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Bulk modified gravity from a thermal CFT by the conformal flow

Sinya Aoki® and Kengo Shimada

+

Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics,
Kyoto University, Kitashirakawa Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan

Janos Balog®
Holographic QFT Group, Institute for Particle and Nuclear Physics,
HUN-REN Wigner Research Centre for Physics, H-1525 Budapest 114, P.O.B. 49, Hungary

Kiyoharu Kawana

§

School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea

® (Received 24 October 2023; accepted 3 January 2024; published 8 February 2024)

We construct a bulk spacetime from a boundary conformal field theory, O(N) free scalar model, at finite
temperature using a smearing technique, called a conformal flow. The bulk metric is constructed from the
thermal two-point function of the smeared boundary elementary field in such a way that it can be
interpreted as an information metric associated with the boundary thermofield double state. Near the
boundary (UV region), an asymptotically anti—de Sitter (AdS) spacetime is obtained with a leading order
perturbation of scalar mode. Based on the falloff behavior of the perturbations and the O(N) symmetry in
the conformal field theory, we argue that the corresponding bulk theory is a modified gravity with scalar
mode such as f(R) gravity rather than Einstein’s general relativity coupled minimally to matter fields.
Moving to the Einstein frame, we show that the metric is asymptotically the same as the AdS black brane
solution. On the other hand, deep in the bulk (IR region), the spacetime turns out to be conformally
equivalent to the near horizon limit of AdS extremal black brane, though it is no longer a solution of f(R)
gravity, and hence more general classes of modified gravity need to be considered.
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I. INTRODUCTION

The AdS/CFT correspondence [1-3] tells us that any
excitation on the (d + 1)-dimensional anti—de Sitter (AdS)
spacetime has a dual description with an operator on the
d-dimensional conformal field theory (CFT). Although it is
conjectured based on a specific duality associated with
D-branes in superstring theory, a generic CFT is expected
to have a dual theory on the AdS because of the isomorphism
between the symmetry groups of the two theories.

This isomorphism motivates ones to explore the pos-
sibility of constructing local bulk field & by smearing of a

boundary single trace operator S [4] where
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lim® = z% x § (1)

z—0

holds in the AdS boundary limit characterized by z — 0
with Ag being conformal dimension of S. An explicit
construction is given by Hamilton, Kabat, Lifschytz, and
Lowe for the large N limit where the bulk fields become
free [5,6]; interacting cases are also studied in [7]. In this
approach, since the operators to be smeared are singlet,
their conformal dimension is implicitly assumed to be
greater than d — 1 in the original papers; and later in [8], the
range of allowed conformal dimension was extended down
to d/2 by analytic continuation, see also [9,10].

There exists a different approach to the bulk reconstruction
using a smearing method with flow equation [11-16], where
the elementary field rather than the singlet operators in the
boundary theory is smeared. The bulk spacetime is con-
structed from the CFT in such a way that the metric can be
interpreted as an information metric associated with a state of
the boundary [15]. This approach manifests the emergence of
the bulk spacetime itself, including the AdS background.
In [16], a special form of the flow equation is proposed to
reproduce the relation that summarizes the AdS/CFT
correspondence, conjectured by Gubser, Klebanov, and
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Polyakov [2] and Witten [3] (GKP-Witten). The use of this
special flow equation may make it possible to discuss what is
essential to the correspondence from a different perspective
in the flow equation approach; the bulk reconstruction is
based on the smeared elementary field whose conformal
dimension is less than d/2, and thus, the flow approach is
complementary to the one by Hamilton, Kabat, Lifschytz,
and Lowe.

The flow method has been applied to a case with a
thermal state of the boundary CFT in [17] and the resultant
bulk spacetime was compared with the AdS black brane,
which is the expected dual to the thermalized CFT in the
standard AdS/CFT scenario. However, in that work, a
conventional (the simplest) flow equation was employed
and, in addition, the definition of the bulk metric lacks the
information-theoretical interpretation. Besides, the com-
parison with the black brane is made in a rather qualitative
way. In the present paper, we therefore revisit the same
setup but with the special flow equation proposed in [16]
and define the bulk geometry in such a way that it can be
seen as an information geometry. Then, we compare its
asymptotic behavior with the AdS black brane.

A short summary of results in this paper is as follows.
(1) The bulk space constructed to the thermal state becomes
the asymptotic AdS in d + 1 dimensions near boundary
(UV), while it approaches to the AdS space in d dimensions
deep in the bulk (IR) in accordance with the dimensional
reduction of boundary CFT at high temperature. (2) More
precisely, the metric in the IR region describes AdS, x R,_;.
(3) The leading deviations of the metric from the AdS in the
UV region contain both scalar and tensor modes, which
satisfies the equations of motion for the f(R) gravity. (4) The
metric deviations in the UV region describes the black brane
solution in the Einstein frame. (5) Relations between bulk
modes and boundary operator similar to Eq. (1) are derived
for scalar and tensor modes.

This paper is organized as follows. In Sec. I, we briefly
review the flow method for the boundary CFT in the
vacuum state. We show how the bulk metric is obtained
from the flowed elementary field and how it is interpreted
as a quantum information metric. It is also discussed that
the GKP-Witten relation is constructed for a special choice
of the flow equation, which converts the boundary con-
formal symmetry to the bulk AdS isometry. In Sec. III, we
generalize the formulation to the case with the thermal CFT.
We normalized the flowed field in such a way that the bulk
metric can be interpreted as a quantum information metric
even for the thermal state. We then explicitly compute the
bulk metric and discuss its asymptotic behaviors both in
UV and IR. In Sec. IV, we focus on the boundary-bulk
correspondence in the UV region. We show that the bulk
theory is consistent with the f(R) gravity, and the metric
perturbations in the Einstein frame reproduce those of the
AdS black brane. We also extract explicit relations between
propagating modes in the bulk and operators in the

boundary CFT. We conclude our paper in Sec. V. Some
technical details are presented in the Appendices.

II. BULK RECONSTRUCTION BY FLOW
EQUATIONS AND THE CONFORMAL FLOW

In this section, we review the bulk reconstruction from a
boundary CFT with a smearing technique based on a flow
equation. This method does not assume an existence of the
AdS spacetime a priori. The bulk metric is constructed
from the smeared CFT fields and can be interpreted as a
quantum information metric for a mixed state. As discussed
below, with a certain choice of the flow equation, the GKP-
Witten relation is reproduced.

As a boundary CFT, we consider a O(N) scalar field
@°(x) with a =1,2,..., N in a d-dimensional Euclidean
spacetime. In this review part, we do not specify the
corresponding action, but only assume that a 2-pt function
behaves as

CO ddp eip(x—x’)
e e e L B
0 |x _x/|2A (277)‘1 (PZ)A

(2)

where C, being a constant, A is a conformal dimension of
@, and

FA24 . d
2

B

The bracket with subscript O denotes an expectation value in

the vacuum state: (), := (0|/|0). The integer N should be
large to justify a classical picture of a bulk curved spacetime.

A. Emergent dimension with smearing

A flowed field operator ¢“(x;#) is introduced as an
extension of the boundary operator ¢* with respect to a
“flow time” 1 > 0 to satisfy a flow equation as

¢ (1:0) = (x).
(4)

where o > 0 and f are real parameters. A solution to the
above flow equation is written in an integral form as

(—and2 + Bo,) " (xin) = P (x;).

&“Uﬁn)=i/}ﬂy50*-ynﬁ¢“00

d
_]/kg;;ewﬁﬂpnﬂ$%ph (5)

which may be regarded as a smearing of ¢“ with a kernel S.
Indeed, for a simplest choice that « =0 and p =1, the
kernel represents a Gaussian smearing as
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S(wn) = e {(~RP/An) (6)

(47n)

A kernel for a solution to the flow equation (4) can be
obtained in the Fourier space as

S(psn) = % < gp> ', <2\/§P>, (7)

where v := 1 + f/a, and K, is the modified Bessel function
of the second kind, which leads to

Thanks to the smearing by the flow equation, operators
with # > 0 do not have any contact singularities. Note that
n’s mass dimension is —2 and it turns out that 1/,/7 plays
the role of UV cutoff. In this sense, we refer to  — 0 as the
UV limit and # — oo as the IR limit.

