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We implement advanced Riemann solvers, Harten-Lax-van Leer contact and Harten-Lax-van Leer
discontinuities [A. Mignone and G. Bodo, Mon. Not. R. Astron. Soc. 364, 126 (2005).; A. Mignone
et al., Mon. Not. R. Astron. Soc. 393, 1141 (2009).] together with an advanced constrained transport
scheme [T. A. Gardiner and J. M. Stone, J. Comput. Phys. 227, 4123 (2008).] in a numerical-relativity
neutrino-radiation magnetohydrodynamics code. We validate our implementation by performing a series
of one- and multi- dimensional test problems for relativistic hydrodynamics and magnetohydrodynamics
in both Minkowski spacetime and a static black hole spacetime. We find that the numerical solutions with
the advanced Riemann solvers are more accurate than those with the Harten-Lax-van Leer-Einfeldt
(HLLE) solver [L. Del Zanna et al., Astron. Astrophys. 400, 397 (2003).] which was originally
implemented in our code. As an application to numerical relativity, we simulate an asymmetric binary
neutron star merger leading to a short-lived massive neutron star both with and without magnetic fields.
We find that the lifetime of the rotating massive neutron star formed after the merger and also the amount
of the tidally-driven dynamical ejecta are overestimated when we employ the diffusive HLLE solver.
We also find that the magnetorotational instability is less resolved when we employ the HLLE solver
because of the solver’s large numerical diffusivity. This causes a spurious enhancement both of magnetic
winding resulting from large scale poloidal magnetic fields and also of the energy of the outflow induced
by magnetic pressure.

DOI: 10.1103/PhysRevD.106.124041

I. INTRODUCTION

The first direct detection of gravitational waves from a
binary neutron star merger (GW170817) and its electro-
magnetic counterparts (AT 2017gfo/SGRB 170817A)
heralded the beginning of multimessenger astronomy
including gravitational waves [1,2]. In this event, the tidal
deformability of the neutron star binary was measured for
the first time and found to be in the interval 100≲ Λ̃≲ 800,
with an accurate measurement of the total mass of
the binary yielding 2.73þ0.04

−0.01M⊙ [1,3–5] [6]. Any viable
neutron star matter equations of state must satisfy this

observational constraint on tidal deformability. In this event
it was also shown that the binary neutron star merger drives
a short gamma-ray burst [2,7–9], thus providing the first
“smoking gun” for supporting the hypothesis that binary
mergers can be the central engine of short gamma-ray
bursts [10–13]. Finally, this event indicated that neutron-
rich matter is likely to be ejected during the merger and
heavy elements are synthesized within these ejecta by
means of the rapid neutron capture process on nuclei
(the r process) [12,14–16]. It had been predicted that the
r-process nucleosynthesis subsequently causes so-called
kilonova emission via the radioactive decay of unstable
r-process elements [17,18], and a kilonova was indeed
observed after the merger in the near infrared, optical, and
ultraviolet bands [19–33].
References [34,35] reported the detection of a second

binary neutron star merger event (GW190425) and mea-
sured a total binary mass of 3.4þ0.1

−0.1M⊙, which is much
larger than the total mass measured in binary pulsars
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observed in our Galaxy [36]. The merger dynamics, mass
ejection process, and resultant electromagnetic emission
due to r-process nucleosynthesis could be different from
those in GW170817 and AT 2017gfo [37,38]. Although
an electromagnetic counterpart was not observed in
GW190425, either due to poor sky localization or due to
intrinsically dimmer emission [39–41], the existence of a
massive binary neutron star suggests that the binary neutron
star merger and associated mass ejection process could
have a diversity of mechanisms. The new observation run
O4 is planned to commence at the end of 2022 [42] and
could lead to the observation of binary neutron star mergers
and associated electromagnetic counterparts that are quali-
tatively different from those observed in GW170817. This
motivates building binary neutron star merger models
based on reliable numerical relativity simulations for
predicting and interpreting gravitational wave events in
preparation for the upcoming observational run [43].
Recent axisymmetric neutrino-radiation viscous-

hydrodynamics simulations of binary neutron star merger
remnants in numerical relativity suggest that the amount of
postmerger ejecta launched from the merger remnant due to
viscous effects (which were facilitated in these simulations
by an effective “alpha” viscosity parameter) can be larger
than the dynamical ejecta launched during the merger itself
[43–47]. The timescale of the postmerger mass ejection is
Oð1Þ second and depends on the value of the viscosity
parameter. Plausible values of the viscosity parameter are
inferred from three-dimensional magnetohydrodynamics
(MHD) simulations of the binary neutron star merger
remnant in which angular momentum transport is facili-
tated in a self-consistent manner by the magnetorotational
instability [48] (see also Refs. [49,50] for magnetohydro-
dynamics simulations of a massive torus in a stationary
black hole spacetime). The electron fraction of the post-
merger ejecta and the resultant r-process nucleosynthesis
also depends on this viscosity parameter [45–47], although
the electron fraction of the postmerger ejecta is appreciably
larger than that of the dynamical ejecta.
Furthermore, very recently we performed neutrino-

radiation magnetohydrodynamics simulations of black
hole-neutron star mergers in numerical relativity [51].
We found postmerger mass ejection due to magnetorota-
tional instability-driven turbulence and the launch of a
Poynting flux-dominated outflow. The postmerger mass
ejection and the Poynting-flux dominated outflow sets
in at several 100 ms after the merger and lasts for
1–2 seconds after the merger. These timescales are deter-
mined by the strength of the effective viscosity associated
with both magnetorotational-instability turbulence and
neutrino cooling [51].
All these recent studies show that for modeling future

gravitational wave events it is necessary to perform
self-consistent (i.e., in which turbulence is sustained
by the magnetorotational instability) three-dimensional

neutrino-radiation magnetohydrodynamics simulations of
binary neutron star mergers in general relativity for the
durations of Oð1Þ second. In particular, it is crucial to
reproduce a magnetoturbulent state driven by the magneto-
rotational instability inside the merger remnant because
the resultant effective turbulent viscosity transports
angular momentum outwards and heats up the matter via
viscous heating [52].
Finite volume methods are a popular combination of

numerical schemes for simulations of astrophysical fluid
dynamics due to their inherent conservation properties and
ability to capture sharp discontinuities in the flow, such as
shocks [53]. Central to these schemes is the solution of the
so-called Riemann problem in which one considers two
constant states separated by a discontinuity. The solution
consists of three waves in hydrodynamics and seven waves
in magnetohydrodynamics. As exact Riemann solvers are
computationally expensive [54], approximate Riemann
solvers are often used. One such family of approximate
Riemann solvers is the Harten-Lax-van Leer-based (HLL)
Riemann solvers, in which only a subset of the full seven
waves in the Riemann fan are considered. The Harten-Lax-
van Leer-Einfeldt [HLL(E)] solver, for example, takes into
account only shocks/rarefactions and omits the contact
discontinuity [55].
At present, the Riemann solver and constrained transport

scheme implemented in existing numerical relativity mag-
netohydrodynamics codes, e.g., [51,56–63], are based
on the HLLE solver [55,64,65]. (An exception is the
SpECTRE [66] code, which is based on the discontinuous
Galerkin method.) This Riemann solver is known to be very
diffusive [67–69]. The numerical diffusion inherent in the
Riemann solver adversely affects the accuracy of the
numerical solution, in particular for long-term simulations
of compact object mergers of Oð1Þ second. Although
Refs. [57,58,70] reported the implementation of fourth-
order accurate Riemann solvers in their numerical relativity
codes, these solvers are based on the finite difference
method. Therefore, it is unclear how accurate these finite
difference-based Riemann solvers are for the problem of
astrophysical turbulence.
This paper reports a new implementation of advanced

Riemann solvers in our neutrino-radiation magnetohydro-
dynamics numerical relativity code [71,72] based on the
finite volume method. We implement the Harten-Lax-van
Leer contact (HLLC) solver for relativistic hydrodynamics,
which restores the contact discontinuity [73], and the
Harten-Lax-van Leer discontinuities (HLLD) solver for
relativistic magnetohydrodynamics, which takes into
account five of the seven waves in the Riemann fan [67].
Both these Riemann solves are known to be less diffusive
than the HLLE solver [64]. In addition, the constrained
transport scheme in Ref. [74], which relies on the solution
given by a Riemann solver, significantly suppresses
numerical diffusion compared to the HLLE-constrained
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transport scheme proposed in Ref. [64] (see Ref. [75] for a
detailed comparison of different implementations of the
constrained transport scheme). Thus, in addition to imple-
menting the advanced Riemann solvers, HLLC and HLLD,
we also implement the novel constrained transport scheme
of Ref. [74] in our code.
This paper is organized as follows. Section II summa-

rizes the equations of motion for general relativistic
neutrino-radiation magnetohydrodynamics. Section III is
devoted to the numerical algorithm for general relativistic
magnetohydrodynamics: the finite volume method, the
constrained transport method (for enforcing divergence-
free condition of the magnetic field), the tetrad trans-
formation (which enables us to use Riemann solvers
designed for special relativistic flows in full general
relativity), the implementation of the HLLC solver [73],
that of the HLLD solver [67], and the electric field
evaluation (which is used by the constrained transport
algorithm) [74]. In Sec. IV, we validate our implementation
of the new Riemann solvers by performing one- and
multidimensional test problems both in Minkowski space-
time and in curved, but static, spacetime in both relativistic
hydrodynamics and magnetohydrodynamics. Finally, in
Sec. V we apply our new solvers in general relativity to
a dynamical spacetime. We first present the results of
binary neutron star merger simulations in the absence of
magnetic fields (which are run up to ≈40–50 ms after
the formation of the black hole) and, subsequently, the
evolution of the merger remnant with a magnetic field.
Section VI summarizes our results. Appendices A and B
describe the tetrad basis in the y and z directions and the
coordinate transformation to the maximal trumpet black
hole puncture solution, respectively. Throughout this paper,
we use geometrical units in which c ¼ G ¼ 1. Greek and
latin indices without hats denote the spacetime and purely
spatial components, respectively. Those with hats indicate
tetrad components.

II. GOVERNING EQUATIONS FOR GENERAL
RELATIVISTIC NEUTRINO-RADIATION

MAGNETOHYDRODYNAMICS

In this section, we briefly summarize the set of basic
equations of general relativistic neutrino-radiation mag-
netohydrodynamics using the (3þ 1) formalism. The
reader can find a more comprehensive derivation of these
equations in, e.g., Ref. [76].
We begin by introducing a unit vector normal to a spatial

hypersurface of constant coordinate time t,

nμ ¼
�
1

α
;−

βi

α

�
; nμ ¼ ð−α; 0Þ; ð2:1Þ

where α and βi are the lapse function and shift vector,
respectively. With this vector, the four-dimensional metric
can be decomposed into

gμν ¼
�−α2 þ βiβ

i βi

βi γij

�
; ð2:2Þ

where γij is the three-dimensional spatial metric.
The stress-energy-momentum tensor for ideal magneto-

hydrodynamics and for a free-streaming neutrino-radiation
field are, respectively, given by

Tμν
ðMHDÞ ¼ ρhuμuν þ Pgμν þ

�
uμuν þ 1

2
gμν

�
b2 − bμbν;

Tμν
ðRad;s;νiÞ ¼ EðνiÞn

μnν þ Fμ
ðνiÞn

ν þ Fν
ðνiÞn

μ þ Pμν
ðνiÞ; ð2:3Þ

where ρ, P, uμ, bμ, EðνiÞ, F
μ
ðνiÞ, and Pμν

ðνiÞ are, respectively,
the rest-mass density, pressure, four-velocity, magnetic
field (measured in the fluid rest frame), radiation energy
density, radiation momentum, and radiation stress-energy-
momentum tensor of the neutrino species νi in the Eulerian
frame. Note that h ¼ 1þ εþ P=ρ denotes the relativistic
specific enthalpy with ε the specific internal energy. We
consider the electron neutrino νe, electron antineutrino ν̄e,
and the total of μ and τ neutrinos and antineutrinos
collectively denoted by νx [72,76]. Note that we assume
that the stress-energy-momentum tensor of the neutrino-
radiation field is split into a trapped component and a free-
streaming component. The stress-energy-momentum tensor
of the trapped neutrinos is then absorbed into that for the
ideal magnetohydrodynamics fluid because trapped neu-
trinos are strongly coupled to the fluid [72,76].
The conserved mass density, total momentum density,

and total energy density of an electrically conducting fluid
are defined by

D≡ ρw; ð2:4Þ

Ji ≡ −γμinνT
ðMHDÞ
μν

¼ ρwhui þ
B2ui − ðBjujÞBi

w
; ð2:5Þ

ρH ≡ nμnνTðMHDÞ
μν

¼ ρw

�
hw −

P
ρw

�
þ
�
w2 −

1

2

�
b2 − ðBiuiÞ2; ð2:6Þ

where w≡ −nμuμ ¼ αut is the Lorentz factor measured by
an Eulerian observer, and Bi is the magnetic field measured
in the Eulerian frame and satisfies Bμnμ ¼ 0 (i.e., Bt ¼ 0).
The relation between bμ and Bi is given by

bt ¼ Biui
α

; bi ¼
Bi þ ðBjujÞui

w
; ð2:7Þ

and thus,

IMPLEMENTATION OF ADVANCED RIEMANN SOLVERS IN A … PHYS. REV. D 106, 124041 (2022)

124041-3



b2 ¼ B2 þ ðBiuiÞ2
w2

; ð2:8Þ

where B2 ¼ BiBi.
The equations of motion of ideal magnetohydrodynam-

ics and of the free-streaming neutrino-radiation field
are derived from the conservation of the stress-energy-
momentum tensor, the continuity equations for rest-mass
density, electron fraction, electron neutrino fraction, elec-
tron antineutrino fraction, and heavy neutrino fraction,
and the Maxwell equations. These conservation laws are
written as

∇μðTðMHDÞÞμν ¼ −
X

νi¼νe;ν̄e;νx

Gðνi;leakÞ
ν ; ð2:9Þ

∇μðTðRad;s;νiÞÞÞμν ¼ Gðνi;leakÞ
ν ; ð2:10Þ

∇μðρuμÞ ¼ 0; ð2:11Þ

∇μðρuμYLÞ ¼ ργL; ð2:12Þ

∇μ
�Fμν ¼ 0; ð2:13Þ

where L ¼ e; νe; ν̄e, and νx denotes electrons, electron
neutrinos, electron antineutrinos, and heavy neutrinos,
respectively. YL and γL denote the fractions with respect

to the baryon and the source term for the number of the

species L, respectively. Gðνi;leakÞ
ν is an interaction term

between the fluid and free-streaming neutrino-radiation
field of the neutrino species νi in the framework of a
general relativistic neutrino leakage scheme [72,77]. Here
�Fμν is the Hodge dual of the Faraday tensor, which is given
by �Fμν ¼ bμuν − bνuμ in ideal magnetohydrodynamics.
Equations (2.9), (2.11), and (2.13) can be written in

conservative form as

∂tð ffiffiffi
γ

p
QAÞ þ ∂jð ffiffiffi

γ
p

Fj
AÞ ¼ MA; ð2:14Þ

∂ið ffiffiffi
γ

p
BiÞ ¼ 0; ð2:15Þ

where the flow quantities are given by the state vector
QA ¼ ðD; Ji; ρH; BkÞT with A ∈ ½0; 7�. The corresponding
fluxes are given by

Fj
A ¼

0
BBBBB@

Dvj

Jivj þ α
�
Pþ b2

2

�
δji − α

w2 Bj½Bi þ ðBkukÞui�

ρHvj þ
�
Pþ b2

2

�
ðvj þ βjÞ − α

w ðBkukÞBj

Bkvj − Bjvk

1
CCCCCA;

and the source terms are

MA ¼

0
BBBBB@

0

− ffiffiffi
γ

p
ρH∂iαþ ffiffiffi

γ
p

Jk∂iβk þ α
3
Skk∂i

ffiffiffi
γ

p − 1
2
αγ1=6Sjk∂iγ̃jk − α

ffiffiffi
γ

p
Gμ

ðleakÞγμi
α
3

ffiffiffi
γ

p
KSkk þ αγ1=6ŜijÃ

ij − ffiffiffi
γ

p
JkDkαþ α

ffiffiffi
γ

p
Gμ

ðleakÞnμ
0

1
CCCCCA; ð2:16Þ

where vj ≡ uj=ut, Gμ
ðleakÞ ¼

P
νi¼νe;ν̄e;νx G

μ
ðνi;leakÞ, and the

spatial components of the stress-energy-momentum tensor
are given by

Sij ≡ γμiγ
ν
jT

ðMHDÞ
μν

¼ ðρhþ b2Þuiuj þ
�
Pþ b2

2

�
γij − bibj; ð2:17Þ

Ŝij ¼ Sij −
�
Pþ b2

2

�
γij: ð2:18Þ

We also introduce the conformal metric γ̃ij ¼ ψ−4γij
and the trace-free conformal extrinsic curvature
Ãij ¼ ψ−4ðKij − 1

3
KγijÞ, where ψ and Kij are the con-

formal factor and the extrinsic curvature, respectively. The

explicit forms for γL and Gðνi;leakÞ
μ and for the equation of

motion of the free-streaming neutrino-radiation field can be
found in Refs. [76,78]. The high resolution shock capturing
scheme for the neutrino-radiation field Eq. (2.10) is the
same as that in Ref. [79].

III. NUMERICAL ALGORITHM

In this section, we describe the numerical algorithms
which we implemented in our code. In Sec. III Awe present
the finite volume algorithm and discretization scheme, and
in Sec. III B we discuss the transformation to Minkowski
spacetime used to implement the HLLC and HLLD solvers
in general relativity. The implementation of the HLLC
and HLLD solvers themselves is presented in Secs. III C
and III D, respectively. Finally, the evaluation of the electric
field used by the constrained transport algorithm is dis-
cussed in Sec. III E. The reader who is uninterested in the
details of the algorithm may wish to skip directly to Sec. IV
where we apply the algorithm to various test problems.
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A. Finite volume method

1. Fluid and magnetic field at cell center

Let Ω be a region of a given four-dimensional manifold
M, bounded by a closed three-dimensional surface ∂Ω,
where ∂Ω denotes the surface of a four-dimensional paral-
lelepiped composed of two spacelike surfaces fΣt;ΣtþΔtg
and three sets of two timelike surfaces fΣxi ;ΣxiþΔxig that
connect the two temporal slices [80]. The timelike surface,
e.g., Σx, may also be regarded as a time series of constant-
ðt; xÞ surfaces, SxðtÞ. We integrate Eq. (2.14) over the
domain of Ω:Z

Ω

1ffiffiffiffiffiffi−gp ∂tð ffiffiffi
γ

p
QAÞdΩþ

Z
Ω

1ffiffiffiffiffiffi−gp ∂ið ffiffiffi
γ

p
Fi
AÞdΩ

¼
Z
Ω

1ffiffiffiffiffiffi−gp MAdΩ; ð3:1Þ

where dΩ ¼ ffiffiffiffiffiffi−gp
dtdxdydz.

