X 

゜
X 

T-1 

゜
X X 

Figure 18: 3-stealth-absorption? 

We first wrote, " looking at the world in general, it is not always possible to 
consider absolute true or false". The real issues are complex: Ideological struggles, 

religious conflicts, transnational conflicts, etc. Sometimes the arguments don't mesh, 

and strange conclusions are drawn. It can ruin the premise. When there are multiple 
implications that are different, as in the algebra we have created here, and when the 

"stealth-absorption law" is in place, this is what sometimes happens. Our attempts 

may be useful for some analysis in the real world. 
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