Let us introduce a normalized field operator

N
=—— 2 Pun)= ¢ ()t (xin)
a=1

©)

where XM = (x#,7) with 7z \/ﬁ.l By definition,
(6*(X)o”(X))y = 6°/N. We then define a bulk metric
operator

N qa ~
064(X) 954 (X)

P — 2 E 0 0

gMN(X) =77 X p aXM axN s

(10)

where 7 is an arbitrary length scale. A vacuum expectation
value (VEV) of the metric operator,

o 0

i (X) = (G (X))o = €2 x aX—MaX_’NGO(X’X/) e
(11)
with the two-point function
N
Go(X.X') =) (6§(x:ma§(x¥sn))o.  (12)
a=1

'"The greek letters like g, v, o run from 0 to d — 1 and the
lowercase latin letters like 7, j run from 1 to d — 1. The Euclidean
time coordinate is denoted by 7 := x°. The uppercase latin letters
like M, N running from O to d are used for (d 4 1)-dimensional
Euclidean spacetime including the emergent direction.

can be interpreted as the Bures information metric [18] in
the following way. In general, an infinitesimal distance
between mixed density operators is defined by

1 .
d*(po, po +dpo) = ETr{deG}, (13)

where an operator G satisfies poG + Gpy = dp,. In the
present case, the mixed density operator is given by [13]

NE

po(X) =) &5(x;1)|0)(0[86 (x; 1),

Il
=

a

Po(X)po(X) = po(X)/N, (14)

from which we read off G = Ndp,(X) = NdXMa,py(X).
Therefore, the distance

STedo(X)6) = S Tr{om0(X)anpo(X)}axax™ (15)

reproduces the metric (11).
With the simplest choice (6), it is known that the bulk
spacetime becomes AdS with its radius Z2A [13]:

A

QX?%(X) = 75MN- (16)

Even for general choices of the kernel (8) corresponding to
the general flow (4), g)7% also describes the AdS spacetime
simply by the symmetry argument.2 Such generic choices
including the simplest one, however, give rise to problems
for excited states. For example, it does not reproduce a form
of the bulk-to-boundary scalar propagator expected from
the AdS/CFT. Therefore a special choice of the flow
equation has been proposed in Ref. [16] to improve
properties of the bulk reconstruction, as explained in the
following sections. In this paper, we call such a special flow
a conformal flow.

B. Conformal flow and GKP-Witten relation

Following [16], we take v = A together with a normali-
zation of the (d + 1)th coordinate z as 4y = az>. With this
special form of the flow equation, the radius of the resulting
AdS spacetime turns out to be

A(d—A)

L%(d,A) := ¢ ,
(d,4) A+ 1

(17)

and, more importantly, the conformal transformation of the
scalar field operator

’One can generalize this statement further: if the flow equation
is invariant under the scale transformation such that # — 1?5 and
x* — Ax* as well as the Poincare transformation, then the VEV of
the metric operator describes the AdS spacetime.
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P ~a A £a
M (x) = =530, (x) == (9,6x)9(x)  (18)
with 8x# = a# + @, x* + Ax* + b*x* — 2x* (b - x) becomes a
diffeomorphism transformation of the bulk field operator

5eontse(X) = —ox*0,64(X) — 620.64(X)  (19)
with 6x# = 8x* + z2b#, 67 = (A — 2b - x)z, which is noth-
ing but the isometry of the AdS spacetime. A combination

@030 = 51—t

of both conformal symmetry at the boundary and AdS
isometry in the bulk strongly constraints forms of
boundary-to-bulk propagators including all quantum cor-
rections. We therefore call this special flow the conformal-
AdS flow, or the conformal flow for short.

For example, the form of the bulk-to-boundary propa-
gator connecting an O(N) singlet boundary scalar operator
S with its correspondent ® in the bulk can be fixed by the
bulk AdS isometry and the boundary conformal symmetry
up to an overall constant Cg as

— :0
lx =y ’ (20)
Cozs|x—y[™%s,  |x—y[#0

where Ag > d/2 is a conformal dimension of S, and Cs = Csn/’T'(As — d/2)/T(Ag).
Let us define the VEV of the bulk scalar operator @ in the presence of a small source term J coupled to the scalar operator

S at the boundary as

@,/ (X) = (0] (X) exp [/ d'yJ(y)S(y )] 0) = /d"yf(y)@(x)s(y»o, (1)

where ®(X) is chosen to satisfy (0|®(X)|0) = 0. It is easy to check that @ ,(X) satisfies the massive Klein-Gordon

equation in the bulk AdS with the radius (17), whose mass is given by m? = Ag(Ag —

reproduce the GKP-Witten relation [2,3] as

d)/L?*(d, A). For small z, we then

11_1}(1) Dy 5 (X) = z978[CsJ (x) + O(2%)] + 2%5[Ag s (x) + O(2%)], (22)

where

Iy
Ag(x) = Cs / ddypc_(ﬁ .

can be interpreted as the expectation value of the operator S
in the presence of the source term [19,20], since the one-
point function vanishes for the conformal symmetry kept
unbroken with the vacuum state |0).

Let us assume the relation (22) applies to a generic

boundary state |B) with A,(x) « (B|S(x) f a0 |B)
replacing Ag ;. It tells us that, with J = 0, the expectation
value of the boundary operator S with conformal dimension
Ag generates the correspondent bulk excitation ®p as

Dy(X) := (B|O(X)|B) o 2% (BIS(x)|B)  (24)

with some subleading terms that are not explicitly shown.
This corresponds to the relation (1) implied by the standard
bulk reconstruction [4-6]. We take this relation as a guide
to identify a bulk theory dual to the boundary theory in the
following sections.

/ a7 () ()3 (1))

fdd».l (23)

For the conformal flow, the two-point function (12) can
be written in terms of a hypergeometric function [16]:

Ad-Ad+1
X, X)=,F 1 -U?
GO( s ) 2 1<27 D) B D) U)
|x —x)? + 22 + 72
Uy = , 25
0 ZZZI ( )

where the AdS isometry implies that G,(X, X’) must be a
function of the SO(1,d+ 1) invariant ratio U,. In
Appendix A, the normalization factor in (9) is evaluated as

Y(2) = (¢ (x;n))g = NC1z 724,
I(d - A)D(d/2)

SRR PN

(26)

We may also determine a geometry corresponding to an
excited state rather than the vacuum. For a primary scalar
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state |S >,3 for example, we define an operator normalized
for this state as

y ¢ (x;m)
64X) = B o (27)
\/ (Slg~ (x:m)[S)
The corresponding metric operator is defined by
N aa N
064(X) 364(X)
~S — 22 : s s

N=1

and its expectation value is given by (S|g5,y(X)|S), which
can also be interpreted as the Bures information metric.

As an more complicated case, we may consider a mixed
state such as the thermal state, which is a target in this
paper. In the remaining of this paper, we define a bulk
metric operator for the thermal state that can be interpreted
as the Bures metric, and calculate its thermal average to
determine the structure of the spacetime and the corre-
sponding bulk theory.

III. BULK GEOMETRY FROM A THERMAL
BOUNDARY STATE

Hereafter we assume that ¢ is a free massless scalar
field, whose action is given by

Selol = [ @Y7 00 00, (29)
a=1

and calculate the metric g%, (X) for the thermal state with a
temperature 7 to investigate the corresponding bulk space-
time. While the conformal dimension is explicitly given by
A = (d —2)/2 in this case, we keep using A in our formula
instead of (d —2)/2 for notational simplicity.

Previously, in Ref. [17], the metric g}, (X) has been
evaluated by the flow method and it has been concluded
that the metric describes an asymptotically AdS black brane
with some unknown matter contribution. However this
previous study is unsatisfactory due to the following
reasons. First of all, the flow used in Ref. [17] is the
simple Gaussian flow (6), which fails to map the conformal
symmetry at the boundary to the AdS isometry in the bulk.
Second, the thermal average of the metric operator can not
be regarded as the information metric due to the inadequate
normalization. Both problems seem to make it difficult to
draw a clear interpretation on a structure of the bulk theory.

