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As in random matrix theories, eigenvector/value distributions are important quantities of 
random tensors in their a pplications. Recentl y, real eigenvector/value distributions of Gaus- 
sian random tensors have been explicitly computed by expressing them as partition func- 
tions of quantum field theories with quartic interactions. This procedure to compute dis- 
tributions in random tensors is general, powerful, and intuiti v e, because one can take ad- 
vantage of well-de v eloped techniques and knowledge of quantum field theories. In this 
paper we extend the procedure to the cases that random tensors have mean backgrounds 
and eigenvector equations have random deviations. In particular, we study in detail the case 
that the background is a rank-one tensor, namely, the case of a spiked tensor. We discuss 
the condition under which the background rank-one tensor has a visible peak in the eigen- 
vector distribution. We obtain a threshold value, which agrees with a previous result in the 
literature. 
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1. Introduction 

Eigenvalue distributions are important quantities in random matrix models. The most well-
known is the Wigner semi-circle law of the eigenvalue distribution, which models energy spec-
tra of strongly interacting many-body systems [ 1 ]. Eigenvalue distributions are also used as an
important technique in solving matrix models [ 2 , 3 ]. Topological changes of eigenvalue distri-
butions provide insights into the quantum chromodynamics [ 4 , 5 ]. 

It would be natural to ask how such knowledge about random matrices can be generalized
to random tensors. Random tensor models [ 6–9 ] were originally introduced to extend random
matrix models, which are successful as 2D quantum gravity, to higher-dimensional quantum
gr avity. Recently r andom tensor models have also played interesting roles in various other sub-
jects (see, e.g. Ref. [ 10 ]). W hile physically interesting ma trices like the hermitian can be one-to-
one mapped to sets of eigenvalues by symmetry transformations, this cannot be done in general
for tensors. Howe v er, we sometimes encounter what we may call tensor eigenvectors/values [ 11–
14 ] in studies. A well-known example is the distribution of the energy spectra of the spherical
p -spin model [ 15 , 16 ] for spin glasses, which was comprehensi v el y anal yzed in Ref. [ 17 ]. In fact,
this is the same problem as obtaining the real eigenvalue 1 distribution of a real symmetric ran-
1 Mor e pr ecisely, they ar e Z-eigenvalues in the terminology of Refs. [ 11 , 14 ]. 
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dom tensor. Tensor eigenv ector/value prob lems also appear in other contexts, such as anti-de
Sitter/conformal field theory (AdS/CFT) [ 18 ], classical gravitational systems [ 19 ], and applied
ma thema tics for technologies [ 14 ]. 

Considering their broad appearance, it is worth effort to systematically understand properties 
of tensor eigen vectors/values. Our f ocus is on their distributions for Gaussian random tensors.
Some inter esting r esults have alr eady been obtained in the literature. In Refs. [ 20 , 21 ] the expec-
tation values of numbers of real eigenvalues of random tensors were computed. In Ref. [ 22 ] the
maximum eigenvalues of random tensors were estimated in the large- N limit. 2 In Ref. [ 23 ], the
Wigner semi-circle law was extended to a form for random tensors. In Refs. [ 24–26 ] the present
author computed real eigenvalue distributions of random tensors by quantum field theoretical 
methods. 

In the last works above by the present author, the procedure is to first rewrite the eigenvector
problems as partition functions of quantum field theories with quartic interactions, and then to
compute the partition functions. There are some merits in this procedure; it is general, powerful,
and intuiti v e. As far as tensors hav e Gaussian distributions, one can in principle e xtend the
procedure to obtain quantum field theories of quartic interactions for a wide range of other
tensor problems, such as complex eigenvalue/vector distributions, tensor rank decompositions, 
etc. Then, once such quantum field theories have been obtained, one can use various well-
de v eloped quantum field theoretical techniques, such as Schwinger–Dyson equations as in Ref.
[ 25 ]. Moreover, it is generally more intuiti v e to compute partition functions than to directly
treat systems of eigenvector/value polynomial equations. For instance, in the large- N analysis
of Ref. [ 25 ], there exists a phase transition point between perturbative and nonperturbative
regimes of the quantum field theory, and this point corresponds to the edge of the eigenvalue
distribution. 

The purpose of the present paper is to a ppl y this quantum field theor etical procedur e to a
slightly different setup than the previous works [ 24–26 ]. We assume the random tensors have
mean values, namely, backgrounds. This is a useful setup in the r esear ch of data analysis, in
which backgrounds are signals and deviations around them are noises [ 27 ]. It is an important
question under what conditions signals can be r ecover ed from da ta contamina ted by noises
[ 27–29 ]. We also introduce random deviations to eigenvector equations. 3 This simulates solv-
ing a pproximatel y eigenvector equations, e.g. by the Monte Carlo (MC) method or simulated
annealing. As we will see, also in this generalized setup, the distributions can be rewritten as
partition functions of quantum field theories with quartic interactions, and the partition func-
tions can be computed explicitly, even exactly in some cases. 

This paper is organized as follows. In Sect. 2 , we introduce a real eigenvector equation with a
tensor mean background and deviations to the equation, and obtain an integral expression of 
the eigenvector distribution. In Sect. 3 , we deri v e the quantum field theory expressing a “signed”
distribution of the eigenvectors. This distribution is not authentic but is weighted with an extra
sign associated to each eigenvector. This distribution is easier to compute, because the quantum
field theory contains only a pair of fermions. In particular, when the background is taken to be
a rank-one tensor (a spiked tensor), we obtain an exact expression of the distribution in terms
of hypergeometric functions. In Sect. 4 we deri v e the quantum field theory expression of the
2 Throughout this paper, N denotes the range of indices of tensors, namely, an index takes values, 1, 2, 
···, N . 

3 This particular case will also be analyzed in detail in Ref. [ 30 ]. 
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(authentic) distribution of the eigenvectors. In particular we explicitly derive the distribution
for the spiked tensor case by using an approximation taking advantage of the quantum field
theor etical expr ession. In Sect. 5 , we compar e the expr essions of the distributions obtained in
the previous sections with MC simulations. We obtain very good agreement, including for the
case treated by the approximation. In Sect. 6 , we consider the large- N limit, especially paying
attention to whether the rank-one tensor background has a visible peak in the distributions.
We deri v e the scaling and the r ange of par ameters in w hich this ha ppens. The threshold value
is shown to agree with that of Ref. [ 29 ]. The last section is devoted to a summary and future
prospects. 

2. Real tensor eigenvector equation with backgrounds and deviations 
In this paper we restrict ourselves to order-three tensors 4 for simplicity. We consider the follow-
ing eigenvector equation [ 11–14 ] with a background tensor Q and a deviation vector η, 

(Q abc + C abc ) v b v c = v a + ηa . (1) 

Here the indices take a , b , c = 1, 2, …, N , and repeated indices are assumed to be summed
over unless otherwise stated throughout this paper. We assume that Q , C ar e r eal symmetric
order-three tensors and v , η are real vectors: 

Q abc = Q bac = Q bca ∈ R , 

C abc = C bac = C bca ∈ R , 

v a , ηa ∈ R . (2) 

While Q is an externally given background tensor, C abc is a random tensor with Gaussian dis-
tribution of a zero mean value. The vector η describes a deviation of the eigenvector equation,
and is a random real vector with Gaussian distribution of a zero mean value. We will compute
the distributions of v , namely the distributions of the real “eigenvector” solutions to Eq. ( 1 ).
Note that, if we ignore the background Q and the deviation η, the setup goes back to the cases
previously studied in Refs. [ 24–26 ]. 

For gi v en Q , C , η, the distribution of v is gi v en by 

ρ(v, Q, C, η) = 

# sol (Q,C,η) ∑ 

i=1 

N ∏ 

a =1 

δ
(
v a − v i a 

)

= 

| det M(v, Q, C) | 
N ∏ 

a =1 

δ ( v a + ηa − (Q abc + C abc ) v b v c ) (3) 

where v i (i = 1 , 2 , . . . , # sol (Q, C, η)) are all the real solutions to Eq. ( 1 ), and | det M(v, Q, C) |
is the absolute value of the determinant of the matrix, 

M(v, Q, C) ab = 

∂ 

∂v a 
( v b + ηb − (Q bcd + C bcd ) v c v d ) = δab − 2( Q abc + C abc ) v c , (4) 

which is the Jacobian factor associated to the change of the variables of the delta functions in
Eq. ( 3 ). 
4 Namely, tensors have three indices. 
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When C , η have Gaussian distributions with zero mean values, the eigenvector distributions
are computed by taking the average over C , η: 

ρ(v, Q, β ) = 

〈 ρ(v, Q, C, η) 〉 C,η

= 

1 

AA 

′ 

∫ 
R 

# C 
d C 

∫ 
R 

N 
d η e −αC 

2 − 1 
4 β η2 | det M(v, Q, C) | 

·
N ∏ 

a =1 

δ ( v a + ηa − (Q abc + C abc ) v b v c ) , (5) 

where α, β > 0, # C is the number 5 of the independent components of C , C 

2 = C abc C abc , η2 =
ηa ηa , A = 

∫ 
R 

# C dC e −αC 

2 
, and A 

′ = 

∫ 
R 

N dη e −
1 

4 β η2 
. Here a slightly complicated introduction of β

is for later convenience. By using the well-known formula, 1 
2 π

∫ 
R 

dλ e iλx = δ(x ) , the integration
of the delta functions over η in Eq. ( 5 ) can be rewritten as 

1 

A 

′ 

∫ 
R 

N 
d η e −

1 
4 β η2 

N ∏ 

a =1 

δ ( v a + ηa − (Q abc + C abc ) v b v c ) = 

1 

(2 π ) N 

∫ 
R 

N 
d λ e −βλ2 + iλa ( v a −(Q abc + C abc ) v b v c ) . 

(6) 

Ther efor e, by putting this into Eq. ( 5 ), we obtain 

ρ(v, Q, β ) = 

1 

(2 π ) N A 

∫ 
R 

# C 
d C 

∫ 
R 

N 
d λ | det M(v, Q, C) | e −αC 

2 −βλ2 + iλa (v a −(Q abc + C abc ) v b v c ) . (7) 

The part | det M(v, Q, C) | in Eq. ( 7 ) needs a special care, because taking an absolute value is
not an analytic function. In Sect. 3 , we will consider the case that we ignore taking the absolute
value. This makes the problem easier and treatable by introducing only a pair of fermions, but is
still nontrivial and interesting. In Sect. 4 , we will fully treat Eq. ( 7 ) by introducing both bosons
and fermions. 

3. Signed distributions 
3.1. Quantum field theory expression 

The quantity we will compute in this section is defined by ignoring taking the absolute value in
Eq. ( 7 ): 

ρsigned (v, Q, β ) = 

1 

(2 π ) N A 

∫ 
R 

# C 
d C 

∫ 
R 

N 
d λ det M(v, Q, C) e −αC 

2 −βλ2 + iλa (v a −(Q abc + C abc ) v b v c ) . (8) 

Following backward the derivation in Sect. 2 , the distribution corresponds to a “signed” distri-
bution, 

ρsigned (v, Q, C, η) = 

# sol (Q,C,η) ∑ 

i=1 

sign 

(
det M(v i , Q, C) 

) N ∏ 

a =1 

δ
(
v a − v i a 

)
, (9) 

which has an extra sign of det M(v i , Q, C) dependent on each solution v i , compared with Eq.
( 3 ). Note that the quantity ( 8 ) is a generalization of the signed distribution computed in Ref.
[ 24 ] to the case with backgrounds and deviations. Though the quantity has no clear connections
to Eq. ( 7 ), it provides a simpler playground, and we will obtain an exact final expression with
the confluent hypergeometric functions of the second kind (or hermite polynomials). 