Using Gauss’s theorem, this equation can be integrated
to give

ðQ̄AΔVÞtþΔt − ðQ̄AΔVÞt
¼ −

�Z
ΣxþΔx

ffiffiffi
γ

p
Fx
Adtdydz −

Z
Σx

ffiffiffi
γ

p
Fx
Adtdydz

�

−
�Z

ΣyþΔy

ffiffiffi
γ

p
Fy
Adtdxdz −

Z
Σy

ffiffiffi
γ

p
Fy
Adtdxdz

�

−
�Z

ΣzþΔz

ffiffiffi
γ

p
Fz
Adtdxdy −

Z
Σz

ffiffiffi
γ

p
Fz
Adtdxdy

�

þ
Z
Ω

1ffiffiffiffiffiffi−gp MAdΩ; ð3:2Þ

where

Q̄A ≡ 1

ΔV

Z ffiffiffi
γ

p
QAdxdydz; ð3:3Þ

ΔV ≡
Z ffiffiffi

γ
p

dxdydz; ð3:4Þ

are, respectively, the three-dimensional proper volume-
averaged conserved quantities and the proper volume.
Let us now define a cell consisting of ½xj −Δx=2∶xj þ
Δx=2� × ½yk −Δy=2∶yk þΔy=2� × ½zl −Δz=2∶zl þΔz=2�
(see Fig. 1). We next consider a numerical flux, which
approximates a time-averaged flux at the cell interface and
depends on the solution of the Riemann problem at the
interface. For example, in the x direction the flux across the
right-hand interface is given by

ðF̃x
AÞjþ1

2
;k;l ≈

1

Δt

Z
tnþ1

tn
Fx
AðQAðxjþ1=2; yk; zl; tÞÞdt; ð3:5Þ

where tnþ1 ¼ tn þ Δt. With this numerical flux, Eq. (3.2)
can be discretized as

ðQ̄AΔVÞnþ1
j;k;l − ðQ̄AΔVÞnj;k;l

¼ −Δt½ðΔAxÞjþ1
2
;k;lðF̃x

AÞjþ1
2
;k;l − ðΔAxÞj−1

2
;k;lðF̃x

AÞj−1
2
;k;l�

−Δt½ðΔAyÞj;kþ1
2
;lðF̃y

AÞj;kþ1
2
;l − ðΔAyÞj;k−1

2
;lðF̃y

AÞj;k−1
2
;l�

−Δt½ðΔAzÞj;k;lþ1
2
ðF̃z

AÞj;k;lþ1
2
− ðΔAzÞj;k;l−1

2
ðF̃z

AÞj;k;l−1
2
�

þ
Z

MAdtdxdydz; ð3:6Þ

where

ðΔAxÞj�1
2
;k;l ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðxj�1

2
; yk; zlÞ

q
dydz; ð3:7Þ

ðΔAyÞj;k�1
2
;l ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðxj; yk�1

2
; zlÞ

q
dxdz; ð3:8Þ

ðΔAzÞj;k;l�1
2
¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðxj; yk; zl�1

2
Þ

q
dxdy: ð3:9Þ

We also assume that the determinant of the spatial metric
does not change significantly during the time step. If we
introduce the volume- or surface area-averaged determinant
of the spatial metric, denoted by γ̄, then this equation is
reduced to

FIG. 1. Schematic of a cell, cell interface, and cell edge for the
finite volume method with the constrained transport method.
Fluid quantities, ðQ̄AÞj;k;l, are defined at the cell center. The
magnetic field components, ðB̄xÞjþ1

2
;k;l; ðB̄yÞj;kþ1

2
;l; ðB̄zÞj;k;lþ1

2
, are

defined at the cell interfaces. The electric field components,
ðẼxÞj;kþ1

2
;lþ1

2
; ðẼyÞjþ1

2
;k;lþ1

2
; ðẼzÞjþ1

2
;kþ1

2
;l, are defined at the cell

edges.
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ð ffiffiffī
γ

p
Q̄AÞnþ1

j;k;l − ð ffiffiffī
γ

p
Q̄AÞnj;k;l

¼ −
Δt
Δx

½ð ffiffiffī
γ

p Þjþ1
2
;k;lðF̃x

AÞjþ1
2
;k;l − ð ffiffiffī

γ
p Þj−1

2
;k;lðF̃x

AÞj−1
2
;k;l�

−
Δt
Δy

½ð ffiffiffī
γ

p Þj;kþ1
2
;lðF̃y

AÞj;kþ1
2
;l − ð ffiffiffī

γ
p Þj;k−1

2
;lðF̃y

AÞj;k−1
2
;l�

−
Δt
Δz

½ð ffiffiffī
γ

p Þj;k;lþ1
2
ðF̃z

AÞj;k;lþ1
2
− ð ffiffiffī

γ
p Þj;k;l−1

2
ðF̃z

AÞj;k;l−1
2
�

þ ðM̄AÞj;k;l; ð3:10Þ

where

ð ffiffiffī
γ

p Þj;k;l ≡ 1

ΔxΔyΔz
ðΔVÞj;k;l; ð3:11Þ

ð ffiffiffī
γ

p Þj�1
2
;k;l ≡ 1

ΔyΔz
ðΔAxÞj�1

2
;k;l; ð3:12Þ

ð ffiffiffī
γ

p Þj;k�1
2
;l ≡ 1

ΔxΔz
ðΔAyÞj;k�1

2
;l; ð3:13Þ

ð ffiffiffī
γ

p Þj;k;l�1
2
≡ 1

ΔxΔy
ðΔAzÞj;k;l�1

2
; ð3:14Þ

and

ðM̄AÞj;k;l ≡ 1

ΔxΔyΔz

Z
MAdtdxdydz: ð3:15Þ

2. Magnetic fields at cell surface

To ensure that the divergence-free condition (2.15) is
maintained, we employ the constrained transport method
introduced by Evans and Hawley [81]. In this method, the
magnetic-field components are defined at the cell surfaces,
and the electric field components are defined at the cell
edges (see Fig. 1).
We then integrate Eq. (2.14) for A ∈ ½5; 7� on ΣxiþΔxi .

For example, through the surface ΣzþΔz, we have

Z
ΣzþΔz

1ffiffiffiffiffiffi−gp ∂tð ffiffiffi
γ

p
BzÞdSΩz

þ
Z
ΣzþΔz

1ffiffiffiffiffiffi−gp ∂jð
ffiffiffi
γ

p
ϵzjkEkÞdSΩz

¼ 0; ð3:16Þ

where Ek ¼ −ϵkijviBj, ϵijk is the three-dimensional Levi-
Civita tensor, and dSΩz

¼ ffiffiffiffiffiffi−gp
dtdxdy. Using Stokes’

theorem, this equation is integrated to give

ðB̄zΔAzÞtþΔt − ðB̄zΔAzÞt
¼ −

Z
tþΔt

t

I
∂SzþΔz

ffiffiffi
γ

p
Eidxidt; ð3:17Þ

where

B̄z ≡ 1

ΔAz

Z
SzþΔz

ffiffiffi
γ

p
Bzdxdy

is the surface-averaged magnetic field. Similarly, through
the surfaces ΣxþΔx and ΣyþΔy, respectively, we have

ðB̄xΔAxÞtþΔt − ðB̄xΔAxÞt ¼ −
Z

tþΔt

t

I
∂SxþΔx

ffiffiffi
γ

p
Eidxidt;

ð3:18Þ

ðB̄yΔAyÞtþΔt − ðB̄yΔAyÞt ¼ −
Z

tþΔt

t

I
∂SyþΔy

ffiffiffi
γ

p
Eidxidt;

ð3:19Þ

where

B̄x ≡ 1

ΔAx

Z
SxþΔx

ffiffiffi
γ

p
Bxdydz;

B̄y ≡ 1

ΔAy

Z
SyþΔy

ffiffiffi
γ

p
Bydxdz:

We next consider a cell surface consisting of ½xj −Δx=2∶
xj þΔx=2�× ½yk −Δy=2∶yk þΔy=2�, ½yk − Δy=2∶ykþ
Δy=2� × ½zl − Δz=2∶zl þ Δz=2�, ½xj − Δx=2∶xj þ Δx=2�×
½zl − Δz=2∶zl þ Δz=2� and a numerical flux, which
approximates a time-averaged electric field at the cell edge,
given by

ðẼxÞj;kþ1
2
;lþ1

2
≈

1

Δt

Z
tnþ1

tn
ExðQAðxj; ykþ1=2; zlþ1=2ÞÞdt;

ð3:20Þ

ðẼyÞjþ1
2
;k;lþ1

2
≈

1

Δt

Z
tnþ1

tn
EyðQAðxjþ1=2; yk; zlþ1=2ÞÞdt;

ð3:21Þ

ðẼzÞjþ1
2
;kþ1

2
;l ≈

1

Δt

Z
tnþ1

tn
EzðQAðxjþ1=2; ykþ1=2; zlÞÞdt:

ð3:22Þ

With these averaged electric fields, Eqs. (3.17)–(3.19) are
discretized as

ðB̄xΔAxÞnþ1
jþ1

2
;k;l

− ðB̄xΔAxÞnjþ1
2
;k;l

¼ Δt½ðΔlyÞjþ1
2
;k;lþ1

2
ðẼyÞjþ1

2
;k;lþ1

2

− ðΔlyÞjþ1
2
;k;l−1

2
ðẼyÞjþ1

2
;k;l−1

2
− ðΔlzÞjþ1

2
;kþ1

2
;lðẼzÞjþ1

2
;kþ1

2
;l

þ ðΔlzÞjþ1
2
;k−1

2
;lðẼzÞjþ1

2
;k−1

2
;l�; ð3:23Þ
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ðB̄yΔAyÞnþ1
j;kþ1

2
;l
−ðB̄yΔAyÞnj;kþ1

2
;l

¼Δt½ðΔlzÞjþ1
2
;kþ1

2
;lðẼzÞjþ1

2
;kþ1

2
;l−ðΔlzÞj−1

2
;kþ1

2
;lðẼzÞj−1

2
;kþ1

2
;l

−ðΔlxÞj;kþ1
2
;lþ1

2
ðẼxÞj;kþ1

2
;lþ1

2
þðΔlxÞj;kþ1

2
;l−1

2
ðẼxÞj;kþ1

2
;l−1

2
�;

ð3:24Þ

ðB̄zΔAzÞnþ1
j;k;lþ1

2

−ðB̄zΔAzÞnj;k;lþ1
2

¼Δt½ðΔlxÞj;kþ1
2
;lþ1

2
ðẼxÞj;kþ1

2
;lþ1

2
−ðΔlxÞj;k−1

2
;lþ1

2
ðẼxÞj;k−1

2
;lþ1

2

−ðΔlyÞjþ1
2
;k;lþ1

2
ðẼyÞjþ1

2
;k;lþ1

2
þðΔlyÞj−1

2
;k;lþ1

2
ðẼyÞj−1

2
;k;lþ1

2
�;

ð3:25Þ

where

ðΔlxÞj;k�1
2
;l�1

2
¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðxj; yk�1=2; zl�1=2Þ

q
dx; ð3:26Þ

ðΔlyÞj�1
2
;k;l�1

2
¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðxj�1=2; yk; zl�1=2Þ

q
dy; ð3:27Þ

ðΔlzÞj�1
2
;k�1

2
;l ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðxj�1=2; yk�1=2; zlÞ

q
dz: ð3:28Þ

If we introduce a line-averaged determinant of the spatial
metric by

ð ffiffiffī
γ

p Þj;k�1
2
;l�1

2
≡ ðΔlxÞj;k�1

2
;l�1

2

Δx
;

ð ffiffiffī
γ

p Þj�1
2
;k;l�1

2
≡ ðΔlyÞj�1

2
;k;l�1

2

Δy
;

ð ffiffiffī
γ

p Þj�1
2
;k�1

2
;l ≡

ðΔlzÞj�1
2
;k�1

2
;l

Δz
; ð3:29Þ

then, together with the surface area-averaged spatial
metric given by Eqs. (3.12)–(3.14) and (3.23)–(3.25) are
reduced to

ð ffiffiffī
γ

p
B̄xÞnþ1

jþ1
2
;k;l

−ð ffiffiffī
γ

p
B̄xÞn

jþ1
2
;k;l

¼Δt
Δz

½ð ffiffiffī
γ

p Þjþ1
2
;k;lþ1

2
ðẼyÞjþ1

2
;k;lþ1

2
−ð ffiffiffī

γ
p Þjþ1

2
;k;l−1

2
ðẼyÞjþ1

2
;k;l−1

2
�

−
Δt
Δy

½ð ffiffiffī
γ

p Þjþ1
2
;kþ1

2
;lðẼzÞjþ1

2
;kþ1

2
;l−ð ffiffiffī

γ
p Þjþ1

2
;k−1

2
;lðẼzÞjþ1

2
;k−1

2
;l�;

ð3:30Þ

ð ffiffiffī
γ

p
B̄yÞnþ1

j;kþ1
2
;l
−ð ffiffiffī

γ
p

B̄yÞn
j;kþ1

2
;l

¼Δt
Δx

½ð ffiffiffī
γ

p Þjþ1
2
;kþ1

2
;lðẼzÞjþ1

2
;kþ1

2
;l−ð ffiffiffī

γ
p Þj−1

2
;kþ1

2
;lðẼzÞj−1

2
;kþ1

2
;l�;

−
Δt
Δz

½ð ffiffiffī
γ

p Þj;kþ1
2
;lþ1

2
ðẼxÞj;kþ1

2
;lþ1

2
−ð ffiffiffī

γ
p Þj;kþ1

2
;l−1

2
ðẼxÞj;kþ1

2
;l−1

2
�;

ð3:31Þ

ð ffiffiffī
γ

p
B̄zÞnþ1

j;k;lþ1
2

−ð ffiffiffī
γ

p
B̄zÞn

j;k;lþ1
2

¼Δt
Δy

½ð ffiffiffī
γ

p Þj;kþ1
2
;lþ1

2
ðẼxÞj;kþ1

2
;lþ1

2
−ð ffiffiffī

γ
p Þj;k−1

2
;lþ1

2
ðẼxÞj;k−1

2
;lþ1

2
�

−
Δt
Δx

½ð ffiffiffī
γ

p Þjþ1
2
;k;lþ1

2
ðẼyÞjþ1

2
;k;lþ1

2
−ð ffiffiffī

γ
p Þj−1

2
;k;lþ1

2
ðẼyÞj−1

2
;k;lþ1

2
�:

ð3:32Þ

The magnetic-field distribution inside the cell is recon-
structed from the magnetic fields at the cell surface.
Practically, we reconstruct the magnetic field at the cell
center in Eq. (3.10) by

ðB̄xÞj;k;l ¼
1

2
½ðB̄xÞjþ1

2
;k;l þ ðB̄xÞj−1

2
;k;l�; ð3:33Þ

ðB̄yÞj;k;l ¼
1

2
½ðB̄yÞj;kþ1

2
;l þ ðB̄yÞj;k−1

2
;l�; ð3:34Þ

ðB̄zÞj;k;l ¼
1

2
½ðB̄zÞj;k;lþ1

2
þ ðB̄zÞj;k;l−1

2
�: ð3:35Þ

B. Tetrad frame

To evaluate the numerical fluxes through cell interfaces
[e.g., Eq. (3.5)], we implement HLL-type Riemann solvers
[67,73]. Because these Riemann solvers are designed to
solve a Riemann problem in Minkowski spacetime (except
for the HLLE solver, which we have implemented directly
in curved spacetime, see, e.g., Ref. [82]), it is necessary to
transform all the equations into a tetrad frame in order to
apply these methods to a general relativistic framework.
Following Ref. [83], we define a tetrad basis in the x

direction, for example, by

eðt̂Þμ ¼ nμ; ð3:36Þ

eðx̂Þμ ¼ B̂ð0; γxiÞ; ð3:37Þ

eðŷÞμ ¼ D̂ð0; 0; γzz;−γyzÞ; ð3:38Þ

eðẑÞμ ¼ Ĉð0; 0; 0; 1Þ; ð3:39Þ

where

IMPLEMENTATION OF ADVANCED RIEMANN SOLVERS IN A … PHYS. REV. D 106, 124041 (2022)

124041-7



B̂ ¼ 1ffiffiffiffiffiffi
γxx

p ; ð3:40Þ

Ĉ ¼ 1ffiffiffiffiffiffi
γzz

p ; ð3:41Þ

D̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γzzðγyyγzz − γ2yzÞ

q : ð3:42Þ

With this basis, we can perform a transformation from the
Eulerian frame to the tetrad frame by

Vðμ̂Þ ¼ eðμ̂ÞμVμ; ð3:43Þ

Qðμ̂Þðν̂Þ ¼ eðμ̂Þμeðν̂ÞνQμν; ð3:44Þ

where Vμ and Qμν denote a covariant vector and tensor,
respectively, in the Eulerian frame. The covariant compo-
nents of the tetrad basis are

eðt̂Þμ ¼ nμ; ð3:45Þ

eðx̂Þμ ¼ B̂ðβx; δixÞ; ð3:46Þ

eðŷÞμ ¼ D̂ðβyγzz − βzγyz; γxyγzz − γxzγyz; γyyγzz − γ2yz; 0Þ;
ð3:47Þ

eðẑÞμ ¼ Ĉðβz; γizÞ: ð3:48Þ

With this basis, we can then perform the transformation
from the tetrad frame to the Eulerian frame by

Vμ ¼ eðμ̂ÞμVðμ̂Þ; ð3:49Þ

Qμν ¼ eðμ̂Þμeðν̂ÞνQðμ̂Þðν̂Þ: ð3:50Þ

With this tetrad basis the procedure to obtain the
numerical flux ðF̃x

AÞjþ1
2
;k;l is as follows: first, we calculate

the tetrad component of uð{̂Þ; vð{̂Þ, and Bð{̂Þ by

uð{̂Þ ¼ eð{̂Þμuμ ¼
w
α
ðeð{̂Þt þ eð{̂ÞjvjÞ; ð3:51Þ

vð{̂Þ ≡ uð{̂Þ

uðt̂Þ
¼ eð{̂Þμuμ

eðt̂Þνuν
¼ eð{̂Þt þ eð{̂Þjvj

α
; ð3:52Þ

Bð{̂Þ ¼ eð{̂ÞμBμ ¼ eð{̂ÞjBj: ð3:53Þ

Second, we solve a Riemann problem in the locally
Minkowski spacetime to obtain the numerical flux

ðf̃ðx̂ÞA Þjþ1
2
;k;l and the conserved quantities ðqAÞjþ1

2
;k;l at the

cell interface (see the next section for more detail on the

Riemann problem). Finally, we transform back to the
Eulerian frame from the tetrad frame by

ðF̃x
0Þjþ1

2
;k;l ¼ ðDvxÞjþ1

2
;k;l

¼
�
α
�
eðt̂ÞxDþ eðx̂Þxf̃

ðx̂Þ
0

��
jþ1

2
;k;l
; ð3:54Þ

ðF̃x
1Þjþ1

2
;k;l ¼ ðαTx

xÞjþ1
2
;k;l

¼
�
α
�
eðt̂Þxeð{̂ÞxJð{̂Þ þ eðx̂Þxeð{̂Þxf̃

ðx̂Þ
i

��
jþ1

2
;k;l
;

ð3:55Þ

ðF̃x
2Þjþ1

2
;k;l ¼ ðαTx

yÞjþ1
2
;k;l

¼
�
α
�
eðt̂Þxeð{̂ÞyJð{̂Þ þ eðx̂Þxeð{̂Þyf̃

ðx̂Þ
i

��
jþ1

2
;k;l
;

ð3:56Þ

ðF̃x
3Þjþ1

2
;k;l ¼ ðαTx

zÞjþ1
2
;k;l

¼
�
α
�
eðt̂ÞxeðẑÞzJðẑÞ þ eðx̂ÞxeðẑÞzf̃

ðx̂Þ
3

��
jþ1

2
;k;l
;

ð3:57Þ

ðF̃x
4Þjþ1

2
;k;l ¼ ð−αTx

μnμÞjþ1
2
;k;l

¼
�
α
�
eðt̂ÞxρH þ eðx̂Þxf̃

ðx̂Þ
4

��
jþ1

2
;k;l
; ð3:58Þ

ðF̃x
5Þjþ1

2
;k;l ¼ 0; ð3:59Þ

ðF̃x
6Þjþ1

2
;k;l ¼ ð−ẼzÞjþ1

2
;k;l ¼ ðα�FyxÞjþ1

2
;k;l

¼
�
α
�
eð{̂Þyeðt̂ÞxB̄ð{̂Þ − eðt̂Þyeðx̂ÞxB̄ðx̂Þ

þ eðŷÞyeðx̂Þxf̃
ðx̂Þ
6

��
jþ1

2
;k;l
; ð3:60Þ

ðF̃x
7Þjþ1

2
;k;l ¼ ðẼyÞjþ1

2
;k;l ¼ ðα�FzxÞjþ1

2
;k;l

¼
�
α
�
eð{̂Þzeðt̂ÞxB̄ð{̂Þ − eðt̂Þzeðx̂ÞxB̄ðx̂Þ

þ eðŷÞzeðx̂Þxf̃
ðx̂Þ
6 þ eðẑÞzeðx̂Þxf̃

ðx̂Þ
7

��
jþ1

2
;k;l
;

ð3:61Þ

where {̂ ¼ x̂; ŷ; ẑ are contracted with i ¼ 1, 2, 3, respec-
tively, in the second term of the right-hand side of
Eqs. (3.55) and (3.56). Note that, from now on, we do
not distinguish the upper- and lower-spatial tetrad compo-
nents, e.g., Bð{̂Þ ¼ Bð{̂Þ. These numerical fluxes are used to
update the conserved quantities in Eq. (3.10). An interface
velocity is calculated by [83]
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vðx̂Þinterface ¼
dx̂
dt̂

¼ βx

α
ffiffiffiffiffiffi
γxx

p : ð3:62Þ

This velocity is used to calculate a numerical flux at the
interface (see Eqs. (3.67) and (3.87) in the next section).
The tetrad basis and numerical fluxes in the y and z
directions are summarized in Appendix A.

C. HLLC solver for relativistic hydrodynamics

In the absence of electromagnetic fields, Eq. (3.10) with
A ∈ ½0; 4� are reduced to those of relativistic hydrodynam-
ics. In this case, one choice for the Riemann solver is
the HLLC solver proposed in Ref. [73]. We calculate the

HLLC flux ðf̃ðx̂ÞA Þjþ1
2
;k;l in the tetrad frame by solving the

source-free one-dimensional conservation law:

∂ðt̂ÞqA þ ∂ðx̂Þf
ðx̂Þ
A ¼ 0; ð3:63Þ

qA ¼

0
B@

D

Jð{̂Þ
ρH

1
CA; ð3:64Þ

fðx̂ÞA ¼

0
B@

Dvðx̂Þ

Jð{̂Þvðx̂Þ þ Pδðx̂Þð{̂Þ

ρHvðx̂Þ þ Pvðx̂Þ

1
CA; ð3:65Þ

where ∂ðμ̂Þ ≡ eðμ̂Þμ∂μ. Given an initial condition described by

qAðx; 0Þ ¼
� ðqAÞL if x < xjþ1

2
;

ðqAÞR if x > xjþ1
2
;

ð3:66Þ

for xj ≤ x ≤ xjþ1, three characteristic speeds, and therefore,
four states will appear in the Riemann fan (see Fig. 2). In the
HLLC solver, one needs to find the pressure in the
intermediate states (the cL and cR states) which satisfies
a jump condition. Then, the numerical flux is calculated by
(see the left panel of Fig. 2)

ðf̃ðx̂ÞA Þjþ1
2
¼

8>>>>>><
>>>>>>:

ðfðx̂ÞA ÞL if λL > vðx̂Þinterface

ðfðx̂ÞA ÞcL if λL < vðx̂Þinterface < λc

ðfðx̂ÞA ÞcR if λc < vðx̂Þinterface < λR

ðfðx̂ÞA ÞR if λR < vðx̂Þinterface;

ð3:67Þ

where

ðfðx̂ÞA ÞL=R ¼ fðx̂ÞA ðqL=RÞ; ð3:68Þ

ðfðx̂ÞA ÞcL=cR ¼ ðfðx̂ÞA ÞL=R þ λL=RððqAÞcL=cR − ðqAÞL=RÞ;
ð3:69Þ

and λL=R is the characteristic speed of the left/right-going
nonlinear wave. Equation (3.69) is obtained from the jump
condition, and λc is the characteristic speed of the contact
discontinuity. By imposing continuity of the pressure
across the contact discontinuity, one finds a quadratic
equation for λc [73]:

(a) (b)

FIG. 2. Riemann fan structure for the HLLC solver for relativistic hydrodynamics (left) and for the HLLD solver for relativistic
magnetohydrodynamics (right) in the tetrad frame. In the HLLC solver (left panel), the left-going nonlinear wave with λL, the contact
discontinuity with λc, and the right-going nonlinear wave with λR, propagate from the discontinuity located at x̂jþ1

2
, where λL;c;R denotes

the characteristic speed of each wave. Consequently, the L, cL, cR, and R states appear. In the HLLD solver (right panel), the left/right-
propagating fast wave with λL=λR, the left/right-propagating Alfvén wave with characteristic speed λaL=λaR, and the contact
discontinuity with λc, are taken into account. Consequently, the L, aL, cL, cR, aR, and R states appear. In the general relativistic case,

the interface initially located at x̂jþ1
2
may move with an interface velocity vðx̂Þinterface which is proportional to the shift vector βx.

