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A B S T R A C T

We present a new methodology capable of modeling transient motion of shallow phreatic surface of ground-
water in unconfined aquifers. This methodology is founded on a new and comprehensive theory for water
table motion and a corresponding efficient numerical scheme. In the theoretical aspect, we derived a new set
of governing equations constituted by a depth-averaged continuity equation and momentum equations based
on unsteady Darcy’s law. The derived governing equations are of the hyperbolic type and possess stiff terms in
the momentum equations due to the inertia motion in a characteristic time scale that is relatively shorter than
the time scale of seepage motion. To effectively solve the derived hyperbolic system with stiff terms, in the
numerical aspect, we utilize f -wave propagation algorithm, an explicit finite volume method, that can ensure
numerical convergence and well-balancing solutions when momentum is rapidly relaxing to an equilibrium
of steady state. Verification is successfully performed by comparing the results with analytic solutions to the
classic problem of multidimensional spreading of a groundwater mound. This study demonstrates that the
proposed methodology can accurately and satisfactorily simulate the spatiotemporal distribution of shallow
water table and its wetting front in unconfined aquifers.
1. Introduction

Beneath the earth surface, groundwater plays an essential role in
supporting various organisms and ecosystems. In the hydrologic cycle,
as precipitation falls on mountainous terrain, some liquid water evap-
orates back into the atmosphere, some forms terrestrial runoff, and the
rest infiltrates the ground surface under the influence of gravity (Chow
et al., 1988; Brutsaert, 2005; Dingman, 2015). The last portion is one
of the main sources of groundwater. In the colluvium layer mantled
on hillslopes, groundwater flow in the pore interacts with hillslope
ecosystems and therefore influences catchment hydrology as well as
geomorphological processes (e.g., Polubarinova-Kochina, 1962; Bear,
1972; Freeze and Cherry, 1979; Brutsaert, 2005; Troch et al., 2013;
Liu et al., 2013; Wang et al., 2015; Jeong et al., 2018; Wu, 2021;
Petrella et al., 2023, and references therein). In unconfined colluvium
soils, groundwater movement is driven due to gravity and pore water
pressure, which varies based on the moisture content (Robinson et al.,
2008), defined as the volume of water per unit soil volume. In partly
saturated soils, the capillarity causes water to be retained in the pores
to form a layer of the capillary fringe adjacent to the fully saturated
zone. The capillarity dominates in the process of vertical infiltration
but is not significant in the horizontal spreading. As our focus is on the
horizontal spreading, this study therefore is focused on the part of fully
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saturated soils by modeling the transient movement of the water table.
The water table can be treated as a free surface where the atmospheric
pressure is zero. At the water table, the drainage porosity and effective
hydraulic conductivity are used for parameterization (Troch et al.,
2002, 2003; Paniconi et al., 2003; Troch et al., 2004; Hilberts et al.,
2004, 2005). Besides the free surface assumption, in a thin unconfined
aquifer, the distribution of water pressure beneath the water table can
be assumed to be hydrostatic. The two aforementioned assumptions,
which are called the Dupuit–Forchheimer assumption, constitute the
basis of the hydraulic groundwater theory commonly used for approxi-
mating the motion of water table in unconfined aquifers (e.g., Brutsaert,
2005; Troch et al., 2013, and references therein).

Since the hydraulic groundwater theory is a nonlinear equation,
obtaining its solutions often requires additional approximations or nu-
merical methods. The commonly used approximations include lineariz-
ing the nonlinear terms or employing kinematic wave approximation,
especially for problems involving sloping aquifers (e.g., Beven, 1981;
Burcharth and Andersen, 1995; Liu and Wen, 1997; Chwang and Chan,
1998; Troch et al., 2002; Brutsaert, 2005; Wu et al., 2018; Sarmah
et al., 2024, and other references therein). Using these approximations,
analytical solutions have been obtained for some specific problems,
such as the spreading of a groundwater mound on a flat bottom. (e.g.,
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Polubarinova-Kochina, 1962; Bear, 1972; Vazquez, 2006). On the other
hand, numerical methods are often applied to solve problems involv-
ing complex aquifer configurations with varying inclinations. As the
hydraulic groundwater theory is of the advection–diffusion type, si-
multaneously solving advection and diffusion processes poses a nu-
merical challenge due to their distinct propagation speeds. In sloping
aquifers, the advection process usually dominates and propagates at a
finite speed within a finite influence domain, while in slightly inclined
aquifers, the process of diffusion can spread instantaneously across the
entire spatial domain at a speed much faster than advection. Therefore,
when modeling the evolution of water table from the upstream to
downstream in a catchment, it demands numerical methods capable
of ensuring the numerical convergence and stability for both advec-
tion and diffusion processes. Conventional numerical methods mainly
include finite difference and finite element methods, and have been
used for the problems of continuous water table in aquifers with flat
bottoms and single inclinations (e.g., Guvanasen and Volker, 1980;
Paniconi et al., 2003; Hilberts et al., 2004, 2007; Servan-Camas and
Tsai, 2010; Wu and Nakakita, 2018; Águila et al., 2019; Kourakos and
Harter, 2021; Moutsopoulos, 2021; Hussain et al., 2022; Younes et al.,
2022; Herrera et al., 2023). These numerical methods are primarily fo-
cused on aquifers with single inclination, mostly on horizontal aquifers.
Additionally, numerical modeling of the longitudinal movement of the
wetting front in unconfined aquifers has not been investigated in detail.
To address these concerns, we aim to propose a new methodology
for modeling the evolution of the water table in shallow unconfined
aquifers on hillslopes across a catchment.

Compared to conventional methods, a key novelty of our new
methodology is adopting a different modeling perspective by utiliz-
ing the unsteady Darcy’s law. In the earlier literature (Polubarinova-
Kochina, 1962), the unsteady Darcy’s law is heuristically formulated
by expanding the Taylor series of Darcy’s velocity with respect to
an infinitesimal time. Since then, attempts have been made to rigor-
ously derive and investigate the inertia term for the unsteady Darcy’s
law (Bear, 1972, and others). In the discipline of fluid mechanics,
two main approaches have been applied to the theoretical derivation
of the unsteady Darcy’s law. These include the direct application of
averaging over a representative elementary volume on Navier–Stokes
equations (e.g., Bachmat and Bear, 1986; Bear and Bachmat, 1986;
Whitaker, 1996; Teng and Zhao, 2000; Zhu et al., 2014; Lasseux et al.,
2019, and others) and the use of homogenization technique which
involves the methods of multiple-scale perturbation and volume aver-
aging (e.g., Mei et al., 1996; Mei and Vernescu, 2010; Auriault et al.,
2010; Boutin et al., 2010; Liu et al., 2012). Theoretical investigations
from both approaches lead to the equation that consists of the classical
Darcy’s law in the form of a diffusion flux and a new inertia term with
a small time constant. This small time constant represents the ratio of
the inertial motion in the pores relative to the averaged seepage mo-
tion, and it has been evidenced by laboratory experiments (Rehbinder,
1992). Regarding the formulation of the unsteady Darcy’s law, casting
the diffusion flux into a hyperbolic equation is often referred to as
the hyperbolization technique, which can also be found in various
disciplines such as coastal engineering (e.g., Yu and Chwang, 1994)
and thermodynamics (Chester, 1963; Chandrasekharaiah, 1986; Joseph
and Preziosi, 1989; Chandrasekharaiah, 1998). Particularly, as will be
shown later, due to the unsteady Darcy’s law, our new hyperbolic
system consists of stiff relaxation terms. For systems in a similar form
containing relaxation terms, numerical solutions have been investigated
for problems in various fields, such as aerodynamics (e.g., Nishikawa,
2014b,a), transportation engineering (e.g., Delis et al., 2014), math-
ematical modeling (e.g., Jin and Xin, 1995; LeVeque and Pelanti,
2001; Cavalli et al., 2007; Toro and Montecinos, 2014). Therefore, for
our methodology the primary advantage is that the newly proposed
quasilinear hyperbolic system can be straightforwardly solved using
well-developed finite volume methods. Since the hyperbolization tech-

nique has been successfully applied in various fields, it indicates a new

2 
direction for modeling groundwater flows. As a pioneering attempt, we
propose a new methodology incorporating this new hyperbolic theory
with the application of unsteady Darcy’s law and a corresponding nu-
merical method for effective modeling of shallow water table motions
in unconfined aquifers.

The content in the following sections is as follows. Section 2
presents a theoretical derivation of a hyperbolic system for the transient
motion of shallow water table in unconfined aquifers. Subsequently,
Section 3 introduces a finite volume scheme for one-dimensional prob-
lems. In Section 4, the verification of the one-dimensional numerical
scheme is demonstrated using analytic solutions. Finally, Sections 5
and 6 extend the methodology to two space dimensions along with
verification.

2. Fundamental theory

2.1. Governing equations

We focus on the motion of water table in a shallow unconfined
aquifer, which is composed of an isotropic and homogeneous soil. With
this focus on the saturated zone, the aquifer storage properties in the
partly saturated zone above the water table are neglected here. In
our problem, we define water table or phreatic surface as 𝜂∗(𝑥∗, 𝑦∗, 𝑡∗)
and invariant aquifer’s bottom as 𝑏∗(𝑥∗, 𝑦∗), such that the depth of
aturated zone is ℎ∗(𝑥∗, 𝑦∗, 𝑡∗) = 𝜂∗−𝑏∗. For an incompressible fluid flow
n non-deformable porous media (Bear, 1972), the equation of mass
onservation can be expressed by the continuity equation
∗ ⋅ 𝐮∗ = 0, (1)

here ∇∗ is a dimensional gradient operator with respect to the Carte-
ian coordinates 𝐱∗, and 𝐮∗ = (𝑢∗, 𝑣∗, 𝑤∗) denotes the Darcy seepage
elocities [m s−1] in the 𝐱∗-directions, respectively. To express mo-
entum conservation, the unsteady Darcy’s law (e.g., Polubarinova-
ochina, 1962; Bear, 1972; Chwang and Chan, 1998; Rajagopal, 2007;
hu et al., 2014) in a more general form with an inertia term is given
s
𝑘𝐼
𝜈𝑛𝑒

𝜕𝐮∗
𝜕𝑡∗

+ 𝐮∗ =
𝑘𝐼
𝜇

(

−∇∗𝑝∗ + 𝐟∗
)

, (2)

here 𝐟∗ = (0, 0,−𝜌𝑔) represents the gravitational force [M L T−2]
here 𝑔 is the gravitational acceleration [L T−2], 𝑝∗ is the dynamic pore
ressure [M L−1 T−2], 𝜇 and 𝜌 are the dynamic viscosity [M L−1 T−1]
nd density [M L−3] of the incompressible fluid in the aquifer, hence
= 𝜇∕𝜌 denotes the kinematic viscosity of the fluid [L2 T−1], and 𝑛𝑒 and
𝐼 denote the drainable porosity [–] and intrinsic permeability [L2] of
orous medium, respectively. In unsaturated soils, the drainable poros-
ty, also referred to as effective porosity or specific yield, is defined as
he volume of water per unit soil volume, that is released or imbibed,
s the free surface of groundwater passes a given point (Brutsaert,
005), and it varies depending on the prevailing local water pressure
istribution and therefore on the nature of flow condition. Meanwhile,
he water volume per unit soil volume, or the volumetric moisture
ontent, can alter the hydraulic conductivity, which is a function of the
ntrinsic permeability 𝑘𝐼 . Conversely, in saturated soils, the drainage
orosity reaches its maximum value, defined as soil porosity 𝜙, and so
oes the hydraulic conductivity, referred to as the saturated hydraulic
onductivity, which is a constant relating to 𝑘𝐼 .