The determinant factor in Eq. ( 8 ) can easily be rewritten in a quantum field theoretical form
by introducing a fermion pair, ψ̄ a , ψ a (a = 1 , 2 , · · · , N ) ; det M = 

∫ 
d ψ̄ dψ e ψ̄ Mψ [ 31 ]. This tech-
5 Explicitly, # C = N( N + 1)( N + 2) / 6 . 
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nique to incorporate determinants in quantum field theories is common in treating disordered
systems in statistical physics. 6 Then Eq. ( 8 ) can be rewritten as 

ρsigned (v, Q, β ) = 

1 

(2 π ) N A 

∫ 
R 

# C 
d C 

∫ 
R 

N 
d λ

∫ 
d ψ̄ d ψ e S 

signed 
bare , (10) 

where 

S 

signed 
bare = −αC 

2 − βλ2 + iλa (v a − (Q abc + C abc ) v b v c ) + ψ̄ a ( δab − 2(Q abc + C abc ) v c ) ψ b . (11) 

Since C and λ appear quadratically at the highest in Eq. ( 11 ), they can be integrated out by
Gaussian integrations. We will first integrate over C and then over λ. Though the integrations
are straightforward, the actual computation is a little cumbersome, because of the anticommut-
ing nature of the fermions and the necessity of symmetrization for the indices of C abc . Howe v er,
we can take a shortcut by taking some results from Ref. [ 24 ], where there are no Q or η. Now,
new terms in S 

signed 
bare compared to Ref. [ 24 ] are those depending on Q and β, and are explicitly

gi v en by 

S 

signed 
new 

= −βλ2 − iλa Q abc v b v c − 2 Q abc ψ̄ a ψ b v c . (12) 

Since the new terms do not contain C , the integration over C proceeds in the same way as in
Ref. [ 24 ]. This integration cancels the overall factor A 

−1 in Eq. ( 10 ), and also generates various
terms being added to the action. Collecting the terms depending on λ among the generated
ones, i λa v a in Eq. ( 11 ), and the terms depending on λ in Eq. ( 12 ), we obtain the λ-dependent
part of the action as 

S 

signed 
λ = − v 4 

12 α
B ab λa λb + iλa 

(
v a + D 

signed 
a − D 

Q 

a 

)
, (13) 

where D 

Q 

a = Q abc v b v c , and D 

signed can be taken from Ref. [ 24 ], 7 

D 

signed 
a = 

1 

3 α

(
ψ̄ a ψ · v v 2 + ψ̄ · v ψ a v 2 + ψ̄ · v ψ · v v a 

)
. (14) 

Here we very frequently use an abusi v e notation v p := | v | p for simplicity throughout this paper,
since whether v means vector or scalar quantities is always obvious from contexts. The matrix
B is gi v en by 

B = 3 

(
1 + 

4 αβ

v 4 

)
I ‖ + 

(
1 + 

12 αβ

v 4 

)
I ⊥ 

, (15) 

where I � and I ⊥ 

are the projection matrices to the parallel and the transverse subspaces against
v : I � ab = v a v b / v 2 , I ⊥ ab = δab − v a v b / v 2 . Then the integr ation over λ with the action ( 13 ) gener ates
an action, 

δS 

signed 
λ = −N 

2 

log 

v 4 

12 πα
− 1 

2 

log det B − 3 α

v 4 

((
v a + D 

signed 
a 

)
B 

−1 
ab 

(
v b + D 

signed 
b 

)

− 2 

(
v a + D 

signed 
a 

)
B 

−1 
ab D 

Q 

b + D 

Q 

a B 

−1 
ab D 

Q 

b 

)
, (16) 

where the inverse of B is given by 

B 

−1 = 

b ‖ 
3 

I ‖ + b ⊥ 

I ⊥ 

(17) 
6 See, e.g. Ref. [ 32 ] and r efer ences ther ein. 
7 v a + D 

signed 
a corresponds to D a of Ref. [ 24 ]. 
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with 

b ‖ = 

v 4 

v 4 + 4 αβ
, 

b ⊥ 

= 

v 4 

v 4 + 12 αβ
. (18) 

When we consider the case with Q = β = 0, the distribution ( 10 ) should agree with the pre-
vious r esult of Ref. [ 24 ]. Ther efor e, it is enough for us to compute the additional part which
a ppears onl y w hen Q � = 0 or β � = 0. By subtracting δS 

signed 
λ for Q = β = 0 in Eq. ( 16 ) and using

Eq. ( 17 ), we obtain 

δS 

signed 
λ − δS 

signed 
λ ( Q = β = 0 ) = 

1 

2 

log b ‖ + 

N − 1 

2 

log b ⊥ 

− 3 α

v 4 

[
b ‖ − 1 

3 

(
v + D 

signed 
‖ 

)2 

+ ( b ⊥ 

− 1 ) D 

signed 
⊥ 

· D 

signed 
⊥ 

− 2 b ‖ 
3 

(
v + D 

signed 
‖ 

)
D 

Q 

‖ 

− 2 b ⊥ 

D 

signed 
⊥ 

· D 

Q 

⊥ 

+ 

b ‖ 
3 

(
D 

Q 

‖ 
)2 

+ b ⊥ 

D 

Q 

⊥ 

· D 

Q 

⊥ 

]
, (19) 

where D 

signed 
‖ = v · D 

signed / | v | , D 

signed 
⊥ 

= I ⊥ 

D 

signed , D 

Q 

‖ = v · D 

Q / | v | , D 

Q 

⊥ 

= I ⊥ 

D 

Q . 
The previous result in Ref. [ 24 ] is gi v en by 

ρsigned (v, Q = 0 , β = 0) = 3 

N−1 
2 π− N 

2 α
N 
2 

∫ 
d ψ̄ dψ e S ψ̄ ψ , (20) 

where 

S ψ̄ ψ 

= − α

v 2 
− 2 N log v + ψ̄ ⊥ 

· ψ ⊥ 

− ψ̄ ‖ ψ ‖ − v 2 

6 α

(
ψ̄ ⊥ 

· ψ ⊥ 

)2 
(21) 

with ψ � = v · ψ / | v | , ψ ⊥ 

= I ⊥ 

ψ , etc. Adding Eq. ( 19 ) and the last term in Eq. ( 12 ) to Eq. ( 21 )
and doing some straightforward computations, we finally obtain 

ρsigned (v, Q, β ) = 3 

N−1 
2 π− N 

2 α
N 
2 ( v 4 + 4 αβ ) −

1 
2 ( v 4 + 12 αβ ) −

N−1 
2 exp 

[
− αv 2 

v 4 + 4 αβ

]

· exp 

⎡ 

⎢ ⎣ 

2 αb ‖ vD 

Q 

‖ − αb ‖ 
(

D 

Q 

‖ 
)2 

− 3 αb ⊥ 

D 

Q 

⊥ 

· D 

Q 

⊥ 

v 4 

⎤ 

⎥ ⎦ 

∫ 
d ψ̄ dψ e S 

signed 
, (22) 

where 

S 

signed = 

( 

−2 b ‖ + 1 + 

2 b ‖ D 

Q 

‖ 
v 

) 

ψ̄ ‖ ψ ‖ + 

2 b ⊥ 

v 
D 

Q 

⊥ 

· (ψ̄ ⊥ 

ψ ‖ + ψ̄ ‖ ψ ⊥ 

)+ ψ̄ ⊥ 

· ψ ⊥ 

− 2 Q abc ψ̄ a ψ b v c + 

2 v 2 (b ⊥ 

− 1) 
3 α

ψ̄ ‖ ψ ‖ ψ̄ ⊥ 

· ψ ⊥ 

− v 2 

6 α

(
ψ̄ ⊥ 

· ψ ⊥ 

)2 
. (23) 

Some details of the derivation are explained in Appendix A . 

3.2. Rank-one Q 

To study the formula Eq. ( 22 ) with Eq. ( 23 ) more explicitly, let us consider the case that Q is a
rank-one tensor, 

Q abc = q n a n b n c , (24) 
6/28 
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where q is real and n is a normalized real vector ( | n | = 1). This is a setup called a spiked tensor
[ 27 ]. 

In the general situation, the vector n is a linear combination of v and another vector n 1 ,
which is a normalized v ector transv erse to v (namely, v · n 1 = 0 , | n 1 | = 1 ). Then the transverse
subspace to v can further be divided into the subspace parallel to n 1 and the N − 2-dimensional
subspace transverse to both v and n 1 . We denote the projector to the latter by I ⊥ 2 . Then the
transverse fermions, ψ̄ ⊥ 

, ψ ⊥ 

, can further be decomposed into ψ̄ ⊥ 1 = n 1 · ψ̄ and ψ̄ ⊥ 2 = I ⊥ 2 ψ̄ 

and similarly for ψ ⊥ 

. Note that ψ̄ ⊥ 

· ψ ⊥ 

= ψ̄ ⊥ 1 ψ ⊥ 1 + ψ̄ ⊥ 2 · ψ ⊥ 2 , etc. 
For Eq. ( 24 ), D 

Q 

‖ = qv 2 n 

3 
‖ , D 

Q 

⊥ 

= qv 2 n 

2 
‖ n ⊥ 

n 1 , where n � = v · n / | v | , n ⊥ 

= n 1 · n . We also notice 

Q abc v c ψ̄ a ψ b = qn a n b n c v a ψ b ψ c = qvn 

3 
‖ ψ̄ ‖ ψ ‖ + qvn 

2 
‖ n ⊥ 

( ψ̄ ‖ ψ ⊥ 1 + ψ̄ ⊥ 1 ψ ‖ ) + qvn ‖ n 

2 
⊥ 

ψ̄ ⊥ 1 ψ ⊥ 1 . 