In this paper, we employ the conformal flow with a state
dependent normalization suitable for the information metric
to calculate the thermal average of the metric operator,

This state is generated by the primary scalar operator as
15) = limyoS()]0).

ghin(X), whose UV and IR behaviors allow us a more
explicit interpretation in terms of the AdS/CFT correspon-
dence, as will be seen.

A. Bulk metric for a thermal state

Since thermal correlation functions have 1/T periodicity
in the Euclidean time direction, the two-point function for a
free theory can be written in terms of the vacuum one (2) as

(¢ (00" ()7 += Z5 Tele T4 (x)p ()]

= D (9"(c+n/T.x)P" (. x))y.  (30)
n=—co
where Z; = Tr[e~/T] and H is the Hamiltonian operator

associated with the action (29).* Modifying the denomi-
nator of (9), we have a normalized flowed field operator for
the thermal state as’

. ¢ (x;1) 56(X)
6% (X) = = , 32
) \/@z(x;n))T \/<A(2)(X)>T G2)

whose thermal expectation value is normalized as

ab
_2 @ =1 (33)

As already mentioned, this normalization is different from
the one adopted in [17]. Using 6“(X), the bulk metric is
constructed in the same manner as in (11) and (10):

Tun(X) = 72 x

i (X) = (Gaan (X)) 7. (34)

In this paper, we evaluate the thermal average of the metric
operator as given in (34).

Note that the metric operator g7, at T # 0 is different
from g,y in (10), but this 7' dependent definition is indeed
necessary if one wants to interpret the expectation value

4Equation (30) can be justified as follows. A 1/T periodic
function is defined from a nonperiodic function f(x) =

[dpf(p)e™ as

fr@x) =T )" Fpa)er,

n=-—0oo

pn = 2znT, (31)

where f(p) is the Fourier transformation of f(x). While we
can construct another 1/7 periodic function as gp(x) =
® _of(x+n/T), the Fourier expansion of gr(x) implies
QTS(X) = fr(x). . . .
We do not put a subscript 7 to 6, since we can easily
distinguish it from the vacuum one &.
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ghyy in (34) as the Bures information metric as before. In
fact, let us introduce the thermofield double state,

Zr =Y e E T,
i

(35)

ITED) =272y e 5?7 |E,) ® |E,).
n

where |E,)s are energy eigenstates defined by H|E,) =

E,|E,) and |E,)s are their copies. As is well known, the
thermal correlation functions can be obtained with this pure
state and the identity operator 1 on the Hilbert space

spanned by \E,\;s; for instance, one gets the two-point
function (30) as (TFD|(¢“(x) ® 1)(¢*(x') ® 1)|TFD).
Now, consider a density operator,

N ~ ~
pr(X) =) (6*(X) ® T)|TFD)(TFD|(8(X) ® 1), (36)

a=1

which satisfies a correct normalization as
=Z7 IZ £ /T n A )’E > < 2(Xv)>'l':1

(37)

Trlpr (X

While the TFD is formally a pure state, the density operator
pr(X) still describes the mixed state due to the summation
over O(N) index a as in the vacuum case (14).
Since pr(X)pr(X) = pr(X)/N leads to G= Ndpr(X) =
NdXM0ypr(X), the bulk metric g}, (X) for the mixed
thermal state in (34) is reproduced in the same manner as
(15). It should be noted that, for any mixed state, its purified
state put in the definition of the density matrix in the same
manner as (36), the Bures information metric coincides with

the expectation value of the metric operator in the original
mixed state as in (34), which is naturally expected from the
vacuum case (1 1).6

B. Computing bulk metric

The thermal expectation value of the two-point function
of the flowed field (9) normalized in the vacuum is given by

G(X,X') =8, (6§ (x:m)55 (x's1')) 7
Ad-Ad+1 5
_n;wzF 3—,T,1—U,,>, (38)
where
) T)2 2 2 )
Un:(r 7 +n/T) +|x/ X°+z7+z . (39)

27z

We define two functions as

= Ad-—A d+1
L _ _2
(&) = 60x) = 3o (5555 )
(40)
= A+1 d-A+1 d+3
2) .— . 12
@)= 3o (ST g

with u,, :== 1 + n?/(2£%), where & := Tz, which represents a
dimensionless coordinate in the bulk direction.

As derived in Appendix B, nonzero components of the
bulk metric, defined in (34) can be written in terms of g
and f and their derivative with respect to & such as

g’ = 0g/0&*:

a0 XX L
9@ =——— o ) ' - dzﬂxj’ (42)
X"\ /G(X,X)\/GX' . X)|,_, © 9
0 0 J0 0 G(X,X')
T T 2
2) = 9i(2) =\ g 555 ’
900(2) = 93 2) ((3101’ ox 6x’> VG(X, X)\/GX, X Yox
_ La P
— x (=2)&2 %, 43
()8 (43)
Jd 0 Jd 0 G(X,X')
T()=agl(z) =2 =—— - - .
gZZ(Z) gll(z) <az azl axz ax/z> \/G(X X) \/G(X/,X/) Yx
Lz21+l % £ 52 |:§2 " 52 (g/)2:| . (44)
Z L521+1 g g

°If we start with the thermal state as the original mixed state rather than the thermofield double one, then the corresponding
information metric turns out to be more complicated than (34). It would be interesting to see how it changes the bulk structure.

046006-6



BULK MODIFIED GRAVITY FROM A THERMAL CFT BY THE ...

PHYS. REV. D 109, 046006 (2024)

d=14
d=6
2 2
Ld/Ld-H
——
1 1 1 I - L "l 1 1 L ..\. NN - L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 1. Nonzero components of the bulk metric, g;; (solid), goy (dashed), and g, (dash-dotted), each divided by Lf, 1/ 72, as functions
of & = Tz with d = 4 (left panel) and d = 6 (right panel). The horizontal line depicts L3/L3, | = (d + 1)*(d — 3)/d(d* — 4) for each
case. For d = 2(j + 1) with integer j > 3, we obtain similar behaviors as in the case at d = 6. See Fig. 2 in Appendix C.

where

d?—4

L% :=L%d,A)=*x ——.
a1 (d,4) “Ad+ 1)

(45)

In Fig. 1, nonzero components of the bulk metric are
depicted at d =4 and d = 6. For even d, the infinite
summations in (40) and (41) can be analytically performed,
as shown in Appendix C. In the UV limit that z < 1/T, the
metric approaches the AdS one with the radius (45). In the
IR limit that z>> 1/T, on the other hands, g% and gl
converges to L3/z? where L2 =L*(d—1,A—1/2) as
defined in (63), while g/, vanishes exponentially.

In the following, we analytically investigate UV and IR
asymptotic behaviors for both even and odd d.

C. UV and IR limits

We analytically derive UV and IR behaviors shown in
Fig. 1. In particular, we argue that the spacetime is
conformally equivalent to AdS, x R,_; in the IR limit.

1. UV region (z < 1/T)

Using an expansion of the hypergeometric function for
small values of v = 2£%/n?,

1+2v
2F1<a1,a1+1;b1,— 1)2 )

_ I'(by)
- I(by —a)I(1 +a;)

v*“[1 = 2a,v+ O(v? Inv)],
(46)
(40) is expanded as g = 1 + g, where

4 éd—Z

Sg=— S
8= B(A,d—A)d—2

{C(d=2)=(d-2){(d)&* +O(Eh)}.

(47)

with B(a, b) and {(s) = >, n~* being the beta function
and the zeta function, respectively. Note that {(d —2) is
divergent at d = 3, which corresponds to the IR divergence
of the massless scalar two-point function 1+ dg|._ x
{@*(x)) at finite temperature in d = 3. By replacing d with
d+2 and A by A 4 1, we obtain f = 1 + 6f, where

8f = 4
TB(A+1.d-A+1)

L) de(d + 28 1 O,
()

Plugging these expressions into (42), (43), and (44), we find
the spacetime metric expanded with respect to £ = Tz as’

_ L}
gun(z) = ?1 )

(49)

9un(2.T) = Gun(2) + Sgun (2. T),

LZ
Sgun(2.T) =Y _Sgu (2.T) = %Z?‘(”’“B’QW )
A.B A.B
(50)

withA > 1 and B > —1. Inthe UV limit of z — 0, only gy
survives, and hence, we get AdS spacetime with the
radius (45).