IMPLEMENTATION OF ADVANCED RIEMANN SOLVERS IN A … PHYS. REV. D 106, 124041 (2022)

124041-9



FHLL
ρH λ2c − ðρHLLH þ FHLL

Jðx̂Þ Þλc þ JHLLðx̂Þ ¼ 0; ð3:70Þ

where ρHLLH , JHLLðx̂Þ , FHLL
ρH , and FHLL

Jðx̂Þ denote conserved

quantities and fluxes in the HLL state:

JHLLðx̂Þ ¼
λRJRðx̂Þ − λLJLðx̂Þ þ fðx̂Þ1;L − fðx̂Þ1;R

λR − λL
; ð3:71Þ

ρHLLH ¼ λRρ
R
H − λLρ

L
H þ fðx̂Þ4;L − fðx̂Þ4;R

λR − λL
; ð3:72Þ

FHLL
Jðx̂Þ ¼

λRf
ðx̂Þ
1;L − λLf

ðx̂Þ
1;R þ λRλLðJRðx̂Þ − JLðx̂ÞÞ
λR − λL

; ð3:73Þ

FHLL
ρH ¼ λRf

ðx̂Þ
4;L − λLf

ðx̂Þ
4;R þ λRλLðρRH − ρLHÞ
λR − λL

: ð3:74Þ

Once we obtain the speed of the contact discontinuity λc, the
pressure in the intermediate state is determined by

Pc ≡ PcL ¼ PcR ¼ −λcFHLL
ρH þ FHLL

Jðx̂Þ : ð3:75Þ

Then the conserved quantities in the cL and cR states are
given by

DcL=cR ¼ DL=RðλL=R − vðx̂ÞL=RÞ
λL=R − λc

; ð3:76Þ

ðJð{̂ÞÞcL=cR
¼ 1

λL=R − λc
½ðJð{̂ÞÞL=RðλL=R − vðx̂ÞL=RÞ þ ðPc − PL=RÞδðx̂Þð{̂Þ�;

ð3:77Þ

ðρHÞcL=cR ¼ ðρHÞL=RðλL=R − vðx̂ÞL=RÞ þ Pcλc − PL=Rv
ðx̂Þ
L=R

λL=R − λc
;

ð3:78Þ

where the subscripts cL and cR on the left-hand side of the
equations correspond to L and R on the right-hand side,
respectively. These quantities can be used to evaluate the flux
in the cL=cR state (3.69) and the flux in the Eulerian frame
[see, e.g., Eq. (3.54)].
For the left and right characteristic speeds λL=R, we apply

Davis’s estimate [73]:

λL ¼ minðλ−ðqLÞ; λ−ðqRÞÞ; ð3:79Þ

λR ¼ maxðλþðqLÞ; λþðqRÞÞ; ð3:80Þ

and

λ�ðqAÞ ¼
1

1 − v2c2s

�
vðx̂Þð1 − c2sÞ

� cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þð1 − v2c2s − ð1 − c2sÞðvðx̂ÞÞ2Þ

q 	
;

ð3:81Þ

where

v2 ¼ vð{̂Þvð{̂Þ; ð3:82Þ

c2s ¼
1

h

�
∂P
∂ρ






ε

þ P
ρ2

∂P
∂ε






ρ

	
: ð3:83Þ

The equivalent expressions in the y and z directions are
given by permutation of the indices x, y, and z.

D. HLLD solver for relativistic magnetohydrodynamics

In the presence of an electromagnetic field, one choice
for the Riemann solver is the HLLD solver proposed in
Ref. [67]. For this case, we calculate the HLLD flux,

ðf̃ðx̂ÞA Þjþ1
2
;k;l, in the tetrad frame by solving the one-dimen-

sional conservation law:

∂ðt̂ÞqA þ ∂ðx̂Þf
ðx̂Þ
A ¼ 0; ð3:84Þ

where

qA ¼

0
BBB@

D

Jð{̂Þ
ρH

Bð{̂Þ

1
CCCA; ð3:85Þ

fðx̂ÞA ¼

0
BBB@

Dvðx̂Þ

Jð{̂Þvðx̂Þ þ Ptotδ
ðx̂Þð{̂Þ − Bðx̂Þ

w2 ½Bð{̂Þ þ ðBðk̂Þuðk̂ÞÞuð{̂Þ�
ρHvðx̂Þ þ Ptotvðx̂Þ − 1

w ðBðk̂Þuðk̂ÞÞBðx̂Þ

vðx̂ÞBð{̂Þ − vð{̂ÞBðx̂Þ

1
CCCA:

ð3:86Þ
Here, qA has seven components (A ¼ 0, 1, 2, 3, 4, 6, 7), and
Ptot ≡ Pþ b2=2 is the total pressure (gas plus magnetic).
Note that the equation for Bðx̂Þ is simply ∂ðt̂ÞBðx̂Þ ¼ 0,
and thus, Bðx̂Þ is constant for the Riemann problem of the x
direction. Together with the initial condition given by
Eq. (3.66) for the relevant components, the full magneto-
hydrodynamics Riemann fan consists of seven waves
separating eight states [80]. In the HLLD solver two of
these seven waves (the slow magnetosonic waves) are
neglected. As a result, the Riemann fan with the HLLD
solver consists of five waves separating six states (see
Fig. 2). In the HLLD solver, we need to find the total
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pressure Ptot which satisfies a jump condition across the
five waves. The numerical flux is then given by (see the
right-hand panel of Fig. 2)

ðf̃ðx̂ÞA Þjþ1
2
¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðfðx̂ÞA ÞL if λL > vðx̂Þinterface

ðfðx̂ÞA ÞaL if λL < vðx̂Þinterface < λaL

ðfðx̂ÞA ÞcL if λaL < vðx̂Þinterface < λc

ðfðx̂ÞA ÞcR if λc < vðx̂Þinterface < λaR

ðfðx̂ÞA ÞaR if λaR < vðx̂Þinterface < λR

ðfðx̂ÞA ÞR if λR < vðx̂Þinterface;

ð3:87Þ

where

ðfðx̂ÞA ÞL=R ¼ fðx̂ÞA ðqL=RÞ; ð3:88Þ

ðfðx̂ÞA ÞaL=aR ¼ ðfðx̂ÞA ÞL=R þ λL=RððqAÞaL=aR − ðqAÞL=RÞ;
ð3:89Þ

ðfðx̂ÞA ÞcL=cR ¼ ðfðx̂ÞA ÞaL=aR þ λaL=aRððqAÞcL=cR − ðqAÞaL=aRÞ:
ð3:90Þ

The latter two fluxes are obtained from the jump condition.
In the following subsections, we present specific quan-

tities employed by the HLLD solver: the characteristic
speeds of the five waves and the six states.

1. Characteristic speeds

For the fast waves, an approximate characteristic speed
proposed in Refs. [82,84] is given by

λ�FWðqAÞ ¼
1

1 − v2ζ

�
vðx̂Þð1 − ζÞ

�
ffiffiffi
ζ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þð1 − v2ζ − ð1 − ζÞðvðx̂ÞÞ2Þ

q 	
;

ð3:91Þ

where

v2 ¼ vð{̂Þvð{̂Þ; ð3:92Þ

ζ ¼ v2A þ c2s − v2Ac
2
s ; ð3:93Þ

v2A ¼ b2

ρhþ b2
: ð3:94Þ

For the Alfvén wave, the characteristic speed is given by

λ�AlfðqAÞ ¼
bðx̂Þ � uðx̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρhþ b2

p
bðt̂Þ � uðt̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρhþ b2

p ; ð3:95Þ

and for the contact wave by

λcðqAÞ ¼ vðx̂Þ: ð3:96Þ

2. L/R state

Given left- and right-state quantities, we first calculate
the following quantities which should be preserved when
one crosses the fast waves:

ðRDÞL=R ¼ ðλD − fðx̂Þ0 ÞL=R; ð3:97Þ

ðRJð{̂Þ ÞL=R ¼ ðλJð{̂Þ − fðx̂Þi ÞL=R; ð3:98Þ

ðRρHÞL=R ¼ ðλρH − fðx̂Þ4 ÞL=R; ð3:99Þ

ðRBðk̂Þ ÞL=R ¼ ðλBðk̂Þ − fðx̂Þk ÞL=R; ð3:100Þ

where {̂ ¼ x̂; ŷ; ẑ for i ¼ 1, 2, 3, respectively, in Eq. (3.98).
Also k̂ ¼ ŷ; ẑ for k ¼ 6, 7, respectively, in Eq. (3.100). For
the above quantities, we employ the characteristic speed
defined by

λL ¼ min ðλ−FWðqLÞ; λ−FWðqRÞÞ;
λR ¼ max ðλþFWðqLÞ; λþFWðqRÞÞ: ð3:101Þ

3. aL=aR state

Given an initial guess for the unknown total pressure Ptot
(which should be constant inside the Riemann fan), the
three velocities in the aL and aR states are given by

ðvðx̂ÞÞaL=aR

¼
�Bðx̂ÞðABðx̂Þ þ λCÞ − ðAþ GÞðPtot þ RJðx̂Þ Þ

X

�
L=R

;

ð3:102Þ

ðvðŷÞÞaL=aR¼
�QRJðŷÞ þRBðŷÞ ½CþBðx̂ÞðλRJðx̂Þ −RρHÞ�

X

�
L=R

;

ð3:103Þ

ðvðẑÞÞaL=aR ¼
�QRJðẑÞ þRBðẑÞ ½CþBðx̂ÞðλRJðx̂Þ −RρHÞ�

X

�
L=R

;

ð3:104Þ
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where

A ¼ RJðx̂Þ − λRρH þ Ptotð1 − λ2Þ; ð3:105Þ

G ¼ RBðŷÞRBðŷÞ þ RBðẑÞRBðẑÞ ; ð3:106Þ

C ¼ RJðŷÞRBðŷÞ þ RJðẑÞRBðẑÞ ; ð3:107Þ

Q ¼ −A −Gþ ðBðx̂ÞÞ2ð1 − λ2Þ; ð3:108Þ

X ¼ Bðx̂ÞðAλBðx̂Þ þ CÞ − ðAþ GÞðλPtot þ RρHÞ: ð3:109Þ

Note that aL and aR on the left-hand side of
Eqs. (3.102)–(3.104) correspond to L and R for RJð{̂Þ,
RρH , RBðk̂Þ , and λ on the right-hand side of the same
equations, respectively. With these velocity components,
the magnetic field is calculated from the jump condition by

ðBðk̂ÞÞaL=aR ¼
ðRBðk̂Þ ÞL=R − Bðx̂Þðvðk̂ÞÞaL=aR

λL=R − ðvðx̂ÞÞaL=aR
ð3:110Þ

for k̂ ¼ ŷ; ẑ. The total enthalpy density is calculated by

ðρhtotÞaL=aR ≡ ðρhþ b2ÞaL=aR

¼ Ptot þ
ðRρHÞL=R − ðvð{̂ÞÞaL=aRðRJð{̂Þ ÞL=R

λL=R − ðvðx̂ÞÞaL=aR
:

ð3:111Þ

The conserved quantities necessary for the numerical
flux in Eq. (3.89) and in the Eulerian frame [see
Eqs. (3.54)–(3.61)] are calculated by

DaL=aR ¼ ðRDÞL=R
λL=R − ðvðx̂ÞÞaL=aR

; ð3:112Þ

ðρHÞaL=aR

¼
ðRρHÞL=R þ Ptotðvðx̂ÞÞaL=aR − ðvðk̂ÞBðk̂ÞÞaL=aRBðx̂Þ

λL=R − ðvðx̂ÞÞaL=aR
;

ð3:113Þ

ðJð{̂ÞÞaL=aR ¼ ððρH þ PtotÞvð{̂Þ − ðvðk̂ÞBðk̂ÞÞBð{̂ÞÞaL=aR:
ð3:114Þ

4. cL=cR state

Following Ref. [67], we first define

σðμ̂Þ ¼ ηuðμ̂Þ þ bðμ̂Þ; ð3:115Þ

η ¼ �sgnðBðx̂ÞÞ
ffiffiffiffiffiffiffiffiffi
ρhtot

p
; ð3:116Þ

where the plus (minus) sign corresponds to the right (left)
state. We then define Kðk̂Þ by

Kðk̂Þ ≡ σðk̂Þ

σð0̂Þ
¼ vðk̂Þ þ Bðk̂Þ

wσð0̂Þ
: ð3:117Þ

Here Kðx̂Þ is nothing other than the Alfvén wave speed in
the x direction. From the jump condition one can find that
Kð{̂Þ, ρhtot, D=wσð0̂Þ, and η do not change across the Alfvén
waves. Therefore, η, Kð{̂Þ, and the total enthalpy density are
calculated by

ηcL=cR ¼ ηaL=aR; ð3:118Þ

ðKð{̂ÞÞcL=cR ¼ ðKð{̂ÞÞaL=aR

¼
ðRJð{̂Þ ÞL=R þ Ptotδð{̂Þðx̂Þ þ ðRBðîÞ ÞL=RηaL=aR

λL=RPtot þ ðRρHÞL=R þ Bðx̂ÞηaL=aR
;

ð3:119Þ

ðρhtotÞcL=cR ¼ ðρhtotÞaL=aR; ð3:120Þ

where cL and cR on the left-hand side of the equations
correspond to aL and aR on the right-hand side of the same
equations, respectively.
The magnetic field and the three velocity in the cL and

cR states are calculated by

ðBðk̂ÞÞcL ¼ ðBðk̂ÞÞcR
¼ ½fBðk̂Þðλ − vðx̂ÞÞ þ Bðx̂Þvðk̂ÞgaR
− fBðk̂Þðλ − vðx̂ÞÞ þ Bðx̂Þvðk̂ÞgaL�

1

λaR − λaL
;

ð3:121Þ

ðvð{̂ÞÞcL=cR ¼
�
Kð{̂Þ −

Bð{̂Þð1 − Kðk̂ÞKðk̂ÞÞ
η − Kðl̂ÞBðl̂Þ

�
cL=cR

; ð3:122Þ

and the characteristic speed is

λaL=aR ¼ Kðx̂Þ
aL=aR: ð3:123Þ
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We impose the continuity condition on the normal velocity

across the contact discontinuity, i.e., vðx̂ÞcL ¼ vðx̂ÞcR , by

ΔKðx̂Þ½1 − Bðx̂ÞðYR − YLÞ� ¼ 0; ð3:124Þ

YL=R ¼
�

1 − Kð{̂ÞKð{̂Þ

ηΔKðx̂Þ − ΔKðx̂ÞKðĵÞBðĵÞ

�
cL=cR

; ð3:125Þ

where ΔKðx̂Þ ¼ Kðx̂Þ
aR − Kðx̂Þ

aL . This equation gives an
improved guess of the total pressure in the next iteration
step. Then we go back to Eq. (3.102) and repeat the same
procedure until it converges with sufficient accuracy. In
practice, we employ the Newton-Raphson method to solve
Eq. (3.124).
The conserved quantities necessary for the numerical

flux in Eq. (3.90) and in the Eulerian frame [see
Eqs. (3.54)–(3.61)] are

DcL=cR ¼ DaL=aR

λaL=aR − vðx̂ÞaL=aR

λaL=aR − vðx̂ÞcL=cR

; ð3:126Þ

ðρHÞcL=cR ¼ 1

λaL=aR − vðx̂ÞcL=cR

× ½λaL=aRðρHÞaL=aR − ðJðx̂ÞÞaL=aR þ Ptotv
ðx̂Þ
cL=cR

− ðvð{̂ÞBð{̂ÞÞcL=cRBðx̂Þ�; ð3:127Þ

ðJð{̂ÞÞcL=cR ¼ ððρHÞcL=cR þ PtotÞvð{̂ÞcL=cR
− ðvðk̂ÞBðk̂ÞÞcL=cRBð{̂Þ

cL=cR: ð3:128Þ

The equivalent expressions in the y and z directions are
given by permutation of the indices x, y, and z.

E. Electric-field evaluation

The constrained transport method used to enforce the
divergence-free condition on the magnetic field requires us
to evaluate the electric field defined at the cell edges.
Gardiner and Stone [74] proposed a method for evaluating
the electric field by utilizing the numerical fluxes which
are obtained by the Riemann solver. In their method,
for example, the z component of the electric field is
evaluated by

Ẽz
jþ1

2
;kþ1

2
;l
¼ 1

4
ðẼz

jþ1
2
;k;l

þ Ẽz
jþ1

2
;kþ1;l

þ Ẽz
j;kþ1

2
;l
þ Ẽz

jþ1;kþ1
2
;l
Þ

þ Δy
8

��
∂Ez

∂y

�
jþ1

2
;kþ1

4
;l
−
�
∂Ez

∂y

�
jþ1

2
;kþ3

4
;l

�

þ Δx
8

��
∂Ez

∂x

�
jþ1

4
;kþ1

2
;l
−
�
∂Ez

∂x

�
jþ3

4
;kþ1

2
;l

�
;

ð3:129Þ

where

�
∂Ez

∂y

�
jþ1

2
;kþ1

4
;l

¼

8>>>>>><
>>>>>>:

2ðẼz

j;kþ1
2
;l
−Ez

j;k;lÞ
Δy for ṽx

jþ1
2
;k;l

> 0;

2ðẼz

jþ1;kþ1
2
;l
−Ez

jþ1;k;lÞ
Δy for ṽx

jþ1
2
;k;l

< 0;

ðẼz

j;kþ1
2
;l
−Ez

j;k;lþẼz

jþ1;kþ1
2
;l
−Ez

jþ1;k;lÞ
Δy otherwise;�

∂Ez

∂y

�
jþ1

2
;kþ3

4
;l

¼

8>>>>>><
>>>>>>:

2ðEz
j;kþ1;l−Ẽ

z

j;kþ1
2
;l
Þ

Δy for ṽx
jþ1

2
;kþ1;l

> 0;

2ðEz
jþ1;kþ1;l−Ẽ

z

jþ1;kþ1
2
;l
Þ

Δy for ṽx
jþ1

2
;kþ1;l

< 0;

ðEz
j;kþ1;l−Ẽ

z

j;kþ1
2
;l
þEz

jþ1;kþ1;l−Ẽ
z

jþ1;kþ1
2
;l
Þ

Δy otherwise;�
∂Ez

∂x

�
jþ1

4
;kþ1

2
;l

¼

8>>>>>><
>>>>>>:

2ðẼz

jþ1
2
;k;l

−Ez
j;k;lÞ

Δx for ṽy
j;kþ1

2
;l
> 0;

2ðẼz

jþ1
2
;kþ1;l

−Ez
j;kþ1;lÞ

Δx for ṽy
j;kþ1

2
;l
< 0;

ðẼz

jþ1
2
;k;l

−Ez
j;k;lþẼz

jþ1
2
;kþ1;l

−Ez
j;kþ1;lÞ

Δx otherwise;�
∂Ez

∂x

�
jþ3

4
;kþ1

2
;l

¼

8>>>>>><
>>>>>>:

2ðEz
jþ1;k;l−Ẽ

z

jþ1
2
;k;l

Þ
Δx for ṽy

jþ1;kþ1
2
;l
> 0;

2ðEz
jþ1;kþ1;l−Ẽ

z

jþ1
2
;kþ1;l

Þ
Δx for ṽy

jþ1;kþ1
2
;l
< 0;

ðEz
jþ1;k;l−Ẽ

z

jþ1
2
;k;l

þEz
jþ1;kþ1;l−Ẽ

z

jþ1
2
;kþ1;l

Þ
Δx otherwise:

:

Here ṽx
jþ1

2
;k;l

and Ẽz
jþ1

2
;k;l

are identical to the fluxes ðF̃x
0Þjþ1

2
;k;l

and ð−F̃x
6Þjþ1

2
;k;l in Eqs. (3.54) and (3.60), which are given

by the Riemann solver in the x direction. Similarly, ṽy
j;kþ1

2
;l

and Ẽz
j;kþ1

2
;l

are given by the Riemann solver in the y

direction. Ez
j;k;l is calculated from the quantities defined at

the cell center, i.e., Eqs. (3.33)–(3.35) and the three velocity.
Therefore, the accuracy of this constrained transport scheme
depends on the accuracy of an employed Riemann solver.
Equivalent expressions for the x and y components of
the electric field are given by permutation of the indices
x, y, and z. These electric fields are used to update the
magnetic field in Eqs. (3.30)–(3.32).
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In the rest of this paper, we refer to this particular
algorithm for evaluating the electric field as CT_GS. On the
other hand, the electric-field evaluation algorithm which
was originally implemented in our code, and which is based
on HLLE [64,82], is referred to as CT_HLLE [82]. For the
base Riemann solver, we use either HLLC, HLLD, or HLLE.
Here the last one is the base Riemann solver which was
originally implemented in our code [82]. In the hydro-
dynamics test simulations shown in the next section, we
refer to the particular combination of numerical schemes
used in a particular test problem in terms of the base solver,
only. In the magnetohydrodynamics test simulations, we
describe a simulation both in terms of the base Riemann
solver and in terms of the algorithm used for the evaluation
of the electric field. For example, HLLD-CT_GS means
that the (base) Riemann solver is HLLD and the electric-
field evaluation is CT_GS.