With the focus on the saturated zone in unconfined aquifers, to
ormulate the governing equation, we impose an initial condition and
wo boundary conditions at the phreatic surface 𝜂∗ and aquifer bot-
om 𝑏∗. At the phreatic surface, the dynamic and kinematic boundary
onditions (Bear, 1972) are respectively imposed as
∗ = 0, at 𝑧∗ = 𝜂∗, (3)

∗ − 𝑛𝑒
𝜕𝜂∗

− 𝑢∗
𝜕𝜂∗

− 𝑣∗
𝜕𝜂∗

= −𝛾, at 𝑧∗ = 𝜂∗, (4)

𝜕𝑡∗ 𝜕𝑥∗ 𝜕𝑦∗



Y.-H. Wu and E. Nakakita

t
m

i
a

𝑤

F
𝜂
p

2

i

𝜖

a
v
s
p
𝑥
(

w
s
d

𝑈

𝐻
(
H
a
w

𝑇

a
t
a

𝜏

Advances in Water Resources 193 (2024) 104820 
where 𝛾 = 𝛾(𝑥∗, 𝑦∗, 𝑡∗) is the spatiotemporally variable rainfall recharge
[mm s−1], and the minus sign denotes rainfall accumulation. With the
definition of hydraulic head

𝜓∗ =
𝑝∗

𝜌𝑔
+ 𝑧∗, (5)

the dynamic boundary condition (3) leads to 𝜓∗ = 𝜂∗ = ℎ∗ + 𝑏∗ at
he phreatic surface, implying that 𝜓∗ and 𝜂∗ are at the same order of
agnitude.

On the other side, at the aquifer bottom where the bedrock surface
s situated, the impermeable boundary condition is commonly imposed
s,

∗ − 𝑢∗ 𝜕𝑏
∗

𝜕𝑥∗
− 𝑣∗ 𝜕𝑏

∗

𝜕𝑦∗
= 0, at 𝑧∗ = 𝑏∗. (6)

inally, in modeling practice, an additional condition of a water table
(𝑥, 𝑦, 𝑡) will be specified at the lateral boundary if it exists within the
roblem domain.

.2. Normalization

Without asterisks all normalized variables are defined as

(𝑥, 𝑦) = 1
𝐿

(

𝑥∗, 𝑦∗
)

, (𝑧, ℎ) = 1
𝐷

(

𝑧∗, ℎ∗
)

,

(𝑢, 𝑣) = 1
𝑈

(

𝑢∗, 𝑣∗
)

, 𝑤 = 𝑤∗

𝑊
𝑝 = 𝑝∗

𝑃 , (𝜂, 𝜓, 𝑏) = 1
𝐻

(

𝜂∗, 𝜓∗, 𝑏∗
)

, and 𝑡 = 𝑡∗

𝑇

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(7)

where the characteristic lengths are 𝐿 ∼ (10) m in the horizontal
extent and 𝐷 ∼ (1) in the vertical extent, 𝑈 and 𝑊 are for the charac-
teristic velocities in the horizontal and vertical directions, respectively,
𝑃 and 𝐻 denote the characteristic pore pressure and pressure head,
and 𝑇 is the characteristic time scale for horizontal spreading. The
normalization and scale estimation are elaborated in the following.

As the depth of water table is relatively shallow compared to
horizontal extent, we assume a parameter of shallowness as the ratio
of its characteristic depth (𝐷) to the characteristic length (𝐿) which
s at the next order of magnitude, i.e.,

= 𝐷
𝐿

≤ 
(

10−1
)

. (8)

With normalized variables, the dimensionless continuity equation reads

(𝑈
𝐿

) 𝜕𝑢
𝜕𝑥

+
(𝑈
𝐿

) 𝜕𝑣
𝜕𝑦

+
(𝑊
𝐷

) 𝜕𝑤
𝜕𝑧

= 0, (9)

nd gives that 𝑊 ∼  (𝜖𝑈 ), implying the scale of vertical Darcy seepage
elocity is at the next order of magnitude that is much smaller than the
cales of horizontal velocity. Besides, assuming the scale of dynamic
ressure as 𝑃 ∼ (𝜌𝑔𝐻), the dimensionless unsteady Darcy’s law in the
-direction becomes
𝑘𝐼𝑈
𝜈𝑛𝑒𝑇

)

𝜕𝑢
𝜕𝑡

+ (𝑈 )𝑢 = −
(

𝑔𝑘𝐼𝐻
𝜈𝐿

)

𝜕𝜓
𝜕𝑥
, (10)

ith the substitution of 𝑝∗ with the hydraulic head 𝜓∗ in (5). Assuming
eepage velocity is counterbalanced by horizontal pressure gradient, we
efine the scale of horizontal velocity as

∼ 
(

𝑔𝑘𝐼𝐻
𝜈𝐿

)

, (11)

and then, using 𝑊 = 𝜖𝑈 and 𝜖 = 𝐷∕𝐿 with rearrangement, we obtain
the dimensionless unsteady Darcy’s law in the 𝑧 direction

𝜖2
((

𝑘𝐼
𝜈𝑛𝑒𝑇

)

𝜕𝑤
𝜕𝑡

+𝑤
)

= −
𝜕𝜓
𝜕𝑧
, (12)

which indicates that 𝜓 is independent of 𝑧 as 𝜖 → 0. Solving the above
equation with the dynamic boundary condition at the phreatic surface
(3) gives

𝜓 = 𝜂(𝑥, 𝑦, 𝑡), (13)
3 
implying that the hydraulic head 𝜓 is constant along the vertical 𝑧 axis.
As the water table motion is of our focus, we examine the kinematic

boundary condition at the phreatic surface to determine the characteris-
tic time scale. With the normalized variables, we rearrange the phreatic
surface kinematic boundary condition (4) to obtain

𝑤 − 𝜁
((

𝑛𝑒𝐿
𝑈𝑇

)

𝜕𝜂
𝜕𝑡

+ 𝑢
𝜕𝜂
𝜕𝑥

+ 𝑣
𝜕𝜂
𝜕𝑦

)

= −𝛤 , at 𝑧 = 𝜁𝜂, (14)

where 𝛤 denotes the normalized rainfall recharge

𝛤 =
𝛾
𝜖𝑈

=
𝛾𝜈𝐿2

𝑔𝑘𝐼𝐻𝐷
, (15)

and

𝜁 = 𝐻
𝐷
, (16)

denoting the ratio of the phreatic surface elevation (𝐻) to the depth of
a shallow unconfined aquifer (𝐷). 𝜁 = 1 for a horizontal aquifer due to

= 𝐷 and 𝜁 > 1 for an inclined aquifer because 𝐻 > 𝐷. According to
13) the scale (𝐻) is positively proportional to the bedrock elevation.
ence, the parameter 𝜁 can be interpreted as the inclination of an
quifer, such that a larger 𝜁 indicates a steeper aquifer. Due to (14),
e thus assume the characteristic time scale of water table motion as

∼ 
(

𝑛𝑒𝐿
𝑈

)

= 
(

𝑛𝑒𝜈𝐿2

𝑔𝑘𝐼𝐻

)

, (17)

nd therefore deduces a parameter of relaxation time in front of the
ime derivative term in the momentum equations, i.e., (10) and (12),
s

=
𝑘𝐼
𝜈𝑛𝑒𝑇

=
𝑔𝑘2𝐼𝐻

𝑛2𝑒𝜈2𝐿2
, (18)

indicating the ratio of the time scales of inertia motion relative to
seepage motion (e.g., Rehbinder, 1992; Hilfer, 1996).

To gain quantitative insights into the parameter of relaxation time
𝜏, we examine its order of magnitude by considering four types of
typical unconsolidated soils in fully-saturated unconfined aquifers with
variable inclinations. Table 1 lists the results of scale estimates of 𝜏.
The interstitial fluid in soil pores is considered to be water, with the
kinematic viscosity is 𝜈 ≈ 10−6 [m2 s−1] at the temperature around 20
[◦C]. As a result, the relaxation time 𝜏 is relatively small, such that
𝜏 ≤ (10−10), in finer-textured sandy loam or clay soils. Therefore,
this small 𝜏 justifies the reasonable omission of the inertia terms in the
momentum equations, leading to the well-known steady-state Darcy’s
law when describing seepage velocity in finer soils. However, 𝜏 is rather
higher to reach 𝜏 ≈ (10−2) in the inclined aquifer composed of angular
gravel with coarser grain sizes. This result reveals that the inertia effect
can be considerable in steeper aquifers with coarser-textured soils.

In summary, rearranging the governing equations with normal-
ized variables and parameters, we obtain the dimensionless continuity
equation,
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

= 0, (19)

and the dimensionless horizontal unsteady Darcy’s law,

𝜏 𝜕𝑢
𝜕𝑡

+ 𝑢 = −
𝜕𝜂
𝜕𝑥
, (20)

𝜏 𝜕𝑣
𝜕𝑡

+ 𝑣 = −
𝜕𝜂
𝜕𝑦
, (21)

where the relaxation time 𝜏 is defined in (18). Besides, the normalized
boundary condition at the aquifer bottom reads

𝑤 − 𝜁
(

𝑢 𝜕𝑏
𝜕𝑥

+ 𝑣 𝜕𝑏
𝜕𝑦

)

= 0, at 𝑧 = 𝜁𝑏, (22)

and the normalized dynamic boundary conditions at the phreatic sur-
face read

𝑝 = 0, at 𝑧 = 𝜁𝜂, (23)

𝑤 − 𝜁
(

𝜕𝜂
+ 𝑢

𝜕𝜂
+ 𝑣

𝜕𝜂
)

= −𝛤 , at 𝑧 = 𝜁𝜂. (24)

𝜕𝑡 𝜕𝑥 𝜕𝑦
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Table 1
Scale estimate of relaxation time 𝜏 in unconfined aquifers of unconsolidated soils.

