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We construct a bulk spacetime from a boundary conformal field theory,OðNÞ free scalar model, at finite
temperature using a smearing technique, called a conformal flow. The bulk metric is constructed from the
thermal two-point function of the smeared boundary elementary field in such a way that it can be
interpreted as an information metric associated with the boundary thermofield double state. Near the
boundary (UV region), an asymptotically anti–de Sitter (AdS) spacetime is obtained with a leading order
perturbation of scalar mode. Based on the falloff behavior of the perturbations and the OðNÞ symmetry in
the conformal field theory, we argue that the corresponding bulk theory is a modified gravity with scalar
mode such as fðRÞ gravity rather than Einstein’s general relativity coupled minimally to matter fields.
Moving to the Einstein frame, we show that the metric is asymptotically the same as the AdS black brane
solution. On the other hand, deep in the bulk (IR region), the spacetime turns out to be conformally
equivalent to the near horizon limit of AdS extremal black brane, though it is no longer a solution of fðRÞ
gravity, and hence more general classes of modified gravity need to be considered.
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I. INTRODUCTION

The AdS=CFT correspondence [1–3] tells us that any
excitation on the (dþ 1)-dimensional anti–de Sitter (AdS)
spacetime has a dual description with an operator on the
d-dimensional conformal field theory (CFT). Although it is
conjectured based on a specific duality associated with
D-branes in superstring theory, a generic CFT is expected
to have a dual theory on the AdS because of the isomorphism
between the symmetry groups of the two theories.
This isomorphism motivates ones to explore the pos-

sibility of constructing local bulk field Φ̂ by smearing of a
boundary single trace operator Ŝ [4] where

lim
z→0

Φ̂ ¼ zΔS × Ŝ ð1Þ

holds in the AdS boundary limit characterized by z → 0

with ΔS being conformal dimension of Ŝ. An explicit
construction is given by Hamilton, Kabat, Lifschytz, and
Lowe for the large N limit where the bulk fields become
free [5,6]; interacting cases are also studied in [7]. In this
approach, since the operators to be smeared are singlet,
their conformal dimension is implicitly assumed to be
greater than d − 1 in the original papers; and later in [8], the
range of allowed conformal dimension was extended down
to d=2 by analytic continuation, see also [9,10].
There exists a different approach to the bulk reconstruction

using a smearing method with flow equation [11–16], where
the elementary field rather than the singlet operators in the
boundary theory is smeared. The bulk spacetime is con-
structed from the CFT in such a way that the metric can be
interpreted as an informationmetric associatedwith a state of
the boundary [15]. This approachmanifests the emergence of
the bulk spacetime itself, including the AdS background.
In [16], a special form of the flow equation is proposed to
reproduce the relation that summarizes the AdS=CFT
correspondence, conjectured by Gubser, Klebanov, and
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Polyakov [2] and Witten [3] (GKP-Witten). The use of this
special flow equationmaymake it possible to discuss what is
essential to the correspondence from a different perspective
in the flow equation approach; the bulk reconstruction is
based on the smeared elementary field whose conformal
dimension is less than d=2, and thus, the flow approach is
complementary to the one by Hamilton, Kabat, Lifschytz,
and Lowe.
The flow method has been applied to a case with a

thermal state of the boundary CFT in [17] and the resultant
bulk spacetime was compared with the AdS black brane,
which is the expected dual to the thermalized CFT in the
standard AdS=CFT scenario. However, in that work, a
conventional (the simplest) flow equation was employed
and, in addition, the definition of the bulk metric lacks the
information-theoretical interpretation. Besides, the com-
parison with the black brane is made in a rather qualitative
way. In the present paper, we therefore revisit the same
setup but with the special flow equation proposed in [16]
and define the bulk geometry in such a way that it can be
seen as an information geometry. Then, we compare its
asymptotic behavior with the AdS black brane.
A short summary of results in this paper is as follows.

(1) The bulk space constructed to the thermal state becomes
the asymptotic AdS in dþ 1 dimensions near boundary
(UV), while it approaches to the AdS space in d dimensions
deep in the bulk (IR) in accordance with the dimensional
reduction of boundary CFT at high temperature. (2) More
precisely, themetric in the IR region describes AdS2 × Rd−1.
(3) The leading deviations of the metric from the AdS in the
UV region contain both scalar and tensor modes, which
satisfies the equations ofmotion for the fðRÞ gravity. (4) The
metric deviations in the UV region describes the black brane
solution in the Einstein frame. (5) Relations between bulk
modes and boundary operator similar to Eq. (1) are derived
for scalar and tensor modes.
This paper is organized as follows. In Sec. II, we briefly

review the flow method for the boundary CFT in the
vacuum state. We show how the bulk metric is obtained
from the flowed elementary field and how it is interpreted
as a quantum information metric. It is also discussed that
the GKP-Witten relation is constructed for a special choice
of the flow equation, which converts the boundary con-
formal symmetry to the bulk AdS isometry. In Sec. III, we
generalize the formulation to the case with the thermal CFT.
We normalized the flowed field in such a way that the bulk
metric can be interpreted as a quantum information metric
even for the thermal state. We then explicitly compute the
bulk metric and discuss its asymptotic behaviors both in
UV and IR. In Sec. IV, we focus on the boundary-bulk
correspondence in the UV region. We show that the bulk
theory is consistent with the fðRÞ gravity, and the metric
perturbations in the Einstein frame reproduce those of the
AdS black brane. We also extract explicit relations between
propagating modes in the bulk and operators in the

boundary CFT. We conclude our paper in Sec. V. Some
technical details are presented in the Appendices.

II. BULK RECONSTRUCTION BY FLOW
EQUATIONS AND THE CONFORMAL FLOW

In this section, we review the bulk reconstruction from a
boundary CFT with a smearing technique based on a flow
equation. This method does not assume an existence of the
AdS spacetime a priori. The bulk metric is constructed
from the smeared CFT fields and can be interpreted as a
quantum information metric for a mixed state. As discussed
below, with a certain choice of the flow equation, the GKP-
Witten relation is reproduced.
As a boundary CFT, we consider a OðNÞ scalar field

φ̂aðxÞ with a ¼ 1; 2;…; N in a d-dimensional Euclidean
spacetime. In this review part, we do not specify the
corresponding action, but only assume that a 2-pt function
behaves as

hφ̂aðxÞφ̂bðx0Þi0 ¼ δab
C0

jx − x0j2Δ ¼ δabω

Z
ddp
ð2πÞd

eipðx−x0Þ

ðp2ÞΔ̄ ;

ð2Þ

where C0 being a constant, Δ is a conformal dimension of
φ̂, and

ω ≔ C0

ΓðΔ̄Þ22Δ̄πd
2

ΓðΔÞ ; Δ̄ ≔
d
2
− Δ: ð3Þ

The bracket with subscript 0 denotes an expectation value in
the vacuum state: hÔi0 ≔ h0jÔj0i. The integer N should be
large to justify a classical picture of a bulk curved spacetime.

A. Emergent dimension with smearing

A flowed field operator ϕ̂aðx; ηÞ is introduced as an
extension of the boundary operator φ̂a with respect to a
“flow time” η ≥ 0 to satisfy a flow equation as

ð−αη∂2ηþβ∂ηÞϕ̂aðx;ηÞ¼ ∂
2ϕ̂aðx;ηÞ; ϕ̂aðx;0Þ¼ φ̂aðxÞ;

ð4Þ

where α ≥ 0 and β are real parameters. A solution to the
above flow equation is written in an integral form as

ϕ̂aðx; ηÞ ¼
Z

ddySðx − y; ηÞφ̂aðyÞ

¼
Z

ddp
ð2πÞd e

ipxS̃ðp; ηÞ ˆ̃φaðpÞ; ð5Þ

which may be regarded as a smearing of φa with a kernel S.
Indeed, for a simplest choice that α ¼ 0 and β ¼ 1, the
kernel represents a Gaussian smearing as
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Sðx; ηÞ ¼ 1

ð4πηÞd2 exp f−jxj
2=4ηg: ð6Þ

A kernel for a solution to the flow equation (4) can be
obtained in the Fourier space as

S̃ðp; ηÞ ¼ 2

ΓðνÞ
� ffiffiffi

η

α

r
p
�ν

Kν

�
2

ffiffiffi
η

α

r
p
�
; ð7Þ

where ν ≔ 1þ β=α, and Kν is the modified Bessel function
of the second kind, which leads to

Sðx; ηÞ ¼ Γðνþ d
2
Þ

ΓðνÞ
�

α

4πη

�d
2

�
1þ αx2

4η

�−ν−d
2

: ð8Þ

Thanks to the smearing by the flow equation, operators
with η > 0 do not have any contact singularities. Note that
η’s mass dimension is −2 and it turns out that 1=

ffiffiffi
η

p
plays

the role of UV cutoff. In this sense, we refer to η → 0 as the
UV limit and η → ∞ as the IR limit.
Let us introduce a normalized field operator

σ̂a0ðXÞ≔
ϕ̂aðx;ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ̂2ðx;ηÞi0

q ; ϕ̂2ðx;ηÞ≔
XN
a¼1

ϕ̂aðx;ηÞϕ̂aðx;ηÞ

ð9Þ

where XM ¼ ðxμ; zÞ with z ∝ ffiffiffi
η

p
.1 By definition,

hσaðXÞσbðXÞi0 ¼ δab=N. We then define a bulk metric
operator

ĝMNðXÞ ≔ l2 ×
XN
a¼1

∂σ̂a0ðXÞ
∂XM

∂σ̂a0ðXÞ
∂XN ; ð10Þ

where l is an arbitrary length scale. A vacuum expectation
value (VEV) of the metric operator,

gvacMNðXÞ ≔ hĝMNðXÞi0 ¼ l2 ×
∂

∂XM

∂

∂X0N G0ðX;X0Þ
����
X¼X0

ð11Þ

with the two-point function

G0ðX;X0Þ ≔
XN
a¼1

hσ̂a0ðx; ηÞσ̂a0ðx0; η0Þi0; ð12Þ

can be interpreted as the Bures information metric [18] in
the following way. In general, an infinitesimal distance
between mixed density operators is defined by

d2ðρ0; ρ0 þ dρ0Þ ≔
1

2
Trfdρ0Ĝg; ð13Þ

where an operator Ĝ satisfies ρ0Ĝþ Ĝρ0 ¼ dρ0. In the
present case, the mixed density operator is given by [13]

ρ0ðXÞ ≔
XN
a¼1

σ̂a0ðx; ηÞj0ih0jσ̂a0ðx; ηÞ;

ρ0ðXÞρ0ðXÞ ¼ ρ0ðXÞ=N; ð14Þ

from which we read off Ĝ ¼ Ndρ0ðXÞ ¼ NdXM
∂Mρ0ðXÞ.