IV. VALIDATION OF THE HLLC
AND HLLD SOLVERS

In this section, we introduce various problems designed
to test the implementation of the advanced Riemann solvers
and constrained transport algorithm discussed in the
previous section. We start with a common suite of one-
dimensional special relativistic shock-tube problems in
both hydrodynamics and magnetohydrodynamics (see
Sec. IVA). Next, in Sec. IV B, we turn our attention to
multidimensional hydrodynamics and magnetohydrody-
namics test problems in special relativity (specifically,
we consider a two-dimensional hydrodynamical shock, a
cylindrical hydrodynamical blast wave, a magnetohydro-
dynamical current sheet, and the Kelvin-Helmholtz insta-
bility in magnetohydrodynamics). In Sec. IV C we consider
Bondi flow onto a black hole (in both hydrodynamics and
magnetohydrodynamics) as a test problem in general
relativity with a static spacetime.
For all the test problems we assume a Γ-law equation of

state given by

P ¼ ðΓ − 1Þρε: ð4:1Þ

We also employ a cell-centered grid structure in which the x
coordinate [85] is given by

xj ¼
�
jþ 1

2

�
Δx; ð4:2Þ

with j ∈ ½−Nx − 1; Nx� and grid spacing Δx (and likewise
for the y and z components). As a time integrator, we
employ the fourth-order Runge-Kutta method (RK4) in all
our test simulations. For reconstruction of the solution at
cell interfaces, we employ either first-order reconstruction
or third-order piecewise parabolic method (PPM) [82,86].
For the PPM reconstruction, we employ the min-mod
limiter function with a compression parameter which is

generally set to b ¼ 2 [82], though in some cases we
employ different values of b.

A. Special relativistic one-dimensional problems

First, we consider special relativistic problems in
one spatial dimension. With this setup, the tetrad basis
in Sec. III B is reduced to a coordinate vector in Minkowski
spacetime. Thus, the setup is suitable for validating the
Riemann solvers described in Secs. III C and III D. We
assume Minkowski metric and thus turn off the solver for
Einstein’s equations in the code. The initial conditions for
all the one-dimensional test problems are summarized in
Table I. We note that the test suite employed in this paper is
the same as that presented in Refs. [67,87].

1. Hydrodynamics: one-dimensional shock tubes

The first special relativistic hydrodynamics test (HD1) is
the computation of a contact discontinuity. For this we
prepare a simulation domain of x ∈ ½−1; 1� with Δx ¼ 0.01
and Nx ¼ 100. We integrate the numerical solution up to
t ¼ 0.4. In the left panel of Fig. 3 we plot the rest-mass
density profile at the end of the simulation. In this problem,
left- and right-propagating shock waves appear from the
initial discontinuity, with a contact discontinuity sand-
wiched between them. The blue and green curves denote
the numerical solution with the HLLC and HLLE solvers,
respectively. The solid and dashed curves denote the
simulation results with third-order PPM reconstruction
and first-order reconstruction, respectively. First, we con-
sider the results obtained with first-order reconstruction
(dashed curves). With the HLLC solver, the contact dis-
continuity located at x ≈ 0.2 is more sharply captured than
with the HLLE solver. This behavior is expected since the
HLLC solver explicitly restores the contact wave inside the
Riemann fan. When we employ third-order reconstruction,
however, we find that there is no qualitative difference
between the two solvers. This suggests that the weak point
of a particular solver may be alleviated by using a high
enough resolution.
The right panel of Fig. 3 shows the rest-mass density

profile for the second test problem (problem HD2) listed in
Table I. The simulation domain and the grid spacing are the
same as those in problem HD1. In this problem, left- and
right-going rarefaction waves propagate away from the
initial discontinuity, and a contact discontinuity appears
between the two and is located at x ≈ −0.1. As in our first
test problem, we find that the contact discontinuity is more
sharply captured with the HLLC solver than that with the
HLLE solver when first-order reconstruction is used, while
we find no qualitative difference between the numerical
solutions obtained with the two solvers when we employ
third-order-accurate reconstruction.
The third hydrodynamics test problem (problem HD3

in Table I) is the often-employed shock-tube problem.
Here, the simulation domain spans x ∈ ½−0.5; 0.5� with
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Δx ¼ 0.005 and Nx ¼ 100. In this problem, the initial
discontinuity decays into a left-propagating rarefaction
wave and a right-propagating shock wave. The contact
discontinuity adjacent to the shock wave also propagates to
the right. The left panel of Fig. 4 shows the rest-mass
density profile at the end of the simulation for which the
contact discontinuity is located at x ≈ 0.25. In this problem,
we find that there is no qualitative difference between the

numerical solutions with the two solvers irrespective of the
cell reconstruction accuracy. This behavior is also reported
in Ref. [73]. For obtaining an accurate result for this
particular shock-tube problem it is necessary to employ an
accurate reconstruction method. This suggests that employ-
ing an accurate reconstruction method is as important as
employing an accurate solver in numerical hydrodynamics
at least in the one-dimensional problems.

TABLE I. Initial conditions used for special relativistic one-dimensional test problems. The third column shows the Γ index and the
second-to-last column shows the final time of the simulations t.

Test problem State Γ ρ vx vy vz P Bx By Bz t CFL

Problem HD1 L 4=3 1 0.9 0 0 1 � � � � � � � � � 0.4 0.8
R 1 0 0 0 10 � � � � � � � � �

Problem HD2 L 5=3 1 −0.6 0 0 10 � � � � � � � � � 0.4 0.8
R 10 0.5 0 0 20 � � � � � � � � �

Problem HD3 L 5=3 10 0 0 0 40 � � � � � � � � � 0.4 0.8
R 1 0 0 0 3 � � � � � � � � �

Problem HD4 L 5=3 1 0 0 0 103 � � � � � � � � � 0.4 0.8
T 1 0 0 0 10−2 � � � � � � � � � 0.4 0.8

Problem MHD1 L 5=3 10 0 0.7 0.2 1 5 1 0.5 1 0.8
R 1 0 0.7 0.2 1 5 1 0.5

Problem MHD2 L 5=3 1 0.4 −0.3 0.5 1 2.4 1 −1.6 1 0.8
R 1 0.377347 −0.482389 0.424190 1 2.4 −0.1 −2.1728213

Problem MHD3 L 2 1 0 0 0 1 0.5 1 0 0.4 0.8
R 1 0 0 0 10−2 � � � � � � � � �

Problem MHD4 L 5=3 1.08 0.4 0.3 0.2 0.95 2 0.3 0.3 0.55 0.8
R 1 −0.45 −0.2 0.2 1 2 −0.7 −0.5

Problem MHD5 L 5=3 1 0.999 0 0 0.1 10 7 7 0.4 0.8
R 1 −0.999 0 0 0.1 10 −7 −7

Problem MHD6 L 5=3 1 0 0.3 0.4 5 1 6 2 0.5 0.8
R 0.9 0 0 0 5.3 1 5 2

FIG. 3. Left: rest-mass density profile for problem HD1 at t ¼ 0.4 (contact wave located between left- and right-propagating shock
waves). The blue and green curves show the results with the HLLC and HLLE solvers, respectively. The dashed and solid curves show
the results with first-order reconstruction and third-order (PPM) reconstruction, respectively. Right: rest-mass density profile for
problem HD2 at t ¼ 0.4 (contact wave located between left- and right-propagating rarefaction waves). We employ RK4 for the time
integration in all the simulations. The blue and green solid curves are indistinguishable on the scale of this plot.
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For the fourth (final) hydrodynamics test problem
(problem HD4), we employ a simulation domain of
x ∈ ½−0.5; 0.5� with a grid spacing of Δx ¼ 0.0025, i.e.,
Nx ¼ 200. The solution consists of a left-propagating
rarefaction wave and a right-propagating shock wave.
Note that the result differs from that in problem HD3 as
the shock is much stronger compared to the one in
problem HD3 because of the initial large pressure jump
(see Table I). A right-propagating contact discontinuity
appears adjacent to the shock wave. We plot the rest-mass
density profile at t ¼ 0.4 in the right panel of Fig. 4. We
find that the contact discontinuity (located at x ≈ 0.35) is
more sharply resolved with the HLLC solver than with the
HLLE solver when we employ third-order reconstruction.
We find that the compression parameter b for the min-
mod function in the PPM cell reconstruction should be
reduced to be 1 in this problem (i.e., a steep limiter
function does not work; see, e.g., Ref. [82]). Otherwise,
spurious waves appear irrespective of which solver is
used (not shown).

2. Magnetohydrodynamics: one-dimensional shock tubes

In this section we consider six special relativistic
magnetohydrodynamics test problems in one spatial dimen-
sion. All the test problems except for problem MHD6 are
carried out in a domain of size x ∈ ½−0.5; 0.5� with grid
spacing Δx ¼ 0.005 (i.e., Nx ¼ 100). For problem MHD6,
the domain is identical, but we employ a higher resolution
with Δx ¼ 0.0025 and Nx ¼ 200.
In the first problem (problem MHD1 in Table I) the

solution consists of a stationary contact discontinuity.
The left panel of Fig. 5 plots the rest-mass density profile
at the end of the simulation. Because the HLLD-CT_GS
and HLLD-CT_HLLE solvers exactly capture the contact
discontinuity, the numerical solutions remain stationary
even when we employ first-order reconstruction (see the
inset in the left panel of Fig. 5). On the other hand, with the
HLLE-CT_HLLE solver, the initial contact discontinuity is
broadened because this solver neglects the contact dis-
continuity inside the Riemann fan. However, when we
employ third-order (PPM) reconstruction, this spurious

FIG. 4. Same as Fig. 3, but for problem HD3 (left) and problem HD4 (right).

FIG. 5. Left: rest-mass density profile in problem MHD1 (a problem with a stationary contact discontinuity) at t ¼ 1. The blue, green,
and cyan curves present the result with the HLLD-CT_GS, HLLD-CT_HLLE, and HLLE-CT_HLLE solvers, respectively. The solid and
dashed curves show the results with third-order PPM cell reconstruction and first-order cell reconstruction, respectively. Right: same as
the left panel, but for the By profile in problem MHD2 (a problem with a stationary rotational discontinuity). The insets are a close-up of
the discontinuity with the HLLD-CT_GS solver and first-order cell reconstruction.
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broadening of the contact discontinuity is suppressed,
although the contact wave is still not resolved as sharply
as it is with the HLLD solver.
In the second magnetohydrodynamics test problem

(problem MHD2 in Table I) we model a stationary rota-
tional discontinuity (i.e., an Alfvén wave). The right panel
of Fig. 5 presents the profile of the y component of the
magnetic field at the end of the simulation. When we
employ first-order cell reconstruction, the HLLD-CT_GS
solver reproduces the stationary solution (see the inset in
the right panel of Fig. 5). This is because the rotational
discontinuity is captured exactly by the HLLD solver, and
the electric field at the cell edge is evaluated with the
numerical flux, i.e., the electric field at the cell interface,
given by the HLLD solver with the CT_GS scheme [see,
e.g., Eq. (3.129)]. With the HLLD-CT_HLLE solver, on
the other hand, the rotational discontinuity is broadened
because the electric field at the cell interface given by
the HLLD solver is not used to evaluate the electric field
at the cell edge in the CT_HLLE scheme. With the
HLLE-CT_HLLE solver, the rotational discontinuity
inside the Riemann fan is not captured. As a result, the
initial rotational discontinuity is spuriously broadened.
This drawback is improved by employing third-order
PPM cell reconstruction in the HLLD-CT_HLLE and
HLLE-CT_HLLE solvers. Note that for this problem,

we employ the compression parameter b ¼ 3 in the min-
mod function for the PPM reconstruction in the HLLD-
CT_GS run. Otherwise, we find the over- and undershoot in
the vicinity of the initial rotational discontinuity (not
shown) because the default value of b ¼ 2 is not sufficient
to capture the initial steep profile.
The third magnetohydrodynamics test problem (problem

MHD3) is the relativistic extension of the Brio-Wu shock
tube [88]. In this problem, the solution consists of a left-
propagating rarefaction wave, a right-propagating slow
shock wave (located at x ≈ 0.18 in Fig. 6), and a right-
propagating rarefaction wave. In addition there is a right-
ward propagating contact discontinuity located at x ≈ 0.15
in Fig. 6 adjacent to the shock wave. Finally at x ≈ 0, a
compound wave appears. When we use first-order
reconstruction, the contact discontinuity is captured more
sharply with the HLLD-CT_GS solver than with the
HLLD-CT_HLLE solver, while the HLLE-CT_HLLE
solver cannot capture the contact discontinuity at all if
the first-order reconstruction is used. The slow shock is also
captured more sharply with the HLLD-CT_GS solver than
with the HLLD-CT_HLLE solver, while with the HLLE-
CT_HLLE solver the slow shock wave is significantly
broadened. This feature is also found for the compound
wave. While the various waves are better captured in
third-order PPM reconstruction irrespective of the chosen

FIG. 6. Profile of the rest-mass density (top left), the x component of the three velocity (top right), the y component of the three
velocity (bottom left), and the y component of the magnetic field (bottom right) at t ¼ 0.4 in problem MHD3. The blue, green, and cyan
curves denote the numerical solution with the HLLD-CT_GS, HLLD-CT_HLLE, and HLLE-CT_HLLE solvers, respectively. We
employ RK4 with third-order PPM cell reconstruction (solid curves) and also with first-order cell reconstruction (dashed curves).
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solvers, we find that the higher order reconstruction method
induces artificial oscillatory behavior behind the compound
wave (in the regions of −0.2≲ x≲ 0) in both the rest-mass
density and in the x component of the velocity (see also in
the regions of 0.2≲ x≲ 0.4 in the x component of the
velocity). The amplitude of these oscillations is reduced
when we employ the diffusive compression parameter of
the PPM reconstruction b ¼ 1.
The fourth magnetohydrodynamics test problem (prob-

lem MHD4) consists of a left (right)-propagating fast wave
located at x ≈ −0.4ðþ0.4Þ, a left-propagating rarefaction
wave (x ≈ −0.3), a contact discontinuity (x ≈ −0.04), a

right-propagating slow wave (x ≈þ0.2), and finally,
a left (right)-propagating Alfvén wave [located at
x ≈ −0.33ðþ0.22Þ]. See Fig. 7 for the solutions (the inset
in the By (Bz) panel shows a close-up region of the right
(left) Alfvén waves). When we employ first-order
reconstruction, both solvers are able to capture the fast
waves, but the contact discontinuity is captured more
sharply with the HLLD-CT_GS or HLLD-CT_HLLE solver
than with the HLLE-CT_HLLE solver (see the inset in the
rest-mass density profile in Fig. 7 which shows a close-up
of the contact discontinuity). Irrespective of the solvers, it is
hard to distinguish the slow wave and the right-propagating

FIG. 7. Profile of the rest-mass density (top left), the x component of the three velocity (top right), the y component of the three
velocity (middle left), the z component of the three velocity (middle right), the y component of the magnetic field (bottom left), and the z
component of the magnetic field (bottom right) at t ¼ 0.55 in problem MHD4. The blue, green, and cyan curves denote the numerical
solution with the HLLD-CT_GS, HLLD-CT_HLLE, and HLLE-CT_HLLE solvers, respectively. We employ RK4 with third-order
PPM cell reconstruction (solid curves) and also with first-order reconstruction (dashed curves). The insets show a close-up of the
discontinuity.
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Alfvén wave and also between the rarefaction wave and the
left-propagating Alfvén wave. When we employ third-
order PPM reconstruction, on the other hand, we find no
qualitative difference in the numerical solutions between
the different solvers.
For our fifth magnetohydrodynamics test problem (prob-

lem MHD5) we consider the relativistic collision of two
streams. Figure 8 shows the result at t ¼ 0.4. In this
problem the solution consists of left (right)-propagating
fast waves located at x ≈ −0.3ðþ0.3Þ, and left (right)-
propagating slow waves located at x ≈ −0.06ðþ0.06Þ.
When we employ first-order cell reconstruction, the slow
waves are captured more sharply with the HLLD solvers,
i.e., the HLLD-CT_GS or HLLD-CT_HLLE solvers than
with the HLLE-CT_HLLE solver. On the other hand, the
resolution across the outermost fast waves is essentially
the same for all solvers. Irrespective of the solver or
reconstruction method used, a spurious undershoot in the
rest-mass density appears at x ≈ 0. This is known as the
wall-heating problem [89]: it is well known that Godunov-
type schemes cannot avoid this pathological behavior.
As reported in Ref. [67], the undershoot is shallower with
the HLLE-CT_HLLE solver due to the solver’s larger
numerical diffusion. When we employ third-order PPM
reconstruction, both the HLLD and HLLE solvers are
equally capable of capturing the slow waves as well as
the fast waves.
In the final problem (problem MHD6) in our one-

dimensional suite, the solution consists of all seven

waves [54]. The numerical results are shown in Fig. 9.
In this problem, a contact discontinuity appears at x ≈ 0.05,
a rarefaction wave propagates to the left of the contact
discontinuity, which can be seen at x ≈ −0.4, and the
rotational discontinuity at x ≈ −0.06 and the slow shock at
x ≈ −0.04 follow the rarefaction wave (see the inset in the
panel for By in Fig. 9). To the right of the contact
discontinuity, a fast shock propagates up to x ≈ 0.4. The
rotational discontinuity at x ≈ 0.08 and the slow shock at
x ≈ 0.06 follow the fast shock (again, this is most easily
seen in the inset in the panel for By in Fig. 9).
When we use first-order cell reconstruction (dashed

curves), the contact discontinuity is resolved only with
the HLLD solvers, i.e., HLLD-CT_GS or HLLD-
CT_HLLE, (see the panel for ρ in Fig. 9). With
first-order reconstruction, however, it is difficult to
disentangle the left/right-propagating rotational disconti-
nuities and left/right-propagating slow shocks, even with
the HLLD solver (see the dashed curves in the inset in the
panel for By in Fig. 9). When we employ third-order PPM
reconstruction (solid curves), on the other hand, the
difference between the various Riemann solvers is
striking. With the HLLD-CT_GS solver, the left/right-
propagating rotational discontinuities and slow shocks
are captured as plotted in the inset in the panel for By in
Fig. 9. With the HLLD-CT_HLLE or HLLE-CT_HLLE
solvers, the right-propagating rotational discontinuity
and the left/right-propagating slow shock are captured,
but the left-propagating rotational discontinuity is not.

FIG. 8. Same as Fig. 6, but for problem MHD5.
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This demonstrates the ability of the HLLD-CT_GS solver
to properly capture all seven of the emergent waves.

B. Special relativistic multidimensional problems

1. Hydrodynamics: two-dimensional shock tube

For our first multidimensional special relativistic test
problem, we consider the two-dimensional Riemann
problem first proposed in Ref. [90]. The simulation
domain spans ∈ ½−1; 1� in both the x and y directions.
We set Δx ¼ Δy ¼ 0.01 and Nx ¼ Ny ¼ 100. We impose
outflow boundary conditions in both directions. We use an
adiabatic index of Γ ¼ 5=3. We employ third-order PPM
reconstruction and set the Courant–Friedrichs–Lewy (CFL)
number to be 0.45. Finally, the initial condition is given by

ðρ; vx; vy; PÞ ¼

8>>><
>>>:

ð0.1; 0; 0; 0.01Þ for x; y > 0;

ð0.1; 0.99; 0; 1Þ for x < 0; y > 0;

ð0.5; 0; 0; 1Þ for x; y < 0;

ð0.1; 0; 0.99; 1Þ for x > 0; y < 0.

ð4:3Þ

Figure 10 shows the logarithmic contour of the rest-mass
density at t ¼ 0.9 with the HLLC solver (left panel) and
with the HLLE solver (right panel). The most notable
difference in the solutions between the two solvers appears
around the two tangential discontinuities in the lower-left
portion of the simulation domain. With the HLLC solver
(left panel), the initial tangential discontinuities remain
sharp. With the HLLE solver, on the other hand, spurious

FIG. 9. Same as Fig. 7, but for problem MHD6.
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waves propagate along each axis from the initial tangential
discontinuities due to numerical diffusion. Unlike the one-
dimensional problems, the spurious diffusion out of the
initial tangential discontinuities that occurs with the HLLE
solver cannot be mitigated even when we employ third-
order PPM reconstruction. Thus, in this multidimensional
test problem we observe a qualitative difference in the
solutions between the HLLC and HLLE solvers that cannot
be removed by resorting to higher-order reconstruction.

2. Hydrodynamics: two-dimensional cylindrical explosion

For the second special relativistic multidimensional test
problem, we consider a cylindrical blast wave in two
dimensions. For this problem, we choose the simulation
domain to span x ∈ ½−2; 2� and y ∈ ½−3; 3� and set
Δx ¼ Δy ¼ 0.02, i.e., ðNx; NyÞ ¼ ð100; 150Þ in the x
and y directions, respectively. Periodic boundary condi-
tions are imposed at the x and y boundaries. We set the

adiabatic index to Γ ¼ 5=3, employ third-order PPM
reconstruction, and set the CFL number to 0.45. The initial
condition is given by

ρ ¼ 1; P ¼
(
2.5 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< 0.5;

0.1 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> 0.5:

ð4:4Þ

Figure 11 shows the rest-mass density profile at t ¼ 18
with the HLLC solver (left panel) and the HLLE solver
(right panel). By this time, the blast wave has intersected
itself many times, and consequently, a Rayleigh-Taylor-like
instability (known in this context as the Richtmyer-
Meshkov instability) has developed [83]. With the HLLC
solver, the Richtmyer-Meshkov instability is well resolved,
and as a result the density irregularity around the elliptical
figure is sharply captured. By contrast, with the HLLE
solver, the fine structure around the elliptical figure is
not captured well due to the large numerical diffusivity.

FIG. 10. Logarithmic contour of the rest-mass density in the two-dimensional Riemann problem at t ¼ 0.9 with the HLLC solver (left)
and HLLE solver (right). We employ RK4 and third-order PPM cell reconstruction.