In this paper, we focus on terms with A = 1, which have
largest corrections to the AdS metric in the UV region.
Their coefficients, §!'5) with B > —1, can be read off from
linearized versions of (42), (43), and (44) as

7Rigorously speaking, there exist logarithmic terms such as
EAd+2B) (In £)P with integers A,B > 1 and p > 1 coming from
terms that are not explicitly shown in the expansion (46). We
simply omit such terms in (50) because they do not appear in the
following analyses at the leading and next leading orders.
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Do) = ~5g 4 o,
B

S et (et — gl = 2,

B
d+2B (%(1.B) «(1.B) Z’ﬂz 451 2 S/
D B =gy ) = o [Eea + £8g). (51)
B d+1
The largest contribution in UV is determined at
B=-1as

gl gy - =1 d=2)
Jii Joo d—2 " B(A,d—A)’
. oy d+l 4d-2
§$ 1 _é(l, nH_d+ % {( ) (52)

i d+27 B(A,d-A)

In Sec. IVA 1, we will see that this part contains a physical
scalar propagating mode, which is absent in the pure
Einstein gravity.

The next largest contribution with B = 0 becomes

o= (1 DY

8

£ —4
Y00 Yii ( ) d2_4 XB(A,d—A>’ ( )
L(10) L0 —d*4(d+1) 4¢(d)
3\ , 55
Yz = i T 7-1 “Bad-a O

which contains a tensor perturbation, as will be seen in
Sec. IVA 2.

2. IR region (z>1/T)

To investigate the IR region (¢ = zT > 1), it is conven-
ient to employ an alternative integral representation of the
hypergeometric function derived in Appendix A as

Ad-Ad+1
(3 )

1 o dw
= ha(n; 56
B(d - A, A) A WA_dEZ d<n, " ‘f)’ ( )

where hy(n;w,&) = (2u, +w+1/w)~%2. With the Poisson
resummation formula Y % _ >k =37 §(k - k),
(40) turns out to be

¥For d = 4, the part with (A, B) = (2, —1) has the same falloff
behavior &* x (L%, ,/z%). In the current analysis, we simply
regard d as a parameter and work with the series expansion in
powers of £4+25,

1 © [+ d _
WP / ﬁhd(k;w,f), (57)
0 2

w

hy(k;w, &) = /oo dne®*h,(nyw, &)

VE Qalkig)!
=&x @?Xk P Kua(Xy)  (58)
with X, = 2z|k|é(1 +w)/y/w. Each k contribution is
attributed to the mode with Matsubara frequency w; =
27kT in the boundary scalar theory.

Since k # 0 modes are exponentially suppressed for
large & as

Kot = [ 002D o] (59

only the k = 0 contribution

D (Y

I I+w

ha(0;w,€) = & x
survives in (57) in the IR limit as

2P0(5Y ga—a—1/2,a-1)2)

r B(d—A,A)

g~ EX =:g. (61)

By making the replacement that (A, d) — (A + 1,d + 2),
we find

(4 2
. 2 )B(d A+1/2,A+1/2):gx de i
r(%) B(d—A+1,A+1) =LA, ¢
(62)

where

L2=L1*d-1,A-1/2) = 52%

(63)
is the AdS radius (17) expected from (d — 1)-dimensional
free scalar CFT, whose conformal dimension is A — 1/2 =
(d —3)/2. Therefore, the bulk metric in the £ = Tz — oo
limit becomes

L2
9:: R Gii ® Z_Zd (64)

9oo = 0,

This behavior indicates that the dimensional reduction in the
bulk takes place because, in the IR limit corresponding to
7 — o0, all the modes with nonzero Matsubara frequency

046006-8



BULK MODIFIED GRAVITY FROM A THERMAL CFT BY THE ...

PHYS. REV. D 109, 046006 (2024)

become irrelevant and only the (d — 1)-dimensional degrees
of freedom associated with zero Matsubara frequency are left
to form the d-dimensional constant 7z hypersurface whose
induced metric is the same as the d-dimensional AdS metric
with the radius (63). In other words, the dimensional
reduction at the boundary correctly induces the dimensional
reduction in the bulk expected by the AdS/CFT correspon-
dence through the conformal flow.

In the previous work [17], a similar behavior go — O has
been found and the similarity to the AdS black brane
discussed. In the following, we propose a different inter-
pretation. For this purpose, let us take into account the first
nonzero Matsubara mode with |k| = 1. Since X; becomes
large as £ — oo and takes a minimum at w =1 as

=D o - 1>3>} (65)

X, = 2ﬂ|k|§[2 +

the integration (57) can be evaluated by the saddle point
approximation around w = 1 to result in

N 2 VI (78T .
s amig(3) e

The replacement (A, d) — (A + 1,d + 2) also leads to

o 2 VE_(m\T
fo =T i_B(d—AqLI,AJrl)F<%)<2> -
LﬁZ
:Lﬁ 1><(m§)ng. (67)
+

Since 02 = (1/2£)0;, the leading contribution to gy, turns
out to be

—4
Joo ~ —2L‘21+1T2 X 2§].[ng = lxﬂ2T24ﬂ'zg?D
L2
= i ATz @), (68)
where
2p(E) = —— Bld=A+y Ady)]l2 e (69)
r 22T | 2/a0(E)/T(d) (278)+
Then, we find
L2 dz? ot A
d 2 z—d d 2 dxi 2 ,
y 72 |:(27L’TZT)2+ ¢ +;< *) }
L2 ) dz% -
— _4a dx! 2 ,
22 [(ZﬂTZT)2< T — 47 +;( )

where z = /T is now regarded as a function of z;.” For
27> (d + 1)/4, it is conformally equivalent to AdS, x
R,_; as

di?+dz3 &L 1
H d 1 2, L =
z%/L% +;( x) T onT

(72)

Ly, .
dszz—gdsz, ds?

It is well known that AdS, x R,_; corresponds to the near-
horizon limit of the AdS extremal black brane, whose
metric is given by

ds2 L’ 2 & 2
= £l 4 s D (@], (73)

where

C2d=1) [\ d [r\2eD
r0=1-55" () a5 ()

—d(d- 1)(1 —r—i)zhe <ri> (74)

with ,(1) = 1 and h,(x?) > 0." Taking the near-horizon
limit that r ~ r, and making the coordinate transformation
as r2/(re—r)=d(d—1)z;, we indeed obtain ds2~
(L?/r2)d3? with L2 = r2/d(d - 1).

Note that, because of the conformal factor Lfi/ 2=
exp2w, the IR limit has the curvature singularity at
z = oo, as in the case of Ref. [17]. For instance, the Ricci
scalar diverges as

9Using the Lambert function W_; < —1, we have

d+1

8T
b T [B(d—A+%,A+%)
Cd+1] 2/ar($)/rd)

""The AdS charged black brane solution of the Einstein-
Maxwell theory is given by the factor

2kLm (r\4 kL*q? 7 2(d-1)
=l-——7-- — = 75
=135 () e )
and the electromagnetic field strength F = q(r/L)%3dt A dr,
where « is the Einstein gravitational constant for the (d + 1)-
dimensional spacetime, m and ¢ are the surface densities of mass
and electric charge, respectively. The extremal solution is

obtained when the mass and charge squared are related with
each other as

(d=1)% [L\4 , d(d—=1) (L\2@D
=—(—], = — . (76
" (d=2)xL \r, 1 xL? Te (76)
where r, is the parameter to be interpreted as the location of the
extremal horizon.

z= W_i(v) with

}d%(ZnTzT)fH. (71)
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2

R~e?(R-2dCw—d(d—1)§"N oy wiym) — R xz_é,

(77)

where the quantities associated with the metric d$? in (72) are

denoted by circles on them and R = —6/ L% is the scalar
curvature for AdS,.