Therefore, the distance

1

2
Trfdρ0ðXÞĜg ¼ N

2
Trf∂Mρ0ðXÞ∂Nρ0ðXÞgdXMdXN ð15Þ

reproduces the metric (11).
With the simplest choice (6), it is known that the bulk

spacetime becomes AdS with its radius l2Δ [13]:

gvacMNðXÞ ≔
l2Δ
z2

δMN: ð16Þ

Even for general choices of the kernel (8) corresponding to
the general flow (4), gvacMN also describes the AdS spacetime
simply by the symmetry argument.2 Such generic choices
including the simplest one, however, give rise to problems
for excited states. For example, it does not reproduce a form
of the bulk-to-boundary scalar propagator expected from
the AdS=CFT. Therefore a special choice of the flow
equation has been proposed in Ref. [16] to improve
properties of the bulk reconstruction, as explained in the
following sections. In this paper, we call such a special flow
a conformal flow.

B. Conformal flow and GKP-Witten relation

Following [16], we take ν ¼ Δ̄ together with a normali-
zation of the (dþ 1)th coordinate z as 4η ¼ αz2. With this
special form of the flow equation, the radius of the resulting
AdS spacetime turns out to be

L2ðd;ΔÞ ≔ l2 ×
Δðd − ΔÞ
dþ 1

; ð17Þ

and, more importantly, the conformal transformation of the
scalar field operator

1The greek letters like μ, ν, σ run from 0 to d − 1 and the
lowercase latin letters like i, j run from 1 to d − 1. The Euclidean
time coordinate is denoted by τ ≔ x0. The uppercase latin letters
like M, N running from 0 to d are used for (dþ 1)-dimensional
Euclidean spacetime including the emergent direction.

2One can generalize this statement further: if the flow equation
is invariant under the scale transformation such that η → λ2η and
xμ → λxμ as well as the Poincare transformation, then the VEVof
the metric operator describes the AdS spacetime.
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δconfφ̂aðxÞ ≔ −δxμ∂μφ̂aðxÞ − Δ
d
ð∂μδxμÞφ̂aðxÞ ð18Þ

with δxμ ¼ aμþωμ
νxνþλxμþbμx2−2xμðb ·xÞ becomes a

diffeomorphism transformation of the bulk field operator

δconf σ̂a0ðXÞ ¼ −δ̄xμ∂μσ̂a0ðXÞ − δ̄z∂zσ̂a0ðXÞ ð19Þ

with δ̄xμ ¼ δxμ þ z2bμ, δ̄z ¼ ðλ − 2b · xÞz, which is noth-
ing but the isometry of the AdS spacetime. A combination

of both conformal symmetry at the boundary and AdS
isometry in the bulk strongly constraints forms of
boundary-to-bulk propagators including all quantum cor-
rections. We therefore call this special flow the conformal-
AdS flow, or the conformal flow for short.
For example, the form of the bulk-to-boundary propa-

gator connecting an OðNÞ singlet boundary scalar operator
Ŝ with its correspondent Φ̂ in the bulk can be fixed by the
bulk AdS isometry and the boundary conformal symmetry
up to an overall constant CS as

hΦ̂ðXÞŜðyÞii0 ¼ CS

�
z

jx − yj2 þ z2

�
ΔS

≃z→0
�
C̃Szd−ΔSδðdÞðx − yÞ; jx − yj ¼ 0

CSzΔS jx − yj−2ΔS ; jx − yj ≠ 0
; ð20Þ

where ΔS > d=2 is a conformal dimension of Ŝ, and C̃S ¼ CSπ
d=2ΓðΔS − d=2Þ=ΓðΔSÞ.

Let us define the VEVof the bulk scalar operator Φ̂ in the presence of a small source term J coupled to the scalar operator
Ŝ at the boundary as

Φ0;JðXÞ ≔ h0jΦ̂ðXÞ exp
�Z

ddyJðyÞŜðyÞ
�
j0i ≃

Z
ddyJðyÞhΦ̂ðXÞŜðyÞi0; ð21Þ

where Φ̂ðXÞ is chosen to satisfy h0jΦ̂ðXÞj0i ¼ 0. It is easy to check that Φ0;JðXÞ satisfies the massive Klein-Gordon
equation in the bulk AdS with the radius (17), whose mass is given by m2 ¼ ΔSðΔS − dÞ=L2ðd;ΔÞ. For small z, we then
reproduce the GKP-Witten relation [2,3] as

lim
z→0

Φ0;JðXÞ ¼ zd−ΔS ½C̃SJðxÞ þOðz2Þ� þ zΔS ½A0;JðxÞ þOðz2Þ�; ð22Þ

where

A0;JðxÞ ≔ CS

Z
ddy

JðyÞ
jx − yj2ΔS

∝
Z

ddyJðyÞhŜðxÞŜðyÞi0 ∼ hŜðxÞe
R

ddyJðyÞŜðyÞi0 ð23Þ

can be interpreted as the expectation value of the operator Ŝ
in the presence of the source term [19,20], since the one-
point function vanishes for the conformal symmetry kept
unbroken with the vacuum state j0i.
Let us assume the relation (22) applies to a generic

boundary state jBi with AJðxÞ ∝ hBjŜðxÞe
R

ddyJðyÞŜðyÞjBi
replacing A0;J. It tells us that, with J ¼ 0, the expectation
value of the boundary operator Ŝwith conformal dimension
ΔS generates the correspondent bulk excitation ΦB as

ΦBðXÞ ≔ hBjΦ̂ðXÞjBi ∝ zΔShBjŜðxÞjBi ð24Þ

with some subleading terms that are not explicitly shown.
This corresponds to the relation (1) implied by the standard
bulk reconstruction [4–6]. We take this relation as a guide
to identify a bulk theory dual to the boundary theory in the
following sections.

For the conformal flow, the two-point function (12) can
be written in terms of a hypergeometric function [16]:

G0ðX;X0Þ ¼ 2F1

�
Δ
2
;
d − Δ
2

;
dþ 1

2
; 1 −U2

0

�
;

U0 ¼
jx − x0j2 þ z2 þ z02

2zz0
; ð25Þ

where the AdS isometry implies that G0ðX;X0Þ must be a
function of the SOð1; dþ 1Þ invariant ratio U0. In
Appendix A, the normalization factor in (9) is evaluated as

ϒðzÞ ≔ hϕ̂2ðx; ηÞi0 ¼ NC1z−2Δ;

C1 ≔ C0

Γðd − ΔÞΓðd=2Þ
ΓðΔ̄ÞΓðdÞ : ð26Þ

We may also determine a geometry corresponding to an
excited state rather than the vacuum. For a primary scalar
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state jSi,3 for example, we define an operator normalized
for this state as

σ̂aSðXÞ ≔
ϕ̂aðx; ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hSjϕ̂2ðx; ηÞjSi
q : ð27Þ

The corresponding metric operator is defined by

ĝSMNðXÞ ≔ l2
XN
N¼1

∂σ̂aSðXÞ
∂XM

∂σ̂aSðXÞ
∂XN ; ð28Þ

and its expectation value is given by hSjĝSMNðXÞjSi, which
can also be interpreted as the Bures information metric.
As an more complicated case, we may consider a mixed

state such as the thermal state, which is a target in this
paper. In the remaining of this paper, we define a bulk
metric operator for the thermal state that can be interpreted
as the Bures metric, and calculate its thermal average to
determine the structure of the spacetime and the corre-
sponding bulk theory.

III. BULK GEOMETRY FROM A THERMAL
BOUNDARY STATE

Hereafter we assume that φa is a free massless scalar
field, whose action is given by

SE½φ� ¼
Z

ddx
XN
a¼1

δμν

2
∂μφ

aðxÞ∂νφaðxÞ; ð29Þ

and calculate the metric gTMNðXÞ for the thermal state with a
temperature T to investigate the corresponding bulk space-
time. While the conformal dimension is explicitly given by
Δ ¼ ðd − 2Þ=2 in this case, we keep usingΔ in our formula
instead of ðd − 2Þ=2 for notational simplicity.
Previously, in Ref. [17], the metric gTMNðXÞ has been

evaluated by the flow method and it has been concluded
that the metric describes an asymptotically AdS black brane
with some unknown matter contribution. However this
previous study is unsatisfactory due to the following
reasons. First of all, the flow used in Ref. [17] is the
simple Gaussian flow (6), which fails to map the conformal
symmetry at the boundary to the AdS isometry in the bulk.
Second, the thermal average of the metric operator can not
be regarded as the information metric due to the inadequate
normalization. Both problems seem to make it difficult to
draw a clear interpretation on a structure of the bulk theory.
In this paper, we employ the conformal flow with a state

dependent normalization suitable for the information metric
to calculate the thermal average of the metric operator,

gTMNðXÞ, whose UV and IR behaviors allow us a more
explicit interpretation in terms of the AdS=CFT correspon-
dence, as will be seen.

A. Bulk metric for a thermal state

Since thermal correlation functions have 1=T periodicity
in the Euclidean time direction, the two-point function for a
free theory can be written in terms of the vacuum one (2) as

hφ̂aðxÞφ̂bðx0ÞiT ≔ Z−1
T Tr½e−Ĥ=Tφ̂aðxÞφ̂bðx0Þ�

¼
X∞
n¼−∞

hφ̂aðτ þ n=T; xÞφ̂bðτ0; x0Þi0; ð30Þ

where ZT ¼ Tr½e−Ĥ=T � and Ĥ is the Hamiltonian operator
associated with the action (29).4 Modifying the denomi-
nator of (9), we have a normalized flowed field operator for
the thermal state as5

σ̂aðXÞ ≔ ϕ̂aðx; ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ̂2ðx; ηÞiT

q ¼ σ̂a0ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ̂20ðXÞiT

p ; ð32Þ

whose thermal expectation value is normalized as

hσ̂aðXÞσ̂bðXÞiT ¼ δab

N
; hσ̂2ðXÞiT ¼ 1: ð33Þ

As already mentioned, this normalization is different from
the one adopted in [17]. Using σ̂aðXÞ, the bulk metric is
constructed in the same manner as in (11) and (10):

ĝTMNðXÞ ≔ l2 ×
XN
a¼1

∂σ̂aðXÞ
∂XM

∂σ̂aðXÞ
∂XN ;

gTMNðXÞ ≔ hĝTMNðXÞiT: ð34Þ

In this paper, we evaluate the thermal average of the metric
operator as given in (34).
Note that the metric operator ĝTMN at T ≠ 0 is different

from ĝMN in (10), but this T dependent definition is indeed
necessary if one wants to interpret the expectation value

3This state is generated by the primary scalar operator as
jSi ¼ limjxj→0ŜðxÞj0i.