(25) 

Putting these into Eqs. ( 22 ) and ( 23 ), we obtain 

ρ
signed 
spiked (v, n, q, β ) = 3 

N−1 
2 π− N 

2 α
N 
2 ( v 4 + 4 αβ ) −

1 
2 ( v 4 + 12 αβ ) −

N−1 
2 

· exp 

[ −αv 2 + 2 αqv 3 n 

3 
‖ − αq 

2 v 4 n 

6 
‖ 

v 4 + 4 αβ
− 3 αq 

2 v 4 n 

4 
‖ n 

2 
⊥ 

v 4 + 12 αβ

] ∫ 
d ψ̄ dψ e S 

signed 
spiked , 

(26) 

where 

S 

signed 
spiked = −

( 

v 4 − 4 αβ

v 4 + 4 αβ
+ 

8 αβqvn 

3 
‖ 

v 4 + 4 αβ

) 

ψ̄ ‖ ψ ‖ −
24 αβqvn 

2 
‖ n ⊥ 

v 4 + 12 αβ

(
ψ̄ ‖ ψ ⊥ 1 + ψ̄ ⊥ 1 ψ ‖ 

)

+ 

(
1 − 2 qvn ‖ n 

2 
⊥ 

)
ψ̄ ⊥ 1 ψ ⊥ 1 + ψ̄ ⊥ 2 · ψ ⊥ 2 −

8 βv 2 

v 4 + 12 αβ
ψ̄ ‖ ψ ‖ 

(
ψ̄ ⊥ 1 ψ ⊥ 1 + ψ̄ ⊥ 2 · ψ ⊥ 2 

)

− v 2 

6 α

(
ψ̄ ⊥ 1 ψ ⊥ 1 + ψ̄ ⊥ 2 · ψ ⊥ 2 

)2 
. (27) 

It is not difficult to compute explicitly the fermion integration in Eq. ( 26 ). As is shown in
Appendix B , we obtain ∫ 

d ψ̄ dψ e S 
signed 
spiked = 2 N−6 (−d 2 ) 

N−5 
2 

[
− 8 d 2 (−b 2 2 + d 1 + b 3 (b 1 + d 1 ) + 2 b 1 d 2 ) U 

(
3 − N 

2 
, 

3 
2 
, − 1 

4 d 2 

)

+ 2( N − 3)( b 3 d 1 + 2 b 1 d 2 + 6 d 1 d 2 ) U 

(
5 − N 

2 
, 

5 
2 
, − 1 

4 d 2 

)

− d 1 ( N − 3)( N − 5) U 

(
7 − N 

2 
, 

7 
2 
, − 1 

4 d 2 

)]
, (28) 

where U denotes the confluent hypergeometric function of the second kind, and b i , d i are the
coefficients of the terms in Eq. ( 27 ): 

b 1 = −
( 

v 4 − 4 αβ

v 4 + 4 αβ
+ 

8 αβqvn 

3 
‖ 

v 4 + 4 αβ

) 

, b 2 = −24 αβqvn 

2 
‖ n ⊥ 

v 4 + 12 αβ
, b 3 = 1 − 2 qvn ‖ n 

2 
⊥ 

, 

d 1 = − 8 βv 2 

v 4 + 12 αβ
, d 2 = − v 2 

6 α
. (29) 

The result ( 26 ) with Eq. ( 28 ) gi v es the exact expression of the signed distribution. 
7/28 
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4. Distributions 
4.1. Quantum field theory expression 

In this subsection we obtain the quantum field theoretical expressions of the (authentic) distri-
bution by considering the determinant factor | det M| as it is. We take the same procedure as
was employed in Ref. [ 26 ]. We first introduce bosons and fermions to rewrite | det M| : 

| det M| = lim 

ε→ +0 

det (M 

2 + εI ) √ 

det (M 

2 + εI ) 

= (−π ) −N 

∫ 
d ψ̄ d ψd ϕ̄ d ϕd φd σ e −σ 2 −2 iσMφ−εφ2 −ϕ̄ ϕ −ψ̄ Mϕ −ϕ̄ Mψ+ εψ̄ ψ , (30) 

where I is an identity matrix of N -by- N , φa , σ a are real bosons, ψ̄ a , ψ a , ϕ̄ a , ϕ a are fermions, and
ψ̄ ψ = ψ̄ a ψ a , etc. Here we have introduced a positi v e infinitesimal parameter ε to regularize
the expression, since M may have zero eigenvalues. As in the second line, writing the limit is
suppressed to simplify the notation hereafter, assuming implicitly taking this limit at ends of 
computations. In fact, the limit turns out to be straightforward in all the computations of this
paper. We have introduced two sets of bosons and fermions to make the exponent linear in C
( M contains C linearly) f or later con v enience of the integration ov er C . By performing similar
processes as in Sect. 3 , we obtain 

ρ(v, Q, β ) = 

(−1) N 

2 

N π2 N A 

∫ 
d Cd λd ψ̄ d ψd ϕ̄ d ϕd φd σ e S bare , (31) 

where 

S bare = −αC 

2 − βλ2 + iλa (v a − (C abc + Q abc ) v b v c ) 

− σ 2 − 2 iσa ( δab − 2(Q abc + C abc ) v c ) φb − εφ2 

− ϕ̄ ϕ − ψ̄ a ( δab − 2(Q abc + C abc ) v c ) ϕ b − ϕ̄ a ( δab − 2(Q abc + C abc ) v c ) ψ b + εψ̄ ψ. 

(32) 

As in Sect. 3 , ther e ar e no new terms depending on C compared with the previous case for Q
= β = 0 in Ref. [ 26 ], and ther efor e the integration over C can be performed as in the previous
computation there. Then we obtain a similar form of the action for λ as in Sect. 3 : 

S λ = − v 4 

12 α
λa B ab λb + iλa 

(
v a − D a − D 

Q 

a 

)
, (33) 

where B , D 

Q are already defined in Eq. ( 15 ) and below Eq. ( 13 ), respecti v ely. Here D can be
taken from Ref. [ 26 ]: 8 

D a = 

v 3 

3 α

[ 
( ψ̄ ‖ ϕ ‖ + ϕ̄ ‖ ψ ‖ ) ̂  v a + ψ̄ a ϕ ‖ + ψ̄ ‖ ϕ a + ϕ̄ a ψ ‖ + ϕ̄ ‖ ψ a + 2 i 

(
ˆ v a σ‖ φ‖ + σa φ‖ + σ‖ φa 

) ] 
, 

(34) 

where ˆ v a = v a / | v | . Comparing Eq. ( 33 ) with Eq. ( 13 ), the change is to replace D 

signed with −D .
By using Eq. ( 19 ) with this replacement and adding the Q -dependent but λ-independent terms
8 Here D is the sum D + 

˜ D of Ref. [ 26 ]. 
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in Eq. ( 32 ), we obtain 

ρ(v, Q, β ) = 3 

N−1 
2 π− 3 N 

2 α
N 
2 ( v 4 + 4 αβ ) −

1 
2 ( v 4 + 12 αβ ) −

N−1 
2 exp 

[
− αv 2 

v 4 + 4 αβ

]

· exp 

⎡ 

⎢ ⎣ 

2 αb ‖ vD 

Q 

‖ − αb ‖ 
(

D 

Q 

‖ 
)2 

− 3 αb ⊥ 

D 

Q 

⊥ 

· D 

Q 

⊥ 

v 4 

⎤ 

⎥ ⎦ 

Z, (35) 

where Z is a partition function of a quantum field theory, 

Z = (−1) N 

∫ 
d ψ̄ · · · dσ e S 0 + S Q,β . (36) 

Here S 0 is the former result in Ref. [ 26 ] corresponding to Q = β = 0, which is explicitly given
in Appendix C , and 

S Q,β = 

2 α(b ‖ − 1) v − 2 αb ‖ D 

Q 

‖ 
v 4 

D ‖ − 6 αb ⊥ 

v 4 
D ⊥ 

· D 

Q 

⊥ 

+ 2 Q abc v c 
(
ψ̄ a ϕ b + ϕ̄ a ψ b + 2 iσa φb 

)

− α(b ‖ − 1) 
v 4 

D 

2 
‖ −

3 α(b ⊥ 

− 1) 
v 4 

D ⊥ 

· D ⊥ 

, (37) 

where D � = v · D / | v | , D ⊥ 

= I ⊥ 

D . Note that the first three terms are some corrections to the
kinetic terms, and the latter to the four-interaction terms. As for D � and D ⊥ 

, we have more
e xplicit e xpressions from Eq. ( 34 ), 

D ‖ = 

v 3 

α

(
ψ̄ ‖ ϕ ‖ + ϕ̄ ‖ ψ ‖ + 2 i σ‖ φ‖ 

)
, 

D ⊥ 

= 

v 3 

3 α

(
ψ̄ ⊥ 

ϕ ‖ + ψ̄ ‖ ϕ ⊥ 

+ ϕ̄ ⊥ 

ψ ‖ + ϕ̄ ‖ ψ ⊥ 

+ 2 i( σ‖ φ⊥ 

+ σ⊥ 

φ‖ ) 
)
. (38) 

The four-interaction terms in Eq. ( 37 ) have the form of self-products. One can make them
quadratic by using the formula 

1 √ 

π

∫ 
R 

dg e −g 2 +2 Ag = e A 

2 
. The result is 

Z = (−1) N π− N 
2 

∫ 
d g ‖ d g ⊥ 

d ψ̄ · · · d σ e S 0 + S Q,β,g , (39) 

where g � is 1-dimensional, g ⊥ 

is N − 1-dimensional, and 

9 

S Q,β,g = −g 

2 
‖ − g 

2 
⊥ 

+ 

( 

2 α(b ‖ − 1) v − 2 αb ‖ D 

Q 

‖ 
v 4 

+ 

2 

√ 

α(1 − b ‖ ) 
v 2 

g ‖ 

) 

D ‖ − 6 αb ⊥ 

v 4 
D ⊥ 

· D 

Q 

⊥ 

+ 

2 

√ 

3 α(1 − b ⊥ 

) 
v 2 

D ⊥ 

· g ⊥ 

+ 2 Q abc v c 
(
ψ̄ a ϕ b + ϕ̄ a ψ b + 2 iσa φb 

)
, (40) 

which contains only quadratic terms of the fields. 

4.2. Rank-one Q 

In this subsection we consider the rank-one tensor Q in Eq. ( 24 ) to perform explicitly the inte-
gration over the fields in Eq. ( 35 ). 
9 Note that b � , b ⊥ 

< 1. 
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4.2.1. A g ener al formula. By putting Eq. ( 24 ) into Eq. ( 35 ), one obtains 

ρ(v, Q, β ) = 3 

N−1 
2 π− 3 N 

2 α
N 
2 ( v 4 + 4 αβ ) −

1 
2 ( v 4 + 12 αβ ) −

N−1 
2 exp 

[
− αv 2 

v 4 + 4 αβ

]

· exp 

[ 

2 αqv 3 n 

3 
‖ − αq 

2 v 4 n 

6 
‖ 

v 4 + 4 αβ
− 3 αq 

2 v 4 n 

4 
‖ n 

2 
⊥ 

v 4 + 12 αβ

] 

Z, (41) 

where the partition function Z can be computed either by Eq. ( 36 ) with Eq. ( 37 ) or by Eq. ( 39 )
with Eq. ( 40 ). 