Soil type Intrinsic
permeability
𝑘𝐼 [m2]

Soil
porosity
𝜙 [–]

𝐻 𝜁 = 𝐻
𝐷

Darcy’s seepage
velocity [m/s]
𝑈 = 𝑔𝑘𝐼𝐻∕𝜈𝐿

Propagation
time scale⋆ [s]
𝑇 = 𝜙𝐿∕𝑈

Relaxation
time scale⋆ [–]
𝜏 = 𝑘𝐼∕𝜈𝜙𝑇

Angular gravel† 8.83 × 10−8 0.465 10 10 8.63 × 10−1 5.39 × 100 3.51 × 10−2

1 1 8.63 × 10−2 5.39 × 101 3.51 × 10−3

Sand† 5.67 × 10−9 0.381 10 10 5.54 × 10−2 6.88 × 101 2.15 × 10−4

1 1 5.54 × 10−3 6.88 × 102 2.15 × 10−5

Sandy loam‡ 6.17 × 10−13 0.412 10 10 6.03 × 10−6 6.83 × 105 2.18 × 10−12

1 1 6.03 × 10−7 6.83 × 106 2.18 × 10−13

Clay‡ 1.70 × 10−14 0.385 10 10 1.66 × 10−7 2.32 × 107 1.90 × 10−15

1 1 1.66 × 10−8 2.32 × 108 1.90 × 10−16

Other scales: ⋆ Soil porosity 𝜙 is used here, 𝐿 = (10) m, 𝐷 = (1) m, 𝑔 = (10) m∕s2, 𝜈 = (10−6) m2/s Source: † Arbhabhirama and Dinoy
(1973), ‡ Lai et al. (2015).
.3. Depth-averaging approximate theory

In the momentum equations (20) and (21), the right-hand-side term
s independent of 𝑧. As these two momentum equations are linear, the
wo terms on the left-hand-side must also be independent of 𝑧, implying
hat the horizontal Darcy seepage velocity remain constant along the
ertical 𝑧 axis in the saturated zone, i.e., 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) and 𝑣 = 𝑣(𝑥, 𝑦, 𝑡).

With the two kinematic boundary conditions (22) and (24), the
ethod of depth-averaging is performed to integrate the continuity
q. (19) from the aquifer bottom to the phreatic surface, and results
n
𝜕𝜂
𝜕𝑡

+ 𝜕
𝜕𝑥

(

∫

𝛼𝜂

𝛼𝑏
𝑢d𝑧

)

+ 𝜕
𝜕𝑦

(

∫

𝛼𝜂

𝛼𝑏
𝑣d𝑧

)

= 𝛤 ,

As horizontal velocity is constant along the 𝑧 axis, the depth-averaged
equation can be further rearranged into
𝜕𝜂
𝜕𝑡

+ 𝜕
𝜕𝑥

[(𝜂 − 𝑏)𝑢] + 𝜕
𝜕𝑦

[(𝜂 − 𝑏)𝑣] = , (25)

where the parameter rainfall recharge in a new form is given by

 = 𝛤
𝜁

=
𝛾𝜈𝐿3

𝑔𝑘𝐼𝐻𝐷2
.

q. (25) together with Eqs. (20) and (21) constitute an approximate
heory for the transient motion of shallow water table in unconfined
quifers

Substituting the steady Darcy’s seepage velocities back into the
pproximate theory (25), we can obtain an alternative form
𝜕𝜂
𝜕𝑡

= 𝜕
𝜕𝑥

(

(𝜂 − 𝑏)
𝜕𝜂
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

(𝜂 − 𝑏)
𝜕𝜂
𝜕𝑦

)

+, (26)

which is Dupuit–Boussinesq equation (Brutsaert, 2005; Troch et al.,
2013) formulated in the two spatial dimensions. To remind, the drain-
able porosity 𝑛𝑒 is embedded in the normalized time variable.

3. Numerical scheme for one-dimensional movement

To simulate the motion of the shallow water table in unconfined
aquifers, the approximate theory (26) represents a nonlinear advection–
diffusion equation, typically requiring an implicit numerical scheme for
correct modeling of diffusion propagation. Among the various methods
suitable for accurate modeling of diffusion propagation, the Crank–
Nicolson method of an implicit finite difference scheme is favorite due
to its excellent second-order accuracy and unconditional stability (e.g.,
LeVeque, 2007; Strang, 2007). As high accuracy and numerical stability
can be maintained with a larger time increment 𝛥𝑡, implicit schemes are
attractive because they require fewer time steps for computation. How-
ever, during the solution process, they may demand more iterations
depending on how closely an initial guess is set. This is particularly
challenging when solving nonlinear problems with discontinuous con-
ditions using implicit schemes. Therefore, to address the difficulty, we
employ an explicit well-balanced finite volume scheme to solve the
newly proposed hyperbolic system for efficiently modeling the shallow
water table in unconfined aquifers.
4 
3.1. Quasilinear system and eigenstructure

To circumvent the difficulty associated with numerically modeling
the diffusion process in the single equation of hydraulic groundwater
theory (26), we adopt a different approach. Instead of focusing solely
on the single equation, we consider a hyperbolic system consisted of the
depth-averaging continuity Eq. (25) and the full momentum equations
of unsteady Darcy’s law, i.e., (20) and (21). In this system, as the
quantity to solve in the continuity equation is the total elevation of
water table in a single-layer unconfined aquifer, denoted as 𝜂 = ℎ + 𝑏,
we employ a technique that augments the time-invariant function of
aquifer bottom 𝑏 as an additional variable to solve.

The approach offers two advantages, including that it allows for
the straightforward solution of the depth of the saturated zone ℎ in
the continuity equation, and it also ensures physically valid charac-
teristic fields, as we will elaborate on later. Following the reasoning,
rearrangement of (25) and (20) with an augmented equation of zero
time-derivative of bottom function 𝑏 yields a hyperbolic system

𝜕ℎ
𝜕𝑡

+ 𝜕
𝜕𝑥

(ℎ𝑢) = 𝛤 ,

𝜕𝑢
𝜕𝑡

+ 1
𝜏
𝜕
𝜕𝑥

(ℎ + 𝜁𝑏) = − 𝑢
𝜏
,

𝜕𝑏
𝜕𝑡

= 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(27)

As our modeling focus is on the water table movement within a time
scale much shorter than that of bedrock weathering, it is physically
justified to set the evolution of bedrock to zero in the last equation.
Retaining the complete form of the unsteady Darcy’s law, we transform
the hydraulic groundwater theory, incorporating both advection and
diffusion terms, into a nonlinear hyperbolic system. Being able to be
numerically solved using explicit finite volume methods, the system
(27) is conservative, ensuring that numerical solutions maintain con-
servative properties when applying a finite volume method. Regarding
the formulation of the momentum equation, when the relaxation time
𝜏 approaches infinitesimal values, the stiff flux and source terms that
can drive 𝑢 back to the hydraulic gradient, resembling a steady Darcy
seepage velocity. This implies that setting the steady Darcy velocity
causes the hyperbolic system (27) to reduce to the original hydraulic
groundwater theory, confirming the physical validity of the proposed
hyperbolic system. Furthermore, in solving a hyperbolic system with
stiff source terms, relaxation schemes, which are a class of finite volume
based method, have been widely investigated (Jin and Xin, 1995;
LeVeque and Pelanti, 2001, references therein). Drawing inspiration
from relaxation schemes, we derive an approximate Riemann solver
incorporating special treatments for the stiff terms, ensuring numerical
convergence and stability, even in the presence of the small parameter
of relaxation time 𝜏, as will be elaborated in the following section.

To examine the eigenstructure, the augmented hyperbolic system
(27) is rewritten in a quasilinear form,
𝜕𝐪

+ 𝐅′(𝐪) 𝜕𝐪 = 𝐒(𝐪), (28)

𝜕𝑡 𝜕𝑥
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where

𝐪 =
⎡

⎢

⎢

⎣

ℎ
𝑢
𝑏

⎤

⎥

⎥

⎦

, 𝐅 =
⎡

⎢

⎢

⎣

ℎ𝑢
(ℎ + 𝜁𝑏) ∕𝜏

0

⎤

⎥

⎥

⎦

, 𝐒(𝐪) =
⎡

⎢

⎢

⎣

𝛤
−𝑢∕𝜏
0

⎤

⎥

⎥

⎦

,

nd the Jacobian matrix 𝐅′(𝐪) is given as

′(𝐪) = 𝜕𝐅
𝜕𝐪

=
⎡

⎢

⎢

⎣

𝑢 ℎ 0
1∕𝜏 0 𝜁∕𝜏
0 0 0

⎤

⎥

⎥

⎦

.

he augmented hyperbolic system holds three eigenvalues,

1 =
𝑢
2
−
√

ℎ
𝜏
+
( 𝑢
2

)2
, 𝜆2 =

𝑢
2
+
√

ℎ
𝜏
+
( 𝑢
2

)2
, 𝜆3 = 0. (29)

ith three corresponding eigenvectors,

1 =
⎡

⎢

⎢

⎣

𝜏𝜆1

1
0

⎤

⎥

⎥

⎦

, 𝑟2 =
⎡

⎢

⎢

⎣

𝜏𝜆2

1
0

⎤

⎥

⎥

⎦

, 𝑟3 =
⎡

⎢

⎢

⎣

1
−𝑢∕ℎ
−1

⎤

⎥

⎥

⎦

, (30)

here the superscript denotes the index of characteristic fields. As
3 ≡ 0 the characteristic field associated with 𝑟3 is linearly degenerate
nd can be referred as a steady state field for the function of aquifer
ottom 𝑏. The augmentation of 𝑏 to the hyperbolic system gives the two
igenvalues 𝜆1 and 𝜆2 depending only on ℎ and 𝑢 to ensure physically
alid characteristic speeds given arbitrary flow depth ℎ ≥ 0. Besides,
1 and 𝜆2 are non-zero and always real when ℎ is non-zero under
ny physically valid conditions, so that the augmented system (28)
s strictly hyperbolic. To examine the magnitude of the characteristic
peeds 𝜆1 and 𝜆2, the two eigenvalues are manipulated by placing the
ommon factor of 𝑢∕2 outside the brackets, as below
1 = 𝑢

2

(

1 −
√

𝛩 + 1
)

and 𝜆2 = 𝑢
2

(

1 +
√

𝛩 + 1
)

,

where

𝛩 = 4ℎ
𝜏𝑢2

.