IV. GRAVITATIONAL THEORY AND
BULK-BOUNDARY CORRESPONDENCE
IN THE UV REGION

In the UV region with z < 1/T, we have the metric
perturbation (50) around the AdS spacetime. In this section,
we identify a gravitational theory in which the bulk metric
obtained from the boundary theory solves a corresponding
equation of motion (EOM), at least, to the leading order
perturbations which falloff as 8¢,y ~ z%* and ~z972. It
turns out that there is a physical scalar mode in the metric,
and thus, the pure FEinstein gravity cannot be the bulk
theory. Indeed we have found that f(R) gravity does the
job, as we will see. For f(R) gravity, we can take the
Einstein frame where the bulk spacetime is to be compared
with the AdS black brane geometry. In addition, following
the relation (22), we identify boundary operators corre-
sponding to the bulk physical degrees of freedom.

It should be noted here that f(R) gravity is obtained just
as an approximated bulk theory in the UV region. In fact,
the metric (72) in the IR limit cannot be a solution to the
EOM of f(R) gravity. Therefore, a more general class of
modified gravity will be needed to match higher order
perturbations in the UV region, which are not considered in
this paper.

A. Bulk gravitational theory

We are looking for a bulk gravitational theory in the
asymptotic AdS region with £ = z7 < 1, whose EOMs are
perturbatively satisfied by the bulk metric determined in the
previous section. We generally write the EOM of some
gravitational theory as Eyy(g) =0 and expand the left-
hand side as

Eyn(9) = Eun(9) + AEyn (7. 89).

AEyy = 272 e @ 2ERD (5. ), (78)
a,b

where g and g are £ independent, and AE,,y contains all
contributions from the perturbation characterized by the
coefficients §§(,;‘,’\l,g )with A>1and B> —1in (50). For any
given d >4, in addition to an unperturbed EOM
Eyn(5) = 0, we consider the perturbation of EOM at the
leading order, E%)(g, g) = 0 with b = —1, 0. In this case,
we only need linear terms of §!'#) with B = —1,0 in (50),

which have already been determined in (52), (53), (54),
and (55).

In the following, we show that the metric perturbations
from the AdS spacetime for B = —1 and B = 0 are subject
to f(R) gravity, whose action is given by

S =5 [ @V ldlr(R), (79)

where « is the (d + 1)-dimensional gravitational constant
and g is the determinant of the metric. Here f(R) is a
function of the Ricci scalar R, which may be assumed to be
a polynomial of R as

F(R) = —2A; + R+ ng FORY.  (80)

where A, and a are constants. The corresponding EOM
becomes

foun = 2(Ryn + gunE = Vi Vy)orf. (81)

Note that, as seen from the trace of the EOM that

d+1 R
2d f(E

+ D) orf (82)

there is a propagating scalar degree of freedom in the
theory. This can be clearly seen in the Einstein frame, as
shown in Appendix E.

The unperturbed AdS background g,,y must satisfy

faun = 2Ryof, (83)

where f = f(R) and 0f := dgf(R)|g_g. Since curvature
tensors in the AdS spacetime are obtained from I'4; =
-&4/z and I, = 5,,/7 as

2R R
Ryiy = —d(cH— 1)5[L9N]M’ Ryn = —d+ 1gM/\h
R = _M’ (84)
LZ
d+1
(83) leads to
_ 2R __
=——4f, 85
f=g o (85)

which is regarded as the equation to determine the
cosmological constant A in (80) for a given f(R) theory.
The perturbation §g,,y should satisfy

—20f6Gyy + (f — ROf)Sguy
= 2(RMN + gMNE - VMVN)@(V{ (86)
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which, with the aid of (85), can be written as

d—1R

oGyy +——— PR = 0gun =

a2— - o
j]:(RMN + gun =V Vy)6R. (87)

In the Einstein gravity, the right-hand side (rhs) identically vanishes since 0%f = 0 and (d — 1)R/2(d + 1) corresponds to
the cosmological constant.

1. Leading order perturbation (B= —1)

The leading order metric perturbation with coefficients in (52) can be written as

-y _ 3 V.V, ImN 5 g
595&1\/1) d[—wl—Nl O+ L7, (vaN - dI—WI—Nl D) 0, = dz-‘id-Nl Ppn + Ld+1vaN®1’ (88)

where

—4(d+ 1) &24d-2) 2 E24L(d-2)

@ = MNso\L-D _ ’
IuN F-4 “B(Ad-A) L%, B(A.d-A)

(89)

x @, Q=P - L3 00, =P +2(d-2)0, = x ®. (90)

2(d—1)

Here (D3) is used for (1@, and @, is the only physical perturbation, since V1, V0, in (88) is gauge dependent.11 Thus,
one can see that there is a physical scalar mode @, at the leading order of the metric perturbations.
Using results in Appendix D 1, nonzero components of the left-hand side (lhs) of the linearized EOM (87) are evaluated

as
d d d—1R dd—1) @
oG, 5 =—|0G =———X— 91
d—|—12 Jee 2( I 12 g"") 2d+1) 1)
while nonzero components of the rhs become
= .= = d 3dd-1)? _®y
(Rzz + gzzD - vzvz)(sR = 5 (Rzm =+ gO'D'D v \Y% ) = +W X RZ_];‘ (92)

Note that a ratio between zz and o6 components is d/2 in both (91) and (92), which also have the same z and & dependence.
Therefore, the EOM is satisfied, if the second derivative of f at R = R is related to the first derivative as

P f :—; (93)

2. Next to leading order perturbation (B=0)
The metric perturbation with the coefficients (53), (54), and (55) is traceless: g"V 6gMN) = 0, and can be written as

1.0 T v _ 9uMN = ki
5g§v1N) =hyuy + L3, (VMVN ~J I_T_Nl D) ©, = hyy + L3, Vi VO, (94)
where
-1 £'4¢(d)
(C) — 95
270 “B(A,d-A) (93)
"It can be canceled out by the gauge transformation generated by &Y = —7¥9,,0, /2 and does not contribute the linearized EOM.
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is a gauge degree of freedom. Thus the physical contribution
to the perturbation is /,,y, which satisfies gV h,,y = 0 and
M hyy = 0. Explicitly we have

N _L§+1X4(d+l)x glagd) 2 &4g(d)
T2 7 -4 "B(Ad-A) 2 B(A.d-A)
hoo = —(d —1) X hj, h..=0. (96)

As shown in Appendix D 2, this tensor perturbation
solves the linearized EOM (87). One can see that the lhs
and the rhs of the linearized EOM (87) vanish separately,
which means that 5gM,8 can be a solution to the pure
Einstein gravity. Note that, if a scalar mode at this order
were presented, the EOM would not be satisfied by (93).

3. Asymptotic equivalence to AdS
black brane in Einstein frame

In this subsection, we show that the leading deviations

595‘;}5) with B = —1, 0 from the AdS in the f(R) theory are
consistent with those of the AdS black brane at this order in
the Einstein frame, where f(R) theory is transformed to the
Einstein gravity plus a massive scalar field by the Weyl
transformation. Details of calculations in this subsection are
given in Appendix E.

The metric in the Einstein frame is given by the Weyl
transformation as Gy = e >*gyn, Where s is the scalar
field in the Einstein frame. The leading deviation from the
AdS metric, after some calculation, is given by

5§MN = ilMN + I:(21+1VMVN®’ (97)

where V,, is the covariant derivative for the AdS metric
Juny in the Einstein frame with its AdS radius
Ly =e Ly, defined through 5, the VEV of s. It is
interesting to see that (97) contains the tensor perturbation
hyy = e~ % hy,y only without scalar perturbation up to the
gauge degree of freedom 0 := ©, + ©,.

Since the scalar excitation around its VEV § behaves as

4=2 for small z as explained below (E9), its stress tensor
(E13), which falls off as T,y o« z2%=3), does not contribute
to the Einstein equation at the level of perturbation
considered in this paper, and thus we have the vacuum
Einstein equation with the cosmological constant (E6). It is
easy to check that the tensor perturbation /1,y is s solution
to the linearized vacuum Einstein equation.