Let us first put Eq. ( 24 ) into Eq. ( 37 ). After a lengthy but straightforward computation using
the same decomposition as in Sect. 3.2 , we get 

S q,n,β := S Q = qnnn,β

= 2( qvn 

3 
‖ − 1)( 1 − b ‖ ) 

(
ψ̄ ‖ ϕ ‖ + ϕ̄ ‖ ψ ‖ + 2 i σ‖ φ‖ 

)
+ 2 qvn 

2 
‖ n ⊥ 

(1 − b ⊥ 

) 
(
ψ̄ ⊥ 1 ϕ ‖ + ψ̄ ‖ ϕ ⊥ 1 + ϕ̄ ⊥ 1 ψ ‖ + ϕ̄ ‖ ψ ⊥ 1 + 2 i( σ‖ φ⊥ 1 + σ⊥ 1 φ‖ ) 

)
+ 2 qvn ‖ n 

2 
⊥ 

(
ψ̄ ⊥ 1 ϕ ⊥ 1 + ϕ̄ ⊥ 1 ψ ⊥ 1 + 2 i σ⊥ 1 φ⊥ 1 

)

+ 

8 βv 2 

v 4 + 4 αβ

(−ψ̄ ‖ ψ ‖ ϕ̄ ‖ ϕ ‖ + 2 i( ψ̄ ‖ ϕ ‖ + ϕ̄ ‖ ψ ‖ ) σ‖ φ‖ − 2 σ‖ 2 φ‖ 2 
)

+ 

8 βv 2 

v 4 + 12 αβ

(
ψ̄ ⊥ 

· ϕ̄ ⊥ 

ψ ‖ ϕ ‖ + ψ ⊥ 

· ϕ ⊥ 

ψ̄ ‖ ϕ̄ ‖ − ψ̄ ⊥ 

· ψ ⊥ 

ϕ̄ ‖ ϕ ‖ − ψ̄ ⊥ 

· ϕ ⊥ 

ψ̄ ‖ ϕ ‖ 

− ϕ̄ ⊥ 

· ϕ ⊥ 

ψ̄ ‖ ψ ‖ − ϕ̄ ⊥ 

· ψ ⊥ 

ϕ̄ ‖ ψ ‖ 

+ 2 i 
(
ψ̄ ⊥ 

ϕ ‖ + ψ̄ ‖ ϕ ⊥ 

+ ϕ̄ ⊥ 

ψ ‖ + ϕ̄ ‖ ψ ⊥ 

) · ( σ‖ φ⊥ 

+ σ⊥ 

φ‖ 
)

− 2 

(
σ‖ 2 φ⊥ 

· φ⊥ 

+ φ‖ 2 σ⊥ 

· σ⊥ 

+ 2 σ‖ φ‖ φ⊥ 

· σ⊥ 

))
. (42) 

As for Eq. ( 40 ), we obtain 

S q,n,β,g := S Q = qnnn,β,g 

= −g 

2 
‖ − g 

2 
⊥ 

+ 2 

( 

(qvn 

3 
‖ − 1)(1 − b ‖ ) + v 

√ 

1 − b ‖ 
α

g ‖ 

) (
ψ̄ ‖ ϕ ‖ + ϕ̄ ‖ ψ ‖ + 2 i σ‖ φ‖ 

)

+ 

(
2 qvn 

2 
‖ n ⊥ 

(1 − b ⊥ 

) 
) (

ψ̄ ⊥ 1 ϕ ‖ + ψ̄ ‖ ϕ ⊥ 1 + ϕ̄ ⊥ 1 ψ ‖ + ϕ̄ ‖ ψ ⊥ 1 + 2 i( σ‖ φ⊥ 1 + σ⊥ 1 φ‖ ) 
)

+ 2 qvn ‖ n 

2 
⊥ 

(
ψ̄ ⊥ 1 ϕ ⊥ 1 + ϕ̄ ⊥ 1 ψ ⊥ 1 + 2 i σ⊥ 1 φ⊥ 1 

)

+ 2 v 

√ 

1 − b ⊥ 

3 α
g ⊥ 

· (ψ̄ ⊥ 

ϕ ‖ + ψ̄ ‖ ϕ ⊥ 

+ ϕ̄ ⊥ 

ψ ‖ + ϕ̄ ‖ ψ ⊥ 

+ 2 i( σ‖ φ⊥ 

+ σ⊥ 

φ‖ ) 
)
. (43) 

In the following subsections, we will consider N = 1, N = 2, and large- N cases. 

4.2.2. N = 1. In this case we ignore all the transverse components, and also set n � = 1. By
putting these into Eqs. ( 35 ), ( 39 ), ( 43 ), and ( C2 ), and doing some straightforward computations,
10/28 
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we obtain 

ρ(v, q, β ) = π−1 α
1 
2 (v 4 + 4 αβ ) −

1 
2 exp 

[−αv 2 + 2 αqv 3 − αq 

2 v 4 

v 4 + 4 αβ

](√ 

πa Erf 
(a 

b 

)
+ b e −

a 2 

b 2 

)
, 

(44) 

where 

a = 1 + 2(qv − 1)(1 − b ‖ ) , 

b = 2 v 

√ 

(1 − b ‖ ) 
α

. (45) 

The details of the derivation are given in Appendix D . 

4.2.3. N = 2. In this case the transverse direction is exhausted by one dimension, namely, ⊥
= ⊥ 1 , and ⊥ 2 is null. A special fact about this case is that the four-interaction terms in Eq. ( C2 )
have the form of a square: 

V F + V B 

+ V BF = 

v 2 

3 α

(
ψ̄ ⊥ 1 ϕ ⊥ 1 + ϕ̄ ⊥ 1 ψ ⊥ 1 + 2 i σ⊥ 1 φ⊥ 1 

)2 
. (46) 

Ther efor e, we can rewrite this part of the action as 

e V F + V B + V BF = 

1 √ 

π

∫ 
dg e −g 2 +2 vg ( ̄ψ ⊥ 1 ϕ ⊥ 1 + ̄ϕ ⊥ 1 ψ ⊥ 1 +2 i σ⊥ 1 φ⊥ 1 ) / 

√ 

3 α, (47) 

whose exponent contains only quadratic terms of the fields. Using this for Eqs. ( 39 ), ( 43 ), and
( C2 ), we obtain 

Z N=2 = π− 3 
2 

∫ 
d g 1 d g 2 d g 3 

∫ 
d ψ̄ · · · d σ e −g 2 1 −g 2 2 −g 2 3 + K ‖⊥ 1 , (48) 

where 

K ‖⊥ 1 = −ϕ̄ ‖ ϕ ‖ + εψ̄ ‖ ψ ‖ − σ‖ 2 − εφ‖ 2 − ϕ̄ ⊥ 1 ϕ ⊥ 1 + εψ̄ ⊥ 1 ψ ⊥ 1 − σ⊥ 1 
2 − εφ⊥ 1 

2 

+ a 1 
(
ψ̄ ‖ ϕ ‖ + ϕ̄ ‖ ψ ‖ + 2 i σ‖ φ‖ 

)
+ a 2 

(
ψ̄ ‖ ϕ ⊥ 1 + ψ̄ ⊥ 1 ϕ ‖ + ϕ̄ ‖ ψ ⊥ 1 + ϕ̄ ⊥ 1 ψ ‖ + 2 i 

(
σ‖ φ⊥ 1 + σ⊥ 1 φ‖ 

))
+ a 3 

(
ψ̄ ⊥ 1 ϕ ⊥ 1 + ϕ̄ ⊥ 1 ψ ⊥ 1 + 2 i σ⊥ 1 φ⊥ 1 

)
(49) 

with 

a 1 = 2 b ‖ − 1 + 2 qv (1 − b ‖ ) n 

3 
‖ + 2 v 

√ 

1 − b ‖ 
α

g 1 , 

a 2 = 2 qv (1 − b ⊥ 

) n 

2 
‖ n ⊥ 

+ 2 v 

√ 

1 − b ⊥ 

3 α
g 2 , 

a 3 = −1 + 2 qvn ‖ n 

2 
⊥ 

+ 2 v 

√ 

1 

3 α
g 3 . (50) 

Then the integration ( 48 ) over the fields generates a square root of a determinant, and we obtain 

Z N=2 = 

√ 

π

∫ 
d g 1 d g 2 d g 3 e −g 2 1 −g 2 2 −g 2 3 

∣∣a 

2 
2 − a 1 a 3 

∣∣ . (51) 

4.2.4. Lar g e N. For N > 2 we will not obtain exact expressions of the distributions. We will
rather obtain an expression which is a good approximation for large N . For large N the degrees
11/28 



PTEP 2023 , 123A01 N. Sasakura 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/12/123A01/7424130 by Kyoto D

aigaku Johogakukenkyuka Tosho user on 12 N
ovem

ber 20
of freedom carried by the ⊥ 2 fields will dominate over those of the � ⊥ 1 fields, since the former
is ( N − 2)-dimensional, whereas the latter is 2-dimensional. Therefore, the dynamics of the ⊥ 2 

fields can well be determined by themselves with little effects from the � ⊥ 1 fields, which may
be ignored in the large- N limit. Then the dynamics of the � ⊥ 1 fields may be computed in the
backgrounds of the ⊥ 2 fields, which can well be approximated by their classical values because
of their large number of degrees of freedom for large N . 

Mor e pr ecisel y, our a pproximation is gi v en by 

Z = Z ⊥ 2 Z ‖⊥ 1 (R ) . (52) 

Here Z ⊥ 2 is the partition function determined solely by the ⊥ 2 fields, 

Z ⊥ 2 = (−1) N−2 
∫ 

d ψ̄ ⊥ 2 · · · d σ⊥ 2 e 
S ⊥ 2 , (53) 

where S ⊥ 2 is the collection of the terms which contain only the ⊥ 2 fields in Eq. ( C1 ) with Eq.
( C2 ). 10 The computation of the partition function Z ⊥ 2 is the same as that in the previous paper
[ 26 ], because S ⊥ 2 has the same form as the action of the transverse directions there. 11 

Z ‖⊥ 1 (R ) is the partition function of the � ⊥ 1 fields in the background of the ⊥ 2 fields, 

Z ‖⊥ 1 (R ) = 

∫ 
d ψ̄ ‖ · · · dσ⊥ 1 e 

S ‖⊥ 1 (R ) , (54) 

where R denotes the classical backgrounds of the ⊥ 2 fields, as will be explained below in more
detail. Here the action S ‖⊥ 1 (R ) is composed of all the terms which contain the � ⊥ 1 fields in
Eqs. ( 42 ) and ( C1 ). Part of the terms in S ‖⊥ 1 (R ) contain the ⊥ 2 fields as well. For large N these
⊥ 2 fields may well be approximated by their classical values because of the large degrees of 
freedom of the ⊥ 2 fields. For instance, we perform replacements, 

ψ̄ ⊥ 2 · ϕ ⊥ 2 ψ̄ ‖ ϕ ‖ → 〈 ψ̄ ⊥ 2 · ϕ ⊥ 2 〉 ψ̄ ‖ ϕ ‖ , (55) 

where 〈 · 〉 denotes an expectation value. By doing such replacements we obtain S ‖⊥ 1 (R ) , whose
dynamical fields are only the � ⊥ 1 fields. 

Obtaining the explicit form of S ‖⊥ 1 (R ) proceeds as follows. The quadratic and quartic terms
of the � ⊥ 1 fields can be processed in the same manner as are performed for N = 2 in Sect. 4.2.3 ,
and we obtain K ‖⊥ 1 in Eq. ( 49 ) with Eq. ( 50 ). Then the four-interaction terms between the � ⊥ 1 

fields and the ⊥ 2 fields, where the latter are replaced by their expectation values like in Eq.
( 55 ), generate some quadratic terms of the former, which are explicitly gi v en in Eq. ( E7 ) of 
Appendix E . Thus we have 

S ‖⊥ 1 (R ) = K ‖⊥ 1 + V ‖⊥ 1 , ⊥ 2 (R ) , (56) 

whose terms are all quadratic in the � ⊥ 1 fields. Then the computation of the partition function
( 54 ) is just a computation of a determinant, and we obtain 

Z ‖⊥ 1 (R ) = 

√ 

π

∫ 
d g 1 d g 2 d g 3 e −g 2 1 −g 2 2 −g 2 3 

√ 

det H , (57) 
10 For instance, we include ψ̄ ⊥ 2 · ψ ⊥ 2 ϕ̄ ⊥ 2 · ϕ ⊥ 2 but ignore ψ̄ ⊥ 2 · ψ ⊥ 2 ϕ̄ ⊥ 1 ϕ ⊥ 1 , ψ̄ ⊥ 2 · ψ ⊥ 2 ϕ̄ ‖ ϕ ‖ , etc., because 
of the reason mentioned in the first par agr aph. The ignored terms will be considered in Z ‖⊥ 1 . 