As 𝛩 ≫ 0 it always holds that 𝜆1 < 0 and 𝜆2 > 0, such that 𝜆1 ≤ 0 ≤ 𝜆2
iven any arbitrary flow depth ℎ ≥ 0. The characteristic field associated
ith 𝑟1 is a wave propagating in the negative 𝑥-direction in the speed
f 𝜆1 and the other field of 𝑟2 is propagating oppositely in the positive
-direction in the speed of 𝜆2. In addition, the scale of 𝛩 is estimated
s

(𝛩) =
 (ℎ∕𝜏)

(

𝑢2∕4
) =

4𝜈4𝐿4𝜙2

𝑘4𝐼𝑔
3𝐷2

≥ (104)≫ 1,

or general soils listed in Table 1. The scale estimation reflects that
𝜆| ≈ 𝑢

√

𝛩∕2 ≫ 𝑢 and hence the characteristic fields propagate in a
velocity quite faster than the Darcy seepage velocity. This further lead
us to conclude that the characteristic speeds satisfy

𝜆1 ≤ 𝑢 ≤ 𝜆2, (31)

which validates that the characteristic speeds of the proposed system
are at least as large as the ones of the original hydraulic groundwater
theory. In other word, the newly proposed augmented hyperbolic sys-
tem can correctly capture the physical feature of water table movement
in an unconfined aquifer. Eq. (31) is referred to as the Sub-characteristic
Condition that is necessarily required to ensure numerical convergence
in any relaxation schemes (LeVeque and Pelanti, 2001) for any conser-
vation laws with stiff source terms which are similar to the proposed
hyperbolic system (27).

3.2. Well-balanced finite volume method

In the subsequent discussion, we adopt the formulation style intro-
uced in LeVeque (2002) for elucidation. To solve the augmented hy-
erbolic system (27), we employ the wave propagation algorithm (LeV-
que, 2002), which is a Godunov-type finite volume method. This
econd-order numerical scheme has a conservative form, such as
𝑛+1 = 𝐪𝑛 − 𝛥𝑡 (+𝛥𝐪 +−𝛥𝐪

)

− 𝛥𝑡 (̃ − ̃
)

, (32)
𝑖 𝑖 𝛥𝑥 𝑖−1∕2 𝑖+1∕2 𝛥𝑥 𝑖+1∕2 𝑖−1∕2

5 
where 𝐪 is the vector of cell-average variables, 𝛥𝑡 and 𝛥𝑥 are small
ime and space increments, the superscript 𝑛 denotes the time step, the
ubscript 𝑖 denotes the index of the cell 𝑖 and then the subscript of
−1∕2 denotes the interface between 𝑖−1 and 𝑖. The terms +𝛥𝐪𝑖−1∕2
nd −𝛥𝐪𝑖+1∕2 represent the fluctuations corresponding to the net
ffect of all waves propagating into the cell 𝑖 from the left and right
oundaries, denoted as 𝑥𝑖−1∕2 and 𝑥𝑖+1∕2, respectively. The quantities
̃ 𝑖±1∕2 denote the limited fluxes at the cell interfaces 𝑥𝑖±1∕2, designed
or the second-order correction of numerical solutions.

Since the numerical scheme (32) exclusively encompasses flux terms
t cell interfaces, handling the source terms in the augmented hyper-
olic system (27) demands a distinctive approach to integrate them into
he flux computation. To address this, when dealing with the incorpora-
ion of stiff flux and source terms characterized by the small relaxation
ime 𝜏, we develop a specialized approximate Riemann solver. This
olver is derived through the utilization of the f -wave decomposition
ethod (Bale et al., 2003), which is a variant of the wave propagation

lgorithm for balance laws with spatially varying functions of source
erms. Further details will be provided in the upcoming sub-section.

.2.1. Approximate Riemann solver and f -wave method
To maintain the crucial well-balancing property necessary for accu-

ately modeling flows in nearly steady states, the f -wave propagation
ethod employs the decomposition of waves at cell interfaces through

he use of flux functions that incorporate source terms in the hyperbolic
ystem (28). For clarity, by omitting the superscript of the time step 𝑛,
he flux decomposition at the cell interface 𝑥𝑖−1∕2 is expressed as

(𝐪𝑖) − 𝐅(𝐪𝑖−1) − 𝛥𝑥𝛹𝑖−1∕2 =
3
∑

𝑝=1
𝛼𝑝𝑖−1∕2𝑟

𝑝
𝑖−1∕2 =

3
∑

𝑝=1
𝑝
𝑖−1∕2, (33)

where 𝑝 ∈ [0, 1, 2] denotes the index of the characteristic field, 𝑟𝑝 and
𝑝 are the eigenvector and f -wave associated with the 𝑝th wave, 𝛼𝑝 is
he decomposition coefficient , and 𝛹𝑖−1∕2 denotes the source term at
he cell interface that can be determined by taking average of the two
djacent values (LeVeque, 1998),

𝑖−1∕2 =
1
2
[

𝐒
(

𝐪𝑖
)

+ 𝐒
(

𝐪𝑖−1
)]

. (34)

Further omitting the subscript of the cell index 𝑖−1∕2 for clarity, solving
(33) yields the decomposition coefficients

𝛼1 =
𝛥𝐹1 − 𝜏𝜆2𝛥𝐹2
𝜏
(

𝜆1 − 𝜆2
) , 𝛼2 =

𝛥𝐹1 − 𝜏𝜆1𝛥𝐹2
𝜏
(

𝜆2 − 𝜆1
) , 𝛼3 = 0 (35)

where the fluctuations of the flux functions 𝛥𝐹1 and 𝛥𝐹2 at the cell
interface 𝑥𝑖−1∕2 are respectively expressed as

𝛥𝐹1 = ℎ𝑖𝑢𝑖 − ℎ𝑖−1𝑢𝑖−1 −
𝛥𝑥
2

(

𝛤𝑖 + 𝛤𝑖−1
)

,

𝛥𝐹2 =
1
𝜏

[

(

ℎ𝑖 + 𝜁𝑏𝑖
)

−
(

ℎ𝑖−1 + 𝜁𝑏𝑖−1
)

+ 𝛥𝑥
2

(

𝑢𝑖 + 𝑢𝑖−1
)

]

.

⎫

⎪

⎬

⎪

⎭

(36)

As the hyperbolic system approaches a steady state, the conditions 𝛥𝐹1
and 𝛥𝐹2 tend towards zero. Consequently, the mass flux 𝛥(ℎ𝑢) becomes

ell balanced by any existing rainfall recharge. Additionally, the ve-
ocity 𝑢 is approximated as the hydraulic gradient 𝛥(ℎ+ 𝑏)∕𝛥𝑥, or says,
he steady Darcy’s seepage velocity. This advantageous property aligns
erfectly with the well-balancing characteristic, ensuring a satisfactory
pproximation of the steady state. In (32), the flux fluctuations at the
ell interface 𝑥𝑖−1∕2 can be computed by using the f -waves,
−𝛥𝐪𝑖−1∕2 = 1

𝑖−1∕2 and +𝛥𝐪𝑖−1∕2 = 2
𝑖−1∕2.

Given that the hyperbolic relaxation system is quasilinear, we
straightforwardly apply Roe-linearization to compute linearized states
at cell interfaces. For a detailed derivation, please refer to Appendix A.
The resulting Roe-averaged variables, denoted as 𝑢̂ for velocity and ℎ̂
for flow depth, for the Riemann problem at the cell interface 𝑥 are
𝑖−1∕2
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simply the arithmetic averages of the values from two adjacent cells,
such as

= 1
2
(

𝑢𝑖 + 𝑢𝑖−1
)

and ℎ̂ = 1
2
(

ℎ𝑖 + ℎ𝑖−1
)

,

espectively, which yields the three eigenvalues

1̂ = 𝑢̂
2
−

√

ℎ̂
𝜏
+ 𝑢̂2

4
, 𝜆2 = 𝑢̂

2
+

√

ℎ̂
𝜏
+ 𝑢̂2

4
, 𝜆3 = 0,

and the corresponding eigenvectors,

1 =
⎡

⎢

⎢

⎣

𝜏𝜆1

1
0

⎤

⎥

⎥

⎦

, 𝑟̂2 =
⎡

⎢

⎢

⎣

𝜏𝜆2

1
0

⎤

⎥

⎥

⎦

, 𝑟̂3 =
⎡

⎢

⎢

⎣

1
−𝑢̂∕ℎ̂
−1

⎤

⎥

⎥

⎦

,

for solving the Riemann problem at the cell interface 𝑥𝑖−1∕2.

.2.2. Correction for high-resolution solution
In pursuit of high-resolution numerical solutions, we use the lim-

ted second-order correction flux at the cell interface 𝑥𝑖−1∕2, which is
roposed by LeVeque (2002),

̃ 𝑖−1∕2 =
1
2

2
∑

𝑝=1
sgn

(

𝜆𝑝𝑖−1∕2
)(

1 − 𝛥𝑡
𝛥𝑥

|

|

|

𝜆𝑝𝑖−1∕2
|

|

|

)

̃𝑝
𝑖−1∕2, (37)

here sgn(⋅) is the sign function, and ̃𝑝 = 𝛩𝑝 denotes the limited
wave and 𝛩 is a flux limiter which can ensure the numerical conver-
gence of total variation diminishing at discontinuities or sharp changes
in the solution domain. A wide variety of flux limiters have been
introduced in the literature (e.g., LeVeque, 2002; Toro, 2013). Among
high-resolution limiters, we adopt the famous monotonized central-
difference limiter, or called MC limiter (Van Leer, 1977). Using the
above corrected flux (37), the second-order accuracy can be achieved
if the solution is smooth, and the numerical convergence can also
be assured at sharp discontinuities. Without the corrected flux, the
numerical scheme (32) is simplified and converted to the upwind
scheme in the first order of accuracy. The first-order scheme will be
used for verification in the following sections.

3.2.3. Numerical convergence, boundary and initial conditions
When solving the proposed augmented hyperbolic system, to en-

sure numerical stability and convergence, time increment 𝛥𝑡 is always
satisfied with the Courant–Friedrichs–Lewy (CFL) condition. Through
the CFL condition, not only numerical convergence is assured, but
modeling efficiency can also be achieved as 𝛥𝑡 is adjustable based on
propagation speed. The slower the propagation speed, the larger the
time increment 𝛥𝑡, thus the computation time will be shorter. This is
one of the merits for the newly proposed methodology.