We now show that the tensor perturbation 7y is
consistent with the leading order deviation of the AdS
black brane solution from the pure AdS solution, whose
metric is given by

j2
ds%b :% f(z)d

de? + —— (dx)?], (98)
+f(z +Z }

with f(z) =1 —(z/zy)% and the associated Hawking
temperature is given by Ty = d/(4nzy), so that the leading
deviation from the pure AdS is given by

ZZ z\¢ L? 7 \4
Sqph = ——4H1 (—) : 5bb—ﬂ[<—> +0 zz"],
900 2 n G2z 2 2 ( )

5gtP = 0. (99)

With an identification that

d (4d(d+1) 4¢(d) 1/d
T, =Tx— 1
" X4n< F-4 “Bad-n)) - 10
we have
A o
hii:7 5 X;y hoo =—(d=1)h;;,  h, =0,

(101)

which looks different from (99). It is easy to see, however,
that (99) and (101) are equivalent with each other by the

gauge transformation as
d
~ z 1
O = (=) x — -
IH d

(102)

S8y = Ty + Vy VO™,

Thus the tensor perturbation of the metric generated by the
conformal flow in the Einstein frame is the AdS black brane
at the first order of the small z expansion.

B. Boundary operators and corresponding
bulk degrees of freedom

In this subsection, we will investigate the relation (24)
between boundary operators and the bulk physical degrees
of freedom by determining its proportionality coefficient.
We here define the rhs of (24) by regularizing it with the
smearing, and then subtracting its potentially divergent
vacuum expectation value as

(O@)))F" = [(O(D(x:n)))7 = (O@(x:1)))oly-0

(103)

for any composite operator O(((x)) in the boundary CFT.

We start with the tensor degrees of freedom obtained in
Sec. IVA2. We then move to the gravitational scalar
degrees of freedom obtained in Sec. IVA'1 in order to
argue why it cannot be an ordinary nongravitational scalar
field in the Einstein frame.
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1. Bulk tensor

The bulk tensor degrees of freedom z? X hyy o z¢ are expected to be related to the boundary stress tensor with

conformal dimension d, which is given by

N
. ar ra 0w or nay na
Tw=>_ {a,,(paay(pa — 070,00, ]

a=1

Since

JB(d=A+1,A+1)

N
> 50,00, = | Y(a)T
a=1

where we have used (B10), (B11), (48) and the definition of Y(z) in (26), we find

,B(d—A+1,A+1)

<mwzhm

B(d—A,A)

JB(d—A+1,A+1)

T = [P P

so that 3 (T, )i = 0. Comparing the above with (96),
we find

2 T finite
%xhﬂy—de%. (108)

2. Bulk scalar

The bulk scalar degree of freedom @, o z%~2 are related

to §:=3N ¢ whose conformal dimension is
2A =d — 2. Using (47), we obtain

_ 24
(8 = [T(2) %00 = a1

SO B(Ad-A) d-2 (109)

Comparing this with (90), we find the relation that

Ly —d(d=2) (Syfnie
D, = 24 L, 110
2 P T 0o CY NG (110)
or equivalently,
L )
s X®=—(d—-2)x 7?4 x NC, (111)

Note that the operator S is the scalar operator with the
smallest conformal dimension 2A among scalar operators
with nonzero thermal expectation value. While the operator

(104)
Ba—aa ¢ (é‘zéfxd—ZT’)]Ho —0, (105)
- _ 4(d)NC,T?
| e 100
d x (&726f — 2f')] = —(d = 1) x (T (107)
z—0

@“ has the smaller conformal dimension A, its thermal
expectation value vanishes due to the unbroken O(N)
symmetry. This is a reason why the simplest possibility,
the Einstein gravity with a minimally coupled scalar ¢
discussed in Appendix F, cannot be the dual bulk theory.
The scalar field needs to behave as ¢ = o x z* with g being
a constant, and thus, the relation (24) with (¢p?); = 0 leads
to o = 0, which excludes this simplest possibility.

V. CONCLUSIONS

In this paper, we constructed the (d + 1)-dimensional
bulk Euclidean spacetime from the massless free scalar
theory on the d-dimensional flat boundary at finite temper-
ature 7', by a conformal flow with the smearing size z. It is
important to note that the bulk geometry is emergent from
the bulk metric operator, whose VEV is interpreted as the
Bures information metric associated with the boundary
theory. This bulk reconstruction from the massless free
scalar at finite 7" holds at d > 4 due to its IR behaviors.

Applying the conformal flow to the boundary thermal
state, we have computed the bulk information metric whose
nonzero components are given in (42), (43), and (44). The
resultant bulk metric in the UV region is perturbatively
expanded in (50) with coefficients in (52), (53), (54), and
(55). As depicted in Fig. 1, the dimensional reduction takes
place in the IR region with g, vanishing exponentially and
we are left with the d-dimensional constant = hypersurface
whose induced metric becomes the d-dimensional AdS
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with the radius L, in (63), since only the degrees of
freedom with vanishing Matsubara frequencies remain
dynamical in the IR limit and are the same as those in
(d — 1)-dimensional massless scalar theory. With a closer
look at the exponential decay of g, we have found that the
IR asymptotic behavior is controlled by the first Matsubara
frequency 2zT and the spacetime is conformally equivalent
to AdS, x R,_;, which is the near-horizon limit of extremal
black brane.

In the UV region, the leading order perturbations with
coefficients in (52) contain a scalar propagating mode,
which cannot be gauged away. We have shown that this
mode can be accounted for by the f(R) gravity, whose
linearized EOM is given in (87), and further, the tensor
mode in the perturbation with coefficients (53), (54), and
(55) also solves the EOM. The unknown proportionality
coefficient in the relation (24) between a bulk excitation
and a boundary operator is determined as (108) for the
tensor mode and as (110) for the scalar mode. Seen in the
Einstein frame, the bulk spacetime is asymptotically
equivalent to the AdS black brane solution of the vacuum
Einstein equation.

The fact that the bulk metric can be interpreted as the
information metric associated with the thermofield double
state was emphasized below (34). This seems suggestive
since, in the context of the AdS/CFT correspondence, the
eternal black hole in AdS is believed to be dual to the
thermofield double state where two copies of the boundary
CFT are entangled [21]. In the simplest model employed
here, we found the singular behavior in the IR limit, and
thus, sensible comparisons of the obtained bulk geometry
with the black brane are only possible in the UV asymp-
totically AdS region. We would like to come back to this
issue with some interacting models.

As mentioned below (110), the bulk theory dual to the
boundary one cannot be the Einstein gravity coupled to an
ordinary scalar field for the relation (24) to be satisfied, and
thus, the modified gravity is necessary. It is reasonable to
imagine that similar phenomena also happen for generic
exited stats of the boundary theory. To study geometry
corresponding to excited states, a normalization of the
smeared field is important to define the metric operator
whose excited state expectation value can be interpreted as
the information metric. For the scalar case, see (27) and
(28). We leave this problem for our future studies, in order
to see whether relations (108) and (110) hold for such
generic states. Having nothing else than the metric field in
the bulk seems reasonable in the sense that, in our approach
with the current model of real scalar field, the bulk metric
defined by (34) is the only object that allows the informa-
tion-theoretical interpretation.