11 But note the difference of the dimensions of ⊥ 2 here and ⊥ in Ref. [ 26 ], where the former is N − 2, 
whereas the latter is N − 1. Ther efor e, when we take a result from Ref. [ 26 ], we have to deduct N by one. 
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where H is gi v en by 

H = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ε − A 1 R 22 a 1 − A 1 R 12 0 a 2 

a 1 − A 1 R 12 −1 − A 1 R 11 a 2 0 

0 a 2 ε − A 2 R 22 a 3 − A 2 R 12 

a 2 0 a 3 − A 2 R 12 −1 − A 2 R 11 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (58) 

wher e a i ar e gi v en in Eq. ( 50 ), R ij are the e xpectation values of two ⊥ 2 fields explicitly given in
Eqs. ( E3 ) and ( E4 ), and 

A 1 = 

8 βv 2 (N − 2) 
v 4 + 12 αβ

, A 2 = 

v 2 (N − 2) 
3 α

. (59) 

The derivation of H is given in Appendix E . 

5. Comparison with numerical simulations 
In this section we compare the distributions obtained for the spiked tensor in Sects. 3 and 4
with MC simulations. The method is basically the same as that taken in the previous works
of the author [ 24–26 ]. Throughout this section we put α = 1/2 without loss of generality. In
the MC simulations, all the solutions to the eigenvector equation ( 1 ) must be computed for
any randomly sampled C and η. Since this r equir es a reliable polynomial equation solver, we
used Ma thema tica 13 for the MC simulations. It computes the solutions to Eq. ( 1 ), which are
generally complex, among which we take only the real ones. To check whether all the solutions
ar e cover ed, we checked whether the number of the generally complex solutions to Eq. ( 1 )
agreed with the number 2 

N − 1 of the generally comple x eigenv ectors prov en in Ref. [ 13 ], e v ery
time the solutions were computed. In fact, when N is large, we encountered some cases that a
few solutions were missing. Howe v er, the missing rates were too small to statistically be relevant
for this study. For example, the missing rate was � 10 

−4 in the N = 9 data we use in this paper.
We used a workstation which had a Xeon W2295 (3.0GHz, 18 cores), 128GB DDR4 memory,
and Ubuntu 20 as OS. 

The MC simulations were performed by the following procedure. 

� Randomly sample C and η. Each ηa is randomly sampled by the normal distribution with
the mean value zero and the standard deviation 

√ 

2 β. Each C abc is randomly sampled by
the normal distribution with the mean value zero and the standard deviation 1 / 

√ 

d abc , cor-
responding to α = 1/2, where d abc is the degeneracy factor defined by 

12 

d abc = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 for a = b = c, 

3 for a � = b = c or b � = c = a or c � = a = b, 

6 for a � = b � = c � = a. 

(60) 

� As e xplained abov e, compute all the comple x solutions to the eigenv ector equation ( 1 ), and
pick up only the real ones v i (i = 1 , 2 , · · · , # sol (Q, C, η)) . 

� Store 
(| v i | , v i · n/ | v i | , sign 

(
det M(v i , Q, C) 

))
for i = 1 , 2 , · · · , # sol (Q, C, η) . 

� Repeat the above processes. 
12 This degeneracy factor is because the Gaussian term in Eq. ( 5 ) is C abc C abc = 

∑ N 

a ≤b≤c =1 d abc C 

2 
abc in 

terms of the independent components of the symmetric tensor C . 
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By this sampling procedure, we obtain a series of data, 
(| v h | , v h · n/ | v h | , sign 

(
det M(v h , Q, C) 

))
for h = 1, 2, ···, L , where L denotes the total number of real solutions obtained. 13 

To plot the distributions, we classify the data into equally spaced bins in v and angle θ as 

v − δv / 2 < v h ≤ v + δv / 2 , 

cos (θ − δθ/ 2) < v h · n/ | v h | ≤ cos (θ + δθ/ 2) , 

sign 

(
det M(v h , Q, C) 

) = 1 or sign 

(
det M(v h , Q, C) 

) = −1 , (61) 

wher e v , θ ar e the center values of a bin, and δv , δθ are the sizes of a bin. We de-
note the total number of data satisfying Eq. ( 61 ) as N δv ,δθ , + 

(v, θ ) and N δv ,δθ , −(v, θ ) for
sign 

(
det M(v h , Q, C) 

) = 1 and sign 

(
det M(v h , Q, C) 

) = −1 , respecti v ely. 
Then the distribution of the real eigenvectors from a set of data is gi v en by 

ρMC 

(v, θ; q, β ) = 

1 

N MC 

δv δθ

(
N δv ,δθ , + 

(v, θ ) + N δv ,δθ , −(v, θ ) ±
√ 

N δv ,δθ , + 

(v, θ ) + N δv ,δθ , −(v, θ ) 
)

, 

(62) 
where N MC 

denotes the total number of sampling processes in obtaining the data and the ±
part r epr esents error estimates. The signed distribution is gi v en by 

ρ
signed 
MC 

(v, θ; q, β ) = 

1 

N MC 

δv δθ

(
N δv ,δθ , + 

(v, θ ) − N δv ,δθ , −(v, θ ) ±
√ 

N δv ,δθ , + 

(v, θ ) + N δv ,δθ , −(v, θ ) 
)

. 

(63) 

As for the analytical side, since we take only the size | v | and the relati v e angle θ as data, the
above MC distributions should be compared with 

ρanaly (v, θ; q, β ) d vd θ = 

∫ 
| v ′ | = v, v ′ ·n/ | v ′ | = cos (θ ) 

d 

N v ′ ρ(v ′ , q, n, β ) 

= S N−2 v N−1 sin 

N−2 ( θ ) ρ( v, q, n, β ) d vd θ, (64) 

where S N − 2 = 2 π ( N − 1)/2 / �[( N − 1)/2] is the surface volume of a unit sphere in the N − 1-
dimensional flat space. Here ρ( v , q , n , β) is one of the expressions obtained in Sects. 3 and
4 , and v in the argument of ρ on the right-hand side abusi v ely denotes an arbitrary vector v ′ 

which satisfies | v ′ | = v, v ′ · n/ | v ′ | = cos (θ ) . In the following we will compare the MC and the
analytical results. 

Let us first consider the signed distribution. The analytical result is obtained by putting Eq.
( 26 ) with Eq. ( 28 ) into Eq. ( 64 ). Since the analytical result is an exact result, it should agree with
the MC result within errors. In Fig. 1 , we plot the MC result ( 63 ) for N = 9, β = 10 

−4 , q = 10
with N MC 

= 4 · 10 

4 . As examples, the analytical and MC results are compared at two slices, one
at | v | = 0.105 and the other at θ = π /2, in the two panels of Fig. 2 . They agree quite well within
error estimates, supporting the validities of both the analytical and the MC computations. 

As in Fig. 1 and the left panel of Fig. 2 , an evident negative peak can be observed around
| v | ∼ 0.1 and θ ∼ 0.5. This peak a pproximatel y corresponds to an eigenvector q 

−1 n a of the
background tensor Q abc = q n a n b n c . In fact, the location satisfies | v | ∼ q 

−1 , while the angle is
not strictly θ = 0. The reason is that the volume factor in Eq. ( 64 ) contains sin 

N − 2 ( θ ), and
pushes the peak away from θ = 0. Because of the same reason, the other major structures are
concentrated around θ = π /2 in Fig. 1 . A large- N limit which effecti v ely vanishes this volume

effect will be discussed in Sect. 6 . 

13 Note that L is generally different from N MC 

below. 
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Fig. 1. The MC signed distribution ( 63 ) is plotted for the data with N = 9, β = 10 

−4 , q = 10 and total 
sampling number N MC 

= 4 · 10 

4 . 

Fig. 2. The comparison between the analytical and the MC results with the same data as of Fig. 1 . 
The analytical result is drawn by the solid lines and the MC results are plotted with error bars. The 
comparisons are shown for two example slices in | v | and θ ; the left is at | v | = 0.105 and the right is at 
θ = π /2. 
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In Fig. 1 and the right panel of Fig. 2 one can also see a peak around | v | ∼ 0.04, θ ∼ π /2. This
peak corresponds to the tri vial eigenv ector v = 0. Because of β > 0 the distribution broadens
around | v | ∼ 0, and the volume factor v N − 1 in Eq. ( 64 ) pushes the peak away from | v | = 0. 

In Fig. 3 the MC distribution ( 62 ) is shown for the same data. Except for the signs, the char-
acters of the distribution are more or less similar to the signed case. On the other hand, the
analytic result for this case has the difference that the partition function Z in Eq. ( 35 ) is com-
puted by the approximation ( 52 ), whereas it was exact for the signed case. The exact expression
of Z ⊥ 2 can be taken from the previous result in Ref. [ 26 ], which is e xplicitly gi v en in Appendix F .
As for Z ‖⊥ 1 , by numerically integrating Eq. ( 57 ) on a grid of points in | v | and θ , an interpolation
function of Z ‖⊥ 1 is computed and used. In Fig. 4 the analytic and the MC results are compared.
The agreement is fairly satisfactory except for some slight systema tic devia tions around a peak.

6. Large- N limit 
In this section we will take large- N limits of the distribution obtained in Sect. 4.2 for a spiked
tensor. We will particularly pay attention to the parameter r egion wher e the peak corresponding
15/28 
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Fig. 3. The MC distribution ( 62 ) is plotted for the same data as used in Fig. 1 for N = 9, β = 10 

−4 , q = 10, 
and N MC 

= 4 · 10 

4 . 
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Fig. 4. The MC results are plotted with error bars for the same data as in Fig. 3 . The analytic result is 
drawn by the solid lines. The left panel is of the slice at | v | = 0.105, and the right at θ = π /2. 
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to the background Q can be seen in the eigenvector distribution. We will consider two large- N
limits. In one large- N limit, we will deri v e the result that a peak can be well identified with Q
for the parameter region, αq 

2 / N � 0.6, βq 

2 N � 0.1. In particular for β = 0, we will find the
threshold value to be 0.66 < ( αq 

2 / N ) c < 0.67, which agrees with Proposition 2 of Ref. [ 29 ].
Howe v er, this peak is always smaller than the other peak(s) at n � = 0 and ther efor e r elati v ely
vanishes in the strict large- N limit. In the other scaling limit, αq 

2 ∼ N 

γ , βq 

2 ∼ N 

−γ with γ >

1, the peak remains in the strict large- N limit. 
We want to consider large- N limits which keep both the parameters Q and β relevant. As

was discussed in Sect. 5 , the volume factor sin 

N − 2 θ in Eq. ( 64 ) suppresses the peak of the
eigenvector q 

−1 n of the background tensor Q , and this suppression becomes stronger as N
becomes larger. Ther efor e, to obtain an inter esting large- N limit, the parameters must be scaled
so as to compete with sin 

N − 2 θ ∼ e N log (sin θ) . A large- N scaling which makes the exponential
factor in Eq. ( 41 ) of this order is given by 

α = 

N ̃  α

q 

2 
, β = 

˜ β

Nq 

2 
, v = 

˜ v 
q 

, (65) 
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wher e ˜ α, ˜ β ar e kept finite. Her e the factors of q ar e to absorb the dependence on q from the
formulas below. 