4Equation (30) can be justified as follows. A 1=T periodic
function is defined from a nonperiodic function fðxÞ ¼R
dpf̃ðpÞeipx as

fTðxÞ ¼ T
X∞
n¼−∞

f̃ðpnÞeipnx; pn ¼ 2πnT; ð31Þ

where f̃ðpÞ is the Fourier transformation of fðxÞ. While we
can construct another 1=T periodic function as gTðxÞ ≔P∞

n¼−∞ fðxþ n=TÞ, the Fourier expansion of gTðxÞ implies
gT ðxÞ ¼ fTðxÞ.5We do not put a subscript T to σ̂, since we can easily
distinguish it from the vacuum one σ̂0.
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gTMN in (34) as the Bures information metric as before. In
fact, let us introduce the thermofield double state,

jTFDi ¼ Z−1=2
T

X
n

e−En=2T jEni⊗ gjEni; ZT ¼
X
i

e−En=T;

ð35Þ

where jEnis are energy eigenstates defined by ĤjEni ¼
EnjEni and gjEnis are their copies. As is well known, the
thermal correlation functions can be obtained with this pure
state and the identity operator 1̃ on the Hilbert space

spanned by gjEnis; for instance, one gets the two-point
function (30) as hTFDjðφ̂aðxÞ ⊗ 1̃Þðφ̂bðx0Þ ⊗ 1̃ÞjTFDi.
Now, consider a density operator,

ρTðXÞ ≔
XN
a¼1

ðσ̂aðXÞ ⊗ 1̃ÞjTFDihTFDjðσ̂aðXÞ ⊗ 1̃Þ; ð36Þ

which satisfies a correct normalization as

Tr½ρTðXÞ� ¼Z−1
T

X
n

e−En=ThEnjσ̂2ðXÞjEni¼ hσ̂2ðXÞiT ¼ 1:

ð37Þ

While the TFD is formally a pure state, the density operator
ρTðXÞ still describes the mixed state due to the summation
over OðNÞ index a as in the vacuum case (14).
Since ρTðXÞρTðXÞ ¼ ρTðXÞ=N leads to Ĝ ¼ NdρTðXÞ ¼
NdXM

∂MρTðXÞ, the bulk metric gTMNðXÞ for the mixed
thermal state in (34) is reproduced in the same manner as
(15). It should be noted that, for any mixed state, its purified
state put in the definition of the density matrix in the same
manner as (36), the Bures information metric coincides with

the expectation value of the metric operator in the original
mixed state as in (34), which is naturally expected from the
vacuum case (11).6

B. Computing bulk metric

The thermal expectation value of the two-point function
of the flowed field (9) normalized in the vacuum is given by

GðX;X0Þ≔ δabhσ̂a0ðx;ηÞσ̂b0ðx0;η0ÞiT
¼

X∞
n¼−∞

2F1ðÞ;
�
Δ
2
;
d−Δ
2

;
dþ1

2
;1−U2

n

�
; ð38Þ

where

Un ¼
ðτ − τ0 þ n=TÞ2 þ jx − x0j2 þ z2 þ z02

2zz0
: ð39Þ

We define two functions as

gðξ2Þ ≔ GðX;XÞ ¼
X∞
n¼−∞

2F1

�
Δ
2
;
d − Δ
2

;
dþ 1

2
; 1 − u2n

�
;

ð40Þ

fðξ2Þ≔
X∞
n¼−∞

2F1

�
Δþ1

2
;
d−Δþ1

2
;
dþ3

2
;1−u2n

�
ð41Þ

with un ≔ 1þ n2=ð2ξ2Þ, where ξ ≔ Tz, which represents a
dimensionless coordinate in the bulk direction.
As derived in Appendix B, nonzero components of the

bulk metric, defined in (34) can be written in terms of g
and f and their derivative with respect to ξ2 such as
g0 ≔ ∂g=∂ξ2:

gTiiðzÞ¼l2
∂

∂xi
∂

∂x0i
GðX;X0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðX;XÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðX0;X0Þp

�����
X0→X

¼L2
dþ1

z2
×
f
g
; ð42Þ

gT00ðzÞ − gTiiðzÞ ¼ l2

�
∂

∂τ

∂

∂τ0
−

∂

∂xi
∂

∂x0i

�
GðX;X0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðX;XÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðX0; X0Þp

�����
X0→X

;

¼ L2
dþ1

z2
× ð−2Þξ2 f

0

g
; ð43Þ

gTzzðzÞ − gTiiðzÞ ¼ l2

�
∂

∂z
∂

∂z0
−

∂

∂xi
∂

∂x0i

�
GðX;X0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðX;XÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðX0; X0Þp

�����
X0→X

;

¼ L2
dþ1

z2
×

l2

L2
dþ1

ξ2

g

�
ξ2g00 þ g0 − ξ2

ðg0Þ2
g

�
: ð44Þ

6If we start with the thermal state as the original mixed state rather than the thermofield double one, then the corresponding
information metric turns out to be more complicated than (34). It would be interesting to see how it changes the bulk structure.
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where

L2
dþ1 ≔ L2ðd;ΔÞ ¼ l2 ×

d2 − 4

4ðdþ 1Þ : ð45Þ

In Fig. 1, nonzero components of the bulk metric are
depicted at d ¼ 4 and d ¼ 6. For even d, the infinite
summations in (40) and (41) can be analytically performed,
as shown in Appendix C. In the UV limit that z ≪ 1=T, the
metric approaches the AdS one with the radius (45). In the
IR limit that z ≫ 1=T, on the other hands, gTii and gTzz
converges to L2

d=z
2 where L2

d ¼ L2ðd − 1;Δ − 1=2Þ as
defined in (63), while gT00 vanishes exponentially.
In the following, we analytically investigate UV and IR

asymptotic behaviors for both even and odd d.

C. UV and IR limits

We analytically derive UV and IR behaviors shown in
Fig. 1. In particular, we argue that the spacetime is
conformally equivalent to AdS2 × Rd−1 in the IR limit.

1. UV region ðz ≪ 1=TÞ
Using an expansion of the hypergeometric function for

small values of v ¼ 2ξ2=n2,

2F1

�
a1; a1 þ 1; b1;−

1þ 2v
v2

�

¼ Γðb1Þ
Γðb1 − a1ÞΓð1þ a1Þ

v2a1 ½1 − 2a1vþOðv2 ln vÞ�;

ð46Þ
(40) is expanded as g ¼ 1þ δg, where

δg¼ 4

BðΔ;d−ΔÞ
ξd−2

d−2
fζðd−2Þ− ðd−2ÞζðdÞξ2þOðξ4Þg.

ð47Þ

with Bða; bÞ and ζðsÞ ¼ P∞
n¼1 n

−s being the beta function
and the zeta function, respectively. Note that ζðd − 2Þ is
divergent at d ¼ 3, which corresponds to the IR divergence
of the massless scalar two-point function 1þ δgjz→0 ∝
hφ̂2ðxÞiT at finite temperature in d ¼ 3. By replacing dwith
dþ 2 and Δ by Δþ 1, we obtain f ¼ 1þ δf, where

δf≔
4

BðΔþ1;d−Δþ1Þ
ξd

d
fζðdÞ−dζðdþ2Þξ2þOðξ4Þg:

ð48Þ

Plugging these expressions into (42), (43), and (44), we find
the spacetime metric expanded with respect to ξ ¼ Tz as7

gTMNðz; TÞ ¼ ḡMNðzÞ þ δgMNðz; TÞ; ḡMNðzÞ ¼
L2
dþ1

z2
;

ð49Þ

δgMNðz; TÞ ¼
X
A;B

δgðA;BÞMN ðz; TÞ ¼ L2
dþ1

z2
X
A;B

ξAðdþ2BÞǧðA;BÞMN

ð50Þ

with A ≥ 1 and B ≥ −1. In the UV limit of z → 0, only ḡMN
survives, and hence, we get AdS spacetime with the
radius (45).
In this paper, we focus on terms with A ¼ 1, which have

largest corrections to the AdS metric in the UV region.
Their coefficients, ǧð1;BÞ with B ≥ −1, can be read off from
linearized versions of (42), (43), and (44) as

FIG. 1. Nonzero components of the bulk metric, gii (solid), g00 (dashed), and gzz (dash-dotted), each divided by L2
dþ1=z

2, as functions
of ξ ¼ Tz with d ¼ 4 (left panel) and d ¼ 6 (right panel). The horizontal line depicts L2

d=L
2
dþ1 ¼ ðdþ 1Þ2ðd − 3Þ=dðd2 − 4Þ for each

case. For d ¼ 2ðjþ 1Þ with integer j ≥ 3, we obtain similar behaviors as in the case at d ¼ 6. See Fig. 2 in Appendix C.

7Rigorously speaking, there exist logarithmic terms such as
ξAðdþ2BÞðln ξÞp with integers A; B ≥ 1 and p ≥ 1 coming from
terms that are not explicitly shown in the expansion (46). We
simply omit such terms in (50) because they do not appear in the
following analyses at the leading and next leading orders.
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X
B

ξdþ2Bǧð1;BÞii ¼ −δgþ δf;

X
B

ξdþ2Bðǧð1;BÞ00 − ǧð1;BÞii Þ ¼ −2ξ2δf0;

X
B

ξdþ2Bðǧð1;BÞzz − ǧð1;BÞii Þ ¼ l2

L2
dþ1

½ξ4δg00 þ ξ2δg0�: ð51Þ

The largest contribution in UV is determined at
B ¼ −1 as

ǧð1;−1Þii ¼ ǧð1;−1Þ00 ¼ −1
d − 2

×
4ζðd − 2Þ

BðΔ; d − ΔÞ ;

ǧð1;−1Þzz − ǧð1;−1Þii ¼ dþ 1

dþ 2
×

4ζðd − 2Þ
BðΔ; d − ΔÞ : ð52Þ

In Sec. IVA 1, we will see that this part contains a physical
scalar propagating mode, which is absent in the pure
Einstein gravity.
The next largest contribution with B ¼ 0 becomes8

ǧð1;0Þii ¼
�
1þ 4ðdþ 1Þ

d2 − 4

�
×

4ζðdÞ
BðΔ; d − ΔÞ ; ð53Þ

ǧð1;0Þ00 − ǧð1;0Þii ¼ ð−dÞ 4ðdþ 1Þ
d2 − 4

×
4ζðdÞ

BðΔ; d − ΔÞ ; ð54Þ

ǧð1;0Þzz − ǧð1;0Þii ¼ −d2

4

4ðdþ 1Þ
d2 − 4

×
4ζðdÞ

BðΔ; d − ΔÞ ; ð55Þ

which contains a tensor perturbation, as will be seen in
Sec. IVA 2.