Lastly, let us emphasize that f(R) gravity is not the exact
bulk theory in all regions. Metric perturbations that fall off
differently from z¢~* or -2 may no longer solve the EOM

of f(R) gravity, and we indeed explicitly confirmed that the
metric in the IR limit (72) is not an asymptotic solution of
f(R). Therefore, a more general class of modified gravity
theories needs to be considered. In principle, we could find
a true bulk theory by imposing the condition (78) order by
order. It would be interesting to compare such a bulk theory
with the higher spin theory, which is conjectured in [22] to
be dual to the boundary O(N) scalar theory.
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APPENDIX A: NORMALIZATION AND
INTEGRAL REPRESENTATION OF THE BULK
TWO-POINT FUNCTION

We first calculate the normalization factor Y(z) in (26),
which is expressed in the Fourier space as

d'p 1
T(z) = w/—p — =% (pin) = NC 2724,

G () (AD)

where

C23—d 0
c, = S0 /dppd-lKg(p). (A2)

T(A)C(A)T() Jo

Using an integration formula,

bi1o2a\ e betiza\ 12 (bol
|7 an e - s );(m) ()

(A3)

we obtain

__T(d-AMrE)
€= O &r@

(A4)
We next derive an alternative integral representation of

the bulk two-point function (25). We first evaluate a bulk-

to-boundary two-point function in the Fourier space as
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) R ddp esz ~ 5abc 0
(84(X)3(0))y F / Sin) = 5* [T dprA (K (ap). (45)
where
Co 2572 (A z . 25 (4L
C, = /NG (a5 (d 2>, / d@ sind2Qeirx cosf — W@(xp). (A6)
1 2 0 xp)z

Using an integration formula

(2a)"(2b)™

® —v+1 _ _
7 et @K br) = 2 = ), (A7)
we obtain
(VA D 5°Cy Z A
(65(X)@°(¥))o = NC\Z+x—F) (A8)

Smearing the remaining ¢”(y) further, the bulk two-point function (25) becomes

Gol(X1. X5) = — S [ S = y5m) (B80x1: )07 ()

I'(d) 2 A ) =
=—an / ddy ( 2 — 2) 2 2 : (A9)
n°T(d/2) zZp + [xp =y 2+ [x =y

Introducing two Feynman parameters and doing the Gaussian integral with respect to y, we obtain

Go(X,,X,) = g /00 dsgd1 /°° dypd-h-1 /ddy
B(A.d— &)@7T(d/2) J 0

A_d-A
1z oo B
<expl=s(z + = 3F) = e + =3P} = g gz, 4
[T arrst sy enp | st = g = - (A10)
0 s+ r

Changing the integral variables as s = (1 — )¢, r = fft and integrating the overall scale ¢ of the Feynman parameters, we
get the final result:

GO(XI’XZ) = 27d/2°

B(A,d—A ola +ﬂZz/Z]+ﬂ( ﬁ)mz]_—;;l-}

(ZZ/Zl)A ld (1 — p)A-1pd-a-1
_\k2/k1) ¥
>/ [

1 P WA 1
- [ 4 , All
B(A,d—A)A W(2U0—|—w+ 1/w)d/? (AL1)

where w = 0% and U is the SO(1,d + 1) invariant ratio in (25).
Comparing the above result with (25), we find a new and alternative integral formula for a hypergeometric function in a
special case as

Ad-Ad+1 1 o0 w24
o e T 7/ ] e — : Al2
2 1(2 2 2 0) B(A,d—A)/) YU+t 1/w)? (AL2)

which is valid for arbitrary d and A as long as the integral is convergent, i.e., d > A > 0.
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APPENDIX B: DERIVATIVES OF TWO-POINT
FUNCTION

In order to obtain expressions (42), (43), and (44) of the
bulk metric, derivatives of the two-point function for the
flowed field defined in (32) are rewritten as follows.

Using (A12), the two-point function (38) is given by

, 1 = [ dw
G(X.X') —mn_z_:oo% Ef(d/zy Uy),

where

f(b,U) = QU +w+1/w)7",

ouf(b,U) ==2bx f(b+1,0). (B2)
Thus

oxuf(d/2,U,)|x_x = —=df(d/2+ 1,u,) X oxuU,|x_x,

(B3)
(BI)
|
aX"“)X”Vf(d/z’ Un)|X’—>X = _d[_(d + 2)f(d/2 +2, un) X (aXM Un)(aX’N Un)|X’—>X
+f(d/2+ 1, u,) X Oxudxw U, [x_x], (B4)
where 0 0 0 0
——— |G(X, X
(0‘: or'  ox' 6x”> ( ) )
T2 (BS) X' -X
a)c“l]n| x =0, ax’iafon‘ ox = —0ij > B(d—A+1,A+1
X=X X=X i@ _ ( +1,A+ )dx(—Z)f’, (B11)
B(d—A,A)
O Ly =+ Uy = - 99 a 0
tYnlx'-x — 52 ) YUnlxsx = gz ’ ————— G(X,X/) _ T2 X (§2g// + g/)’
72 0zo7  ox'ox" x
0.0,U,|y_x = = (B6) (B12)
) where we have used a fact that f(b, ug) is £ independent,
0,Uplyx = 02U, xx = — ﬂ and the n = 0 contribution exists only in (B10). Note also
) 28 that
T? n?
0.0,U,lyx=—-751-=5]. B7 _ 2
202 Unlx~x §2< 252) (B7) S BlA-A+LALY) LG, (B13)

The expressions in (B3) and (B4) can be simplified with

ou,\~' 0
—2b x f(b + 1, I/ln) = (a—§2> a_(fzf<b’ I/ln)
28 0
= _76_52]((])’ iUy) (B8)
for n # 0, so that
a ! a !/ !/
—G(X.X') =—GX. X )|[y_x=Tx&. (BY)
0z x-x 02
d 0 B(d-A+1,A+1)
——G(X, X =77 d x £77F,
ax a0 XX Bld—a,a) 4T
X' =X
(B10)

B(d—A,A) 2

APPENDIX C: NUMERICAL EVALUATION
OF THE BULK METRIC

By restricting ourselves to the case for an even integer
d =2(j+ 1) with j > 1 integer, the summation in the bulk
metric can be explicitly performed. Equation (40) can be
written as

_ (=) © dw
8= B(A,d— A) 0 WA_%

Sa(r),

[Se]

Saly) = ) (&> + )2,

n=—o0o

where y:=7xf\/2+w+ 1/w. By a replacement that
(A,d) - (A+1,d +2), we obtain f in (41). A summation
with respect to n can be explicitly performed at d =2 as

(C1)
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FIG. 2. Nonzero components of the metric g;; (solid), gy (dashed), and g,, (dash-dotted), each divided by Lf, 1/ 22, as functions of
&=Tz with d = 8 (left panel) and d = 10 (right panel). The horizontal line depicts L3/L%, , = (d + 1)*(d —3)/d(d* — 4) for

each case.

o ].[—2 1
S(y) = Z w2+ (y/7)? - ytanh(y) "

n=—00

(C2)

Since 0,28,(y) = =4 x S412(y) for d = 2(j + 1), we find

(C3)

In Fig. 1, the nonzero components of the bulk metric for
j=1 and j =2 are presented. As is seen in Fig. 2, the
metric for j > 3 has the similar behavior to the j = 2 case.

APPENDIX D: LINEARIZED QUANTITIES

In order to check if the bulk metric from the boundary
CFT solves the linearized EOM of f(R) theory (87),
explicit expressions of perturbed quantities like 6R and
oGy are needed. We here compute them only for the
physical parts of the perturbations such as a scalar @, and
a symmetric, traceless, and transverse tensor /iy, since
parts like VMVN(BM that can be gauged away automati-
cally satisfy the linearized EOM for the diffeomorphism
invariant theory.

1. Scalar ogyy =8unPpn/(d+1)

For the scalar perturbation, the Ricci tensor is written as

1

ORyy = —m {(d = 1)Vy0y + gMNi}q)ph' (D1)

‘We therefore obtain

d - d+1
R=-— 0- ®
o d+1< L> ) ph

d+1

Gyy [RO
5GMN——5RMN——%E{d%f?+5R}
d-1 - -
= T3dE) {Vuoy = gun0} @y, (D2)
Since
— X(X—-d
Dq)ph = ¥ X (I)ph, (D3)
d+1
(V.V, - 5.0)®,;, = Xd x @,/ 2,
(vava - go‘alj)q)ph = X(d -X- 1) X q)ph/Z27 (D4)
for @) zX, we have
3d(d—-1) 3(d-1)R
OR=—"-—" =———>@,, (D5
@d+nLz, ™ (d+1)2 ™ (D3)
- d(d=1)(d=2) Dy
5GZZ =dx 5Go’o‘ = _2(d—~|>])7
_ (d - 1)(d - Z)R L§+1 q)Ph (D6)
2(d+1) 22 d+1’

where 6 =0ori (i=1,2,...,d—1).