Let us discuss the large- N limit of Z = Z ⊥ 2 Z ‖⊥ 1 in Sect. 4.2.4 . The large- N limit of Z ⊥ 2 was
computed in Ref. [ 25 ], and it is gi v en by 

Z 

N= ∞ 

⊥ 2 
∼ const . e NS ∞ 

⊥ 2 , (66) 

where 14 

S 

∞ 

⊥ 2 
(x ) = 

{ 

log 2 + log (x ) + 

1 −√ 

1 −4 x 
4 x − log 

(
1 − √ 

1 − 4 x 

)
for 0 < x ≤ 1 

4 , 

1 
4 x + 

1 
2 log (x ) for 1 

4 ≤ x, 
(67) 

with 

15 x = ( N − 2) v 2 / ( 3 α) ∼ ˜ v 2 / (3 ̃  α) . As for Z ‖⊥ 1 , one can easily see that the limit of Eq. ( 57 )
is just gi v en by dropping the terms dependent on g i in Eq. ( 50 ), while the N -dependencies of A i 

in Eq. ( 59 ) and R ij in Eqs. ( E3 ) and ( E4 ) drop out. Ther efor e, H does not depend on g i and we
get 

Z 

N= ∞ 

‖⊥ 1 
= π2 

√ 

det H 

∣∣∣
g i =0 

, (68) 

which has no relevant effects to the formula below for the large- N limit. 
By collecting the results above and using Eqs. ( 64 ) and ( 41 ), we obtain 

S ∞ 

( ̃  v , θ ) = lim 

N→∞ 

1 

N 

log ρanaly 

= const. + S 

∞ 

⊥ 2 
+ log ˜ v + log ( n ⊥ 

) − 1 

2 

log ( ̃  v 4 + 12 ̃  α ˜ β ) 

+ 

− ˜ α ˜ v 2 + 2 ̃  α ˜ v 3 n ‖ 3 − ˜ α ˜ v 4 n ‖ 6 

˜ v 4 + 4 ̃  α ˜ β
− 3 ̃  α ˜ v 4 n ‖ 4 n ⊥ 

2 

˜ v 4 + 12 ̃  α ˜ β
, (69) 

where n � = cos θ ( n ⊥ 

= sin θ ), and const. is the part not dependent on ˜ v or θ . 
It is interesting to study the profile of S ∞ 

( ̃  v , θ ) in the ˜ v and θ plane for v arious v alues of 
˜ α, ˜ β. We have numerically studied it for the parameter region 10 

−3 ≤ ˜ α ≤ 10 

3 , 10 

−3 ≤ ˜ β ≤ 10 

3 .
In the unshaded region of Fig. 5 , the peak(s) exist(s) only along n � = 0, as is shown in the
left panel of Fig. 6 as an example. In the shaded region, in addition to the peak(s) at n � = 0,
there exists also a peak which has nonzero n � . This peak corresponds to the eigenvector q 

−1 n
of the background tensor Q , as is shown in the right panel of Fig. 6 as an example. In Fig. 7 ,
the values of n � and ˜ v are plotted for the latter peak. The location can be well identified with
q 

−1 n , if the values take n � ∼ 1 and ˜ v ∼ 1 . As can be seen in the plots, this occurs in the region,
log 10 ˜ α � −0 . 2 and log 10 

˜ β � −1 . This is the parameter region in which the background tensor
Q can be detected well. 

It is interesting to compare this detectable region with a result of Ref. [ 29 ]. As can be seen in
Fig. 5 , the shaded region has an edge around log 10 ˜ α ∼ −0 . 2 , namely, ˜ α ∼ 0 . 63 , independent
of ˜ β for log 10 

˜ β � −1 . To see the threshold value more precisely for ˜ β = 0 , we plot n � and ˜ v of 
the peak with n � > 0 in Fig. 8 . We find that the peak does not exist at ˜ α ≤ 0 . 66 , but exists at
˜ α ≥ 0 . 67 with n � � 0.7. On the other hand, as explained in Appendix G , Proposition 2 of Ref.
[ 29 ] states that the threshold value is ˜ α = 2 / 3 , which indeed agrees with our value. 
14 For simplicity, S 

∞ 

⊥ 2 
is shifted by an irrelevant constant from the corr esponding expr ession with R = 1/2 

in Ref. [ 25 ]. 
15 N must be deducted by one, when we take a result from Ref. [ 25 ]. See a footnote below Eq. ( E2 ). 
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Fig. 5. In the shaded region of the parameters, the eigenvector distribution has a peak of S ∞ 

correspond- 
ing to the eigenvector of Q . 

Fig. 6. In the left panel, S ∞ 

(const. being ignored) is plotted for log 10 ˜ α = −1 , log 10 
˜ β = 1 , which is in the 

unshaded region of Fig. 5 . The right panel is for log 10 ˜ α = 1 , log 10 
˜ β = −2 in the shaded region. In the 

latter case, a peak near ˜ v ∼ 1 , θ ∼ 0 corresponding to the eigenvector of Q can be f ound. The tin y gaps 
in the plots are not essential; they seem to be caused by the drawing program (Ma thema tica) avoiding 

the singularity at x = 1/4 in Eq. ( 67 ), where the function is continuous but its first deri vati v e is discrete. 

Fig. 7. The values of n � (left) and ˜ v (right) of the peak with n � > 0, corresponding to the eigenvector 
of Q , are plotted. Identification of this peak with Q can well be done in the region log 10 ˜ α � −0 . 2 and 

log 10 
˜ β � −1 . 
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Fig. 8. The values of n � and ˜ v of the peak with n � > 0 for ˜ β = 0 . The threshold value is 0 . 66 < ˜ αc < 0 . 67 . 
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We numerically observed that a peak at n � = 0 always takes the largest value of S ∞ 

at least
in the parameter region of ˜ α, ˜ β we have studied above. This means that, because ρ ∼ e NS ∞ ,
the peak corresponding to Q will effecti v ely be invisib le compared to the peak(s) at n � = 0 in
the strict large- N limit. Ther efor e, in the strict large- N limit, Q , namely a “signal,” cannot be
detected by solving the eigenvector equation ( 1 ). 

The main reason for the above difficulty of detection comes from the strong effect of the
volume factor sin 

N − 2 θ in Eq. ( 64 ), which enhances the region n � ∼ 0 so strongly. Ther efor e, an
obvious way to solve this difficulty is to consider another scaling limit w hich overw helms the
volume factor. An example is given by 

α = 

N 

γ ˜ α

q 

2 
, β = 

˜ β

N 

γ q 

2 
, v = 

˜ v 
q 

, γ > 1 . (70) 

In this limit, x = ( N − 2) v 2 /(3 α) ∼ N 

−γ + 1 → 0 in the large- N limit, so ther efor e Eq. ( 67 )
becomes a constant, meaning that Z ⊥ 2 is a free theory independent of v . As for Z ‖⊥ 1 , A i → 0
and R ij approaches finite values, so Z ‖⊥ 1 is again a finite quantity. Ther efor e, from Eq. ( 41 ), the
major contribution comes only from the exponent, and we obtain 

S 

γ
∞ 

( ̃  v , θ ) = lim 

N→∞ 

1 

N 

γ
log ρanaly 

= 

− ˜ α ˜ v 2 + 2 ̃  α ˜ v 3 n ‖ 3 − ˜ α ˜ v 4 n ‖ 6 

˜ v 4 + 4 ̃  α ˜ β
− 3 ̃  α ˜ v 4 n ‖ 4 n ⊥ 

2 

˜ v 4 + 12 ̃  α ˜ β
. (71) 

As is shown in Appendix H , it is straightforward to prove that the maximum value of S 

γ
∞ 

is
0, and this occurs only at three locations: (i) ˜ v = 0 , (ii) ˜ v → ∞ , n ‖ = 0 , (iii) ˜ v = 1 , n ‖ = 1 . The
last location corresponds to the background Q . An example of S 

γ
∞ 

is shown in Fig. 9 . Since
the eigenvector distribution is gi v en by ρ ∼ e N 

γ S γ∞ , ther e r emain only the three locations above
in the strict large- N limit. This means that, in the limit, a finite eigenvector ( v � = 0, ∞ ) is surely
that of the background Q . 

7. Summary and future prospects 
In this paper we have studied the real eigenvector distributions of real symmetric order-three
Gaussian random tensors in the case that the random tensors have nonzero mean value back-
grounds and the eigenvector equations have Gaussian random deviations. This is an extension
of the previous studies [ 24–26 ], which have no such mean values or de viations. We hav e deri v ed
the quantum field theories with quartic interactions whose partition functions gi v e the distribu-
tions. For the background tensor being rank-one (a spiked tensor case) in particular, we have
19/28 
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Fig. 9. S 

γ
∞ 

is plotted for log 10 ˜ α = 0 and log 10 
˜ β = −1 as an example. There is a peak corresponding to 

the eigenvector of the background tensor Q . 
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e xplicitly deri v ed the distributions by computing the partition functions exactl y or a pproxi-
mately. We have obtained good agreement between the analytical results and MC simulations.
We hav e deri v ed the scaling and r ange of par ameters for the background tensor to be detectable
in the distributions in the large- N limit. Our threshold value has agreed with that of Ref. [ 29 ]. 

The quantum field theories we have derived in this paper are much more complicated than
those in the previous studies [ 24–26 ] due to the presence of the backgrounds and the devia-
tions. Nonetheless, we have obtained some exact expressions for the signed distributions, and
have also derived some approximate expressions of the (authentic) distributions, which agree 
very well with the MC results. This success can be ascribed to the quantum field theoretical ex-
pressions, to which we can apply various well-de v eloped techniques and knowledge of quantum
field theories. The results of this paper strengthen our belief that the quantum field theoretical
procedure for computing distributions of quantities in random tensors is general, powerful, 
and intuiti v e. 

As far as random tensors are Gaussian, it is in principle straightforward to extend the quan-
tum field theor etical procedur e to some other problems in random tensors: distributions of 
comple x eigenv ectors/values , tensor rank decompositions , correlations among eigenvectors , etc.
Although deri v ed quantum field theories with quartic interactions may become quite compli-
cated, it will always be possible to find ways to, exactly or approximately, compute the partition
functions by quantum field theoretical techniques , knowledge , and intuition. These studies will
enrich fundamental knowledge about random tensors, which will e v entually be applied in var-
ious subjects in future studies. 