2. IR region ðz ≫ 1=TÞ
To investigate the IR region (ξ ¼ zT ≫ 1), it is conven-

ient to employ an alternative integral representation of the
hypergeometric function derived in Appendix A as

2F1

�
Δ
2
;
d − Δ
2

;
dþ 1

2
; 1 − u2n

�

¼ 1

Bðd − Δ;ΔÞ
Z

∞

0

dw

wΔ−d−2
2

hdðn;w; ξÞ; ð56Þ

where hdðn;w;ξÞ≔ð2unþwþ1=wÞ−d=2. With the Poisson
resummation formula

P∞
n¼−∞ e2πink ¼ P∞

k0¼−∞ δðk0 − kÞ,
(40) turns out to be

gðξ2Þ ¼ 1

Bðd − Δ;ΔÞ
X∞
k¼−∞

Z
∞

0

dw

wΔ−d−2
2

h̃dðk;w; ξÞ; ð57Þ

where

h̃dðk;w; ξÞ ≔
Z

∞

−∞
dnei2πknhdðn;w; ξÞ

¼ ξ ×
ffiffiffi
π

p
Γðd

2
Þ
ð2πjkjξÞd−1

2
d−3
2

X
−d−1

2

k Kd−1
2
ðXkÞ ð58Þ

with Xk ≔ 2πjkjξð1þ wÞ= ffiffiffiffi
w

p
. Each k contribution is

attributed to the mode with Matsubara frequency ωk ¼
2πkT in the boundary scalar theory.
Since k ≠ 0 modes are exponentially suppressed for

large ξ as

Kd−1
2
ðXkÞ ¼ e−Xk

ffiffiffiffiffiffiffiffi
π

2Xk

r �
1þ dðd − 2Þ

8Xk
þOðX−2

k Þ
�
; ð59Þ

only the k ¼ 0 contribution

h̃dð0;w; ξÞ ¼ ξ ×
π1=2Γ

	
d−1
2



Γðd

2
Þ

� ffiffiffiffi
w

p
1þ w

�
d−1

ð60Þ

survives in (57) in the IR limit as

g ≃ ξ ×
π1=2Γ

	
d−1
2



Γðd

2
Þ

Bðd − Δ − 1=2;Δ − 1=2Þ
Bðd − Δ;ΔÞ ≕ g: ð61Þ

By making the replacement that ðΔ; dÞ → ðΔþ 1; dþ 2Þ,
we find

f≃ξ×
π1=2Γ

	
dþ1
2



Γ
	
dþ2
2


 Bðd−Δþ1=2;Δþ1=2Þ
Bðd−Δþ1;Δþ1Þ ¼g×

L2
d

L2
dþ1

≕f;

ð62Þ
where

L2
d ≔ L2ðd − 1;Δ − 1=2Þ ¼ l2

ðd − 3Þðdþ 1Þ
4d

ð63Þ

is the AdS radius (17) expected from (d − 1)-dimensional
free scalar CFT, whose conformal dimension is Δ − 1=2 ¼
ðd − 3Þ=2. Therefore, the bulk metric in the ξ ¼ Tz → ∞
limit becomes

g00 ≈ 0; gzz ≈ gii ≈
L2
d

z2
: ð64Þ

This behavior indicates that the dimensional reduction in the
bulk takes place because, in the IR limit corresponding to
z → ∞, all the modes with nonzero Matsubara frequency

8For d ¼ 4, the part with ðA; BÞ ¼ ð2;−1Þ has the same falloff
behavior ξ4 × ðL2

dþ1=z
2Þ. In the current analysis, we simply

regard d as a parameter and work with the series expansion in
powers of ξdþ2B.
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become irrelevant and only the (d − 1)-dimensional degrees
of freedom associatedwith zeroMatsubara frequency are left
to form the d-dimensional constant τ hypersurface whose
induced metric is the same as the d-dimensional AdS metric
with the radius (63). In other words, the dimensional
reduction at the boundary correctly induces the dimensional
reduction in the bulk expected by the AdS=CFT correspon-
dence through the conformal flow.
In the previous work [17], a similar behavior g00 → 0 has

been found and the similarity to the AdS black brane
discussed. In the following, we propose a different inter-
pretation. For this purpose, let us take into account the first
nonzero Matsubara mode with jkj ¼ 1. Since Xk becomes
large as ξ → ∞ and takes a minimum at w ¼ 1 as

Xk ¼ 2πjkjξ
�
2þ ðw − 1Þ2

4
þOððw − 1Þ3Þ

�
; ð65Þ

the integration (57) can be evaluated by the saddle point
approximation around w ¼ 1 to result in

g − g ≈
2

Bðd − Δ;ΔÞ
ffiffiffi
π

p
Γðd

2
Þ
�
πξ

2

�d−1
2

e−4πξ≕ gD: ð66Þ

The replacement ðΔ; dÞ → ðΔþ 1; dþ 2Þ also leads to

fD ≔ f − f ¼ 2

Bðd − Δþ 1;Δþ 1Þ
ffiffiffi
π

p

Γ
	
dþ2
2


�
πξ

2

�dþ1
2

e−4πξ

¼ l2

L2
dþ1

× ðπξÞ × gD: ð67Þ

Since ∂ξ2 ¼ ð1=2ξÞ∂ξ, the leading contribution to g00 turns
out to be

g00 ≈ −2L2
dþ1T

2 ×
−4π
2ξ

fD
g
¼ l2T24π2

gD
g

¼ L2
d

z2
× ½2πTzTðξÞ�−2; ð68Þ

where

zTðξÞ ≔
1

2πT

�
Bðd − Δþ 1

2
;Δþ 1

2
Þ

2
ffiffiffi
π

p
Γðd

2
Þ=ΓðdÞ

�
1=2 eþ2πξ

ð2πξÞdþ1
4

: ð69Þ

Then, we find

ds2 ≈
L2
d

z2

�
dτ2

ð2πTzTÞ2
þ dz2 þ

Xd−1
i¼1

ðdxiÞ2
�
;

¼ L2
d

z2

�
1

ð2πTzTÞ2
�
dτ2 þ dz2T

ð1 − dþ1
8πξÞ2

�
þ
Xd−1
i¼1

ðdxiÞ2
�
;

ð70Þ

where z ¼ ξ=T is now regarded as a function of zT .
9 For

2πξ ≫ ðdþ 1Þ=4, it is conformally equivalent to AdS2 ×
Rd−1 as

ds2≈
L2
d

z2
ds̊2; ds̊2≔

dτ2þdz2T
z2T=L

2
T

þ
Xd−1
i¼1

ðdxiÞ2; LT ≔
1

2πT
:

ð72Þ

It is well known that AdS2 × Rd−1 corresponds to the near-
horizon limit of the AdS extremal black brane, whose
metric is given by

ds2e ¼
L2

r2

�
feðrÞdτ2 þ

dr2

feðrÞ
þ
Xd−1
i¼1

ðdxiÞ2
�
; ð73Þ

where

feðrÞ ¼ 1 −
2ðd − 1Þ
d − 2

�
r
re

�
d
þ d
d − 2

�
r
re

�
2ðd−1Þ

¼ dðd − 1Þ
�
1 −

r
re

�
2

he

�
r
re

�
; ð74Þ

with heð1Þ ¼ 1 and heðx2Þ > 0.10 Taking the near-horizon
limit that r ≃ re and making the coordinate transformation
as r2e=ðre − rÞ ¼ dðd − 1ÞzT , we indeed obtain ds2e ≃
ðL2=r2eÞd̊s2 with L2

T ¼ r2e=dðd − 1Þ.
Note that, because of the conformal factor L2

d=z
2≕

exp 2ϖ, the IR limit has the curvature singularity at
z ¼ ∞, as in the case of Ref. [17]. For instance, the Ricci
scalar diverges as

9Using the Lambert function W−1 ≤ −1, we have

z ¼ −
dþ 1

8πT
W−1ðvÞ with

v ≔
−4

dþ 1

�
Bðd − Δþ 1

2
;Δþ 1

2
Þ

2
ffiffiffi
π

p
Γðd

2
Þ=ΓðdÞ

� 2
dþ1ð2πTzTÞ− 4

dþ1: ð71Þ
10The AdS charged black brane solution of the Einstein-

Maxwell theory is given by the factor

fðrÞ ¼ 1 −
2κLm
d − 1

�
r
L

�
d
þ κL2q2

ðd − 1Þðd − 2Þ
�
r
L

�
2ðd−1Þ

ð75Þ

and the electromagnetic field strength F ¼ qðr=LÞd−3dt ∧ dr,
where κ is the Einstein gravitational constant for the (dþ 1)-
dimensional spacetime, m and q are the surface densities of mass
and electric charge, respectively. The extremal solution is
obtained when the mass and charge squared are related with
each other as

m ¼ ðd − 1Þ2
ðd − 2ÞκL

�
L
re

�
d
; q2 ¼ dðd − 1Þ

κL2

�
L
re

�
2ðd−1Þ

; ð76Þ

where re is the parameter to be interpreted as the location of the
extremal horizon.
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R≈ e−2ϖðR̊− 2d □̊ϖ−dðd− 1Þs̊MN
∂Mϖ∂NϖÞ→ R̊×

z2

L2
d

;

ð77Þ

where the quantities associatedwith themetric d̊s2 in (72) are
denoted by circles on them and R̊ ¼ −6=L2

T is the scalar
curvature for AdS2.

IV. GRAVITATIONAL THEORY AND
BULK-BOUNDARY CORRESPONDENCE

IN THE UV REGION

In the UV region with z ≪ 1=T, we have the metric
perturbation (50) around the AdS spacetime. In this section,
we identify a gravitational theory in which the bulk metric
obtained from the boundary theory solves a corresponding
equation of motion (EOM), at least, to the leading order
perturbations which falloff as δgMN ∼ zd−4 and ∼zd−2. It
turns out that there is a physical scalar mode in the metric,
and thus, the pure Einstein gravity cannot be the bulk
theory. Indeed we have found that fðRÞ gravity does the
job, as we will see. For fðRÞ gravity, we can take the
Einstein frame where the bulk spacetime is to be compared
with the AdS black brane geometry. In addition, following
the relation (22), we identify boundary operators corre-
sponding to the bulk physical degrees of freedom.
It should be noted here that fðRÞ gravity is obtained just

as an approximated bulk theory in the UV region. In fact,
the metric (72) in the IR limit cannot be a solution to the
EOM of fðRÞ gravity. Therefore, a more general class of
modified gravity will be needed to match higher order
perturbations in the UV region, which are not considered in
this paper.