FIG. 11. Rest-mass density profile in the cylindrical blast wave problem at t ¼ 18 with the HLLC solver (left) and HLLE solver (right).
We employ RK4 and third-order PPM cell reconstruction.
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This demonstrates an effective improvement in spatial
resolution with the HLLC solver compared to that with
the HLLE solver.

3. Magnetohydrodynamics:
two-dimensional magnetized current sheet

Next we consider a two-dimensional problem in rela-
tivistic magnetohydrodynamics: that of a magnetized cur-
rent sheet, studied recently by Refs. [75,83]. The initial
profile for the magnetic field is given by

Bx ¼ B0 tanh

�
y
a

�
; ð4:5Þ

where B0 ¼ 1 and a ¼ 0.04. The density is uniform with
ρ ¼ 1, and the fluid is at rest with vi ¼ 0. The thermal
pressure is determined from the force balance with the
magnetic pressure, and its profile is given by

P ¼ B2
0

2
ðβ þ 1Þ − B2

x

2
; ð4:6Þ

where β is the initial plasma-beta parameter, which we set
to unity. The equilibrium magnetic field is initially per-
turbed, and the perturbation is given by the z component of
the vector potential as

δAz ¼ ϵB0 cos

�
kyy

2

�
cos ðkxxÞ; ð4:7Þ

where kx ¼ 2π=Lx, ky ¼ 2π=Ly, ϵ ¼ 10−3, and Lx and Ly

denote the domain size in the x and y directions, respec-
tively. We employ a simulation domain consisting of
x ∈ ½−0.5; 0.5� and y ∈ ½−0.25; 0.25�. To check conver-
gence, we carry out simulations at three different resolu-
tions: ðNx; NyÞ ¼ ð512; 256Þ, (256, 128), and (128, 64).
We set the CFL number to 0.8 in all simulations. We
impose a periodic boundary condition in the x direction and
a reflective boundary condition in the y direction. With this
setup, the maximum Alfvén wave speed is ≈0.557, and the
Alfvén timescale is tA ≈ 1.78.
Figure 12 displays colorplots of the thermal pressure

together with the magnetic-field lines at three different
times: t ¼ 10.03tA (left panel), t ¼ 30.08tA (center), and
t ¼ 50.06tA (right). The top, middle, and bottle panels
show the numerical solutions with the HLLD-CT_GS,
HLLD-CT_HLLE, and HLLE-CT_HLLE solvers, respec-
tively. The snapshots are all taken from our highest
resolution runs with ðNx; NyÞ ¼ ð512; 256Þ. Magnetic field
lines reconnect at y ≈ 0 due to the numerical resistivity
inherent both in the Riemann solvers as well as in the
constrained transport scheme. Once reconnection starts,
the profile of the magnetic-field lines changes, and as a
result, the thermal pressure profile is modified, leading to
the formation of islandlike structures.

The timescale of the reconnection depends on how large
the numerical resistivity is. Figure 12 indicates that the
HLLD-CT_GS solver is accompanied with the smallest
numerical resistivity because the formation of the islands
is delayed. It is found that the HLLD-CT_HLLE solver has
the largest numerical resistivity, leading to rapid formation of
the islands. This does not agree with one’s naive expectation,
because the HLLE-CT_HLLE solver is actually less dis-
sipative than the HLLD-CT_HLLE solver. In other words,
we observe an unexpected hierarchy between the HLLD-
CT_HLLE and HLLE-CT_HLLE solvers. This stems from
the algorithm of the CT_HLLE solver. In this constrained
transport scheme, dissipation terms which are proportional
to the maximum absolute value of the characteristic speed
appear in the electric-field evaluation (see, e.g., Eq. (44) in
Ref. [64]). This characteristic speed is then obtained from the
(global) Riemann solver. We find that the HLLD solver
returns a larger characteristic speed than the HLLE solver.
As a result, the HLLD-CT_HLLE solver ends up being more
diffusive than the HLLE-CT_HLLE solver, as can be seen in
this test problem.
Figure 13 shows the fraction of the initial magnetic-field

energy that is dissipated as a function of time. With the
HLLD-CT_GS solver (blue curves), the magnetic-field
energy dissipates only gradually. Also, the dissipation rate
is suppressed when we employ higher resolution: the
energy increases by an order of magnitude only over 50
Alfvén timescales. This feature is also found for the HLLE-
CT_HLLE solver (cyan curves), although the dissipation
rate steeply rises at a later time, t ≈ 40tA, even in our
highest resolution run. With the HLLD-CT_HLLE
solver (green curves), magnetic reconnection commences
immediately after the simulation starts. We conclude that
for problems involving strong magnetic field gradients
(current sheets) accurate evolution can be modeled only
when the HLLD solver is paired with CT_GS for the
constrained transport. If we implement a finite resistivity
explicitly, as demonstrated in Ref. [91], then the difference
between the employed Riemann solvers in this problem
could be mitigated because the resistive scale is resolvable.
However, it is beyond the scope of this paper.

4. Magnetohydrodynamics:
two-dimensional Kelvin-Helmoltz instability

The second two-dimensional problem in special relativ-
istic magnetohydrodynamics is the Kelvin-Helmholtz
instability, as proposed in Refs. [67,92]. For this, we
prepare a simulation domain which spans x ∈ ½−0.5; 0.5�
and y ∈ ½−1; 1�. To check the convergence, we perform the
simulations with three different resolutions: ðNx;NyÞ ¼
ð200; 400Þ (“high” resolution), ðNx; NyÞ ¼ ð100; 200Þ
(“medium” resolution), and ðNx; NyÞ ¼ ð64; 128Þ (“low”
resolution). The simulations are carried out with either
the HLLD-CT_GS or HLLE-CT_HLLE solvers, and we
employ third-order PPM reconstruction for all the
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simulations. We impose a periodic boundary condition in
the x direction and an outflow boundary condition in
the y direction. The CFL number is set to 0.4 in all the
simulations.
As the initial condition, we give a tanh-shaped shear

velocity profile for the x component,

vx ¼ −vsh tanhðy=aÞ; ð4:8Þ

where vsh ¼ 0.25 and a ¼ 0.02. The thickness a of the
shear layer is covered by around 2,4, and 8 grid cells at
the low, medium, and high resolutions, respectively.
We employ a uniform density of ρ ¼ 1 and a uniform
gas pressure with P ¼ 20. The adiabatic index is taken to
be 4=3. Note that our setup is different from that employed
in the recent test simulation for the Kelvin-Helmholtz
instability in special relativistic magnetohydrodynamics

of Ref. [87], in which the authors employ a nonuniform
density field, a smaller shear-layer thickness of a ¼ 0.01,
and an amplitude of the x component of the velocity
(vsh ¼ 0.5), which is twice that used in our runs.
The magnetic field at t ¼ 0 is given by

ðBx; By; BzÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

2σpolP
q

; 0; 0

�
; ð4:9Þ

i.e., the magnetic field is initially uniform and parallel to
the velocity in the lower-half of the xy plane. We set
σpol ¼ 0.01. The shear layer is perturbed by the motion in
the y direction as

vy ¼ 1

40000
sinð2πxÞ exp ð−100y2Þ; ð4:10Þ

while vz ¼ 0.

FIG. 12. Thermal pressure profile for the magnetized current sheet problem at three different times: t ¼ 10.03tA (left), t ¼ 30.08tA
(middle), and t ¼ 50.06tA (right). Numerical results were obtained with the HLLD-CT_GS (top row), the HLLD-CT_HLLE (middle
row), and the HLLE-CT_HLLE solvers (bottom row), respectively. The white curves denote the magnetic-field lines. We employ RK4
with third-order PPM reconstruction and a resolution of ðNx;NyÞ ¼ ð512; 256Þ in all simulations.
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The top panel of Fig. 14 shows the perturbed velocity
difference Δvy ≡ ðvymax − vyminÞ=2 as a function of time
taken from six simulations at three different resolutions
and employing either the HLLD-CT_GS or HLLE-
CT_HLLE solver. All the simulations start from perturba-
tions of size ∼10−5. We find exponential growth followed by
nonlinear saturation at the end of the linear phase at t ∼ 10.
The behavior during the linear phase depends strongly on the
solver, particularly at low resolutions. Nonlinear saturation
occurs more quickly in the simulations with the HLLD-
CT_GS solver than in those with the HLLE-CT_HLLE
solver, but the saturation amplitude depends only weakly on
the solver and resolution. The growth rate is higher with the
less diffusive HLLD-CT_GS solver than with the HLLE-
CT_HLLE solver, but the results converge between the two
solvers as the resolution is improved. This result is consistent
with that in Ref. [87] (see their Fig. 14). The evolution after
the nonlinear saturation is not sensitive to the solver or
resolution, although at late times (not shown) the velocity
difference decays more quickly in the simulations with the
(more diffusive) HLLE-CT_HLLE solver than with the
HLLD-CT_GS.
In the bottom panel of Fig. 14 we plot the magnetic-field

energy as a function of time. The energy is normalized by
its initial value. The magnetic-field energy increases after
the perturbed velocity saturates, i.e., t ≈ 8 for the HLLD-
CT_GS solver and t ≈ 10 for the HLLE-CT_HLLE solver.
In the highest resolution runs, the value at saturation of
the magnetic-field energy is similar. However, the flow
field of the velocity at saturation is significantly different,
as discussed below.
In Fig. 15 we show snapshots of the density at nonlinear

saturation t ∼ 10 from the six simulations. The top row
shows results from the low, medium, and high resolution

runs using the HLLD-CT_GS solver, while the bottom row
shows the corresponding snapshots from runs that employ
the HLLE-CT_HLLE solver. Using the HLLD-CT_GS
solvers, we observe the formation of a single vortex together
with two neighboring stretched secondary vortices that are
well resolved at all resolutions, whereas with the HLLE-
CT_HLLE solver we see the formation of only a single large
vortex at the shear interface, mirroring the behavior of the
Kelvin-Helmholtz instability in the simulations of Ref. [92]
which employed the HLLE-CT_HLLE solver. Our results
show that, at least at low resolutions, the HLLE solver is not
appropriate for studying phenomena in which the Kelvin-
Helmholtz instability plays an important role.

C. General relativistic problems
in a fixed background spacetime

1. Hydrodynamics: Bondi flow

As a test problem in a curved (but static) spacetime, we
consider spherical accretion (ingoing Bondi flow) onto a

FIG. 13. Magnetic-field energy dissipation in the magnetized
current sheet problem as a function of time. Blue, green, and cyan
curves denote numerical solutions with the HLLD-CT_GS, HLLD-
CT_HLLE, and HLLE-CT_HLLE solvers, respectively. The solid,
dashed, and dotted curves denote a resolution of ðNx; NyÞ ¼
ð512; 256Þ, (256, 128), and (128, 64), respectively. We employ
RK4 and third-order PPM cell reconstruction in all runs.

FIG. 14. Top: perturbed velocity difference Δvy ≡ ðvymax −
vyminÞ=2 in the special-relativistic magnetohydrodynamical
Kelvin-Helmholtz instability as a function of time. The blue
curves denote results obtained with the HLLD-CT_GS solver,
and the cyan curves denote results HLLE-CT_HLLE solver. The
solid, dashed, and dotted curves correspond to resolutions of
ðNx; NyÞ ¼ ð200; 400Þ, (100, 200), and (64, 128), respectively.
Bottom: the same as the top panel, but for the magnetic-field
energy normalized by its initial value.
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nonrotating black hole [93]. The Bondi flow in
Schwarzschild coordinates has been extensively discussed
in the literature (see, e.g., Ref. [83]). Following previous
work [82,84], we adopt the parameters for this problem as
follows: an adiabatic index of Γ ¼ 4=3, an adiabat of
K ¼ 1, and a critical radius of rc ¼ 8M, where M denotes
the black hole mass. With this setup, the mass accretion
rate _Macc is 0.797. We perform simulations both with the
HLLE and HLLC solvers and employ third-order PPM
reconstruction.
Our numerical-relativity code employs the so-called

puncture formalism, and hence, in the presence of black
holes, the black hole spacetime is foliated in most cases by
the so-called limiting hypersurface [94]. Thus, for prepar-
ing a practical setup in this test problem, a nonrotating
black hole should be described in the so-called maximal
trumpet geometry rather than in Schwarzschild coordinates
or in isotropic coordinates on slices of constant
Schwarzschild time [95,96]. Note that in both of these
latter two coordinate systems, the fluid four-velocity
exhibits pathological behavior near the horizon [96,97].
In Appendix B, we describe the explicit coordinate
transformation from the Schwarzschild coordinates to the
maximal trumpet geometry. With this geometry, the radial
component of the shift vector is nonzero. Therefore, the
tetrad basis [see, e.g., Eq. (3.36)] does not agree any longer
with a coordinate basis in the Minkowski spacetime, and
the cell interface may be dragged by the shift vector as
discussed in Sec. III B.
We employ a simulation domain in Cartesian coordinates

spanning x; y; z ∈ ½0; L� with L ¼ 10M. The grid spacing
of the simulation is given by Δ ¼ Δx ¼ Δy ¼ Δz ¼ 0.1M
with N ¼ Nx ¼ Ny ¼ Nz ¼ 100 as the number of grid
cells in each direction. We also check convergence by

increasing the resolution to N ¼ 200 and N ¼ 400, which
correspond to grid spacings of Δ ¼ 0.05M and 0.025M,
respectively. We set the CFL number to 0.45 and integrate
the numerical solution up to t ¼ 22.5M. We impose a
stationary boundary condition at the outer and inner
boundaries, with the latter located at rin ¼ 0.4M. Note
that the horizon in this geometry is located at
rBH ≈ 0.78M. We also impose octant symmetry at the
x, y, and z ¼ 0 planes.
Figure 16 shows radial profiles of the rest-mass density

and the radial velocity calculated by the HLLC solver with
the blue dots and by the HLLE solver with the green dots
on top of the analytic solution [93]. The profiles are along
the diagonal direction, i.e., x ¼ y ¼ z in the simulation
domain. This figure demonstrates that our implementation
of the HLLC solver in curved spacetime works well. It also
shows that, for this particular problem, the HLLE solver
works as well as the HLLC solver because of the smooth-
ness of the accretion flow, as many other previous imple-
mentations have shown, e.g., Refs. [59,82,84,98].
In the lower panel of Fig. 16 we plot the L1 norm of the

error in the rest-mass density as a function of the spatial
grid spacing. The convergence order of the L1 norm of the
error is ≈2 both for the HLLC and HLLE solvers because
our Riemann solver is second-order accurate. One likely
reason for the slight deviation from the expected accuracy
is that spherical symmetry of the accretion flow is not
perfectly preserved during the evolution because we sim-
ulate it in the Cartesian geometry. This plot also shows that
the numerical solution with the HLLC solver is more
accurate than that with the HLLE solver. Our interpretation
of this is that with the tetrad transformation (see Sec. III B)
the frame-dragging effect of the cell interface is taken into
account with a better accuracy (see also Fig. 2) [99].

HLLD (low res)

HLLE (low res)

HLLD (mid res)

HLLE (mid res)

HLLD (high res)

HLLE (high res)

FIG. 15. Density snapshots taken near nonlinear saturation of the special relativistic magnetohydrodynamical Kelvin-Helmholtz
instability. Top row: the results with the HLLD-CT_GS solver at three different resolutions. Bottom row: same as the top panel but with
the HLLE-CT_HLLE solver. The white lines indicate velocity field streamlines. The left, middle, and right panels show the low, middle,
and high resolution runs, respectively.
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2. Magnetohydrodynamics: Magnetized Bondi flow

The next test problem in a curved spacetime is magnet-
ized Bondi flow onto a nonrotating black hole. It is known
that a purely radial magnetic field does not alter the flow
profile of nonmagnetized Bondi flow [76]. Therefore, we
employ the same flow profile used in the previous section.

From the divergence-free condition (2.15), the radial
magnetic field should be BR ∝ f=R2 in Schwarzschild
coordinates (see Appendix B for the definition of f and
the transformation to the maximal trumpet geometry). The
amplitude of the magnetic field is chosen to be such that
b2=ρ ¼ 1 at R ¼ 3M. We perform two simulations, one
with the HLLD-CT_GS solver and the other with the
HLLE-CT_HLLE solver. We employ RK4 and third-order
PPM reconstruction in both cases.
We employ a simulation domain in Cartesian coordinates

spanning x; y; z ∈ ½0; L� with L ¼ 12.8M. The grid spacing
of the simulation is Δ ¼ Δx ¼ Δy ¼ Δz ¼ 0.1M with
N ¼ Nx ¼ Ny ¼ Nz ¼ 128 being the number of the grid
cells in each direction. To check convergence, we perform
better-resolved simulations with N ¼ 256 and N ¼ 512,
i.e., Δ ¼ 0.05M and 0.025M, respectively. We impose
octant symmetry at the x, y, and z ¼ 0 planes and a
stationary condition at the outer and inner boundaries, with
the latter located at rin ¼ 0.4M. Numerical simulations are
performed up to t ¼ 22.5M.
Figure 17 shows the radial profiles of the rest-mass

density (top left), the radial velocity (top right), and the
radial magnetic field (bottom left). Numerical solutions
with the HLLD-CT_GS solver are indicated by the blue
dots, while those with the HLLE-CT_HLLE solver are
indicated by the cyan dots. As in the nonmagnetized cases,
the flow profiles agree with the analytic solution [93] (see
also the insets in Fig. 17 which show the solution close to
the inner boundary). The rest mass density inside the
horizon slightly deviates from the analytic solution.
However, the deviation decreases as the spatial resolution
is increased. This demonstrates that our HLLD solver
works just as well as our HLLC solver in a curved
spacetime. As in the hydrodynamic case, we find no
qualitative difference in the numerical solutions between
the HLLD-CT_GS and HLLE-CT_HLLE solvers because
of the smoothness of the accretion flow. The bottom-right
panel in Fig. 17 plots the L1 norm of the error in the rest-
mass density as a function of the spatial grid spacing. It
shows that (i) the numerical solution with the HLLD-
CT_GS solver is more accurate than that with the HLLE-
CT_HLLE solver, and (ii) the order of the convergence is
≈2. These results are essentially the same as those in the
previous subsection. Again, the deviation from the formal
accuracy of the Riemann solver is likely to be an artifact of
the Cartesian geometry which we employ.

V. APPLICATION TOA DYNAMICAL SPACETIME

Finally, we apply our new Riemann solvers in general
relativity to a dynamical spacetime. We simulate a binary
neutron star merger, both with and without magnetic fields.
We turn on the solver for Einstein’s equations and the
neutrino-radiation hydrodynamics solver in the simulations
shown in this section [see Eqs. (2.9)–(2.13)].

FIG. 16. Top: radial rest-mass density profile for (hydrody-
namic) Bondi flow in a nonrotating black hole spacetime at
t ¼ 22.5M (the end of the simulation). The mass accretion rate is
fixed at _Macc ¼ 0.797. The solid black curve indicates the
analytical solution, while the blue and green dots denote the
numerical solution obtained with the HLLC and HLLE solvers,
respectively. The inset shows the solution near the inner boun-
dary. In the inset, the red and yellow dots denote the location of
the horizon and of the inner boundary, respectively. Middle: same
as the top panel, but showing the radial velocity profile. Bottom:
L1 norm of the error in the rest-mass density as a function of the
spatial grid spacing. The blue and green dots denote the error of
the numerical solutions with the HLLC and HLLE solvers,
respectively. The dotted line denotes second-order convergence.
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A. Hydrodynamics: binary neutron star merger

1. Setup

First, we consider nonmagnetized asymmetric binary
neutron stars with masses of 1.2 and 1.5M⊙. We utilize the
spectral method library LORENE [100–104] to generate a
quasiequilibrium configuration of the irrotational binary
neutron star. We also employ an eccentricity reduction
prescription to generate an initial condition that has low
orbital eccentricity [105]. The initial orbital angular veloc-
ity is set to be m0Ω0 ¼ 0.028, where m0 ¼ 2.7M⊙ is the
total mass of the binary.
Our solver for Einstein’s equations implements the

Baumgarte-Shapiro-Shibata-Nakamura-puncture formu-
lation [106–109], locally incorporating the Z4c prescription
for constraint propagation [110]. We employ fourth-order
centered finite differencing for the spatial derivative of the
metric, a lop-sided finite difference for the advection term
associated with the shift vector, and fourth-order Runge-
Kutta for the time integrator. For the relativistic hydro-
dynamics solver, we employ either the HLLC or HLLE
solver, together with third-order PPM cell reconstruction.
We employ the SFHo equation of state for relatively high-

density nuclear matter [111] and the Timmes (Helmholtz)
equation of state for the low-density part [112]. Because
high-resolution shock-capturing schemes cannot treat the

vacuum state, we need to implement an artificial atmosphere
outside the neutron stars. In this simulation, we set a constant
atmospheric density of ρatm ¼ 103 g=cm3 for the inner part
of the finest fixed mesh refinement (FMR) domain, for
which the refinement boundary along each axis is typically
located at Lfin ¼ 38.7 km (see below for the FMR setup in
detail). We also set a power-law profile of the atmospheric
density of ρatm ¼ 103ðLfin=rÞ3 g=cm3 for r > Lfin and as far
as the atmospheric density is larger than the floor value
which is determined by the employed equation of state. In
our present table for the equation of state, this floor is
≈0.17 g=cm3, and if ρatm becomes smaller than this value,
then we set the atmospheric density to the floor value. The
atmospheric temperature is set to be 10−3 MeV.
We also explicitly solve the radiation-hydrodynamics

equations for neutrinos in time using an approximate
neutrino-transfer scheme based on a leakage scheme [77]
and the truncated moment formalism [79,113]. The cooling
source terms are computed using a general-relativistic
leakage scheme [72], and heating source terms due to
neutrino capture processes are computed by the method
presented in Ref. [78].
The computational region consists of 13 levels of

FMR half-cubic domains. The size of each FMR domain
is ∈ ½−L=2l−1; L=2l−1� for x and y, and z ∈ ½0; L=2l−1� with
l ¼ 1; 2;…; 13. Note that in the z direction we impose

FIG. 17. Same as Fig. 16, but for a magnetized Bondi flow in a nonrotating black hole spacetime at t ¼ 22.5M. The blue and cyan dots
denote numerical solutions with the HLLD-CT_GS and HLLE-CT_HLLE solvers, respectively. The bottom-left panel shows the radial
magnetic field profile.
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reflection symmetry with respect to the equatorial plane,
z ¼ 0. We set the overall domain size to L ≈ 158; 000 km
and N ¼ Nx ¼ Ny ¼ Nz ¼ 258. Thus, the grid spacing of
the finest FMR domain is Δx13 ¼ Δy13 ¼ Δz13 ¼ 150 m.
To check convergence, we also perform simulations with
lower resolutions of N ¼ 196 and N ¼ 158, for which the
grid spacing of the finest FMR domain is Δx13 ¼ 200 m
and Δx13 ¼ 250 m, respectively. For the HLLC solver,
we perform an additional simulation with N ¼ 377 and
Δx13 ¼ 100 m. By virtue of the cell-centered grid struc-
ture, the cell interface of the parent FMR domain coincides
with that of the child FMR domain. We employ the reflux
prescription during time marching of the Berger-Oliger
type mesh refinement algorithm to ensure the conservation
of baryonic mass.