Tensor models have emerged from discrete approaches to quantum gravity [ 6–9 ], and are
also taking acti v e part in mor e r ecent approaches, such as in the AdS/CFT correspondence
[ 33 ]. A question of the author’s interest is whether there exists in tensor models a phenomenon
analogous to the Gross-Witten-Wadia transition [ 4 , 5 ]. In fact, there are some indications that
similar transitions exist in the context of a discrete model of quantum gravity [ 34 , 35 ]. We hope
the knowledge about random tensors enriched along the line of our studies will gi v e some
insights into quantum gravity in the future. 
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Appendix A. Derivation of Eq. ( 22 ) 
From Eq. ( 14 ), the par allel/tr ansverse parts of D 

signed are given by 

D 

signed 
‖ = 

v 3 

α
ψ̄ ‖ ψ ‖ , 

D 

signed 
⊥ 

= 

v 3 

3 α

(
ψ̄ ⊥ 

ψ ‖ + ψ̄ ‖ ψ ⊥ 

)
. (A1) 

By putting Eq. ( A1 ) into Eq. ( 19 ), we obtain 

δS 

signed 
λ − δS 

signed 
λ (Q = β = 0) = 

1 
2 

log b ‖ + 

N − 1 
2 

log b ⊥ 

− α(b ‖ − 1) 
v 2 

+ 

2 αb ‖ D 

Q 

‖ 
v 3 

−
αb ‖ 

(
D 

Q 

‖ 
)2 

v 4 

− 3 αb ⊥ 

D 

Q 

⊥ 

· D 

Q 

⊥ 

v 4 
− 2 

( 

b ‖ − 1 − b ‖ D 

Q 

‖ 
v 

) 

ψ̄ ‖ ψ ‖ 

+ 

2 b ⊥ 

v 
D 

Q 

⊥ 

· (ψ̄ ⊥ 

ψ ‖ + ψ̄ ‖ ψ ⊥ 

)+ 

2 v 2 (b ⊥ 

− 1) 
3 α

ψ̄ ‖ ψ ‖ ψ̄ ⊥ 

· ψ ⊥ 

. (A2) 

Adding this and the last term of Eq. ( 12 ) to Eq. ( 21 ), one obtains Eq. ( 22 ) with Eq. ( 23 ). 

A ppendix B . Derivation of Eq. ( 28 ) 
Let us parametrize Eq. ( 27 ) as follows: 

S b,d,k = b 1 ψ̄ ‖ ψ ‖ + b 2 
(
ψ̄ ‖ ψ ⊥ 1 + ψ̄ ⊥ 1 ψ ‖ 

)+ b 3 ψ̄ ⊥ 1 ψ ⊥ 1 + k ψ̄ ⊥ 2 ψ ⊥ 2 

+ d 1 
(
ψ̄ ⊥ 1 ψ ⊥ 1 + ψ̄ ⊥ 2 ψ ⊥ 2 

)
ψ̄ ‖ ψ ‖ + d 2 

(
ψ̄ 1 ψ ⊥ 1 + ψ̄ ⊥ 2 ψ ⊥ 2 

)2 
. (B1) 

Then by explicitly performing the fermion integrations for � and ⊥ 1 directions, we obtain ∫ 
d ψ̄ dψ e S b,d,k 

= 

∫ 
d ψ̄ ⊥ 2 d ψ ⊥ 2 

(
d 1 + b 1 b 3 − b 

2 
2 + (2 b 1 d 2 + b 3 d 1 ) ψ̄ ⊥ 2 · ψ ⊥ 2 + 2 d 1 d 2 

(
ψ̄ ⊥ 2 · ψ ⊥ 2 

)2 )

× e k ̄ψ ⊥ 2 ·ψ ⊥ 2 + d 2 ( ̄ψ ⊥ 2 ·ψ ⊥ 2 ) 
2 

= 

(
d 1 + b 1 b 3 − b 

2 
2 + (2 b 1 d 2 + b 3 d 1 ) 

∂ 

∂k 

+ 2 d 1 d 2 
∂ 2 

∂k 

2 

)∫ 
d ψ̄ ⊥ 2 d ψ ⊥ 2 e 

k ̄ψ ⊥ 2 ·ψ ⊥ 2 + d 2 ( ̄ψ ⊥ 2 ·ψ ⊥ 2 ) 
2 

. 

(B2) 
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Now the last fermion integration can be computed as 

∫ 
d ψ̄ ⊥ 2 d ψ ⊥ 2 e 

k ̄ψ ⊥ 2 ·ψ ⊥ 2 + d 2 ( ̄ψ ⊥ 2 ·ψ ⊥ 2 ) 
2 = 

∞ ∑ 

n =0 

d 

n 
2 

n ! 

(
ψ̄ ⊥ 2 · ψ ⊥ 2 

)2 n ∫ 
d ψ̄ ⊥ 2 d ψ ⊥ 2 e 

k ̄ψ ⊥ 2 ·ψ ⊥ 2 

= 

� N−2 
2 � ∑ 

n =0 

d 

n 
2 

n ! 
∂ 2 n 

∂k 

2 n 
k 

N−2 

= (−4 d 2 ) 
N−3 

2 k U 

(
3 − N 

2 

, 
3 

2 

, − k 

2 

4 d 2 

)
, (B3) 

where U is the confluent hypergeometric function of the second kind. The last equality can
be shown by using the following relation to a hypergeometric function and comparing with its
asymptotic expansion: 

U (a, b, z ) ∼ z −a 
2 F 0 (a, 1 + a − b, −z −1 ) , (B4) 

where the hypergeometric function has a formal series expansion, 

2 F 0 (a, b, x ) = 

∞ ∑ 

n =0 

(a ) n (b) n 
n ! 

x 

n (B5) 

with the Pochhammer symbol, ( a ) n = a ( a + 1) ···( a + n − 1) (( a ) 0 = 1). For the argument in Eq.
( B3 ), the formal series stops at finite n , and hence Eq. ( B4 ) is an exact relation. One can also
find that the confluent hypergeometric function here can be expressed by a hermite polynomial.

Appendix C. Explicit form of S 0 

The Q = β = 0 case was studied in Ref. [ 26 ], and the action for this case is gi v en by 

S 0 = K F + K B 

+ V F + V B 

+ V BF , (C1) 

where 

K F = −ϕ̄ ⊥ 

· ϕ ⊥ 

− ψ̄ ⊥ 

· ϕ ⊥ 

− ϕ̄ ⊥ 

· ψ ⊥ 

+ εψ̄ ⊥ 

· ψ ⊥ 

− ϕ̄ ‖ · ϕ ‖ + ψ̄ ‖ · ϕ ‖ + ϕ̄ ‖ · ψ ‖ + εψ̄ ‖ · ψ ‖ , 

K B 

= −σ⊥ 

2 − 2 i σ⊥ 

· φ⊥ 

− εφ⊥ 

2 − σ‖ 2 + 2 i σ‖ · φ‖ − εφ‖ 2 , 

V F = − v 2 

6 α

(
( ψ̄ ⊥ 

· ϕ ⊥ 

) 2 + ( ̄ϕ ⊥ 

· ψ ⊥ 

) 2 + 2 ψ̄ ⊥ 

· ϕ̄ ⊥ 

ϕ ⊥ 

· ψ ⊥ 

+ 2 ψ̄ ⊥ 

· ψ ⊥ 

ϕ̄ ⊥ 

· ϕ ⊥ 

)
, 

V B 

= −2 v 2 

3 α

(
σ⊥ 

2 φ⊥ 

2 + ( σ⊥ 

· φ⊥ 

) 2 
)
, 

V BF = 

2 iv 2 

3 α

(
ψ̄ ⊥ 

· σ⊥ 

ϕ ⊥ 

· φ⊥ 

+ ϕ̄ ⊥ 

· σ⊥ 

ψ ⊥ 

· φ⊥ 

+ ψ̄ ⊥ 

· φ⊥ 

ϕ ⊥ 

· σ⊥ 

+ ϕ̄ ⊥ 

· φ⊥ 

ψ ⊥ 

· σ⊥ 

)
. (C2) 

Note that the kinetic terms of the parallel and the transverse components of the fields respec-
ti v ely hav e slightly different sign structures, and that the four-interactions exist only among the
transverse components. 
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Appendix D. Distribution for N = 1 rank-one Q 

In this appendix, we deri v e Eq. ( 44 ). Ignoring all the transverse components, and setting n � = 1
in Eqs. ( 35 ), ( 39 ), ( 43 ), and ( C2 ), we obtain 

ρ(v, q, β ) = π−2 α
1 
2 (v 4 + 12 αβ ) −

1 
2 exp 

[−αv 2 + 2 αqv 3 − αq 

2 v 4 

v 4 + 4 αβ

]
(−1) 

∫ 
d gd ψ̄ · · · d σ e S N=1 , 

(D1) 

where 

S N=1 = −g 

2 − ϕ̄ ‖ · ϕ ‖ + (a + b g)( ψ̄ ‖ · ϕ ‖ + ϕ̄ ‖ · ψ ‖ ) + εψ̄ ‖ · ψ ‖ − σ‖ 2 + 2 i(a + b g) σ‖ · φ‖ − εφ‖ 2 

(D2) 

with a , b gi v en in Eq. ( 45 ). 
The boson–fermion integration in Eq. ( D1 ) produces a square root of the determinant of a

tw o-by-tw o matrix. It is easy to see that the ε → + 0 limit is smooth, and we obtain 

(−1) 
∫ 

d gd ψ̄ · · · d σ e S N=1 = π

∫ 
dg e −g 2 | a + b g 

| 

= π

(√ 

πa Erf 
(a 

b 

)
+ b e −

a 2 

b 2 

)
(D3) 

with the error function Erf. 

Appendix E. Interactions between the � ⊥ 1 and ⊥ 2 fields 
Ther e ar e no quadratic terms containing one � ⊥ 1 field and one ⊥ 2 field, because the index
of the ⊥ 2 field cannot be contracted with v or n . Ther efor e, the � ⊥ 1 fields can couple with
the ⊥ 2 fields only through the four-interaction terms in Eqs. ( 42 ) and ( C2 ). By noting that
X ⊥ 

· Y ⊥ 

= X ⊥ 

Y ⊥ 

+ X ⊥ 

· Y ⊥ 

for arbitrary fields X , Y , and collecting all the interaction terms
1 1 2 2 
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between the � ⊥ 1 and the ⊥ 2 fields, we obtain 

V ‖⊥ 1 , ⊥ 2 = 

8 βv 2 

v 4 + 12 αβ

(
ψ̄ ⊥ 2 · ϕ̄ ⊥ 2 ψ ‖ ϕ ‖ + ψ ⊥ 2 · ϕ ⊥ 2 ψ̄ ‖ ϕ̄ ‖ − ψ̄ ⊥ 2 · ψ ⊥ 2 ϕ̄ ‖ ϕ ‖ 

− ψ̄ ⊥ 2 · ϕ ⊥ 2 ψ̄ ‖ ϕ ‖ − ϕ̄ ⊥ 2 · ϕ ⊥ 2 ψ̄ ‖ ψ ‖ − ϕ̄ ⊥ 2 · ψ ⊥ 2 ϕ̄ ‖ ψ ‖ 
)

+ 

16 βv 2 i 
v 4 + 12 αβ

(
ψ̄ ⊥ 2 ϕ ‖ + ψ̄ ‖ ϕ ⊥ 2 + ϕ̄ ⊥ 2 ψ ‖ + ϕ̄ ‖ ψ ⊥ 2 

) (
σ‖ φ⊥ 2 + σ⊥ 2 φ‖ 

)

− 16 βv 2 

v 4 + 12 αβ

(
σ‖ 2 φ⊥ 2 · φ⊥ 2 + φ‖ 2 σ⊥ 2 · σ⊥ 2 + 2 σ‖ φ‖ φ⊥ 2 · σ⊥ 2 

)

− v 2 

3 α

(
ψ̄ ⊥ 2 · ϕ ⊥ 2 ψ̄ ⊥ 1 ϕ ⊥ 1 + ϕ̄ ⊥ 2 · ψ ⊥ 2 ϕ̄ ⊥ 1 ψ ⊥ 1 + ψ̄ ⊥ 1 ϕ̄ ⊥ 1 ϕ ⊥ 2 · ψ ⊥ 2 