A. Bulk gravitational theory

We are looking for a bulk gravitational theory in the
asymptotic AdS region with ξ ¼ zT ≪ 1, whose EOMs are
perturbatively satisfied by the bulk metric determined in the
previous section. We generally write the EOM of some
gravitational theory as EMNðgÞ ¼ 0 and expand the left-
hand side as

EMNðgÞ ¼ ĒMNðḡÞ þ ΔEMNðḡ; δgÞ;
ΔEMN ¼ z−2

X
a;b

ξaðdþ2bÞĚða;bÞ
MN ðḡ; ǧÞ; ð78Þ

where ḡ and ǧ are ξ independent, and ΔEMN contains all
contributions from the perturbation characterized by the

coefficients ǧðA;BÞMN with A ≥ 1 and B ≥ −1 in (50). For any
given d ≥ 4, in addition to an unperturbed EOM
ĒMNðḡÞ ¼ 0, we consider the perturbation of EOM at the

leading order, Ěð1;bÞ
MN ðḡ; ǧÞ ¼ 0 with b ¼ −1; 0. In this case,

we only need linear terms of ǧð1;BÞ with B ¼ −1; 0 in (50),

which have already been determined in (52), (53), (54),
and (55).
In the following, we show that the metric perturbations

from the AdS spacetime for B ¼ −1 and B ¼ 0 are subject
to fðRÞ gravity, whose action is given by

S ¼ 1

2κ

Z
ddþ1x

ffiffiffiffiffi
jgj

p
fðRÞ; ð79Þ

where κ is the (dþ 1)-dimensional gravitational constant
and g is the determinant of the metric. Here fðRÞ is a
function of the Ricci scalar R, which may be assumed to be
a polynomial of R as

fðRÞ ¼ −2Λf þ Rþ α

2
R2 þOðR3Þ; ð80Þ

where Λf and α are constants. The corresponding EOM
becomes

fgMN ¼ 2ðRMN þ gMN□ −∇M∇NÞ∂Rf: ð81Þ

Note that, as seen from the trace of the EOM that

dþ 1

2d
f ¼

�
R
d
þ□

�
∂Rf; ð82Þ

there is a propagating scalar degree of freedom in the
theory. This can be clearly seen in the Einstein frame, as
shown in Appendix E.
The unperturbed AdS background ḡMN must satisfy

f̄ḡMN ¼ 2R̄MN∂f; ð83Þ

where f̄ ≔ fðR̄Þ and ∂f ≔ ∂RfðRÞjR¼R̄. Since curvature
tensors in the AdS spacetime are obtained from ΓA

zB ¼
−δAB=z and Γz

μν ¼ δμν=z as

R̄K
MLN ¼ 2R̄

dðdþ 1Þ δ
K
½LḡN�M; R̄MN ¼ R̄

dþ 1
ḡMN;

R̄ ¼ −
dðdþ 1Þ
L2
dþ1

; ð84Þ

(83) leads to

f̄ ¼ 2R̄
dþ 1

∂f; ð85Þ

which is regarded as the equation to determine the
cosmological constant Λf in (80) for a given fðRÞ theory.
The perturbation δgMN should satisfy

− 2∂fδGMN þ ðf̄ − R̄ ∂fÞδgMN

¼ 2ðR̄MN þ ḡMN□ −∇M∇NÞ∂2fδR; ð86Þ
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which, with the aid of (85), can be written as

δGMN þ d − 1

dþ 1

R̄
2
δgMN ¼ −

∂
2f

∂f
ðR̄MN þ ḡMN□ −∇M∇NÞδR: ð87Þ

In the Einstein gravity, the right-hand side (rhs) identically vanishes since ∂2Rf ¼ 0 and ðd − 1ÞR̄=2ðdþ 1Þ corresponds to
the cosmological constant.

1. Leading order perturbation ðB= − 1Þ
The leading order metric perturbation with coefficients in (52) can be written as

δgð1;−1ÞMN ¼ ḡMN

dþ 1
Φþ L2

dþ1

�
∇M∇N −

ḡMN

dþ 1
□

�
Θ1 ¼

ḡMN

dþ 1
Φph þ L2

dþ1∇M∇NΘ1; ð88Þ

where

Φ ≔ ḡMNδgð1;−1ÞMN ¼ −4ðdþ 1Þ
d2 − 4

×
ξd−24ζðd − 2Þ
BðΔ; d − ΔÞ ¼ −

l2

L2
dþ1

×
ξd−24ζðd − 2Þ
BðΔ; d − ΔÞ ; ð89Þ

Θ1 ¼
−1

4ðd − 1Þ ×Φ; Φph ≔ Φ − L2
dþ1□Θ1 ¼ Φþ 2ðd − 2ÞΘ1 ¼

d
2ðd − 1Þ ×Φ: ð90Þ

Here (D3) is used for □Θ1, and Φph is the only physical perturbation, since ∇M∇NΘ1 in (88) is gauge dependent.11 Thus,
one can see that there is a physical scalar mode Φph at the leading order of the metric perturbations.
Using results in Appendix D 1, nonzero components of the left-hand side (lhs) of the linearized EOM (87) are evaluated

as

δGzz þ
d − 1

dþ 1

R̄
2
δgzz ¼

d
2

�
δGσσ þ

d − 1

dþ 1

R̄
2
δgσσ

�
¼ −

dðd − 1Þ2
2ðdþ 1Þ ×

Φph

z2
; ð91Þ

while nonzero components of the rhs become

ðR̄zz þ ḡzz□ −∇z∇zÞδR ¼ d
2
ðR̄σσ þ ḡσσ□ −∇σ∇σÞδR ¼ þ 3dðd − 1Þ2

ðdþ 1Þ2 × R̄
Φph

z2
: ð92Þ

Note that a ratio between zz and σσ components is d=2 in both (91) and (92), which also have the same z and ξ dependence.
Therefore, the EOM is satisfied, if the second derivative of f at R ¼ R̄ is related to the first derivative as

∂
2f ¼ dþ 1

6

∂f
R̄

: ð93Þ
2. Next to leading order perturbation (B= 0)

The metric perturbation with the coefficients (53), (54), and (55) is traceless: ḡMNδgð1;0ÞMN ¼ 0, and can be written as

δgð1;0ÞMN ¼ hMN þ L2
dþ1

�
∇M∇N −

ḡMN

dþ 1
□

�
Θ2 ¼ hMN þ L2

dþ1∇M∇NΘ2; ð94Þ

where

Θ2 ¼
−1
d

×
ξd4ζðdÞ

BðΔ; d − ΔÞ ð95Þ

11It can be canceled out by the gauge transformation generated by ξN ¼ −ḡNM
∂MΘ1=2 and does not contribute the linearized EOM.
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is a gauge degree of freedom. Thus the physical contribution
to the perturbation is hMN , which satisfies ḡMNhMN ¼ 0 and
∇MhMN ¼ 0. Explicitly we have

hii ¼
L2
dþ1

z2
×
4ðdþ 1Þ
d2 − 4

×
ξd4ζðdÞ

BðΔ;d−ΔÞ ¼
l2

z2
×

ξd4ζðdÞ
BðΔ;d−ΔÞ ;

h00 ¼−ðd− 1Þ×hii; hzz ¼ 0: ð96Þ

As shown in Appendix D 2, this tensor perturbation
solves the linearized EOM (87). One can see that the lhs
and the rhs of the linearized EOM (87) vanish separately,
which means that δgð1;0ÞMN can be a solution to the pure
Einstein gravity. Note that, if a scalar mode at this order
were presented, the EOM would not be satisfied by (93).

3. Asymptotic equivalence to AdS
black brane in Einstein frame

In this subsection, we show that the leading deviations

δgð1;BÞMN with B ¼ −1, 0 from the AdS in the fðRÞ theory are
consistent with those of the AdS black brane at this order in
the Einstein frame, where fðRÞ theory is transformed to the
Einstein gravity plus a massive scalar field by the Weyl
transformation. Details of calculations in this subsection are
given in Appendix E.
The metric in the Einstein frame is given by the Weyl

transformation as g̃MN ≔ e−2sgMN , where s is the scalar
field in the Einstein frame. The leading deviation from the
AdS metric, after some calculation, is given by

δg̃MN ¼ h̃MN þ L̃2
dþ1

ē∇M
ē∇NΘ̃; ð97Þ

where ē∇M is the covariant derivative for the AdS metric
¯̃gMN in the Einstein frame with its AdS radius
L̃dþ1 ≔ e−s̄Ldþ1, defined through s̄, the VEV of s. It is
interesting to see that (97) contains the tensor perturbation
h̃MN ≔ e−2s̄hMN only without scalar perturbation up to the
gauge degree of freedom Θ̃ ≔ Θ1 þ Θ2.
Since the scalar excitation around its VEV s̄ behaves as

zd−2 for small z as explained below (E9), its stress tensor
(E13), which falls off as T̃MN ∝ z2ðd−3Þ, does not contribute
to the Einstein equation at the level of perturbation
considered in this paper, and thus we have the vacuum
Einstein equation with the cosmological constant (E6). It is
easy to check that the tensor perturbation h̃MN is s solution
to the linearized vacuum Einstein equation.
We now show that the tensor perturbation h̃MN is

consistent with the leading order deviation of the AdS
black brane solution from the pure AdS solution, whose
metric is given by

ds2bb ¼
L̃2
dþ1

z2

�
fðzÞdτ2 þ dz2

fðzÞ þ
X
i

ðdxiÞ2
�
; ð98Þ

with fðzÞ ¼ 1 − ðz=zHÞd, and the associated Hawking
temperature is given by TH ¼ d=ð4πzHÞ, so that the leading
deviation from the pure AdS is given by

δgbb00 ¼−
L̃2
dþ1

z2

�
z
zH

�
d
; δgbbzz ¼

L̃2
dþ1

z2

��
z
zH

�
d
þOðz2dÞ

�
;

δgbbii ¼ 0: ð99Þ

With an identification that

TH ¼ T ×
d
4π

�
4dðdþ 1Þ
d2 − 4

×
4ζðdÞ

BðΔ; d − ΔÞ
�

1=d
; ð100Þ

we have

h̃ii ¼
L̃2
dþ1

z2

�
z
zH

�
d
×
1

d
; h̃00 ¼−ðd− 1Þh̃ii; h̃zz ¼ 0;

ð101Þ

which looks different from (99). It is easy to see, however,
that (99) and (101) are equivalent with each other by the
gauge transformation as

δgbbMN ¼ h̃MN þ ē∇M
ē∇NΘ̃bb; Θ̃bb ¼

�
z
zH

�
d
×

1

d2
:

ð102Þ

Thus the tensor perturbation of the metric generated by the
conformal flow in the Einstein frame is the AdS black brane
at the first order of the small z expansion.