At the boundaries of the computation domain, we apply two types
of numerical boundary conditions, namely free outflow and reflec-
tion boundary conditions (LeVeque, 2002). In cases where there is
an aquifer outlet or the computational domain boundary, the free
outflow boundary condition is implemented through the first-order
linear extrapolation involving two ghost cells. Additionally, a reflection
boundary condition is imposed in areas where a solid wall forms the
boundary, and the water table does not unphysically overtop the wall
height. Before simulation, we set an initial distribution of water table
given by any specified assumptions. The simulation is designed to au-
tomatically terminate upon reaching either the maximum computation
time step and/or a steady state judged by infinitesimal velocity.

4. Verification of one-dimensional scheme

For numerical solutions, the approximate Riemann Solver formu-
lated from (33) to (36) is implemented in Clawpack (Mandli et al.,
2016; Clawpack Development Team, 2023). In what follows we demon-
strate verification of the proposed numerical method using the an-
alytical solutions (40) to the problem of one-dimensional spreading
 t

6 
of a groundwater ground on the flat bottoms of the horizontal and
inclined types. To compare with our new method, we used the first-
order upwind scheme and the conventional Crank–Nicolson method
(See Appendix A for the details of solution procedures) for numerical
solutions.

4.1. Analytical solutions to one-dimensional groundwater mound spreading

The analytical solutions are for the longitudinal spreading in the
horizontal direction of 𝑥. The constant slope of 𝑆𝑥 resulting from the
lat bottom can be interpreted as a velocity of propagation driven by the
ottom slope. Therefore, we can perform a coordinate transformation
y using

= 𝑥 − 𝑆𝑥𝑡, (38)

where 𝑋 is the transformed coordinate moving at the propagation ve-
locity of 𝑆𝑥. Using the transformed coordinate, we obtained a new form
of the approximate theory for the evolution of groundwater mound,
𝜕ℎ
𝜕𝑡

= 𝜕
𝜕𝑋

(

ℎ 𝜕ℎ
𝜕𝑋

)

. (39)

As a gentle reminder, when the aquifer bottom is horizontally flat,
i.e., 𝑏 = 0, the spatial variable 𝑋 in a moving coordinate reverts to the
riginal 𝑥. The solution to the above homogeneous nonlinear diffusion
quation can be obtained using the well-known similarity method. For
revity, the solution procedure is omitted here and can be referred
o the literature (e.g., Bear, 1972; Barenblatt, 1996). The analytical
olution for longitudinal spreading is then given as

(𝑋, 𝑡) =

⎧

⎪

⎨

⎪

⎩

3
√

6𝑀2∕3

4𝑡1∕3

(

1 − 𝑋2

(9𝑀𝑡∕2)2∕3

)

, |𝑋| ≤ 𝑋𝑓 ,

0, |𝑋| > 𝑋𝑓 ,
(40)

here 𝑀 represents a constant finite mass of the groundwater mound.
he relation between 𝑀 and the mound distribution is defined as

𝛿(𝑥) = ∫

𝑋𝑓

−𝑋𝑓
ℎd𝑥, at 𝑡 → 0,

here ±𝑋𝑓 denote the wetting fronts on the both sides, and 𝛿(𝑥) is
he Dirac delta function. The solution (40) shows that an initiation
istribution is symmetric at the origin 𝑋 = 0. In the positive 𝑋-
irection, the location of wetting front of the groundwater mound can
e expressed as

𝑓 = (9𝑀𝑡∕2)1∕3 , (41)

nd the propagation speed reads
d𝑋𝑓

d𝑡
= (𝑀∕6)1∕3 𝑡−2∕3. (42)

he above equations reveal that the location of the wetting front is di-
ectly proportional to (𝑀𝑡)1∕3 in the case of one-dimensional spreading.
he propagation speed is infinite at the initial instant 𝑡 = 0+, and then
apidly turns into a finite speed at a decreasing rate proportional to
𝑡−2∕3.

.2. Verification with analytical solutions and computational efficiency

For verification, we consider a groundwater mound with a total
inite mass under 𝑀 = 4.5, and the distribution at 𝑡 = 0.65 is set as
he initial profile using the analytic solution (40). The choice of an
mall value of time, rather than zero, is made to fit the assumption
f the shallowness of aquifers. Additionally, two types of aquifer bed
hapes are considered, including a horizontal bed and an inclined bed
ith a slope of minus unity in the positive 𝑥-direction. Without loss
f generality, the relaxation time parameter is set to 𝜏 = 10−3 to
epresent soils with high permeability. Based on the analytic solution,
he parameter of 𝛼 is set to be unity for the numerical scheme. For
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Fig. 1. Comparison of the longitudinal profiles between the analytic and numerical solutions using 1𝑠𝑡-order scheme, high-resolution scheme, and Crank–Nicolson method at three
time steps, i.e., 100th (Figs. a and d), 400th (Figs. b and e), and 1000th (Figs. c and e) time steps, respectively. The relaxation time is 𝜏 = 10−3. Sub-figures a–c depict the case
of a horizontal bed and d–f show the case of an inclined bed. The total grid number is 1024 and the grid size is 𝛥𝑥 ≈ 0.01.
numerical boundary conditions, the free outflow boundary condition is
imposed at the leftmost and rightmost boundaries.

Fig. 1 presents the comparison between numerical and analytic
solutions of longitudinal profiles at three time steps for both cases of
a horizontal and an inclined beds. The grid number fixed to be 1024
and the grid size is 𝛥𝑥 ≈ 0.01. The figures illustrate results at the
100th, 400th, and 1000th time steps, respectively. To verify the newly
proposed methodology, we compared it with the first order upwind
scheme, which high resolution correction is not performed, and the
second order Crank–Nicolson method. Without loss of generality, the
Crank–Nicolson method is used in the horizontal case. The verification
results show that our new numerical model can correctly capture the
time-varying profiles of groundwater mounds on flat bottoms. Besides,
regarding the locations of wetting fronts, Fig. 2 demonstrates the com-
parison among numerical and analytic solutions (41) at various time
under three grid numbers. The results show that only in the inclined
case (Fig. 1d) under the grid number of 1024, a slight but acceptable
difference is observed at the left wetting front. In the rest of cases,
the wetting fronts are accurately captured by our new model. Based
on this comparison using the analytic solutions, the one-dimensional
numerical scheme is verified to be accurate for modeling water table
in unconfined aquifers.

Fig. 3 shows the computation time for each scheme to complete
1000 time steps under varying grid numbers. Three relaxation time
𝜏’s are selected for benchmarking using our new model and the first-
order upwind scheme without flux corrections. The benchmark was
performed on the same machine. The Crank–Nicolson method took
more than an order of magnitude longer to complete the same com-
putation steps compared to our new model. Although the solution
algorithms are fundamentally different for the three schemes, direct
comparisons of computational efficiency is imprecise. The results in-
dicate that our new model is computationally more efficient than the
Crank–Nicolson method. Additionally, computation is more efficient
when the relaxation time is smaller.
7 
4.3. Error estimation based on grid size 𝛥𝑥 and 𝜏

For a successful simulation, the careful selection of 𝛥𝑥 and 𝜏 is cru-
cial. In this study we investigate numerical convergence and sensitivity
under variable values of 𝛥𝑥 and 𝜏. To quantify the error at a fixed time
step, we use the 1-Norm ‖𝐸‖1 and ∞-Norm ‖𝐸‖∞ of error estimation,
which are defined as

‖𝐸‖1 =

(

𝛥𝑥
𝑁
∑

𝑖=1
|𝐸𝑖|

)

,

‖𝐸‖∞ =max
(

|𝐸𝑖|
)

,

(43)

where 𝐸𝑖 = 𝑄𝑖 − 𝑞𝑖 denotes the error between the numerical solution
𝑄𝑖 and analytic solution 𝑞𝑖 at the cell 𝑖. The 1-Norm is utilized to
examine the cumulated error of the numerical solution. It is calculated
as the sum of absolute errors across all grid points at a specific time
step. On the other hand, the ∞-Norm is employed for checking the
local maximum error in the numerical solution at one time step. These
error estimation metrics provide valuable insights into the accuracy
and convergence behavior of the numerical scheme under different
parameter settings. Besides, to ensure correct numerical solutions, the
pointwise convergence of the method is examined as the grid size 𝛥𝑥
is refined through

‖𝐸‖∞ =  (𝛥𝑥𝑠) , as 𝛥𝑥→ 0, (44)

where 𝑠 is the order of accuracy. As a result, Fig. 4 displays two error
estimations, including the 1-Norm of error under a fixed grid size of
𝛥𝑥 ≈ 10−3 and the ∞-Norm at the 285th time step under varying grid
size 𝛥𝑥 and three relaxation time 𝜏’s. In Fig. 4, the upper row presents
the results for the horizontal bed case, while the lower row depicts the
inclined bed case. In both cases, the 1-Norm error results demonstrate
that the numerical solutions converge as time progresses. The error
decreases when the relaxation time is refined. For the horizontal bed
case, the 1-Norm error of the Crank–Nicolson method is lower than that

of our new model. On the other hand, as illustrated in the right part of
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Fig. 2. Comparison of the temporal locations of wetting fronts from the analytic and numerical solutions of three schemes under three relaxation time 𝜏’s. Sub-figures a–c depict
the case of a horizontal bed and d–f show the case of an inclined bed. The grid numbers are 1024 in a and d, 4096 in b and e, and 16,384 in c and f. The criterion of water
table depth is 5.0 × 10−3.
Fig. 3. Computation time of the new model under three relaxation time 𝜏’s and two orders of accuracy (the first-order upwind scheme and high-resolution schemes) as well as
the second-order Crank–Nicolson method for completing 1000 time steps of computation using an uniform time interval 𝛥𝑡 = 0.05 for the horizontal case.
o
s
a

5

5

t

ig. 4, the ∞-Norm error shows that pointwise convergence is assured
s the grid size is refined for smaller relaxation time. The order of
ccuracy 𝑠 is close between the first order and high resolution schemes.
he value of 𝑠 ranges from 0.5 to 1 when 𝜏 ≤ 10−3, but 𝑠 becomes a
mall negative value if 𝜏 = 0.01. This result implies that computations
sing higher relaxation time require coarser grids for higher accuracy.
pecifically, in the horizontal case, the ∞-Norm error of the Crank–
icolson method exhibits higher local errors than our new model under

maller relaxation time 𝜏 ≤ 10−3. The local errors in the horizontal bed
ase are generally lower than those in the inclined bed case. Both error
stimations verify that our new one-dimensional approximate solver is
umerically convergent and maintains mass conservation for modeling
 a

8 
ne-dimensional spreading of water table in unconfined aquifers. Con-
equently, we shall extend the methodology to two space dimensions,
s described in the next section.