2. Inspiral phase

The left and right panels of Fig. 18, respectively, show
the time evolution (during the inspiral phase) of the
maximum rest-mass density and the density-weighted
Hamiltonian constraint violation (see Eqs. (29) and (30)
in Ref. [82] for definitions). The blue and green curves
denote the results with the HLLC and HLLE solvers,
respectively, and the solid, dashed, dotted, and dot-dashed
curves indicate the resolution (i.e., Δx13 ¼ 100 m, 150 m,
200 m, and 250 m, respectively). During inspiral, the
maximum rest-mass density oscillates due to numerical
error regardless of which solver is used. It also decreases
partly due to the numerical error. However, the degree of
the decrease is much more prominent with the HLLE solver
than it is with the HLLC solver, especially at the coarsest
resolution. This is due to the large numerical diffusion
inherent in the HLLE solver. Specifically, this solver is
more subject to spurious broadening of the density profile
near the stellar surface (not shown), leading to a higher
degree of spurious neutron-star expansion and to a resultant
decrease in the maximum rest-mass density. However, this

artifact is mitigated with the HLLC solver because of its
stronger capability of capturing irregular surfaces, i.e., the
stellar surface.
The right panel of Fig. 18 shows that, for a given grid

resolution, the time-averaged value of the constraint vio-
lation during the inspiral phase is smaller with the HLLC
solver than with the HLLE solver. This demonstrates that
the numerical result with the HLLC solver is more accurate
than that with the HLLE solver. We find that the order
of convergence of the density-weighted Hamiltonian con-
straint violation is 1.7–1.8, irrespective of which Riemann
solver is used. Note that this convergence is slow compared
to that achieved using a higher-order “finite difference”
scheme [57,58,70], but could be improved if we were to
employ a more accurate reconstruction scheme such as
the fifth-order monotonicity preserving scheme [114].
However, the implementation of such a scheme is beyond
the scope of this paper.
The top panel of Fig. 19 shows the orbital separation of

the binary as a function of time. Here we define “orbital
separation” as the coordinate distance in the orbital plane
between the two rest-mass density maxima. The cross
symbols denote the final moment at which we can
unambiguously identify the two rest-mass density maxima.
At this point the less massive neutron star has been
significantly tidally elongated, and we define this time
as being the time of onset of the merger. This plot shows
that the merger time found in the simulation with the HLLC
solver is later than that with the HLLE solver (the reason for
this will be described shortly). The bottom panels display
contour plots of the rest-mass density in the orbital plane at
the moment of merger for the runs with the HLLC solver
(left panel) and the HLLE solver (right panel) (for both
cases, Δx13 ¼ 150 m). The orbital phase with the HLLE
solver is slightly larger compared to that with the HLLC
solver. This implies that the neutron star simulated with the
HLLE solver is more subject to artificial tidal deformation

FIG. 18. Maximum rest-mass density (left) and density-weighted Hamiltonian constraint violation (right) as functions of time in
nonmagnetized simulations of inspiralling binary neutron stars. The blue and green curves denote the results with the HLLC and HLLE
solvers, respectively. The solid, dashed, dotted, and dot-dashed curves denote the results with (finest-level) grid spacings of
Δx13 ¼ 100 m, 150 m, 200 m, and 250 m, respectively.
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than the neutron star with the HLLC solver because the
HLLE solver (since it cannot accurately resolve the irregu-
larities at the stellar surface) results in a larger spurious
expansion of the neutron star. Note that the tidal elongation
of the low-density part of the less massive neutron star is
more enhanced with the HLLE solver than with the HLLC
solver, as found from the comparison of the two contour
plots. It is this enhanced (but artificial) tidal elongation with
the HLLE solver that ultimately results in the earlier merger
time observed when we employ that solver.

3. Postmerger phase

Having presented various diagnostics from the inspiral
phase, we now turn our attention to the postmerger phase.
Figure 20 shows the maximum rest-mass density and the
density-weighted Hamiltonian constraint violation as func-
tions of time during the postmerger phase. The existence of
oscillations in the density after the merger indicates the
formation of a massive neutron star remnant rather than
a direct collapse to a black hole. The remnant massive
neutron star gradually contracts due to angular momentum
transport by the gravitational torque, neutrino cooling, and
gravitational-wave emission. Eventually the remnant col-
lapses to a black hole, indicated by the blowup of the

maximum rest-mass density (see the figure at 30–40 ms).
Because the remnant massive neutron star is a metastable
object, its stability is influenced significantly by the
numerical truncation error, by the randomness with which
the collapse time does not become a monotonic function
of the spatial grid spacing. (The nonmonotonic behavior
of the black hole formation time with respect to the
grid spacing is also reported in the literature (see, e.g.,
Ref. [115]).) Specifically, with the HLLC solver, the
collapse time of the remnant coincides for both the
Δx13 ¼ 150 m and Δx13 ¼ 250 m runs, is earliest for
the Δx13 ¼ 100 m run and is latest for the Δx13 ¼
200 m run. With the HLLE solver, the collapse time
is earliest for the Δx13 ¼ 200 m run and the latest for
Δx13 ¼ 250 m run. The inset in the left panel of Fig. 20
shows a close-up of the results with the HLLC and HLLE
solvers for Δx13 ¼ 150 m.
However, the collapse time of the remnant is system-

atically earlier for runs with the HLLC solver. This is related
to the evolution of the oscillation amplitude of the remnant
neutron star. For t≲ 20 ms, the oscillation amplitude of the
maximum rest-mass density is approximately identical for
the two solvers (see the left-hand panel of Fig. 20). After
that, however, the oscillations are noticeably damped when
we use the HLLE solver. This implies that the oscillation

FIG. 19. Top: orbital separation as a function of time in hydrodynamic simulations of a binary neutron star merger. The color code and
line styles have the same meaning as in Fig. 18. The cross symbols denote the final moment at which two density maxima can be
identified. Bottom: colorplots of the rest-mass density in the orbital plane at t ¼ 14.64 ms with the HLLC solver (left panel) and with the
HLLE solver (right panel). Both simulations have been run with a (finest-level) grid spacing of Δx13 ¼ 150 m.
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energy is dissipated by the numerical diffusion inherent in
the HLLE solver. Thus, the lifetime of the remnant massive
neutron star is significantly overestimated when the more
diffusive HLLE solver is used.
The right panel of Fig. 20 shows that the density-

weighted Hamiltonian constraint violation is of order
10−4 during the remnant massive neutron star phase and
of order 10−1 after the black hole formation. The constraint
violation only slowly decreases with increased resolution
in the postmerger phase and does so regardless of which
solver is used. The reason for this is that during the merger
phase, shocks are formed inside a large portion of the
neutron stars. Because shocks are always computed with
first-order accuracy in numerical hydrodynamics, the over-
all accuracy of the solution deteriorates and the conver-
gence becomes slow.
The left panel of Fig. 21 shows the evolution of the

dimensionless spin of the remnant black hole [116]. We
find spurious spin-down of the black hole due to numerical
diffusion, in particular, when the simulations are performed
at low resolutions with Δx13 ¼ 200 m or 250 m. We
measure the spin-down rate in the HLLC run and estimate

that the dimensionless spin decreases by ≳0.1 in 1 s if
rAH=Δx13 ≲ 15, where rAH denotes the minimum radius of
the apparent horizon. However, the spurious spin-down rate
decreases approximately at the fourth order, reflecting the
order of the accuracy in the solver for Einstein’s equations.
This implies that the spurious decrease of the dimensionless
spin will be suppressed to the required level if we perform a
simulation with a sufficiently high resolution. In low-
resolution runs, however, the spurious spin down will
influence the evolution of the disk because the specific
angular momentum at the inner stable circular orbit will
increase as a result of the spin-down, which in turn will
result in spurious mass accretion. Thus, the grid resolution
must be chosen carefully when the main aim is to
quantitatively explore the evolution of the disk and sub-
sequent mass ejection.
The right panel of Fig. 21 shows the gravitationally

bound baryonic mass outside the apparent horizon [118].
Irrespective of which Riemann solver we employ, the
bounded baryonic mass is not a monotonic function of
the grid spacing. Before the formation of the black hole, the
nonaxisymmetric density structure of the remnant massive

FIG. 20. Same as Fig. 18, but for t ≥ 15 ms. The inset in the left panel shows a close-up over a short duration of the solution obtained
with the HLLC and HLLE solvers with Δx13 ¼ 150 m.

FIG. 21. Left: dimensionless spin of the black hole as a function of time in nonmagnetized binary neutron star merger simulations.
Right: gravitationally bound baryonic mass outside the apparent horizon as a function of time in nonmagnetized binary neutron star
merger simulations. The color code and the line style of the legend are the same as in Fig. 18.
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neutron star exerts a gravitational torque on the fluid
elements. As a result, angular momentum is transported
outwards. Thus, the longer lifetime of the remnant massive
neutron star results in the formation of a more massive torus
after the neutron star remnant collapses to the black hole.
Because the lifetime of the remnant massive neutron star is
not a monotonic function of the grid spacing, it is a natural
consequence that we find that the baryonic mass of bound
material does not converge as the resolution is increased.
Nevertheless, in the simulations with the HLLC solver, the
gravitationally bound baryonic mass is found to lie in a
narrow range, between 0.055M⊙ and 0.075M⊙, at ≈30 ms
after the black hole formation. When we employ the HLLE
solver, the bound baryonic mass is systematically larger
than that with the HLLC solver (between 0.100M⊙ and
0.125M⊙). This is because the lifetime of the remnant
massive neutron star is systematically longer in the sim-
ulations with the HLLE solver than with the HLLC solver,
as already mentioned. Therefore, when one employs the
HLLE solver, one should keep in mind that the bound
baryonic mass could be overestimated with a systematic
error of Oð10−2M⊙Þ.
Figure 22 shows the time evolution of the luminosity of

electron neutrinos (left panel) and of electron antineutrinos
(right panel). These plots show that the luminosity
increases quickly after merger, reaching a peak value
of ≈1.2 × 1053 erg=s for the electron neutrinos and
≈1.9 × 1053 erg=s for the electron antineutrinos at
t ≈ 20 ms. These values agree broadly with our previous
results [119]. After the formation of the black hole, the
luminosity quickly decreases because the high density
and temperature regions of the remnant massive neutron
star are swallowed into the black hole [119,120]. Note that
the overall evolution of the neutrino luminosity in the
remnant massive neutron star phase does not significantly
depend either on the Riemann solver, nor on the spatial
grid spacing.
Finally, Fig. 23 shows the time evolution of the gravi-

tationally unbound baryonic mass, i.e., the ejecta mass.

In this model (i.e., the model with appreciable mass
asymmetry in the binary), mass ejection is driven primarily
by the tidal force from the heavier component to the lighter
one. The blue and green curves denote results with the
HLLC and HLLE solvers, respectively. The solid, dashed,
dotted, and dot-dashed curves denote the results with grid
spacings of Δx13 ¼ 100 m, 150 m, 200 m, and 250 m,
respectively. The inset depicts the ejecta-mass evolution on
a logarithmic scale along the vertical axis, and the shaded
region denotes the violation of baryonic mass conservation.
We find that the spurious mass ejection during the inspiral
phase is Oð10−7M⊙Þ, and it decreases as the resolution is
enhanced. We also find that the error in baryonic mass
conservation is below 10−7M⊙ even after the merger. This
figure shows that the ejecta mass decreases as the grid
spacing is improved from 250 m to 150 m. This is likely to
be related to the spurious expansion of the less massive
neutron star during the inspiral phase, which we discussed

FIG. 22. Luminosity of electron neutrinos (left) and electron antineutrinos (right) as functions of time in nonmagnetized binary
neutron star mergers. The color code and the line style of the legend are the same as in Fig. 18.

FIG. 23. Dynamical ejecta mass as a function of time. In the
inset, the vertical axis is shown using a logarithmic scale and the
shaded region represents the violation of the baryonic mass
conservation in a run using the HLLC solver and at a resolution of
Δx13 ¼ 100 m. The color code and the line style of the legend are
the same as in Fig. 18.
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above. This spurious expansion is enhanced in the lower
resolution runs. When we employ Δx13 ¼ 100 m for the
HLLC solver, the ejecta mass is approximately identical to
that with Δx13 ¼ 150 m. Therefore, the convergence for
the ejecta mass is approximately achieved in this model.
Figure 23 also shows that the amount of ejecta mass

in the simulation with the HLLC solver is smaller than
that with the HLLE solver for a given grid spacing.
Quantitatively, the ejecta mass difference due to the
Riemann solver is ≈10−3M⊙ for Δx13 ¼ 150 m in this
model. This difference arises from how accurately the
employed Riemann solver can capture the neutron-star
shape during the late inspiral phase. As we have already
emphasized, with the HLLE solver the neutron star spuri-
ously expands during the inspiral phase. As a result, the less
massive neutron star is more subject to (partly artificial)
tidal deformation, thereby ultimately increasing the tidally-
driven ejecta mass. When we employ the HLLC solver
together with a high grid resolution this artifact is miti-
gated. This is one of the advantages of using a more
sophisticated Riemann solver in this problem.
We conclude that the HLLC solver is superior to the

HLLE solver both during the inspiral and postmerger
phases of the binary neutron star merger. In particular,
we note that for the purpose of obtaining accurate and high-
precision gravitational waveforms during the late inspiral
phase over more than 10 orbits, the HLLE solver is likely
not an appropriate choice.
A detailed analysis of the chemical and thermodynam-

ical properties of the dynamical ejecta in this model is
presented in Ref. [121].

B. Magnetohydrodynamics: binary neutron star
merger (evolution of remnant)

1. Setup

As an application of the new Riemann solvers (paired
with our new implementation of the constrained transport
scheme) to relativistic magnetohydrodynamics in a
dynamical spacetime, we consider the evolution of the
magnetized torus surrounding a black hole formed after a
binary neutron star merger. The initial condition is taken
from the final moment of the hydrodynamics simulation for
a binary neutron star merger presented in the previous
section. Specifically, our initial condition is taken from the
result of the simulation run with the HLLC solver at a
resolution of Δx13 ¼ 150 m and at t ≈ 76 ms. The grid
setup is exactly the same as in the hydrodynamics simu-
lation for the binary neutron star merger.
We initialize the magnetic field inside the torus with a

vector potential of the form

Ai ¼ ½−ðy − yBHÞδxi þ ðx − xBHÞδyi �
× AbmaxðP − 10−2Pmax; 0Þ2; ð5:1Þ

where i ¼ x or y, xBH and yBH denote the x and y
coordinates of the central black hole, P is the gas pressure,
and Pmax is its maximum. We choose the amplitude Ab
such that the initial maximum magnetic field strength
is 1015 G. We employ the HLLD-CT_GS and HLLE-
CT_HLLE solvers and compare the results. We also
employ Balsara’s method to ensure the divergence-free
condition and magnetic flux conservation in the refinement
boundary [71,122,123]. In our implementation, not only is
the divergence-free condition preserved to machine pre-
cision, but the magnetic flux is also preserved across the
refinement boundary. We note that the vector potential
method [124], which has been widely implemented in
numerical relativity codes, does not ensure the latter
property [58–60,62].

2. Postmerger evolution

The left and right panels of Fig. 24 show the time
evolution of the electromagnetic energy and the time
evolution of the magnetorotational-instability quality
factor, respectively. The electromagnetic energy is defined
by [125]

Emag ≡ 1

2

Z
b2w

ffiffiffi
γ

p
d3x: ð5:2Þ

The origin of the time axis is the same as in Fig. 18. The
blue and cyan curves denote results with the HLLD_CT-GS
and HLLE_CT-HLLE solvers, respectively. The magneto-
rotational-instability quality factor is defined by

hλMRIiρcut ≡
R
ρ≥ρcut λMRId3xR

ρ≥ρcut d
3x

; ð5:3Þ

where

λMRI ¼
bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρhþ b2
p 2π

Ω
ð5:4Þ

is the wavelength of the fastest growing mode of the
axisymmetric magnetorotational instability [126,127].
Note that we introduce a cut-off density in the quality
factor to determine in which part of the torus the magneto-
rotational instability is resolved.
These panels show that the electromagnetic energy

is amplified during the initial stage of t≲ 84–85 ms,
primarily due to magnetic winding rather than the magneto-
rotational instability, because the fastest growing mode
of the magnetorotational instability in the high-density
regions of the torus is not well resolved at these early times
(see the solid curves in the right panel with a cut-off density
of ρcut ¼ 1010 g=cm−3). During this stage, the electromag-
netic energy with the HLLD-CT_GS solver is larger than
that with the HLLE-CT_HLLE solver because the large
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numerical diffusion inherent in the HLLE-CT_HLLE
solver results in the diffusion of magnetic field lines. In
addition, the orbital plane magnetic fields are forced to
reconnect because we impose plane symmetry with respect
to the equatorial plane. For the HLLE-CT_HLLE solver,
reconnection in this plane is also enhanced due to numeri-
cal diffusion, and thus reduces the electromagnetic energy
even further (see also the magnetized current sheet problem
in Fig. 12).
After t ≈ 84–85 ms by which the poloidal magnetic-field

strength has been enhanced nearly to saturation level due to
winding and subsequent outgoing motion resulting from
the enhanced magnetic-field pressure, magnetorotational
instability-driven turbulence begins to develop in the high-
density region of the torus because the fastest growing
mode is now resolved by more than ten grid points (see
the right panel of Fig. 24). This then establishes a
turbulent state.
Figure 25 displays the magnetic-field structure in the x-z

plane. This figure shows that by the time the magnetic-field
strength has saturated, turbulence has developed and an
outflow associated with the turbulent activity is driven from
the disk. The middle panels of Fig. 25 show the magnetic-
field structure at t ≈ 90 ms. With the HLLD-CT_GS solver,
the inside of the torus exhibits smaller-scale turbulence
than that with the HLLE-CT_HLLE solver (see, e.g., the
region of x ∈ ½20; 50� km and z ∈ ½0; 20� km). The larger
structures seen in the colormap also suggest that magnetic-
field lines are more coherent with the HLLE-CT_HLLE
solver than they are with the HLLD-CT_GS solver. Our
explanation for this is that with the HLLE-CT_HLLE
solver, the magnetorotational instability is less resolved,
and thus, the small-scale turbulent structure is less devel-
oped. As a result, large-scale magnetic fields appear to be
spuriously enhanced with HLLE-CT_HLLE compared to
HLLD-CT_GS.

As evidence for this explanation, we calculate the
power spectrum density of the electromagnetic energy
defined by

PBðkÞ ¼
1

2

Z
b̃ðkiÞb̃�ðkiÞk2dΩk; ð5:5Þ

where b̃ðkiÞ is the Fourier component of the magnetic-
field strength (in the frame comoving with the fluid),
b ¼ jb2j1=2, calculated by

b̃ðkiÞ ¼
Z

bðxiÞeikixid3x; ð5:6Þ

and b̃�ðkiÞ is its complex conjugate. Here, ki is the
wave vector with i ¼ x, y, z, and k2 ¼ P

i k
2
i . dΩk is a

solid angle in k space. We employ the Python package
fiNUFFT [128,129] to perform a nonuniform fast
Fourier transformation in our FMR domain. Practically,
we employ the first five finest domains, which span
from L13 ∈ ½−38.7 km; 38.7 km�2 × ½0 km; 38.7 km� to
L9 ∈ ½−619.2 km; 619.2 km�2 × ½0 km; 619.2 km�, in this
analysis.
Figure 26 plots the power spectrum density of the

magnetic-field energy at t ≈ 90.2 ms. The blue and cyan
curves denote solutions with the HLLD-CT_GS and
HLLE-CT_HLLE solvers, respectively. With the help of
the nonuniform fast Fourier transformation, we obtain a
power spectrum density that spans three orders of magni-
tude. It clearly shows that the power spectrum amplitude
around k=ð2πÞ ¼ 10−6 cm−1 is larger in the HLLE-
CT_HLLE than in the HLLD-CT_GS run. This implies
that a relatively large-scale magnetic field with a scale of
≈106 cm is generated in the HLLE-CT_HLLE run com-
pared to the HLLD-CT_GS run. On the other hand, at small
scales (i.e., with k=ð2πÞ≳ 10−5 cm−1), the power spectrum

FIG. 24. Time evolution of electromagnetic energy (left) and magnetorotational-instability quality factor (right) from the magneto-
hydrodynamic simulations of the remnant formed after the merger of two binary neutron stars. In calculating the magnetorotational-
instability quality factor, low-density regions have been excluded by employing a cut-off density ρcut. The blue and cyan curves denote
results for runs with the HLLD-CT_GS and HLLE-CT_HLLE solvers, respectively. The grid spacing is Δx13 ¼ 150 m in both runs. The
inset in the left panel shows an enlarged view of the electromagnetic energy evolution (using a linear scale along the vertical axis) over
the interval t ¼ 85–100 ms.
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density is higher in the HLLD-CT_GS run than in the
HLLE-CT_HLLE run. This shows the HLLD-CT_GS
solver is able to sustain smaller-scale magnetorotational
instability-driven turbulence than the HLLE-CT_HLLE
solver.
Figure 24 indicates that the electromagnetic energy is

still increasing for t≳ 90 ms. We find that (i) the growth is
not exponential, and (ii) the growth rate with the HLLE-
CT_HLLE solver is higher than with the HLLD-CT_GS
solver. This indicates that magnetic winding of a “coher-
ent” poloidal magnetic field proceeds more efficiently
(though spuriously) in the simulation with the HLLE-
CT_HLLE solver than with the HLLD-CT_GS solver. This
in turn enhances the launch of a magnetic tower outflow in
the polar direction, as shown in the bottom panels of

FIG. 25. Magnetic-field structure for the magnetized binary neutron star merger remnant simulations with the HLLD-CT_GS solver
(left) and with the HLLE-CT_HLLE solver (right). The gray curves show the poloidal magnetic-field lines, and the color contours
indicate the toroidal magnetic-field strength. The top, middle, and bottom panels show the numerical solutions at times t ≈ 83 ms,
90 ms, and 98 ms, respectively.