B. Boundary operators and corresponding
bulk degrees of freedom

In this subsection, we will investigate the relation (24)
between boundary operators and the bulk physical degrees
of freedom by determining its proportionality coefficient.
We here define the rhs of (24) by regularizing it with the
smearing, and then subtracting its potentially divergent
vacuum expectation value as

hOðφ̂ðxÞÞifiniteT ≔ ½hOðϕ̂ðx; ηÞÞiT − hOðϕ̂ðx; ηÞÞi0�η→0

ð103Þ

for any composite operator Oðφ̂ðxÞÞ in the boundary CFT.
We start with the tensor degrees of freedom obtained in

Sec. IVA 2. We then move to the gravitational scalar
degrees of freedom obtained in Sec. IVA 1 in order to
argue why it cannot be an ordinary nongravitational scalar
field in the Einstein frame.

AOKI, SHIMADA, BALOG, and KAWANA PHYS. REV. D 109, 046006 (2024)

046006-12



1. Bulk tensor

The bulk tensor degrees of freedom z2 × hMN ∝ zd are expected to be related to the boundary stress tensor with
conformal dimension d, which is given by

T̂μν ¼
XN
a¼1

�
∂μφ̂

a
∂νφ̂

a −
δμν
2

δρσ∂ρφ̂
a
∂σφ̂

a

�
: ð104Þ

Since

XN
a¼1

δρσh∂ρφ̂a
∂σφ̂

aifiniteT ¼
�
ϒðzÞT2

Bðd − Δþ 1;Δþ 1Þ
Bðd − Δ;ΔÞ d × ðξ−2δf × d − 2f0Þ

�
z→0

¼ 0; ð105Þ

where we have used (B10), (B11), (48) and the definition of ϒðzÞ in (26), we find

hT̂iiifiniteT ¼
�
ϒðzÞT2

Bðd − Δþ 1;Δþ 1Þ
Bðd − Δ;ΔÞ d × ξ−2δf

�
z→0

¼ 4ζðdÞNC1Td

Bðd − Δ;ΔÞ ; ð106Þ

hT̂00ifiniteT ¼
�
ϒðzÞT2

Bðd − Δþ 1;Δþ 1Þ
Bðd − Δ;ΔÞ d × ðξ−2δf − 2f0Þ

�
z→0

¼ −ðd − 1Þ × hT̂iiifiniteT ð107Þ

so that δμνhT̂μνifiniteT ¼ 0. Comparing the above with (96),
we find

z2

l2
× hμν ¼ zd ×

hT̂μνifiniteT

NC1

: ð108Þ

2. Bulk scalar

The bulk scalar degree of freedomΦph ∝ zd−2 are related
to Ŝ ≔

P
N
a¼1 φ̂

aφ̂a, whose conformal dimension is
2Δ ¼ d − 2. Using (47), we obtain

hŜifiniteT ¼ ½ϒðzÞ× δg�z→0 ¼
4ζðd− 2Þ

BðΔ;d−ΔÞ
NC1T2Δ

d− 2
: ð109Þ

Comparing this with (90), we find the relation that

L2
dþ1

l2
×Φph ¼

−dðd − 2Þ
2ðd − 1Þ × z2Δ ×

hŜifiniteT

NC1

; ð110Þ

or equivalently,

L2
dþ1

l2
×Φ ¼ −ðd − 2Þ × z2Δ ×

hŜifiniteT

NC1

: ð111Þ

Note that the operator Ŝ is the scalar operator with the
smallest conformal dimension 2Δ among scalar operators
with nonzero thermal expectation value. While the operator

φ̂a has the smaller conformal dimension Δ, its thermal
expectation value vanishes due to the unbroken OðNÞ
symmetry. This is a reason why the simplest possibility,
the Einstein gravity with a minimally coupled scalar ς
discussed in Appendix F, cannot be the dual bulk theory.
The scalar field needs to behave as ς ¼ ϱ × zΔ with ϱ being
a constant, and thus, the relation (24) with hφaiT ¼ 0 leads
to ϱ ¼ 0, which excludes this simplest possibility.

V. CONCLUSIONS

In this paper, we constructed the (dþ 1)-dimensional
bulk Euclidean spacetime from the massless free scalar
theory on the d-dimensional flat boundary at finite temper-
ature T, by a conformal flow with the smearing size z. It is
important to note that the bulk geometry is emergent from
the bulk metric operator, whose VEV is interpreted as the
Bures information metric associated with the boundary
theory. This bulk reconstruction from the massless free
scalar at finite T holds at d ≥ 4 due to its IR behaviors.
Applying the conformal flow to the boundary thermal

state, we have computed the bulk information metric whose
nonzero components are given in (42), (43), and (44). The
resultant bulk metric in the UV region is perturbatively
expanded in (50) with coefficients in (52), (53), (54), and
(55). As depicted in Fig. 1, the dimensional reduction takes
place in the IR region with g00 vanishing exponentially and
we are left with the d-dimensional constant τ hypersurface
whose induced metric becomes the d-dimensional AdS
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with the radius Ld in (63), since only the degrees of
freedom with vanishing Matsubara frequencies remain
dynamical in the IR limit and are the same as those in
(d − 1)-dimensional massless scalar theory. With a closer
look at the exponential decay of g00, we have found that the
IR asymptotic behavior is controlled by the first Matsubara
frequency 2πT and the spacetime is conformally equivalent
to AdS2 × Rd−1, which is the near-horizon limit of extremal
black brane.
In the UV region, the leading order perturbations with

coefficients in (52) contain a scalar propagating mode,
which cannot be gauged away. We have shown that this
mode can be accounted for by the fðRÞ gravity, whose
linearized EOM is given in (87), and further, the tensor
mode in the perturbation with coefficients (53), (54), and
(55) also solves the EOM. The unknown proportionality
coefficient in the relation (24) between a bulk excitation
and a boundary operator is determined as (108) for the
tensor mode and as (110) for the scalar mode. Seen in the
Einstein frame, the bulk spacetime is asymptotically
equivalent to the AdS black brane solution of the vacuum
Einstein equation.
The fact that the bulk metric can be interpreted as the

information metric associated with the thermofield double
state was emphasized below (34). This seems suggestive
since, in the context of the AdS=CFT correspondence, the
eternal black hole in AdS is believed to be dual to the
thermofield double state where two copies of the boundary
CFT are entangled [21]. In the simplest model employed
here, we found the singular behavior in the IR limit, and
thus, sensible comparisons of the obtained bulk geometry
with the black brane are only possible in the UV asymp-
totically AdS region. We would like to come back to this
issue with some interacting models.
As mentioned below (110), the bulk theory dual to the

boundary one cannot be the Einstein gravity coupled to an
ordinary scalar field for the relation (24) to be satisfied, and
thus, the modified gravity is necessary. It is reasonable to
imagine that similar phenomena also happen for generic
exited stats of the boundary theory. To study geometry
corresponding to excited states, a normalization of the
smeared field is important to define the metric operator
whose excited state expectation value can be interpreted as
the information metric. For the scalar case, see (27) and
(28). We leave this problem for our future studies, in order
to see whether relations (108) and (110) hold for such
generic states. Having nothing else than the metric field in
the bulk seems reasonable in the sense that, in our approach
with the current model of real scalar field, the bulk metric
defined by (34) is the only object that allows the informa-
tion-theoretical interpretation.
Lastly, let us emphasize that fðRÞ gravity is not the exact

bulk theory in all regions. Metric perturbations that fall off
differently from zd−4 or zd−2 may no longer solve the EOM

of fðRÞ gravity, and we indeed explicitly confirmed that the
metric in the IR limit (72) is not an asymptotic solution of
fðRÞ. Therefore, a more general class of modified gravity
theories needs to be considered. In principle, we could find
a true bulk theory by imposing the condition (78) order by
order. It would be interesting to compare such a bulk theory
with the higher spin theory, which is conjectured in [22] to
be dual to the boundary OðNÞ scalar theory.
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APPENDIX A: NORMALIZATION AND
INTEGRAL REPRESENTATION OF THE BULK

TWO-POINT FUNCTION

We first calculate the normalization factor ϒðzÞ in (26),
which is expressed in the Fourier space as

ϒðzÞ ¼ ω

Z
ddp
ð2πÞd

1

ðp2ÞΔ̄ S̃2ðp; ηÞ ¼ NC1z−2Δ; ðA1Þ

where

C1 ≔
C02

3−d

ΓðΔ̄ÞΓðΔÞΓðd
2
Þ
Z

∞

0

dppd−1K2
Δ̄ðpÞ: ðA2Þ

Using an integration formula,

Z
∞

0

dppbK2
aðpÞ ¼ 2b−2

Γ
	
bþ1−2a

2



Γ
	
bþ1þ2a

2



Γ2
	
bþ1
2



Γðbþ 1Þ ;

ðA3Þ

we obtain

C1 ¼ C0

Γðd − ΔÞΓðd
2
Þ

ΓðΔ̄ÞΓðdÞ : ðA4Þ

We next derive an alternative integral representation of
the bulk two-point function (25). We first evaluate a bulk-
to-boundary two-point function in the Fourier space as
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hσ̂a0ðXÞφ̂bð0Þi0 ¼
δabωffiffiffiffiffiffiffiffiffiffi
ϒðzÞp Z

ddp
ð2πÞd

eipx

ðp2ÞΔ̄ S̃ðp; ηÞ ¼ δabC2

x
d−2
2

Z
∞

0

dppΔJd−2
2
ðxpÞKΔ̄ðzpÞ; ðA5Þ

where

C2 ≔
C0ffiffiffiffiffiffiffiffiffi
NC1

p 2Δ̄−ΔΓðΔ̄Þ
ΓðΔÞxd−2

2

;
Z

π

0

dθ sind−2θeipx cos θ ¼
ffiffiffi
π

p
2

d−2
2 Γðd−1

2
Þ

ðxpÞd−22 Jd−2
2
ðxpÞ: ðA6Þ

Using an integration formula

Z
∞

0

dppμ−νþ1JμðapÞKνðbpÞ ¼
ð2aÞμð2bÞ−ν

ða2 þ b2Þμ−νþ1
Γðμ − νþ 1Þ; ðA7Þ

we obtain

hσ̂a0ðXÞφ̂bðyÞi0 ¼
δabC0ffiffiffiffiffiffiffiffiffi
NC1

p
�

z
z2 þ jx − yj2

�
Δ
; ðA8Þ

Smearing the remaining φ̂bðyÞ further, the bulk two-point function (25) becomes

G0ðX1; X2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
ϒðz2Þ

p XN
a¼1

Z
ddySðx2 − y; η2Þhσ̂a0ðx1; η1Þφ̂aðyÞi0;