. Numerical scheme for two-dimensional movement

.1. Quasilinear system and eigenstructure

We extend the space dimension of the hyperbolic system to the
wo dimensions of (𝑥, 𝑦). Similar to the one-dimensional system, the
ugmented hyperbolic system for two dimensional motion is expressed
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Fig. 4. Error estimations of the 1-Norm of time variation (sub-figures a and c) and the ∞-Norm of error versus the grid size 𝛥𝑥 (b and d). Sub-figures a and b are for the case
f a horizontal bed, while c and d are associated with an inclined bed. The grid size is 𝛥𝑥 ≈ 10−3 for the results of 1-Norm error in a and c. In b and d, the ∞-Norm of error is
stimated at the 285th time step, 𝑠 denotes the order of accuracy, and the symbols of triangular, circle, and square respectively denote the results of the first order, high-resolution
chemes, and Crank–Nicolson method.
s

𝜕ℎ
𝜕𝑡

+ 𝜕
𝜕𝑥

(ℎ𝑢) + 𝜕
𝜕𝑦

(ℎ𝑣) = 𝛤 ,

𝜕𝑢
𝜕𝑡

+ 1
𝜏
𝜕
𝜕𝑥

(ℎ + 𝜁𝑏) = − 𝑢
𝜏
,

𝜕𝑣
𝜕𝑡

+ 1
𝜏
𝜕
𝜕𝑦

(ℎ + 𝜁𝑏) = − 𝑣
𝜏
,

𝜕𝑏
𝜕𝑡

= 0,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(45)

with one more term of mass flux in the 𝑦-direction in the continu-
ity equation and one more 𝑦-momentum equation. The augmented
hyperbolic system can be manipulated into the quasilinear form,

𝜕𝐪
𝜕𝑡

+ 𝐅′(𝐪) 𝜕𝐪
𝜕𝑥

+𝐆′(𝐪) 𝜕𝐪
𝜕𝑦

= 𝐒(𝐪), (46)

where

𝐪 =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ
𝑢
𝑣
𝑏

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐅(𝐪) =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ𝑢
(ℎ + 𝜁𝑏) ∕𝜏

0
0

⎤

⎥

⎥

⎥

⎥

⎦

,

(𝐪) =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ𝑣
0

(ℎ + 𝜁𝑏) ∕𝜏
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐒(𝐪) =

⎡

⎢

⎢

⎢

⎢

⎣

𝛤
−𝑢∕𝜏
−𝑣∕𝜏
0

⎤

⎥

⎥

⎥

⎥

⎦

,

nd the Jacobian matrices 𝐅′(𝐪) and 𝐆′(𝐪) are given as

𝐅′(𝐪) =

⎡

⎢

⎢

⎢

⎢

𝑢 ℎ 0 0
1∕𝜏 0 0 𝜁∕𝜏
0 0 0 0

⎤

⎥

⎥

⎥

⎥

, 𝐆′(𝐪) =

⎡

⎢

⎢

⎢

⎢

𝑣 0 ℎ 0
0 0 0 0

1∕𝜏 0 0 𝜁∕𝜏

⎤

⎥

⎥

⎥

⎥

.

⎣

0 0 0 0
⎦ ⎣

0 0 0 0
⎦
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For the eigenstructure in the 𝑥-direction, algebraic manipulation to the
Jacobian matrix 𝐅′(𝐪) yields four eigenvalues,

𝜆1 = 𝑢
2
−
√

ℎ
𝜏
+
( 𝑢
2

)2
, 𝜆2 = 𝑢

2
+
√

ℎ
𝜏
+
( 𝑢
2

)2
, 𝜆3 = 0, 𝜆4 = 0,

(47)

and four corresponding eigenvectors,

𝑟1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝜆1

1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑟2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝜆2

1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑟3 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑟4 =

⎡

⎢

⎢

⎢

⎢

⎣

1
−𝑢∕ℎ
0
−1

⎤

⎥

⎥

⎥

⎥

⎦

, (48)

with two equations of identity

𝜆1 + 𝜆2 = 𝑢, and 𝜆1𝜆2 = −ℎ
𝜏
.

The subscripts of characteristic fields from 1 to 4 sequentially denote
the equations of continuity, 𝑥-momentum, 𝑦-momentum, and aquifer
bottom. In all the eigenvalues in (47), the first eigenvalue 𝜆1 and the
second 𝜆2 are non-zero, but the third and fourth characteristic fields,
associated with two zero eigenvalues, i.e., 𝜆3 = 0 and 𝜆4 = 0, are
linearly degenerate and can be referred to as steady state fields for the
𝑦-momentum and aquifer bottom. Similar to the eigenstructure for one-
dimensional flow in (29), the non-zero eigenvalues 𝜆1 and 𝜆2 are always
real given an arbitrary flow depth ℎ ≥ 0. Hence, the two-dimensional
augmented hyperbolic system (46) is strictly hyperbolic. The character-
istic field associated with 𝑟1 represents a wave propagating at the speed
of 𝜆1 in the positive 𝑥-direction, while the other field of 𝑟2 propagates
oppositely in the negative 𝑥-direction with a speed of 𝜆2.

On the other hand, for the eigenstructure in the 𝑦-direction, through
the same algebraic manipulation, the Jacobian matrix 𝐆′(𝐪) also holds
four eigenvalues

𝜆1 = 𝑣 −
√

ℎ +
(𝑣)2

, 𝜆2 = 𝑣 +
√

ℎ +
(𝑣)2

, 𝜆3 = 0, 𝜆4 = 0,

2 𝜏 2 2 𝜏 2
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and corresponding eigenvectors,

𝑟1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝜆1

0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑟2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝜆2

0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑟3 =

⎡

⎢

⎢

⎢

⎢

⎣

0
1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑟4 =

⎡

⎢

⎢

⎢

⎢

⎣

1
0

−𝑣∕ℎ
−1

⎤

⎥

⎥

⎥

⎥

⎦

,

with the two identities for the 𝑦-direction

𝜆1 + 𝜆2 = 𝑣, and 𝜆1𝜆2 = −ℎ
𝜏
,

where the characteristic fields 𝑟3 and 𝑟4 represent the 𝑥-momentum
and time change of aquifer bottom, respectively. The eigenstructure in
the 𝑦-direction is equivalent to that of the 𝑥-direction, with only two
characteristic fields, 𝑟1 and 𝑟2, associated with non-zero eigenvalues
𝜆1 and 𝜆2, respectively. These eigenvalues represent one positive and
one negative velocity in the 𝑦-direction. The above two eigenstructures
for both directions demonstrate that the eigenvalues and corresponding
eigenvectors depend solely on the flow depth and velocities normal to
the cell interfaces in each direction.

Similar to the one-dimensional system, the characteristic speeds
all adhere to the specific sub-characteristic condition in each direc-
tion. This verification ensures that the two-dimensional augmented
hyperbolic system can correctly capture the physical features of two-
dimensional motion of shallow water table.

5.2. Two-dimensional well-balanced finite volume method

For the two-dimensional augmented hyperbolic system (46), the nu-
merical scheme of the wave propagation algorithm has the conservative
form

𝐪𝑛+1𝑖,𝑗 = 𝐪𝑛𝑖,𝑗 −
𝛥𝑡
𝛥𝑥

(

+𝛥𝐪𝑖−1∕2,𝑗 +−𝛥𝐪𝑖+1∕2,𝑗
)

− 𝛥𝑡
𝛥𝑦

(

+𝛥𝐪𝑖,𝑗−1∕2 + −𝛥𝐪𝑖,𝑗+1∕2
)

− 𝛥𝑡
𝛥𝑥

(

̃𝑖+1∕2,𝑗 − ̃𝑖−1∕2,𝑗
)

− 𝛥𝑡
𝛥𝑦

(

̃𝑖,𝑗+1∕2 − ̃𝑖,𝑗−1∕2
)

,

(49)

where 𝐪 is the discrete variable vector, 𝛥𝑡 is an increment in time
nd 𝛥𝑥 and 𝛥𝑦 are space increments for numerical computation, the
ubscripts (𝑖, 𝑗) are the index of the cell 𝑖,𝑗 in the two dimensions,

then the subscript of 𝑖 − 1∕2 denotes the interface between 𝑖−1,𝑗 and
𝑖,𝑗 . +𝛥𝐪𝑖−1∕2,𝑗 is the east-going wave fluctuation at the east interface
of the cell 𝑖,𝑗 at 𝑥𝑖−1∕2,𝑗 , and +𝛥𝐪𝑖,𝑗−1∕2 is the north-going wave
fluctuation at the south cell interface at 𝑥𝑖,𝑗−1∕2. ̃𝑖±1∕2,𝑗 and ̃𝑖,𝑗±1∕2 are
the vectors of limited fluxes for high-resolution correction. The form
of the high-resolution correction flux is identical to (37) used in the
one-dimensional numerical scheme. To compute the wave fluctuations
at cell interfaces for the two-dimensional system, we derived a set of
approximate Riemann solvers incorporating f -wave decomposition to
handle the flux functions and source terms in the flux calculation, as
will be elaborated in the next section.

5.2.1. Normal and transverse approximate Riemann solvers
In the two-dimensional wave propagation algorithm (49), there are

wave fluctuations in the directions which are normal and transverse
to cell interfaces. In each direction the fluctuation requires a corre-
sponding approximate Riemann solver for solutions. As is explained in
Section 5.1, in the direction normal to the cell interfaces, the character-
istic speeds and corresponding characteristic fields of two-dimensional
system are equivalent to the ones of one-dimension system, so that the
approximate Riemann solver in the normal direction is just the same
as the one-dimensional well-balancing Riemann solver, which has been
mentioned in Section 3.2.1.

Except for the normal wave fluctuations, there are additional waves
propagating in the transverse direction at cell interfaces. LeVeque
(1997) proposed a transverse Riemann solver to determine fluctuations
of transverse propagation at cell interfaces for the wave propagation
 a

10 
algorithm. At each cell interface, this transverse solver can be used
to split the flux fluctuation in the normal direction into transverse
waves. To compute the transverse fluctuations, for example, at the
cell interface (𝑥𝑖−1∕2, 𝑦𝑗 ) the right-going fluctuation is decomposed into
eigenvectors corresponding to up-going and down-going waves,

−𝛥𝐪𝑖−1∕2,𝑗 = 𝛽1

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝜆1𝑖,𝑗−1
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝛽2

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝜆2𝑖,𝑗+1
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝛽3

⎡

⎢

⎢

⎢

⎢

⎣

0
1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝛽4

⎡

⎢

⎢

⎢

⎢

⎣

1
0

−(𝑣∕ℎ)𝑖−1∕2,𝑗
−1

⎤

⎥

⎥

⎥

⎥

⎦

,

(50)

With the solved decomposition coefficients 𝛽’s, the up-going and down-
going fluctuations can then be computed by

+−𝛥𝐪𝑖−1∕2,𝑗 = 𝜆2𝑖,𝑗+1𝛽
2 (−𝛥𝐪𝑖−1∕2,𝑗

)

,

−−𝛥𝐪𝑖−1∕2,𝑗 = 𝜆1𝑖,𝑗−1𝛽
1 (−𝛥𝐪𝑖−1∕2,𝑗

)

,

respectively. More detailed information can be referred in the litera-
ture (LeVeque, 2002). Through the above decomposition, transverse
fluctuations at all cell interfaces can be computed and subsequently
used as correction fluxes for obtaining high-resolution solutions in
two-dimensional modeling.