FIG. 26. Power spectrum density of the electromagnetic energy
from simulations of a magnetized binary neutron star merger
remnant at t ≈ 90.2 ms with the HLLD-CT_GS solver (blue) and
the HLLE-CT_HLLE solver (cyan).
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Fig. 25. While this outflow is observed, regardless of which
solver is used, we observe a more powerful magnetic tower
outflow with the HLLE-CT_HLLE solver, which reflects
the greater (but spurious) coherency of the magnetic-field
lines when we use of this solver.
To quantify how powerful the magnetic tower outflow

is, we plot the angular distribution of the Poynting flux,
− ffiffiffiffiffiffi−gp ðTr

tÞðEMÞ ¼ − ffiffiffiffiffiffi−gp ðb2urut − brbtÞ, on a sphere of
r ≈ 50 km in Fig. 27. The snapshot is taken at t ≈ 103 ms.
In the polar region, the Poynting flux with the HLLE-
CT_HLLE solver is much stronger than with the HLLD-
CT_GS solver. This plot suggests that the power of the
magnetic tower outflow is overestimated when we employ
the HLLE-CT_HLLE solver.

VI. SUMMARY AND CONCLUSION

We implemented the advanced Riemann solvers HLLC
[73] and HLLD [67] in our numerical relativity neutrino-
radiation magnetohydrodynamics code. We validated our
implementation by performing one- and multidimensional
test problems in both Minkowski spacetime and in a fixed
background spacetime, both in relativistic hydrodynamics
and relativistic (ideal) magnetohydrodynamics. In the
relativistic hydrodynamics test problems, we found that
the HLLC solver is always superior to the HLLE solver, in
particular, for the multidimensional case: the spurious
waves associated with the HLLE solver disappear, and
the grid resolution is effectively improved, when we employ
the HLLC solver. For relativistic magnetohydrodynamics
test problems, we also found that the performance of the
HLLD solver together with the constrained transport
method proposed by Gardiner and Stone [74], which relies
on the accuracy of a Riemann solver, is the best for both
one-dimensional as well as multidimensional test problems.
We also performed simulations of a nonmagnetized

asymmetric binary neutron star merger in a dynamical
spacetime with the HLLC and HLLE solvers. We found that
spurious broadening of the neutron star surface during the
inspiral phase can be mitigated by employing the HLLC

solver. As a result, the less massive companion of the
binary is less subject to tidal elongation during the late
inspiral phase than when the HLLE solver is used. This
point is particularly important for deriving a high-precision
gravitational waveform during the late inspiral phase
because one has to compute the orbital evolution precisely,
i.e., excluding spurious numerical effects for this problem.
The solution with the HLLC solver also differs from that
with the HLLE solver in the subsequent postmerger
evolution. For example, the amount of dynamical ejecta
driven by the tidal interaction of the two stars and the
lifetime of the remnant massive neutron star are overesti-
mated when we employ the HLLE solver.
The neutron-rich dynamical ejecta and postmerger ejecta,

the latter of which is launched from the merger remnant by
an effective turbulent viscosity due to the magnetorotational
instability [45–47,49,50,78], will shine by means of radio-
active decay of r-process elements which have been freshly
synthesized in the ejecta (see, e.g., [14,16,130]). One of the
most important aims in the observation of binary neutron star
mergers is to observe this signal and to infer the binary
parameters by comparing the observational results with the
theoretical prediction from numerical relativity simulations.
Therefore, we conclude that employing a better solver (i.e.,
the HLLC solver rather than the HLLE solver) is crucial for
reliable modeling of electromagnetic counterparts from
binary neutron star mergers.
We also performed simulations of the binary neutron star

merger remnant, i.e., a black hole surrounded by a massive
torus, in the framework of neutrino-radiation magnetohy-
drodynamics. We embedded a purely poloidal magnetic-
field loop inside the torus and performed simulations with
the HLLD-CT_GS and HLLE-CT_HLLE solvers. We
found that (i) artificial magnetic-field dissipation is sup-
pressed, and (ii) a well-resolved magnetoturbulent state is
reproduced, when we employed the HLLD-CT_GS solver.
On the other hand, when we employed the dissipative
HLLE-CT_HLLE solver, the coherency of the magnetic-
field lines is artificially enhanced, resulting in the launch
of a powerful magnetic tower outflow due to magnetic

FIG. 27. Angular distribution of the Poynting flux on a sphere of r ≈ 50 km at t ≈ 103 ms with the HLLD-CT_GS solver (left) and the
HLLE-CT_HLLE solver (right).
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winding of this coherent poloidal field. The emergence
of a Poynting flux-dominated outflow from the black hole-
torus system could be a key ingredient for driving a
short gamma-ray burst from the compact binary merger
remnant [51]. Therefore, we conclude that employing the
HLLD solver paired with the constrained transport method
proposed by Gardiner and Stone [74] is crucial for reliable
modeling of the central engine of short gamma-ray bursts.
Finally, we comment on the Riemann solver for the

neutrino radiation field. In this work, we exclusively
employ an HLL-type Riemann solver for the radiation
field. In principle, it is possible to develop an advanced
Riemann solver like HLLC or HLLD for the neutrino-
radiation transfer, based on the formulation in Ref. [131].
This is beyond the scope of this paper, however. As a future
project, we plan to perform long-term simulations of binary
neutron star mergers and black hole-neutron star binary
mergers, employing the advanced Riemann solvers which
we have implemented in our code.
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APPENDIX A: TETRAD BASIS
IN THE y AND z DIRECTIONS

For convenience, we explicitly show the tetrad basis for
the Riemann problem in the y and z directions.

1. y direction

In the y direction, the contravariant components of the
tetrad basis are

eðt̂Þμ ¼ nμ; ðA1Þ

eðx̂Þμ ¼ Ĉð0; 1; 0; 0Þ; ðA2Þ

eðŷÞμ ¼ B̂ð0; γyiÞ; ðA3Þ

eðẑÞμ ¼ D̂ð0;−γxz; 0; γxxÞ; ðA4Þ

where

B̂ ¼ 1ffiffiffiffiffiffi
γyy

p ; ðA5Þ

Ĉ ¼ 1ffiffiffiffiffiffi
γxx

p ; ðA6Þ

D̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γxxðγxxγzz − γ2xzÞ

p : ðA7Þ

The covariant components of the tetrad basis are given by

eðt̂Þμ ¼ nμ; ðA8Þ

eðx̂Þμ ¼ Ĉðβx; γxiÞ; ðA9Þ
eðŷÞμ ¼ B̂ðβy; δiyÞ; ðA10Þ

eðẑÞμ ¼ D̂ðβzγxx − βxγxz; 0; γxxγyz − γxyγxz; γxxγzz − γ2xzÞ:
ðA11Þ

The components of the numerical flux at the y interface in
the Eulerian frame are

ðF̃y
0Þj;kþ1

2
;l ¼ ðDvyÞj;kþ1

2
;l

¼
�
α
�
eðt̂ÞyDþ eðŷÞyf̃

ðŷÞ
0

��
j;kþ1

2
;l
; ðA12Þ

ðF̃y
1Þj;kþ1

2
;l ¼ ðαTy

xÞj;kþ1
2
;l

¼
�
α
�
eðt̂Þyeðx̂ÞxJðx̂Þ þ eðŷÞyeðx̂Þxf̃

ðŷÞ
1

��
j;kþ1

2
;l
;

ðA13Þ

ðF̃y
2Þj;kþ1

2
;l ¼ ðαTy

yÞj;kþ1
2
;l

¼
�
α
�
eðt̂Þyeð{̂ÞyJð{̂Þ þ eðŷÞyeð{̂Þyf̃

ðŷÞ
i

��
j;kþ1

2
;l
;

ðA14Þ

ðF̃y
3Þj;kþ1

2
;l ¼ ðαTy

zÞj;kþ1
2
;l

¼
�
α
�
eðt̂Þyeð{̂ÞzJð{̂Þ þ eðŷÞyeð{̂Þzf̃

ðŷÞ
i

��
j;kþ1

2
;l
;

ðA15Þ

ðF̃y
4Þj;kþ1

2
;l ¼ ð−αTy

μnμÞj;kþ1
2
;l

¼
�
α
�
eðt̂ÞyρH þ eðŷÞyf̃

ðŷÞ
4

��
j;kþ1

2
;l
; ðA16Þ

ðF̃y
5Þj;kþ1

2
;l ¼ ðẼzÞj;kþ1

2
;l ¼ ðα�FxyÞj;kþ1

2
;l

¼
�
α
�
eðt̂Þyeð{̂ÞxB̄ð{̂Þ − eðt̂ÞxeðŷÞyB̄ðŷÞ

þ eðx̂ÞxeðŷÞyf̃
ðŷÞ
5 þ eðẑÞxeðŷÞyf̃

ðŷÞ
7

��
j;kþ1

2
;l
;

ðA17Þ
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ðF̃y
6Þj;kþ1

2
;l ¼ 0; ðA18Þ

ðF̃y
7Þj;kþ1

2
;l ¼ ð−ẼxÞj;kþ1

2
;l ¼ ðα�FzyÞj;kþ1

2
;l

¼
�
α
�
eðt̂Þyeð{̂ÞzB̄ð{̂Þ − eðt̂ÞzeðŷÞyB̄ðŷÞ

þ eðẑÞzeðŷÞyf̃
ðŷÞ
7

��
j;kþ1

2
;l
: ðA19Þ

The interface velocity is

vðŷÞinterface ¼
dŷ
dt̂

¼ βy

α
ffiffiffiffiffiffi
γyy

p : ðA20Þ

2. z direction

In the z direction, the contravariant components of the
tetrad basis are

eðt̂Þμ ¼ nμ; ðA21Þ

eðx̂Þμ ¼ D̂ð0; γyy;−γxy; 0Þ; ðA22Þ

eðŷÞμ ¼ Ĉð0; 0; 1; 0Þ; ðA23Þ

eðẑÞμ ¼ B̂ð0; γziÞ; ðA24Þ

where

B̂ ¼ 1ffiffiffiffiffiffi
γzz

p ; ðA25Þ

Ĉ ¼ 1ffiffiffiffiffiffi
γyy

p ; ðA26Þ

D̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γyyðγxxγyy − γ2xyÞ

q : ðA27Þ

The covariant components of the tetrad basis are

eðt̂Þμ ¼ nμ; ðA28Þ

eðx̂Þμ ¼ D̂ðβxγyy − βyγxy; γxxγyy − γ2xy; 0; γyyγxz − γyzγxyÞ;
ðA29Þ

eðŷÞμ ¼ Ĉðβy; γyiÞ; ðA30Þ

eðẑÞμ ¼ B̂ðβz; δizÞ: ðA31Þ

The components of the numerical flux at the z interface in
the Eulerian frame are given by

ðF̃z
0Þj;k;lþ1

2
¼ ðDvzÞj;k;lþ1

2

¼
�
α
�
eðt̂ÞzDþ eðẑÞzf̃

ðẑÞ
0

��
j;k;lþ1

2

; ðA32Þ

ðF̃z
1Þj;k;lþ1

2
¼ ðαTz

xÞj;k;lþ1
2

¼
�
α
�
eðt̂Þzeð{̂ÞxJð{̂Þ þ eðẑÞzeð{̂Þxf̃

ðẑÞ
i

��
j;k;lþ1

2

;

ðA33Þ

ðF̃z
2Þj;k;lþ1

2
¼ ðαTz

yÞj;k;lþ1
2

¼
�
α
�
eðt̂ÞzeðŷÞyJðŷÞ þ eðẑÞzeðŷÞyf̃

ðẑÞ
2

��
j;k;lþ1

2

;

ðA34Þ

ðF̃z
3Þj;k;lþ1

2
¼ ðαTz

zÞj;k;lþ1
2

¼
�
α
�
eðt̂Þzeð{̂ÞzJð{̂Þ þ eðẑÞzeð{̂Þzf̃

ðẑÞ
i

��
j;k;lþ1

2

;

ðA35Þ

ðF̃z
4Þj;k;lþ1

2
¼ ð−αTz

μnμÞj;k;lþ1
2

¼
�
α
�
eðt̂ÞzρH þ eðẑÞzf̃

ðẑÞ
4

��
j;k;lþ1

2

; ðA36Þ

ðF̃z
5Þj;k;lþ1

2
¼ ð−ẼyÞj;k;lþ1

2
¼ ðα�FxzÞj;k;lþ1

2

¼
�
α
�
eðt̂Þzeð{̂ÞxB̄ð{̂Þ − eðt̂ÞxeðẑÞzB̄ðẑÞ

þ eðx̂ÞxeðẑÞzf̃
ðẑÞ
5

��
j;k;lþ1

2

; ðA37Þ

ðF̃z
6Þj;k;lþ1

2
¼ ðẼxÞj;k;lþ1

2
¼ ðα�FyzÞj;k;lþ1

2

¼
�
α
�
eðt̂Þzeð{̂ÞyB̄ð{̂Þ − eðt̂ÞyeðẑÞzB̄ðẑÞ

þ eðx̂ÞyeðẑÞzf̃
ðẑÞ
5 þ eðŷÞyeðẑÞzf̃

ðẑÞ
6

��
j;k;lþ1

2

;

ðA38Þ

ðF̃z
7Þj;k;lþ1

2
¼ 0: ðA39Þ

The interface velocity is

vðẑÞinterface ¼
dẑ
dt̂

¼ βz

α
ffiffiffiffiffiffi
γzz

p : ðA40Þ
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APPENDIX B: COORDINATE
TRANSFORMATION TO THE MAXIMAL
TRUMPET BLACK HOLE PUNCTURE

SOLUTION

Bondi flow is usually described in Schwarzschild coor-
dinates. However, our numerical relativity code has a high
affinity with puncture coordinates because the solver for
Einstein’s equations handles a black hole with the moving
puncture gauge. In numerical relativity with this gauge
condition, black holes relax to a stationary solution in the
so-called limit hypersurface. This implies that the code test
should be done employing this special stationary hyper-
surface. To do this, one needs to seek a coordinate trans-
formation from the Schwarzschild coordinates to the
puncture coordinates (i.e., the coordinates of the limit
hypersurface). One simple way of doing this is to describe
a black hole as the maximal trumpet black hole puncture
solution described in Ref. [95]. In these coordinates, the
fluid quantities are well-behaved on the horizon.

1. Maximal trumpet black hole puncture

The stationary solution of the Schwarzschild spacetime
in the limiting hypersurface can be written by

ds2 ¼ −ðα2 − βRβ
RÞdt2 þ 2βRdtdRþ f−2dR2 þ R2dΩ2;

ðB1Þ

where

f ¼
�
1 −

2M
R

þ C2

R4

�
1=2

; ðB2Þ

α ¼ f; ðB3Þ

βR ¼ Cf
R2

: ðB4Þ

Here, C is the integration constant, and R is the circum-
ferential radius. A number of numerical relativity simu-
lations of a single black hole spacetime using the moving
puncture gauge showed that the numerical solution settles

down to a member of the family with C ¼ 3
ffiffi
3

p
M2

4
, which

has a limiting surface at R ¼ 3M=2 [94]. If we consider a
transformation of this solution into the isotropic coor-
dinates by identifying the spatial metric in both coor-
dinates as

f−2dR2 þ R2dΩ2 ¼ ψ4ðdr2 þ r2dΩ2Þ; ðB5Þ

then one may find a solution for r and ψ as [95]

r¼
�
2RþMþð4R2þ4MRþ3M2Þ1=2

4

	

×

� ð4þ3
ffiffiffi
2

p Þð2R−3MÞ
8Rþ6Mþ3ð8R2þ8MRþ6M2Þ1=2

	1= ffiffi
2

p

; ðB6Þ

ψ2 ¼ R
r
; ðB7Þ

where we assumed C ¼ 3
ffiffiffi
3

p
M2=4. The lapse function,

shift vector, and nonzero components of the extrinsic
curvature are given by

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

þ 27M4

16R4

s
; ðB8Þ

βr ¼ 3
ffiffiffi
3

p
M2r

4R3
; ðB9Þ

Krr ¼ −
6

ffiffiffi
3

p
M2ψ4

4R3
; ðB10Þ

Kθθ ¼
Kϕϕ

sin2 θ
¼ 3

ffiffiffi
3

p
M2

4R
: ðB11Þ

2. Velocity field and magnetic field of Bondi flow

The velocity field of Bondi flow in Schwarzschild
coordinates should be transformed into the isotropic
coordinates described in the previous section. The radial
component is obtained by

ur ¼ uR

ψ2f
; ðB12Þ

where uR is the radial velocity of Bondi flow in
Schwarzschild coordinates (see, e.g., Ref. [83]). The time
component is obtained by the normalization of the four
velocity:

ut ¼ −
Cψ2uR

RðR − 2MÞ

×

�
−1þ

�
1þ R3ðR − 2MÞ

C2ψ4ðuRÞ2 ðψ4ðuRÞ2 þ 1Þ
�

1=2
	
:

ðB13Þ

Note that the four velocity in these coordinates does not
exhibit pathological behavior on the horizon, which can be
confirmed by a Taylor expansion of Eq. (B13) near the
horizon [96]. Note also that the lower components of the
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four velocity, ut and ur, are well-behaved at the horizon
because the metric has a regular form in the maximal
trumpet geometry (B5).
For magnetized Bondi flow, the radial component of the

magnetic field in the maximal trumpet geometry is given by

Br ¼ BR

ψ2f
; ðB14Þ

where BR is the radial component of the magnetic field
in Schwarzschild coordinates. In the case of a purely
radial magnetic field, the divergence-free condition
(2.15) requires the radial component of the magnetic field
in Schwarzschild coordinates be

BR ∝ 1=
ffiffiffi
γ

p
∝

f
R2

: ðB15Þ

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM,
INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride
ImagerTeam, IPN, Insight-Hxmt,ANTARES,Swift,AGILE
Team, 1M2H Team, Dark Energy Camera GW-EM, DES,
DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las
Cumbres Observatory Group, OzGrav, DWF (DeeperWider
Faster Program), AST3, CAASTRO, VINROUGE,
MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO,
TTU-NRAO, NuSTAR, Pan-STARRS,MAXI Team, TZAC
Consortium, KU, Nordic Optical Telescope, ePESSTO,
GROND, Texas Tech University, SALT Group, TOROS,
BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S.,
LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI
Team, Pi of Sky, Chandra Team at McGill University,
DFN, ATLAS Telescopes, High Time Resolution Universe
Survey, RIMAS, RATIR, SKA South Africa/MeerKAT
Collaborations), Astrophys. J. Lett. 848, L12 (2017).

[3] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 9, 011001 (2019).

[4] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 121, 161101 (2018).

[5] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,
and C. M. Biwer, Phys. Rev. Lett. 121, 091102 (2018);
121, 259902(E) (2018).

[6] The precise value of Λ̃ depends on the details of the
analysis.

[7] A. Goldstein et al., Astrophys. J. Lett. 848, L14 (2017).
[8] V. Savchenko et al., Astrophys. J. Lett. 848, L15 (2017).
[9] K. P. Mooley, A. T. Deller, O. Gottlieb, E. Nakar, G.

Hallinan, S. Bourke, D. A. Frail, A. Horesh, A. Corsi,
and K. Hotokezaka, Nature (London) 561, 355 (2018).

[10] B. Paczynski, Astrophys. J. Lett. 308, L43 (1986).
[11] J. Goodman, Astrophys. J. Lett. 308, L47 (1986).
[12] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Nature

(London) 340, 126 (1989).
[13] R. Narayan, B. Paczynski, and T. Piran, Astrophys. J. Lett.

395, L83 (1992).
[14] B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E.

Quataert, A. Arcones, D. Kasen, R. Thomas, P. Nugent,
I. V. Panov, and N. T. Zinner, Mon. Not. R. Astron. Soc.
406, 2650 (2010).

[15] J. M. Lattimer and D. N. Schramm, Astron. Phys. J. 192,
L145 (1974).

[16] S. Wanajo, Y. Sekiguchi, N. Nishimura, K. Kiuchi, K.
Kyutoku, and M. Shibata, Astrophys. J. Lett. 789, L39
(2014).

[17] M. Tanaka and K. Hotokezaka, Astrophys. J. 775, 113
(2013).

[18] J. Barnes and D. Kasen, Astrophys. J. 775, 18 (2013).
[19] I. Arcavi et al., Nature (London) 551, 64 (2017).
[20] R. Chornock et al., Astrophys. J. Lett. 848, L19 (2017).
[21] D. A. Coulter et al., Science 358, 1556 (2017).
[22] P. S. Cowperthwaite et al., Astrophys. J. Lett. 848, L17

(2017).
[23] M. R. Drout et al., Science 358, 1570 (2017).
[24] D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E.