¼ ΓðdÞ
πd=2Γðd=2Þ

Z
ddy

�
z1

z21 þ jx1 − yj2
�

Δ
�

z2
z22 þ jx2 − yj2

�
d−Δ

: ðA9Þ

Introducing two Feynman parameters and doing the Gaussian integral with respect to y, we obtain

G0ðX1; X2Þ ¼
zΔ1 z

d−Δ
2

BðΔ; d − ΔÞπd=2Γðd=2Þ
Z

∞

0

dssΔ−1
Z

∞

0

drrd−Δ−1
Z

ddy

× expf−sðz21 þ jx1 − yj2Þ − rðz2 þ jx2 − yj2Þg ¼ zΔ1 z
d−Δ
2

BðΔ; d − ΔÞΓðd=2Þ
Z

∞

0

dssΔ−1

×
Z

∞

0

drrd−Δ−1ðsþ rÞ−d=2 exp
�
−sz21 − rz22 −

rs
sþ r

jx1 − x2j2
�
: ðA10Þ

Changing the integral variables as s ¼ ð1 − βÞt, r ¼ βt and integrating the overall scale t of the Feynman parameters, we
get the final result:

G0ðX1; X2Þ ¼
ðz2=z1ÞΔ̄

BðΔ; d − ΔÞ
Z

1

0

dβ
ð1 − βÞΔ−1βd−Δ−1h

1−β
z2=z1

þ βz2=z1 þ βð1 − βÞ jx1−x2j2z1z2

i
d=2 ;

¼ 1

BðΔ; d − ΔÞ
Z

∞

0

dw
wΔ̄−1

ð2U0 þ wþ 1=wÞd=2 ; ðA11Þ

where w ¼ ðz2=z1Þβ
1−β and U0 is the SOð1; dþ 1Þ invariant ratio in (25).

Comparing the above result with (25), we find a new and alternative integral formula for a hypergeometric function in a
special case as

2F1

�
Δ
2
;
d − Δ
2

;
dþ 1

2
; 1 −U2

0

�
¼ 1

BðΔ; d − ΔÞ
Z

∞

0

dw
wd=2−Δ−1

ð2U0 þ wþ 1=wÞd=2 ; ðA12Þ

which is valid for arbitrary d and Δ as long as the integral is convergent, i.e., d > Δ > 0.
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APPENDIX B: DERIVATIVES OF TWO-POINT
FUNCTION

In order to obtain expressions (42), (43), and (44) of the
bulk metric, derivatives of the two-point function for the
flowed field defined in (32) are rewritten as follows.
Using (A12), the two-point function (38) is given by

GðX;X0Þ ¼ 1

BðΔ; d − ΔÞ
X∞
n¼−∞

Z
∞

0

dw

wΔ−d−2
2

fðd=2; UnÞ;

ðB1Þ

where

fðb;UÞ ≔ ð2U þ wþ 1=wÞ−b;
∂Ufðb;UÞ ¼ −2b × fðbþ 1; UÞ: ðB2Þ

Thus

∂XMfðd=2; UnÞjX0→X ¼ −dfðd=2þ 1; unÞ × ∂XMUnjX0→X;

ðB3Þ

∂XM∂X0Nfðd=2; UnÞjX0→X ¼ −d½−ðdþ 2Þfðd=2þ 2; unÞ × ð∂XMUnÞð∂X0NUnÞjX0→X

þ fðd=2þ 1; unÞ × ∂XM∂X0NUnjX0→X�; ðB4Þ

where

∂xiUnjX0→X ¼ 0; ∂x0i∂xjUnjX0→X ¼ −δij
T2

ξ2
; ðB5Þ

∂τUnjX0→X ¼ þ nT
ξ2

; ∂τ0UnjX0→X ¼ −
nT
ξ2

;

∂τ0∂τUnjX0→X ¼ −
T2

ξ2
; ðB6Þ

∂zUnjX0→X ¼ ∂z0UnjX0→X ¼ −
n2T
2ξ3

;

∂z∂z0UnjX0→X ¼ −
T2

ξ2

�
1 −

n2

2ξ2

�
: ðB7Þ

The expressions in (B3) and (B4) can be simplified with

−2b × fðbþ 1; unÞ ¼
�
∂un
∂ξ2

�
−1 ∂

∂ξ2
fðb; unÞ

¼ −
2ξ4

n2
∂

∂ξ2
fðb; unÞ ðB8Þ

for n ≠ 0, so that

∂

∂z
GðX;X0Þ

����
X0→X

¼ ∂

∂z0
GðX;X0ÞjX0→X ¼ T × ξg0; ðB9Þ

∂

∂xi
∂

∂x0i
GðX;X0Þ

�����
X0→X

¼ T2
Bðd − Δþ 1;Δþ 1Þ

Bðd − Δ;ΔÞ d × ξ−2f;

ðB10Þ

�
∂

∂τ

∂

∂τ0
−

∂

∂xi
∂

∂x0i

�
GðX;X0Þ

�����
X0→X

¼ T2
Bðd − Δþ 1;Δþ 1Þ

Bðd − Δ;ΔÞ d × ð−2Þf0; ðB11Þ

�
∂

∂z
∂

∂z0
−

∂

∂xi
∂

∂x0i

�
GðX;X0Þ

�����
X0→X

¼ T2 × ðξ2g00 þ g0Þ;

ðB12Þ

where we have used a fact that fðb; u0Þ is ξ independent,
and the n ¼ 0 contribution exists only in (B10). Note also
that

d ×
Bðd − Δþ 1;Δþ 1Þ

Bðd − Δ;ΔÞ ¼ L2
dþ1

l2
: ðB13Þ

APPENDIX C: NUMERICAL EVALUATION
OF THE BULK METRIC

By restricting ourselves to the case for an even integer
d ¼ 2ðjþ 1Þ with j ≥ 1 integer, the summation in the bulk
metric can be explicitly performed. Equation (40) can be
written as

g ¼ ðπξÞd
BðΔ; d − ΔÞ

Z
∞

0

dw

wΔ−d−2
2

SdðγÞ;

SdðγÞ ≔
X∞
n¼−∞

ðπ2n2 þ γ2Þ−d=2; ðC1Þ

where γ ≔ πξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ wþ 1=w

p
. By a replacement that

ðΔ; dÞ → ðΔþ 1; dþ 2Þ, we obtain f in (41). A summation
with respect to n can be explicitly performed at d ¼ 2 as
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S2ðγÞ ¼
X∞
n¼−∞

π−2

n2 þ ðγ=πÞ2 ¼
1

γ tanhðγÞ : ðC2Þ

Since ∂γ2SdðγÞ ¼ − d
2
× Sdþ2ðγÞ for d ¼ 2ðjþ 1Þ, we find

SdðγÞ ¼
∂
j
γ2
S2

ð−1Þjj! : ðC3Þ

In Fig. 1, the nonzero components of the bulk metric for
j ¼ 1 and j ¼ 2 are presented. As is seen in Fig. 2, the
metric for j ≥ 3 has the similar behavior to the j ¼ 2 case.

APPENDIX D: LINEARIZED QUANTITIES

In order to check if the bulk metric from the boundary
CFT solves the linearized EOM of fðRÞ theory (87),
explicit expressions of perturbed quantities like δR and
δGMN are needed. We here compute them only for the
physical parts of the perturbations such as a scalar Φph and
a symmetric, traceless, and transverse tensor hMN, since
parts like ∇M∇NΘ1;2 that can be gauged away automati-
cally satisfy the linearized EOM for the diffeomorphism
invariant theory.

1. Scalar δgMN = ḡMNΦph=ðd + 1Þ
For the scalar perturbation, the Ricci tensor is written as

δRMN ¼ −
1

2ðdþ 1Þ fðd − 1Þ∇M∂N þ ḡMN□gΦph: ðD1Þ

We therefore obtain

δR ¼ −
d

dþ 1

�
□̄ −

dþ 1

L2
dþ1

�
Φph;

δGMN ¼ δRMN −
ḡMN

2

�
R̄Φph

dþ 1
þ δR

�

¼ −
d − 1

2ðdþ 1Þ f∇̄M∂N − ḡMN□̄gΦph: ðD2Þ

Since

□Φph ¼
XðX − dÞ
L2
dþ1

×Φph; ðD3Þ

ð∇̄z∇̄z − ḡzz□̄ÞΦph ¼ Xd ×Φph=z2;

ð∇̄σ∇̄σ − ḡσσ□̄ÞΦph ¼ Xðd − X − 1Þ ×Φph=z2; ðD4Þ

for Φph ∝ zX, we have

δR ¼ 3dðd − 1Þ
ðdþ 1ÞL2

dþ1

Φph ¼ −
3ðd − 1ÞR̄
ðdþ 1Þ2 Φph; ðD5Þ

δGzz ¼ d × δGσσ ¼ −
dðd − 1Þðd − 2Þ

2ðdþ 1Þ
Φph

z2

¼ ðd − 1Þðd − 2ÞR̄
2ðdþ 1Þ

L2
dþ1

z2
Φph

dþ 1
; ðD6Þ

where σ ¼ 0 or i (i ¼ 1; 2;…; d − 1).