6. Verification of two-dimensional scheme

6.1. Analytical solutions to two-dimensional groundwater mound spreading

The analytical solutions are for the problem of radial spreading of a
groundwater mound with finite mass on a flat bottom. Employing the
cylindrical coordinate transformation, the governing equation takes the
form
𝜕ℎ
𝜕𝑡

= 1
𝑟
𝜕
𝜕𝑟

(

ℎ𝑟 𝜕ℎ
𝜕𝑟

)

, (51)

here 𝑟 =
√

𝑋2 + 𝑌 2 is a new variable radially outward from the origin,
and the two transformed variables in the moving coordinate are defined
as 𝑋 = 𝑥−𝑆𝑥𝑡 and 𝑌 = 𝑦−𝑆𝑦𝑡. Similar to the solution procedure for the
longitudinal spreading problem, the similarity method can be applied
to solve the nonlinear diffusion equation governing radial motion,
resulting in the solution (Bear, 1972; Barenblatt, 1996)

ℎ(𝑟, 𝑡) =

⎧

⎪

⎨

⎪

⎩

√

2𝐶1∕2

16𝑡1∕2

(

8 − 𝑟2

(𝐶𝑡∕2)1∕2

)

, |𝑟| ≤ 𝑟𝑓 ,

0, |𝑟| > 𝑟𝑓 ,
(52)

where the constant initial finite mass 𝐶 is defined as

𝐶𝛿(𝑟) = ∫

𝑟𝑓

0
𝑟ℎd𝑟, at 𝑡→ 0, for 𝐶 > 0.

he outer wetting front of the groundwater mound reads,

𝑓 =
√

8 (𝐶𝑡∕2)1∕4 , (53)

nd the spreading speed is
d𝑟𝑓
d𝑡

= (𝐶∕8)1∕4 𝑡−3∕4. (54)

nlike one-dimensional spreading, the spreading speed of the wetting
ront in radial spreading is proportional to 𝑡−3∕4, which is slower than
he speed of the longitudinal spreading ∝ 𝑡−2∕3 in (42). Both sets of
he analytical solutions will be utilized to verify the newly proposed
umerical schemes in the following sections.

.2. Verification with analytical solutions

Herein, we verify the two-dimensional numerical scheme using
nalytical solutions for the radial spreading of a groundwater mound
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Fig. 5. Comparison of two dimensional distributions between the initial distribution (a and d), the numerical solutions (b and e), and the analytic solutions (c and f) is presented
at the normalized time of 1.8 (the 1800th time step). The parameters used are the relaxation time 𝜏 = 10−4 and the grid size 𝛥𝑥 = 0.02. Sub-figures a–c depict the case of a
horizontal bed, while d–f represent the case of an inclined bed. The distributions of water table are depicted in filled contours for the initial conditions, numerical results, and
analytic solutions. Gray colors indicate the continuous elevation of the aquifer bed 𝑏(𝑥).
on the flat bottom of both horizontal and inclined types. The analytical
solution is provided in Eq. (52). For the verification process, we con-
sider a groundwater mound of total finite mass under 𝐶 = 2.0, and the
initial condition is set to the distribution at 𝑡 = 0.4 using the analytic
solution (52). The aquifer bed shape is defined in two types, including
a horizontal bed and an inclined bed with a slope of minus unity in
the 𝑥-direction only. For comparison with the analytic solutions, the
relaxation time parameter is set to 𝜏 = 10−4 to represent soils with
higher permeability, and the parameter 𝛼 is set to be unity. The free
outflow numerical boundary condition is imposed at both upstream
and downstream boundaries. Fig. 5 illustrates the comparison among
the initial depth distributions and the numerical and analytic solutions
for cases of horizontal and inclined beds at the normalized time of
1.8 (the 1800th time step). In both cases, the depth contours of the
numerical solutions align well with those of the analytic solutions.
The spatiotemporal distribution of the wetting front, depicted by the
outermost contour, is accurately captured by the two-dimensional nu-
merical scheme. Since the two dimensional scheme is a straightforward
extension of the one-dimensional approximate Riemann solver, the
error estimations in each direction can be referred to the those of
one-dimensional solver, as explained in Section 4.

7. Concluding remarks

We introduce a new methodology for modeling the shallow phreatic
surface of groundwater in unconfined aquifers. The approach involves
proposing a hyperbolic system, which consists of the depth-averaged
continuity equation and momentum equations derived from unsteady
Darcy’s law. The hyperbolic system is numerically solved using the
well-balancing finite volume scheme, the f -wave propagation algo-
rithm. This algorithm proves beneficial in numerically handling the stiff
11 
terms derived from the unsteady Darcy’s law. To verify the effective-
ness of the methodology, we applied analytic solutions to the classic
problems of the spreading of groundwater mound in the multidimen-
sional directions, where the diffusion process dominates. The results
demonstrate that the new methodology successfully provides accurate
numerical solutions with a higher order of accuracy.

The major merits of the new method are twofold. Firstly, we suc-
cessfully derived a new set of governing equations that are physically
valid for expressing the movement of the shallow phreatic surface of
groundwater in unconfined aquifers. The classical hydraulic groundwa-
ter theory can be regarded as a simplified case of the newly derived
system of governing equations. Being of hyperbolic type, the new sys-
tem can be efficiently solved using explicit Godunov-type finite volume
methods. For handling stiff source and flux terms in the momentum
equations of the derived hyperbolic system, we then utilized the f -
wave propagation algorithm to successfully derive a new approximate
Riemann solver. This solver guarantees numerical convergence, correct
numerical solutions, and retains well-balancing properties when the
flow is approaching a steady state. Furthermore, the approximate solver
is in a simple form that is easy to implement for computation. The
benchmark tests show that the new solver is computationally efficient
than the conventional implicit finite difference scheme.Through error
estimation using analytic solutions, we successfully verified that the
new numerical method is well applicable to the newly derived hyper-
bolic system. Therefore, the second merit is that we have developed
a newly effective way to numerically simulate the motion of the shal-
low water table in unconfined aquifers by reasonably overcoming the
numerical difficulties associated with solving the original hydraulic
groundwater theory, which is of the advection–diffusion type and does
not favor problems in a wider domain.

There are still some limitations to the new numerical model, includ-
ing its applicability to heterogeneous aquifers and the configuration
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of boundary conditions. Since the current theory is derived under the
assumption of aquifers constituted by isotropic homogeneous soils,
our current numerical approach cannot model the motion of water
table in heterogeneous aquifers. A more general theory is necessary
for detailed computations in heterogeneous aquifers. Additionally, the
current numerical model only considers the free outflow and reflection
boundary conditions. If there are source and/or sink of groundwater
in the problem domain, the current model is unable to accurately
represent the phenomena of groundwater injection or extraction. Over-
coming these limitations could be achieved by further developing a
more general fundamental theory and numerical model in the future
work.

In conclusion, through the analytical investigations in this research,
it appears that the proposed methodology offers new and attractive
insights that are beneficial for groundwater modeling in both numerical
and theoretical aspects. Analogous to the formulation of the renowned
shallow water theory, the proposed hyperbolic system can be seen
as a new shallow groundwater theory for gravity-driven free surface
flows beneath the Earth’s ground. With successful verification, we are
convinced that this method has the potential to open up an alternative
and practical direction for modeling shallow groundwater flows.
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Appendix A. Derivation of Roe-averaged variables

Referring to literature (Roe, 1981; LeVeque, 2002; Toro, 2013), a
parameter vector for the independent variable 𝐪 is let to be

𝐳 = ℎ−1∕2𝐪 =

⎡

⎢

⎢

⎢

⎣

√

ℎ
𝑢∕
√

ℎ
𝑏∕
√

ℎ

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3

⎤

⎥

⎥

⎦

. (A.1)

The original variable 𝐪 and the derivative of 𝐪 with respect to 𝐳 become

𝐪(𝐳) =
⎡

⎢

⎢

𝑧21
𝑧2𝑧1

⎤

⎥

⎥

,
𝜕𝐪
𝜕𝐳

=
⎡

⎢

⎢

2𝑧1 0 0
𝑧2 𝑧1 0

⎤

⎥

⎥

. (A.2)

⎣𝑧3𝑧1⎦ ⎣ 𝑧3 0 𝑧1⎦
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hen the flux functions 𝐅 and the Jacobian matrix 𝐅′ become

𝐅(𝐳) =
⎡

⎢

⎢

⎢

⎣

𝑧31𝑧2
1
𝜏

(

𝑧21 + 𝑧1𝑧3
)

0

⎤

⎥

⎥

⎥

⎦

, 𝜕𝐅
𝜕𝐳

=
⎡

⎢

⎢

⎣

3𝑧21𝑧2 𝑧31 0
(

2𝑧1 + 𝑧3
)

∕𝜏 0 𝑧1∕𝜏
0 0 0

⎤

⎥

⎥

⎦

. (A.3)

The objective here is to derive a matrix 𝐴̂𝑖−1∕2 that satisfies

𝑖 − 𝐅𝑖−1 = 𝐴̂𝑖−1∕2
(

𝐪𝑖 − 𝐪𝑖−1
)

nd obeys the requirements of Roe linearization (Roe, 1981). Following
he derivation procedure in the literature (LeVeque, 2002), at the cell
nterface of 𝑥𝑖−1∕2, we set a parameter vector 𝑧𝑝(𝜃) = 𝑍𝑝,𝑖−1 + (𝑍𝑝,𝑖 −
𝑝,𝑖−1)𝜉 for 𝑝 = {1, 2, 3} and 𝜉 ∈ [0, 1]. Some algebraic manipulation
ives

̂=
(

∫

1

0

𝜕𝐅
𝜕𝐳

d𝜉
)(

∫

1

0

𝜕𝐪
𝜕𝐳

d𝜉
)−1

=

⎡

⎢

⎢

⎢

⎣

𝑍2ℎ + 2𝑍12𝑍1 𝑍1ℎ 0
(

2𝑍1 +𝑍3

)