2. Tensor gy =hyy
For the tensor perturbation /.y in (96), which satisfies
3"V hyy =0 and VY hy,, = 0, the Ricci tensor is calcu-
lated as
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_ _ 1
ORyn = nghN)K — Ry Kyhgr, — 3 Ohyw
1/— 2(d+1
-3 <D + %) gy (D7)
d+1

where the relations in (84) are used in the second quality.
We then find

5R — Z]MNéRMN - hMNRMN — 0,

R /= (d=-2)(d+1
6Gun :5RMN—§hMN =5 (D—M> hyn-

2 L,
(D8)
Since k.. = 0 and
_ 2 .
Dho-o- = _Tho'o" o = O,l (D9)
L
d+1
for hyy o« z%72, we obtain §G.. = 0 and
dd-1) d—1R
0G,, =———h,, =———h,,. D10
o0 2L§+l oo d + 1 2 o0 ( )

APPENDIX E: f(R) IN EINSTEIN FRAME

It is well known that f(R) theory described by the
Lagrangian (79) is, at least classically, equivalent to the
theory given by the following action with an auxiliary field y,

S =5 [ €A + R=DFG). (B

where F(y) == d,f(x), since the EOM for y reads y = R as
far as d,F # 0.

Reparametrizing y with a scalar field s as F(y) = e~(@1s,
one can move to the Einstein frame by Weyl transformation
such that §,,n = e72*gy;y- In the following, we put tildes on
quantities associated with the new metric §y. Since
e¥R =R —2d0s — d(d — 1)§™Noysys, up to surface
term, the action (E1) is rewritten as

1 )
s= / 415y J3(R — d(d = 17Ny sdys — 2U(s)),
K
(E2)
where
F— 2s,, _ ,(d+1)s
U(s) = et T _ X = €T T g

2 2

The field s is a scalar field with the potential function U (s).
Let us define a constant field value 5 as the minimum of
U(s), which satisfies

d+1
2.U = el ()(F S f) —0, (B4

which is equivalent to the condition (85). At s = 5, we find

7 xer = % U(5). (E5)

Given that y = R, we can identify the potential energy there
as the cosmological constant in the Einstein frame

A=U(5) =¥ : __dud-l) (E6)

2(d+1) 202,

where Zd+l = €_§Ld+1.
We consider a small fluctuation &s of the scalar field s
around 5: s = 5 + &s. Since

02U = (d+1)o,U — (d—1)e* (07}( +;(), (E7)

the mass of the canonically normalized scalar fluctuation

5 :=8sv/d(d — 1)/k is obtained as
aU e’ d-1F
2. % S , (ES8
s d(d_ l) 5=5 d [ 2 a)(F+)(:|)(R ( )

where we have used the relation d;y = —(d — 1)F/0,F.
Since

L P
e = (%) =1 —ﬁaa:f&e + O(5R?), (E9)

we have &s o R o 7972 from (D5) at the leading order.
This behavior becomes consistent with the linearlized EOM
(O—=m2)5 =0 if m? =—-2(d—2)/L2,, holds. Through
(E8), this condition turns out to be equivalent to the
condition (93).

We now compute the metric perturbation in the Einstein
frame. By the Weyl transformation Jyy = e~ >*gyn, it is
essentially only the scalar mode that is affected. The
perturbation of the metric 8§y = Jyny — Jun from the
background AdS metric §yy = SpynLai1/z> is decom-
posed as

~ JuN z | 7 = O o Iun =\ &
égMN:M®+hMN+L31+1<vMVN_d+1|:|>®’

(E10)

where @ := ® — 2(d + 1)8s with ® in (89), Ay = e x
By With hyy in (96), and © = ©, 4 ©, with ©; and ©, in
(90) and (95). The physical scalar perturbation is defined by
O, =013, ,00=0,-2(d+1)ds with @, in
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(90). Reading off és from (E9) and plugging it the above,
we obtain

D, = P, + ————0R =

- 2d+1)Pf |
o

6R 0*f
- Ter) e
(E11)

On the second equality, we have used (D5). With the
condition (93), we find (i)ph =0.

The EOM following from (E2) for the gravitational field
become Gy + Agyny — Tyyy =0

Gun + Mgy — Ty =0, (E12)

where the stress tensor is given by

TMN = 8M§0N§ - gIWTN (QKLGKEQLS" + m%gz) + 0(3‘3)
(E13)

As in Sec. IVA, we decompose it in the form of (78) and
look only at @ = 1 with b = —1,0. Since T,y ~ z2@3)
with § ~ z972, the matter scalar field fluctuation does not
contribute to the EOM at these orders. Therefore, the metric
alone should solve the vacuum Einstein equation. First of
all, the unperturbed solution is given by the AdS metric
Gyun = OynLai1/7* where Zd+1 is related to the cosmo-
logical constant A in (E6). The leading order metric
perturbation at a =1 with b = —1 is given by (Ell),
which vanishes due to the condition (93). Therefore the
EOM is trivially satisfied at this order. The actual leading
order metric perturbation in the Einstein frame is the tensor
perturbation hpsn, which is the same as the Jordan frame
tensor perturbation up to the factor e=2. As mentioned
below (96), it solves the vacuum Einstein equation without
any new condition so that the b =0 part of EOM is
satisfied.

Finally, we show that the metric (E10) at this order is
equivalent to the AdS black brane solution, given in (98).
Deviations of the black brane metric from the pure AdS
spacetime are given in (99). On the other hand, the leading
order perturbation of g,y in (E10) with <i>ph = 0 becomes
SGun = hyy + I:fiHVMVN@, where h,,y is given in (101)
and © = ©, + ©,. With the identification in (100), it is
easy to see that (99) and (101) are equivalent by the gauge
transformation as shown in (102). Therefore, (E10) is

equivalent to the leading order perturbation in the AdS
black brane with the Hawking temperature (100).

APPENDIX F: EINSTEIN GRAVITY WITH
SCALAR FIELD

Let us consider a massive scalar field ¢ minimally
coupled to Einstein gravity:

R —-2A
2K

1
L= -3 (g¥Loxcorc + m?S?) (F1)

with a negative cosmological constant A=—d(d—1) /2L3_ ;.
The Einstein equation is given by

Gun + Aguy = kT yy.» (F2)

where

g
Ty = OygonG — % (9"Fokgors +m’s*),  (F3)

while EOM for the scalar field become ([ — m?)¢ = 0. At
the zeroth order of «, g,y becomes the AdS metric, and
assuming ¢ depends only on z, we get a general solution on
the background AdS spacetime as

s(z) =ox 2 +oxzl, (F4)

where ¢ and p are arbitrary constants, and

d
pe =5\ /(d/2) + L, . (F5)

At the first order of k, the Einstein equation becomes
(6Gyn + Nogun) = kT yy- (F6)

In order for the behavior Ty ~ z>P+~1) to match 6G y +
ASgyy ~ 24 at the leading order as shown in (91), it is
required that p_ = (d — 2)/2 = A and p = 0 in the solution
(F4), which means that

,__(d+2)(d-2)

L2, m 7 =A(A-d). (F7)
Since (F3) is evaluated as
d dd-2
TZZ = 5 X T{m = ET szd_4 (FS)

and the lhs of the Einstein equation is given as (91), the
minimally coupled scalar field can account for the perturba-
tion 6g,,y in the UV limit with the coefficient g determined by

2

. T¢2  4d(d—1) 4Ld-2)

k (d=2)%(d+2)B(A,d=—A)’

(F9)

According to the relation (22), the bulk degree of freedom
o z2 has a corresponding operator in the boundary theory
with the conformal dimension A, whose unique candidate of
such a operator is ¢“. However, its thermal expectation value
vanishes due to the unbroken O(N) symmetry, even though
the conformal symmetry is broken by the temperature.
Therefore, the relation (24) is not satisfied for ¢“, and we
thus conclude that the bulk theory described by (F1) cannot
be dual to the boundary theory in (29).
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