2. Tensor δgMN = hMN

For the tensor perturbation hMN in (96), which satisfies
ḡMNhMN ¼ 0 and ∇MhMN ¼ 0, the Ricci tensor is calcu-
lated as

FIG. 2. Nonzero components of the metric gii (solid), g00 (dashed), and gzz (dash-dotted), each divided by L2
dþ1=z

2, as functions of
ξ ¼ Tz with d ¼ 8 (left panel) and d ¼ 10 (right panel). The horizontal line depicts L2

d=L
2
dþ1 ¼ ðdþ 1Þ2ðd − 3Þ=dðd2 − 4Þ for

each case.
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δRMN ¼ R̄K
ðMhNÞK − R̄L

M
K
NhKL −

1

2
□hMN

¼ −
1

2

�
□þ 2ðdþ 1Þ

L2
dþ1

�
hMN; ðD7Þ

where the relations in (84) are used in the second quality.
We then find

δR¼ ḡMNδRMN −hMNR̄MN ¼ 0;

δGMN ¼ δRMN −
R̄
2
hMN ¼−

1

2

�
□̄−

ðd− 2Þðdþ 1Þ
L2
dþ1

�
hMN:

ðD8Þ

Since □hzz ¼ 0 and

□hσσ ¼ −
2

L2
dþ1

hσσ; σ ¼ 0; i ðD9Þ

for hMN ∝ zd−2, we obtain δGzz ¼ 0 and

δGσσ ¼
dðd − 1Þ
2L2

dþ1

hσσ ¼ −
d − 1

dþ 1

R̄
2
hσσ: ðD10Þ

APPENDIX E: f ðRÞ IN EINSTEIN FRAME

It is well known that fðRÞ theory described by the
Lagrangian (79) is, at least classically, equivalent to the
theory given by the following actionwith an auxiliary field χ,

S ¼ 1

2κ

Z
ddþ1x

ffiffiffi
g

p ðfðχÞ þ ðR − χÞFðχÞÞ; ðE1Þ

where FðχÞ ≔ ∂χfðχÞ, since the EOM for χ reads χ ¼ R as
far as ∂χF ≠ 0.
Reparametrizing χ with a scalar field s asFðχÞ ¼ e−ðd−1Þs,

one can move to the Einstein frame by Weyl transformation
such that g̃MN ¼ e−2sgMN . In the following, we put tildes on
quantities associated with the new metric g̃MN . Since
e2sR ¼ R̃ − 2d□̃s − dðd − 1Þg̃MN

∂Ms∂Ns, up to surface
term, the action (E1) is rewritten as

S ¼ 1

2κ

Z
ddþ1x

ffiffiffĩ
g

p
ðR̃ − dðd − 1Þg̃MN

∂Ms∂Ns − 2UðsÞÞ;

ðE2Þ

where

UðsÞ ≔ eðdþ1Þs χF − f
2

¼ e2sχ − eðdþ1Þsf
2

: ðE3Þ

The field s is a scalar field with the potential function UðsÞ.
Let us define a constant field value s̄ as the minimum of

UðsÞ, which satisfies

∂sU ¼ eðdþ1Þs
�
χF −

dþ 1

2
f

�
¼ 0; ðE4Þ

which is equivalent to the condition (85). At s ¼ s̄, we find

χ̄ × e2s̄ ¼ 2ðdþ 1Þ
d − 1

Uðs̄Þ: ðE5Þ

Given that χ ¼ R, we can identify the potential energy there
as the cosmological constant in the Einstein frame

Λ̃ ≔ Uðs̄Þ ¼ e2s̄
R̄ðd − 1Þ
2ðdþ 1Þ ¼ −

dðd − 1Þ
2L̃2

dþ1

; ðE6Þ

where L̃dþ1 ≔ e−s̄Ldþ1.
We consider a small fluctuation δs of the scalar field s

around s̄: s ¼ s̄þ δs. Since

∂
2
sU ¼ ðdþ 1Þ∂sU − ðd − 1Þe2s

�
∂sχ

2
þ χ

�
; ðE7Þ

the mass of the canonically normalized scalar fluctuation
s̃ ≔ δs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ=κp

is obtained as

m2
s ≔

∂
2
sU

dðd − 1Þ
����
s¼s̄

¼ −
e2s̄

d

�
−
d − 1

2

F
∂χF

þ χ

�
χ¼R̄

; ðE8Þ

where we have used the relation ∂sχ ¼ −ðd − 1ÞF=∂χF.
Since

eδs ¼
�
FðRÞ
FðR̄Þ

�
− 1
d−1 ¼ 1 −

1

d − 1

∂
2f

∂f
δRþOðδR2Þ; ðE9Þ

we have δs ∝ δR ∝ zd−2 from (D5) at the leading order.
This behavior becomes consistent with the linearlized EOM

ð ē□ −m2
sÞs̃ ¼ 0 if m2

s ¼ −2ðd − 2Þ=L̃2
dþ1 holds. Through

(E8), this condition turns out to be equivalent to the
condition (93).
We now compute the metric perturbation in the Einstein

frame. By the Weyl transformation g̃MN ¼ e−2sgMN , it is
essentially only the scalar mode that is affected. The
perturbation of the metric δg̃MN ≔ g̃MN − ¯̃gMN from the
background AdS metric ¯̃gMN ≔ δMNL̃dþ1=z2 is decom-
posed as

δg̃MN ¼
¯̃gMN

dþ 1
Φ̃þ h̃MN þ L̃2

dþ1

�ē∇M
ē∇N −

¯̃gMN

dþ 1
¯̃
□

�
Θ̃;

ðE10Þ

where Φ̃ ≔ Φ − 2ðdþ 1Þδs with Φ in (89), h̃MN ≔ e−2s̄ ×
hMN with hMN in (96), and Θ̃ ¼ Θ1 þ Θ2 withΘ1 andΘ2 in
(90) and (95). The physical scalar perturbation is defined by

Φ̃ph ≔ Φ̃ − L̃2
dþ1

¯̃
□ Θ̃ ¼ Φph − 2ðdþ 1Þδs with Φph in
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(90). Reading off δs from (E9) and plugging it the above,
we obtain

Φ̃ph ¼ Φph þ
2ðdþ 1Þ
d − 1

∂
2f

∂f
δR ¼

�
1 −

6R̄
dþ 1

∂
2f

∂f

�
Φph:

ðE11Þ

On the second equality, we have used (D5). With the
condition (93), we find Φ̃ph ¼ 0.
The EOM following from (E2) for the gravitational field

become G̃MN þ Λ̃g̃MN − T̃MN ¼ 0

G̃MN þ Λ̃g̃MN − T̃MN ¼ 0; ðE12Þ

where the stress tensor is given by

T̃MN ≔ ∂Ms̃∂Ns̃ −
ḡMN

2
ðḡKL∂Ks̃∂Ls̃þm2

s s̃2Þ þOðs̃3Þ:
ðE13Þ

As in Sec. IVA, we decompose it in the form of (78) and
look only at a ¼ 1 with b ¼ −1; 0. Since T̃MN ∼ z2ðd−3Þ

with s̃ ∼ zd−2, the matter scalar field fluctuation does not
contribute to the EOM at these orders. Therefore, the metric
alone should solve the vacuum Einstein equation. First of
all, the unperturbed solution is given by the AdS metric
¯̃gMN ¼ δMNL̃dþ1=z2 where L̃dþ1 is related to the cosmo-
logical constant Λ̃ in (E6). The leading order metric
perturbation at a ¼ 1 with b ¼ −1 is given by (E11),
which vanishes due to the condition (93). Therefore the
EOM is trivially satisfied at this order. The actual leading
order metric perturbation in the Einstein frame is the tensor
perturbation h̃MN , which is the same as the Jordan frame
tensor perturbation up to the factor e−2s̄. As mentioned
below (96), it solves the vacuum Einstein equation without
any new condition so that the b ¼ 0 part of EOM is
satisfied.
Finally, we show that the metric (E10) at this order is

equivalent to the AdS black brane solution, given in (98).
Deviations of the black brane metric from the pure AdS
spacetime are given in (99). On the other hand, the leading
order perturbation of g̃MN in (E10) with Φ̃ph ¼ 0 becomes

δg̃MN ¼ h̃MN þ L̃2
dþ1

ē∇M
ē∇NΘ̃, where h̃MN is given in (101)

and Θ̃ ¼ Θ1 þ Θ2. With the identification in (100), it is
easy to see that (99) and (101) are equivalent by the gauge
transformation as shown in (102). Therefore, (E10) is
equivalent to the leading order perturbation in the AdS
black brane with the Hawking temperature (100).

APPENDIX F: EINSTEIN GRAVITY WITH
SCALAR FIELD

Let us consider a massive scalar field ς minimally
coupled to Einstein gravity:

L ¼ R − 2Λ
2κ

−
1

2
ðgKL∂Kς∂Lςþm2ς2Þ ðF1Þ

with a negative cosmological constantΛ¼−dðd−1Þ=2L2
dþ1.

The Einstein equation is given by

GMN þ ΛgMN ¼ κTMN; ðF2Þ

where

TMN ≔ ∂Mς∂Nς −
gMN

2
ðgKL∂Kς∂Lςþm2ς2Þ; ðF3Þ

while EOM for the scalar field become ð□ −m2Þς ¼ 0. At
the zeroth order of κ, gMN becomes the AdS metric, and
assuming ς depends only on z, we get a general solution on
the background AdS spacetime as

ςðzÞ ¼ ϱ̃ × zpþ þ ϱ × zp− ; ðF4Þ
where ϱ and ϱ̃ are arbitrary constants, and

p� ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd=2Þ2 þ L2

dþ1m
2

q
: ðF5Þ

At the first order of κ, the Einstein equation becomes

ðδGMN þ ΛδgMNÞ ¼ κTMN: ðF6Þ

In order for the behavior TMN ∼ z2ðp�−1Þ to match δGMN þ
ΛδgMN ∼ zd−4 at the leading order as shown in (91), it is
required that p− ¼ ðd − 2Þ=2 ¼ Δ and ϱ̃ ¼ 0 in the solution
(F4), which means that

L2
dþ1m

2 ¼ −
ðdþ 2Þðd − 2Þ

4
¼ ΔðΔ − dÞ: ðF7Þ

Since (F3) is evaluated as

Tzz ¼
d
2
× Tσσ ¼

d
2

d − 2

2
ϱ2zd−4 ðF8Þ

and the lhs of the Einstein equation is given as (91), the
minimally coupled scalar field can account for the perturba-
tion δgMN in theUV limitwith the coefficientϱ determined by

ϱ2 ¼ Td−2

κ

4dðd − 1Þ
ðd − 2Þ2ðdþ 2Þ

4ζðd − 2Þ
BðΔ; d − ΔÞ : ðF9Þ

According to the relation (22), the bulk degree of freedom
∝ zΔ has a corresponding operator in the boundary theory
with the conformal dimensionΔ, whose unique candidate of
such a operator isφa. However, its thermal expectation value
vanishes due to the unbroken OðNÞ symmetry, even though
the conformal symmetry is broken by the temperature.
Therefore, the relation (24) is not satisfied for φa, and we
thus conclude that the bulk theory described by (F1) cannot
be dual to the boundary theory in (29).
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