∕𝜏 0 𝑍1∕𝜏
0 0 0

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

2𝑍1 0 0
𝑍2 𝑍1 0
𝑍3 0 𝑍1

⎤

⎥

⎥

⎥

⎦

−1

=
⎡

⎢

⎢

⎣

𝑍12 ℎ 0
1∕𝜏 0 1∕𝜏
0 0 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢̂ ℎ̂ 0
1∕𝜏 0 1∕𝜏
0 0 0

⎤

⎥

⎥

⎦

,

where

𝑍1 =
1
2

(

√

ℎ𝑖 +
√

ℎ𝑖−1
)

, 𝑍2 =
1
2

(

𝑢𝑖
√

ℎ𝑖
+

𝑢𝑖−1
√

ℎ𝑖−1

)

,

𝑍3 =
1
2

(

𝑏𝑖
√

ℎ𝑖
+

𝑏𝑖−1
√

ℎ𝑖−1

)

, 𝑍12 =
1
2
(

𝑢𝑖 + 𝑢𝑖−1
)

,

ℎ = 1
2
(

ℎ𝑖 + ℎ𝑖−1
)

,

in which [⋅]−1 denotes the inverse operation of the matrix, and the
overbar symbol denotes the operation of taking arithmetic average. As
a result, the Roe-averaged variables 𝑢̂ and ℎ̂, can be expressed by the
arithmetic average of two adjacent variables of the cell interface,

= 𝑍12 =
1
2
(

𝑢𝑖 + 𝑢𝑖−1
)

, (A.4)

ℎ = ℎ = 1
2
(

ℎ𝑖 + ℎ𝑖−1
)

, (A.5)

respectively. The two variables are used for an approximate solver for
the Riemann problem at each cell interface.

Appendix B. Classical numerical scheme of Crank–Nicolson
method

To compare with the numerical solutions by our new method, we
utilize numerical solutions using the Crank–Nicolson method (Crank
and Nicolson, 1947) of the classical implicit finite difference scheme.
The numerical scheme is briefly mentioned in the following.

Expanding the hydraulic groundwater theory (26) gives

𝜕ℎ
𝜕𝑡

− 1
2
𝜕2ℎ2

𝜕𝑥2
− ℎ 𝜕

2𝑏
𝜕𝑥2

− 𝜕ℎ
𝜕𝑥

𝜕𝑏
𝜕𝑥

= 𝛾. (B.1)

The above equation is of the nonlinear advection–diffusion type. For the
application of the Crank–Nicolson method, at the cell 𝑖 in the time step
𝑛, the expanded equation in the semi-discretized form can be expressed
as
𝜕ℎ
𝜕𝑡

= 1
2
[

 (ℎ𝑛+1𝑖 , 𝑏𝑖) +  (ℎ𝑛𝑖 , 𝑏𝑖)
]

+ 𝛾𝑖, (B.2)

here the nonlinear diffusion function reads

= 1 𝜕2ℎ2 + ℎ 𝜕
2𝑏 + 𝜕ℎ 𝜕𝑏 . (B.3)
2 𝜕𝑥2 𝜕𝑥2 𝜕𝑥 𝜕𝑥
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Thus, each term in the above equation is approximated by the discrete
forms,

𝜕ℎ
𝜕𝑡

≈
ℎ𝑛+1𝑖 − ℎ𝑛𝑖

𝛥𝑡

1
2
𝜕2ℎ2

𝜕𝑥2
≈ 1

4

⎛

⎜

⎜

⎜

⎝

(

ℎ𝑛+1𝑖+1

)2
− 2

(

ℎ𝑛+1𝑖
)2 +

(

ℎ𝑛+1𝑖−1
)2

𝛥𝑥2

+

(

ℎ𝑛𝑖+1
)2

− 2
(

ℎ𝑛𝑖
)2 +

(

ℎ𝑛𝑖−1
)2

𝛥𝑥2

⎞

⎟

⎟

⎟

⎠

ℎ 𝜕
2𝑏
𝜕𝑥2

≈

(

ℎ𝑛+1𝑖 + ℎ𝑛𝑖
2

)

(

𝑏𝑖+1 − 2𝑏𝑖 + 𝑏𝑖−1
𝛥𝑥2

)

𝜕ℎ
𝜕𝑥

𝜕𝑏
𝜕𝑥

≈ 1
2

(

ℎ𝑛+1𝑖+1 − ℎ𝑛+1𝑖−1
2𝛥𝑥

+
ℎ𝑛𝑖+1 − ℎ

𝑛
𝑖−1

2𝛥𝑥

)

(

𝑏𝑖+1 − 𝑏𝑖−1
2𝛥𝑥

)

(B.4)

where 𝑖 denotes the cell index, 𝛥𝑥 and 𝛥𝑡 are the small increment of
space and time for finite difference method. Substituting all difference
equations back into the (B.2) yields the residual vector

𝑖 =
𝑟
2

[

(

ℎ𝑛+1𝑖+1

)2
− 2

(

ℎ𝑛+1𝑖
)2 +

(

ℎ𝑛+1𝑖−1
)2
]

+ 𝑟𝛥𝑏
4
ℎ𝑛+1𝑖+1

+
(

𝑟𝛥2𝑏 − 1
)

ℎ𝑛+1𝑖 − 𝑟𝛥𝑏
4
ℎ𝑛+1𝑖−1

+ 𝑟
2

[

(

ℎ𝑛𝑖+1
)2 − 2

(

ℎ𝑛𝑖
)2 +

(

ℎ𝑛𝑖−1
)2
]

+ 𝑟𝛥𝑏
4
ℎ𝑛𝑖+1

+
(

𝑟𝛥2𝑏 + 1
)

ℎ𝑛𝑖 −
𝑟𝛥𝑏
4
ℎ𝑛𝑖−1 + 𝛾𝑖𝛥𝑡,

(B.5)

here

= 𝛥𝑡
2𝛥𝑥2

, 𝛥𝑏 = 𝑏𝑖+1 − 𝑏𝑖−1, and 𝛥2𝑏 = 𝑏𝑖+1 − 2𝑏𝑖 + 𝑏𝑖−1. (B.6)

set of solution for the water table at the next time step ℎ𝑛+1𝑖 can be
btained upon satisfying 𝑖 = 0 using the Newton–Raphson method.
n each time step, the iterative solution procedure starts by letting a
emporary unknown 𝑤 for the dependent variable ℎ as
𝑚+1
𝑖 = 𝑤𝑚𝑖 + 𝛿𝑚𝑖 . (B.7)

here 𝑚 denotes the iteration step. To find the correction 𝛿𝑚𝑖 , Taylor
expansion is used to derive an approximation equation of 𝑖 as

≈ 𝑖 +
𝜕𝑖
𝜕𝑤𝑚𝑗

(

𝑤𝑚+1𝑖 −𝑤𝑚𝑖
)

. (B.8)

In the 𝑚th iteration, with the known ℎ at that time step and the
iteratively obtained 𝑤𝑚, 𝛿𝑚 can be obtained through

𝛿𝑚𝑖 = −𝐽−1
𝑖𝑗 (𝑤𝑚𝑖 ;ℎ

𝑛
𝑖 )𝑖(𝑤

𝑚
𝑖 ;ℎ

𝑛
𝑖 ), (B.9)

where the superscript of −1 denotes the matrix inversion, and the
Jacobian matrix reads

𝐽𝑚𝑖𝑗 = 𝜕
𝜕𝑤𝑚𝑗

𝑖
(

𝑤𝑚𝑖 ;ℎ
𝑛
𝑖 , 𝑏𝑖, 𝑟

)

, (B.10)

which is a tridiagonal matrix with the elements in the tridiagonal rows
as
𝜕𝑖
𝜕𝑤𝑚𝑖−1

= − 𝑟𝛥𝑏
4

+ 𝑟𝑤𝑚𝑖−1,

𝜕𝑖
𝜕𝑤𝑚𝑖

= 𝑟𝛥2𝑏 − 1 − 2𝑟𝑤𝑚𝑖 ,

𝜕𝑖
𝜕𝑤𝑚𝑖+1

= 𝑟𝛥𝑏
4

+ 𝑟𝑤𝑚𝑖+1.

(B.11)

Through (B.9) the obtained 𝛿𝑚𝑖 is substituted back into (B.7) to give a
new vector of 𝑤𝑚+1𝑖 . The newly obtained 𝑤𝑚+1𝑖 and the known ℎ are
then substituted into the residual Eq. (B.5) iteratively until 𝑖 = 0 is
satisfied. In our computation, initial guess for 𝑤0

𝑖 are just set to be
ℎ𝑛, and iteration operation is repeatedly performed until the absolute
𝑖

13 
maximum deviation between two iterations is less than a threshold of
10−6.

In addition, some studies have reported that a special numerical
treatment is required to ensure iteration convergence for the applica-
tion of Crank–Nicolson method to the problem with discontinuous ini-
tial conditions (e.g., Rannacher, 1984; Giles and Carter, 2006; Reisinger
and Whitley, 2014; Wyns, 2017). As there exists a discontinuous wet-
ting front in the benchmark problem of groundwater mound spreading,
we employ the backward Euler time integration for the very first time
steps in the numerical computation. For the backward Euler method,
the equation in the discretized form is given as

ℎ𝑛+1𝑖 − ℎ𝑛𝑖
𝛥𝑡

=  (ℎ𝑛+1𝑖 , 𝑏𝑖) + 𝛾𝑖, (B.12)

where  is in (B.3), and the corresponding residual equation for the
iteration computation is expressed as

𝑖 = 𝑟
[

(

ℎ𝑛+1𝑖+1

)2
− 2

(

ℎ𝑛+1𝑖
)2 +

(

ℎ𝑛+1𝑖−1
)2
]

+ 𝑟𝛥𝑏
2
ℎ𝑛+1𝑖+1 +

(

2𝑟𝛥2𝑏 − 1
)

ℎ𝑛+1𝑖

− 𝑟𝛥𝑏
2
ℎ𝑛+1𝑖−1 + ℎ𝑛𝑖 + 𝛾𝑖𝛥𝑡.

(B.13)

hus, iterations using the Newton–Raphson method are performed to
btain the numerical solutions at the very first four half-time steps.
hen, the Crank–Nicolson method is used for solving the following time
teps.

For solving two-dimensional problems, we employ the classical
lternating direction implicit method (e.g., LeVeque, 2007; Strang,
007), which is commonly abbreviated as ADI method, to separately
inding the solutions in the 𝑥 and 𝑦 directions using the half of the time
tep 𝛥𝑡∕2. The details can refer to the aforementioned literatures.
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