Ramirez-Ruiz, Nature (London) 551, 80 (2017).
[25] M. M. Kasliwal et al., Science 358, 1559 (2017).
[26] C. D. Kilpatrick et al., Science 358, 1583 (2017).
[27] C. McCully et al., Astrophys. J. Lett. 848, L32 (2017).
[28] M. Nicholl et al., Astrophys. J. Lett. 848, L18 (2017).
[29] B. J. Shappee et al., Science 358, 1574 (2017).
[30] S. J. Smartt et al., Nature (London) 551, 75 (2017).
[31] M. Soares-Santos et al. (DES,Dark EnergyCameraGW-EM

Collaborations), Astrophys. J. Lett. 848, L16 (2017).
[32] M. Tanaka et al., Publ. Astron. Soc. Jpn. 69, psx12 (2017).
[33] N. R. Tanvir et al., Astrophys. J. Lett. 848, L27 (2017).
[34] B. P. Abbott et al. (LIGO Scientific, Virgo Collaboration),

Astrophys. J. Lett. 892, L3 (2020).
[35] R. Abbott et al. (LIGO Scientific, Virgo Collaboration),

Phys. Rev. X 11, 021053 (2021).
[36] N. Farrow, X.-J. Zhu, and E. Thrane, Astrophys. J. 876, 18

(2019).
[37] K. Kyutoku, S. Fujibayashi, K. Hayashi, K. Kawaguchi, K.

Kiuchi, M. Shibata, and M. Tanaka, Astrophys. J. Lett.
890, L4 (2020).

[38] R. Dudi, A. Adhikari, B. Brügmann, T. Dietrich, K.
Hayashi, K. Kawaguchi, K. Kiuchi, K. Kyutoku, M.
Shibata, and W. Tichy, Phys. Rev. D 106, 084039 (2022).

[39] G. Hosseinzadeh et al., Astrophys. J. Lett. 880, L4 (2019).
[40] M.W. Coughlin et al., Astrophys. J. Lett. 885, L19 (2019).
[41] M.W. Coughlin, T. Dietrich, S. Antier, M. Bulla, F.

Foucart, K. Hotokezaka, G. Raaijmakers, T. Hinderer,
and S. Nissanke, Mon. Not. R. Astron. Soc. 492, 863
(2020).

IMPLEMENTATION OF ADVANCED RIEMANN SOLVERS IN A … PHYS. REV. D 106, 124041 (2022)

124041-39

https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.121.259902
https://doi.org/10.3847/2041-8213/aa8f41
https://doi.org/10.3847/2041-8213/aa8f94
https://doi.org/10.1038/s41586-018-0486-3
https://doi.org/10.1086/184740
https://doi.org/10.1086/184741
https://doi.org/10.1038/340126a0
https://doi.org/10.1038/340126a0
https://doi.org/10.1086/186493
https://doi.org/10.1086/186493
https://doi.org/10.1111/j.1365-2966.2010.16864.x
https://doi.org/10.1111/j.1365-2966.2010.16864.x
https://doi.org/10.1086/181612
https://doi.org/10.1086/181612
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1088/0004-637X/775/2/113
https://doi.org/10.1088/0004-637X/775/2/113
https://doi.org/10.1088/0004-637X/775/1/18
https://doi.org/10.1038/nature24291
https://doi.org/10.3847/2041-8213/aa905c
https://doi.org/10.1126/science.aap9811
https://doi.org/10.3847/2041-8213/aa8fc7
https://doi.org/10.3847/2041-8213/aa8fc7
https://doi.org/10.1126/science.aaq0049
https://doi.org/10.1038/nature24453
https://doi.org/10.1126/science.aap9455
https://doi.org/10.1126/science.aaq0073
https://doi.org/10.3847/2041-8213/aa9111
https://doi.org/10.3847/2041-8213/aa9029
https://doi.org/10.1126/science.aaq0186
https://doi.org/10.1038/nature24303
https://doi.org/10.3847/2041-8213/aa9059
https://doi.org/10.1093/pasj/psx121
https://doi.org/10.3847/2041-8213/aa90b6
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.3847/1538-4357/ab12e3
https://doi.org/10.3847/1538-4357/ab12e3
https://doi.org/10.3847/2041-8213/ab6e70
https://doi.org/10.3847/2041-8213/ab6e70
https://doi.org/10.1103/PhysRevD.106.084039
https://doi.org/10.3847/2041-8213/ab271c
https://doi.org/10.3847/2041-8213/ab4ad8
https://doi.org/10.1093/mnras/stz3457
https://doi.org/10.1093/mnras/stz3457


[42] https://www.ligo.org/scientists/GWEMalerts.php.
[43] M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi,

K. Kyutoku, Y. Sekiguchi, and M. Tanaka, Phys. Rev. D
96, 123012 (2017).

[44] S. Fujibayashi, K. Kiuchi, N. Nishimura, Y. Sekiguchi, and
M. Shibata, Astrophys. J. 860, 64 (2018).

[45] S. Fujibayashi, M. Shibata, S. Wanajo, K. Kiuchi, K.
Kyutoku, and Y. Sekiguchi, Phys. Rev. D 102, 123014
(2020).

[46] S. Fujibayashi, S. Wanajo, K. Kiuchi, K. Kyutoku, Y.
Sekiguchi, and M. Shibata, Astrophys. J. 901, 122 (2020).

[47] S. Fujibayashi, M. Shibata, S. Wanajo, K. Kiuchi, K.
Kyutoku, and Y. Sekiguchi, Phys. Rev. D 101, 083029
(2020).

[48] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, and M. Shibata,
Phys. Rev. D 97, 124039 (2018).

[49] I. M. Christie, A. Lalakos, A. Tchekhovskoy, R.
Fernández, F. Foucart, E. Quataert, and D. Kasen, Mon.
Not. R. Astron. Soc. 490, 4811 (2019).

[50] R. Fernández, A. Tchekhovskoy, E. Quataert, F. Foucart,
and D. Kasen, Mon. Not. R. Astron. Soc. 482, 3373 (2019).

[51] K. Hayashi, S. Fujibayashi, K. Kiuchi, K. Kyutoku, Y.
Sekiguchi, and M. Shibata, Phys. Rev. D 106, 023008
(2022).

[52] S. A. Balbus and J. F. Hawley, Rev.Mod. Phys. 70, 1 (1998).
[53] E. F. Toro, Riemann Solvers and Numerical Methods

(Springer Science & Business Media, Berlin, Heidelberg,
2013).

[54] B. Giacomazzo and L. Rezzolla, J. Fluid Mech. 562, 223
(2006).

[55] A. Harten, P. Lax, and B. van Leer, SIAM Rev. 25, 35
(1983).

[56] D. Radice, S. Bernuzzi, A. Perego, and R. Haas, Mon. Not.
R. Astron. Soc. 512, 1499 (2022).

[57] S. Bernuzzi and T. Dietrich, Phys. Rev. D 94, 064062
(2016).

[58] E. R. Most, L. J. Papenfort, and L. Rezzolla, Mon. Not. R.
Astron. Soc. 490, 3588 (2019).

[59] P. Mösta, B. C. Mundim, J. A. Faber, R. Haas, S. C. Noble,
T. Bode, F. Löffler, C. D. Ott, C. Reisswig, and E.
Schnetter, Classical Quantum Gravity 31, 015005 (2014).

[60] Z. B. Etienne, V. Paschalidis, R. Haas, P. Mösta, and S. L.
Shapiro, Classical Quantum Gravity 32, 175009 (2015).

[61] D. Viganò, R. Aguilera-Miret, F. Carrasco, B. Miñano, and
C. Palenzuela, Phys. Rev. D 101, 123019 (2020).

[62] F. Cipolletta, J. V. Kalinani, E. Giangrandi, B.
Giacomazzo, R. Ciolfi, L. Sala, and B. Giudici, Classical
Quantum Gravity 38, 085021 (2021).

[63] F. Foucart et al., Phys. Rev. D 103, 064007 (2021).
[64] L. Del Zanna, N. Bucciantini, and P. Londrillo, Astron.

Astrophys. 400, 397 (2003).
[65] A. Kurganov and E. Tadmor, J. Comput. Phys. 160, 241

(2000).
[66] N. Deppe et al., Phys. Rev. D 105, 123031 (2022).
[67] A. Mignone, M. Ugliano, and G. Bodo, Mon. Not. R.

Astron. Soc. 393, 1141 (2009).
[68] E. F. Toro, M. Spruce, and W. Speares, Shock Waves 4, 25

(1994).
[69] L. E. Held and H. N. Latter, Mon. Not. R. Astron. Soc.

480, 4979 (2018).

[70] D. Radice, L. Rezzolla, and F. Galeazzi, Mon. Not. R.
Astron. Soc. 437, L46 (2014).

[71] K. Kiuchi, K. Kyutoku, and M. Shibata, Phys. Rev. D 86,
064008 (2012).

[72] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata,
Prog. Theor. Exp. Phys. 2012, 01A304 (2012).

[73] A. Mignone and G. Bodo, Mon. Not. R. Astron. Soc. 364,
126 (2005).

[74] T. A. Gardiner and J. M. Stone, J. Comput. Phys. 227,
4123 (2008).

[75] A. Mignone and L. Del Zanna, J. Comput. Phys. 424,
109748 (2021).

[76] M. Shibata, Numerical Relativity (World Scientific Pub-
lishing Company, Singapore, 2016).

[77] Y. Sekiguchi, Prog. Theor. Phys. 124, 331 (2010).
[78] S. Fujibayashi, Y. Sekiguchi, K. Kiuchi, and M. Shibata,

Astrophys. J. 846, 114 (2017).
[79] M. Shibata, K. Kiuchi, Y.-i. Sekiguchi, and Y. Suwa, Prog.

Theor. Phys. 125, 1255 (2011).
[80] J. A. Font, Living Rev. Relativity 6, 4 (2003).
[81] C. R. Evans and J. F. Hawley, Astron. Phys. J 332, 659

(1988).
[82] M. Shibata and Y.-i. Sekiguchi, Phys. Rev. D 72, 044014

(2005).
[83] C. J. White, J. M. Stone, and C. F. Gammie, Astrophys. J.

Suppl. Ser. 225, 22 (2016).
[84] C. F. Gammie, J. C. McKinney, and G. Toth, Astrophys. J.

589, 444 (2003).
[85] In Ref. [71], we employed a vertex-centered grid structure.

We updated the interpolation scheme of the metric and
fluid at the refinement boundary for cell-centered grid
structure for a simulation in a dynamical spacetime.

[86] P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174
(1984).

[87] G. Mattia and A. Mignone, Mon. Not. R. Astron. Soc. 510,
481 (2021).

[88] M. Brio and C. C. Wu, J. Comput. Phys. 75, 400 (1988).
[89] W. F. Noh, J. Comput. Phys. 72, 78 (1987).
[90] L. D. Zanna and N. Bucciantini, Astron. Astrophys. 390,

1177 (2002).
[91] S. Miranda-Aranguren, M. A. Aloy, and T. Rembiasz,

Mon. Not. R. Astron. Soc. 476, 3837 (2018).
[92] N. Bucciantini and L. Del Zanna, Astron. Astrophys. 454,

393 (2006).
[93] J. F. Hawley, L. L. Smarr, and J. R. Wilson, Astron. Phys. J.

277, 296 (1984).
[94] F. Estabrook, H. Wahlquist, S. Christensen, B. Dewitt, L.

Smarr, and E. Tsiang, Phys. Rev. D 7, 2814 (1973).
[95] T. W. Baumgarte and S. G. Naculich, Phys. Rev. D 75,

067502 (2007).
[96] A. J. Miller and T.W. Baumgarte, Classical Quantum

Gravity 34, 035007 (2017).
[97] The pathological behavior at the horizon is avoidable if one

employs Kerr-Schild coordinates. However, we employ the
maximal trumpet geometry in this test problem because of
its high compatibility with our numerical relativity code.

[98] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D
82, 084031 (2010).

[99] Note that our HLLE solver (which was the only Riemann
solver present in our original formulation), does not

KIUCHI, HELD, SEKIGUCHI, and SHIBATA PHYS. REV. D 106, 124041 (2022)

124041-40

https://www.ligo.org/scientists/GWEMalerts.php
https://www.ligo.org/scientists/GWEMalerts.php
https://www.ligo.org/scientists/GWEMalerts.php
https://www.ligo.org/scientists/GWEMalerts.php
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.1103/PhysRevD.96.123012
https://doi.org/10.3847/1538-4357/aabafd
https://doi.org/10.1103/PhysRevD.102.123014
https://doi.org/10.1103/PhysRevD.102.123014
https://doi.org/10.3847/1538-4357/abafc2
https://doi.org/10.1103/PhysRevD.101.083029
https://doi.org/10.1103/PhysRevD.101.083029
https://doi.org/10.1103/PhysRevD.97.124039
https://doi.org/10.1093/mnras/stz2552
https://doi.org/10.1093/mnras/stz2552
https://doi.org/10.1093/mnras/sty2932
https://doi.org/10.1103/PhysRevD.106.023008
https://doi.org/10.1103/PhysRevD.106.023008
https://doi.org/10.1103/RevModPhys.70.1
https://doi.org/10.1017/S0022112006001145
https://doi.org/10.1017/S0022112006001145
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1093/mnras/stac589
https://doi.org/10.1093/mnras/stac589
https://doi.org/10.1103/PhysRevD.94.064062
https://doi.org/10.1103/PhysRevD.94.064062
https://doi.org/10.1093/mnras/stz2809
https://doi.org/10.1093/mnras/stz2809
https://doi.org/10.1088/0264-9381/31/1/015005
https://doi.org/10.1088/0264-9381/32/17/175009
https://doi.org/10.1103/PhysRevD.101.123019
https://doi.org/10.1088/1361-6382/abebb7
https://doi.org/10.1088/1361-6382/abebb7
https://doi.org/10.1103/PhysRevD.103.064007
https://doi.org/10.1051/0004-6361:20021641
https://doi.org/10.1051/0004-6361:20021641
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1103/PhysRevD.105.123031
https://doi.org/10.1111/j.1365-2966.2008.14221.x
https://doi.org/10.1111/j.1365-2966.2008.14221.x
https://doi.org/10.1007/BF01414629
https://doi.org/10.1007/BF01414629
https://doi.org/10.1093/mnras/sty2097
https://doi.org/10.1093/mnras/sty2097
https://doi.org/10.1093/mnrasl/slt137
https://doi.org/10.1093/mnrasl/slt137
https://doi.org/10.1103/PhysRevD.86.064008
https://doi.org/10.1103/PhysRevD.86.064008
https://doi.org/10.1093/ptep/pts011
https://doi.org/10.1111/j.1365-2966.2005.09546.x
https://doi.org/10.1111/j.1365-2966.2005.09546.x
https://doi.org/10.1016/j.jcp.2007.12.017
https://doi.org/10.1016/j.jcp.2007.12.017
https://doi.org/10.1016/j.jcp.2020.109748
https://doi.org/10.1016/j.jcp.2020.109748
https://doi.org/10.1143/PTP.124.331
https://doi.org/10.3847/1538-4357/aa8039
https://doi.org/10.1143/PTP.125.1255
https://doi.org/10.1143/PTP.125.1255
https://doi.org/10.12942/lrr-2003-4
https://doi.org/10.1086/166684
https://doi.org/10.1086/166684
https://doi.org/10.1103/PhysRevD.72.044014
https://doi.org/10.1103/PhysRevD.72.044014
https://doi.org/10.3847/0067-0049/225/2/22
https://doi.org/10.3847/0067-0049/225/2/22
https://doi.org/10.1086/374594
https://doi.org/10.1086/374594
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1093/mnras/stab3373
https://doi.org/10.1093/mnras/stab3373
https://doi.org/10.1016/0021-9991(88)90120-9
https://doi.org/10.1016/0021-9991(87)90074-X
https://doi.org/10.1051/0004-6361:20020776
https://doi.org/10.1051/0004-6361:20020776
https://doi.org/10.1093/mnras/sty419
https://doi.org/10.1051/0004-6361:20054491
https://doi.org/10.1051/0004-6361:20054491
https://doi.org/10.1086/161696
https://doi.org/10.1086/161696
https://doi.org/10.1103/PhysRevD.7.2814
https://doi.org/10.1103/PhysRevD.75.067502
https://doi.org/10.1103/PhysRevD.75.067502
https://doi.org/10.1088/1361-6382/aa51fe
https://doi.org/10.1088/1361-6382/aa51fe
https://doi.org/10.1103/PhysRevD.82.084031
https://doi.org/10.1103/PhysRevD.82.084031


employ the tetrad transformation, but is instead formulated
directly in a curved spacetime. See Ref. [82] for details.

[100] LORENE, http://www.lorene.obspm.fr/.
[101] E. Gourgoulhon, P. Grandclement, K. Taniguchi, J.-A.

Marck, and S. Bonazzola, Phys. Rev. D 63, 064029 (2001).
[102] K. Taniguchi and M. Shibata, Astrophys. J. Suppl. Ser.

188, 187 (2010).
[103] K. Taniguchi and E. Gourgoulhon, Phys. Rev. D 66,

104019 (2002).
[104] K. Taniguchi and E. Gourgoulhon, Phys. Rev. D 68,

124025 (2003).
[105] K. Kyutoku, M. Shibata, and K. Taniguchi, Phys. Rev. D

90, 064006 (2014).
[106] M. Shibata and N. Takashi, Phys. Rev. D 52, 5428 (1995).
[107] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,

024007 (1998).
[108] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[109] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).
[110] D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy,

and B. Bruegmann, Phys. Rev. D 88, 084057 (2013).
[111] A.W. Steiner, M. Hempel, and T. Fischer, Astrophys. J.

774, 17 (2013).
[112] F. X. Timmes and F. D. Swesty, Astrophys. J. Suppl. Ser.

126, 501 (2000).
[113] K. S. Thorne, Mon. Not. R. Astron. Soc. 194, 439 (1981).
[114] A. Suresh and H. T. Huynh, J. Comput. Phys. 136, 83

(1997).
[115] L. Baiotti and L. Rezzolla, Rep. Prog. Phys. 80, 096901

(2017).

[116] The methods we use to estimate the non-dimensional spin
and the mass of the black hole are the same as in
Ref. [117].

[117] K. Hotokezaka, K. Kiuchi, K. Kyutoku, H. Kawa, Y. i.
Sekiguchi, M. Shibata, and K. Taniguchi, Phys. Rev. D 87,
024001 (2013).

[118] We employ the geodesic criterion ut > −1 to identify
gravitationally bound fluid (conversely, ut < −1 corre-
sponds to unbound fluid elements) [117].

[119] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, and K.
Taniguchi, Phys. Rev. D 93, 124046 (2016).

[120] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata,
Phys. Rev. Lett. 107, 051102 (2011).

[121] S. Fujibayashi, K. Kiuchi, S. Wanajo, K. Kyutoku, Y.
Sekiguchi, and M. Shibata, arXiv:2205.05557.

[122] D. Balsara, J. Comput. Phys. 174, 614 (2001).
[123] D. Balsara, J. Comput. Phys. 228, 5040 (2009).
[124] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D

82, 084031 (2010).
[125] K. Kiuchi, M. Shibata, and S. Yoshida, Phys. Rev. D 78,

024029 (2008).
[126] S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).
[127] J. F. Hawley, C. F. Gammie, and S. A. Balbus, Astron.

Phys. J. 440, 742 (1995).
[128] A. H. Barnett, J. F. Magland, and L. a. Klinteberg, arXiv:

1808.06736.
[129] A. H. Barnett, arXiv:2001.09405.
[130] B. D. Metzger and R. Fernández, Mon. Not. R. Astron.

Soc. 441, 3444 (2014).
[131] M. Shibata, K. Kiuchi, Y. Sekiguchi, and Y. Suwa, Prog.

Theor. Phys. 125, 1255 (2011).

IMPLEMENTATION OF ADVANCED RIEMANN SOLVERS IN A … PHYS. REV. D 106, 124041 (2022)

124041-41

http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
https://doi.org/10.1103/PhysRevD.63.064029
https://doi.org/10.1088/0067-0049/188/1/187
https://doi.org/10.1088/0067-0049/188/1/187
https://doi.org/10.1103/PhysRevD.66.104019
https://doi.org/10.1103/PhysRevD.66.104019
https://doi.org/10.1103/PhysRevD.68.124025
https://doi.org/10.1103/PhysRevD.68.124025
https://doi.org/10.1103/PhysRevD.90.064006
https://doi.org/10.1103/PhysRevD.90.064006
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevD.88.084057
https://doi.org/10.1088/0004-637X/774/1/17
https://doi.org/10.1088/0004-637X/774/1/17
https://doi.org/10.1086/313304
https://doi.org/10.1086/313304
https://doi.org/10.1093/mnras/194.2.439
https://doi.org/10.1006/jcph.1997.5745
https://doi.org/10.1006/jcph.1997.5745
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1088/1361-6633/aa67bb
https://doi.org/10.1103/PhysRevD.87.024001
https://doi.org/10.1103/PhysRevD.87.024001
https://doi.org/10.1103/PhysRevD.93.124046
https://doi.org/10.1103/PhysRevLett.107.051102
https://arXiv.org/abs/2205.05557
https://doi.org/10.1006/jcph.2001.6917
https://doi.org/10.1016/j.jcp.2009.03.038
https://doi.org/10.1103/PhysRevD.82.084031
https://doi.org/10.1103/PhysRevD.82.084031
https://doi.org/10.1103/PhysRevD.78.024029
https://doi.org/10.1103/PhysRevD.78.024029
https://doi.org/10.1086/170270
https://doi.org/10.1086/175311
https://doi.org/10.1086/175311
https://arXiv.org/abs/1808.06736
https://arXiv.org/abs/1808.06736
https://arXiv.org/abs/2001.09405
https://doi.org/10.1093/mnras/stu802
https://doi.org/10.1093/mnras/stu802
https://doi.org/10.1143/PTP.125.1255
https://doi.org/10.1143/PTP.125.1255