+ ψ̄ ⊥ 2 · ϕ̄ ⊥ 2 ϕ ⊥ 1 ψ ⊥ 1 + ψ̄ ⊥ 1 ψ ⊥ 1 ϕ̄ ⊥ 2 · ϕ ⊥ 2 + ψ̄ ⊥ 2 · ψ ⊥ 2 ϕ̄ ⊥ 1 ϕ ⊥ 1 

)

− 2 v 2 

3 α

(
σ⊥ 1 

2 φ⊥ 2 
2 + σ⊥ 2 

2 φ⊥ 1 
2 + 2 σ⊥ 2 · φ⊥ 2 σ⊥ 1 φ⊥ 1 

)

+ 

2 v 2 i 
3 α

(
ψ̄ ⊥ 1 σ⊥ 1 ϕ ⊥ 2 · φ⊥ 2 + ψ̄ ⊥ 2 · σ⊥ 2 ϕ ⊥ 1 φ⊥ 1 + ϕ̄ ⊥ 1 σ⊥ 1 ψ ⊥ 2 · φ⊥ 2 

+ ϕ̄ ⊥ 2 · σ⊥ 2 ψ ⊥ 1 φ⊥ 1 + ψ̄ ⊥ 1 φ⊥ 1 ϕ ⊥ 2 · σ⊥ 2 + ψ̄ ⊥ 2 · φ⊥ 2 ϕ ⊥ 1 σ⊥ 1 

+ ϕ̄ ⊥ 1 φ⊥ 1 ψ ⊥ 2 · σ⊥ 2 + ϕ̄ ⊥ 2 · φ⊥ 2 ψ ⊥ 1 σ⊥ 1 

)
. (E1) 

The expectation values of the ⊥ 2 fields can be taken from the large- N Schwinger–Dyson
analysis performed in Ref. [ 25 ]. The results were 16 

〈 ψ̄ ⊥ 2 a ψ ⊥ 2 b 〉 = R 11 δab , 

〈 ψ̄ ⊥ 2 a ϕ ⊥ 2 b 〉 = R 12 δab , 

〈 ̄ϕ ⊥ 2 a ψ ⊥ 2 b 〉 = R 21 δab , 

〈 ̄ϕ ⊥ 2 a ϕ ⊥ 2 b 〉 = R 22 δab , 

Others = 0 , (E2) 

where, with a newly introduced parameter 17 x = v 2 ( N − 2)/(3 α), 
16 To avoid duplication of notations, we use R ij in place of Q ij of Ref. [ 25 ]. Another thing to note is 
that, though we have both bosons and fermions in the current system, which is different from the setup 

of Ref. [ 25 ], the leading-order Schwinger–Dyson analysis of the current system turns out to lead to the 
same two-fermion expectation values as in Ref. [ 25 ]. The reason is the presence of the supersymmetry 

explained below, which assures the two-boson expectation values are just copies of those of fermions. 
17 As the dimension of ⊥ 2 is N − 2, the formula presented in Ref. [ 25 ] for the dimension N − 1 of ⊥ 

must be replaced with N − 2. 
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� 0 < x < 1/4 

R 11 = 

−√ 

1 − 4 x + 1 

2 x 

√ 

1 − 4 x 

, 

R 12 = R 21 = 

1 − √ 

1 − 4 x − 4 x 

2 x 

√ 

1 − 4 x 

, 

R 22 = 0 , (E3) 

� x > 1/4 

R 11 = 

√ −1 + 4 x 

2 

√ 

εx 

− 1 

2 x 

+ O( 
√ 

ε) , 

R 12 = R 21 = − 1 

2 x 

+ 

√ 

ε

2 x 

√ −1 + 4 x 

+ O(ε
3 
2 ) , 

R 22 = −
√ 

ε
√ −1 + 4 x 

2 x 

+ 

ε

2 x 

+ O(ε
3 
2 ) . (E4) 

The two-boson expectation values can also be r epr esented b y R ij b y assuming that a super-
symmetry is not spontaneously broken. It is easy to check that S 0 + S Q , β from Eqs. ( C1 ) and
( 37 ) are invariant under the following supersymmetry transformation: 

δψ a = −φa , δφa = 

1 

2 

ψ̄ a , δϕ a = iσa , δσa = 

i 
2 

ϕ̄ a , δ(others) = 0 . (E5) 

By assuming the nonbreaking of the supersymmetry, we obtain e.g. a relation, 0 = 〈 δ(ψ a σb ) 〉 =
−〈 φa σb 〉 − 〈 ψ a 

i 
2 ϕ̄ b 〉 . From such relations, we obtain 

〈 φa φb 〉 = 

1 

2 

R 11 δab , 

〈 φa σb 〉 = 

i 
2 

R 21 δab , 

〈 σa φb 〉 = 

i 
2 

R 12 δab , 

〈 σa σb 〉 = −1 

2 

R 22 δab . (E6) 

Here, because φ, σ are bosons, the second and the third relations require R 12 = R 21 , which
indeed holds in Eqs. ( E3 ) and ( E4 ). 

By putting Eqs. ( E2 ) and ( E6 ) into Eq. ( E1 ), we obtain 

V ‖⊥ 1 , ⊥ 2 (R ) = −A 1 
(
R 22 ψ̄ ‖ ψ ‖ + R 12 ( ψ̄ ‖ ϕ ‖ + ϕ̄ ‖ ψ ‖ ) + R 11 ϕ̄ ‖ ϕ ‖ 

)
+ A 1 

(
R 22 φ‖ 2 − 2 iR 12 φ‖ σ‖ − R 11 σ‖ 2 

)
− A 2 

(
R 22 ψ̄ ⊥ 1 ψ ⊥ 1 + R 12 ( ψ̄ ⊥ 1 ϕ ⊥ 1 + ϕ̄ ⊥ 1 ψ ⊥ 1 ) + R 11 ϕ̄ ⊥ 1 ϕ ⊥ 1 

)
+ A 2 

(
R 22 φ⊥ 1 

2 − 2 iR 12 φ⊥ 1 σ⊥ 1 − R 11 σ⊥ 1 
2 ) , (E7) 

wher e A i ar e gi v en in Eq. ( 59 ). Adding Eq. ( E7 ) to Eq. ( 49 ), we obtain the full kinetic terms of 
the � ⊥ 1 fields. In particular the fermionic part has the form, 

K ‖⊥ 1 + V ‖⊥ 1 , ⊥ 2 (R ) = ψ̄ ‖⊥ 1 H ψ ‖⊥ 1 + bosonic part , (E8) 
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where ψ̄ ‖⊥ 1 = ( ψ̄ ‖ , ϕ̄ ‖ , ψ̄ ⊥ 1 , ϕ̄ ⊥ 1 ) , ψ ‖⊥ 1 = ( ψ ‖ , ϕ ‖ , ψ ⊥ 1 , ϕ ⊥ 1 ) , and H is gi v en in Eq. ( 58 ). Because
of the supersymmetry, the bosonic part has essentially a parallel structure as H . 

Appendix F. Exact expression of Z ⊥ 2 

Z ⊥ 2 can be taken from Ref. [ 26 ], because it is the same as the partition function of the transverse
components of the fields in Ref. [ 26 ], which is denoted as G N 

there. A point to note is that, while
the dimension of the transverse directions there is N − 1, the dimension of ⊥ 2 of this paper is
N − 2. Ther efor e we have to deduct N by one, 18 when we take a result from Ref. [ 26 ]. In our
current case of N = 9, this corresponds to G N = 8 , and therefore 

Z 

N=9 
⊥ 2 

= G N=8 

= π
13 
2 

( √ 

2 e −
1 
8 z (1 + 210 z 2 − 2100 z 3 + 12600 z 4 + 25200 z 5 ) 

15 z 
3 
2 

+ (1 − 42 z + 420 z 2 − 840 z 3 ) γ
[

1 

2 

, 
1 

8 z 

]) 

, (F1) 

where z = v 2 /(6 α), and γ [1/2, y ] is the lower incomplete gamma function with index 1/2, which
is related to the error function by 

γ

[
1 

2 

, y 

]
= 

√ 

π Erf 
(√ 

y 

)
. (F2) 

Appendix G. Proposition 2 of Ref. [ 29 ] 
In this appendix we compare our threshold value ˜ α with the value gi v en in Proposition 2 of 
Ref. [ 29 ]. 

In Ref. [ 29 ] with their notations, the random tensor Y with a background is gi v en by 

Y = λu 

⊗k + 

1 √ 

2 N 

W , (G1) 

where | u | = 1, W = 

∑ 

πG 

π / k ! with G i 1 ···i k ∼ N(0 , 1) , and π denotes permutations. By taking
k = 3 and computing the standard deviations of W abc , we find 

W abc ∼ N 

(
0 , 1 / 

√ 

d abc 

)
, (G2) 

where d abc is the degeneracy factor defined in Eq. ( 60 ). In our case, C abc ∼ N(0 , 1 / 

√ 

2 αd abc ) ,
and ther efor e 

α = N (G3) 

is taken in Ref. [ 29 ] in our notation. q = λ is also taken. Ther efor e, 

˜ α = 

αq 

2 

N 

= λ2 . (G4) 

Proposition 2 states 

λ2 
c = 

(k − 1) k−1 

2 k(k − 2) k−2 
= 

2 

3 

(G5) 

for k = 3. Ther efor e, the threshold value of Ref. [ 29 ] corresponds to ˜ αc = 2 / 3 . 
18 See also the footnotes associated to Eqs. ( 53 ) and ( E2 ). 
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Appendix H. Maximums of S 

γ
∞ 

In this section we will prove that S 

γ
∞ 

< 0 for 0 < ˜ v < ∞ and −1 ≤ n � < 1. Firstly, (
v 4 + 4 ̃  α ˜ β

)(
v 4 + 12 ̃  α ˜ β

)
S 

γ
∞ 

= − ˜ α ˜ v 2 
(

˜ v 4 − 2 n ‖ 3 ˜ v 5 + 

(
3 n ‖ 4 − 2 n ‖ 6 

)
˜ v 6 

+ 12 ̃  α ˜ β
(
1 − 2 n ‖ 3 ˜ v + n ‖ 4 ˜ v 2 

))
. (H1) 

Ther efor e, the statement is equivalent to proving the positivity of the quantity in the parenthe-
ses: 

˜ v 4 − 2 n ‖ 3 ˜ v 5 + 

(
3 n ‖ 4 − 2 n ‖ 6 

)
˜ v 6 + 12 ̃  α ˜ β

(
1 − 2 n ‖ 3 ˜ v + n ‖ 4 ˜ v 2 

)
= 

(
1 − 2 n ‖ 3 ˜ v + n ‖ 4 ˜ v 2 

)
˜ v 4 + 2 n ‖ 4 

(
1 − n ‖ 2 

)
˜ v 6 + 12 ̃  α ˜ β

(
1 − 2 n ‖ 3 ˜ v + n ‖ 4 ˜ v 2 

)
. (H2) 

For n � < 1, we find 

1 − 2 n ‖ 3 ˜ v + n ‖ 4 ˜ v 2 > 1 − 2 n ‖ 2 ˜ v + n ‖ 4 ˜ v 2 = 

(
1 − n ‖ 2 ˜ v 

)2 ≥ 0 . (H3) 

Similarly, one can prove that the quantities in the other parentheses are larger than zero. 
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