SPECTRAL ANALYSIS APPROACH TO THE MAXIMAL REGULARITY
FOR THE STOKES EQUTIONS AND FREE BOUNDARY PROBLEM FOR
THE NAVIER-STOKES EQUATIONS

YOSHIHIRO SHIBATA

ABSTRACT. In this note, spectral analysis of initial boundary value problem with non-homogeneous
boundary data is investigated. By R-boundedness of solution operators for 1 < p < oo and real
interpolation methods for p = 1, we shall show a maximal L, regularity for the initial bound-
ary value problem with non-homogeneous boundary data. Especially, for 1 < p < oo, the
transference theorem enable us to make a general framework of unique existence of time peri-
odic solutions. As an application of our approach, the Stokes equations with non-homogeneous
free boundary conditions and the free boundary problem for the Navier-Stokes equtions in the
half-space are discussed.

1. A REVIEW OF MAXIMAL REGULARITY THEOREMS

In this section, we consider a linear evolution equation:
(1) u(t) + Au(t) = f(t) fort >0, u(0)=0
Here, @ = Jyu. For example,
@) Ou(x,t) — Agu(z,t) = f(x,t) for (z,t) € Q x (0,7),
ulon =0, u(z,0)=0 for x € Q.

Here. € is a uniformly C? domain in N-dimensional Eucledian space RY and 99 denotes the
boundary of Q. The point here is a homogeneous boundary condition: u|sq = 0. Inhomogeneous
boundary condition is one of main subjects in this note and it will be handled in the next section.

Let X be a Banach space with norm || - ||x, and A a closed linear operator from D(A) into X,
where D(A) is a subspace of X. For the example (2), typically we choose A = —A = Z;V:I 8]2-7
95 = 0/0x;, and X = Ly(Q). D(A) = {u € W2(Q) | ulpq = 0}, or X = B; (Q). D(A) ={u €
Bst2(Q) | ulaq = 0}. Here, 1 < g <ooand —1+1/q<s<1/q.

We assume that A is a sectorial operator, that is , there exists an € € (0,7/2) and v > 0 such

that the resolvent set p(A) contains X 4 v and there exists a constant C' > 0 such that
(3) INIAT+ A) 7 fllx < C|fllx  for every f € X and A € X 4 7.
Here and in the sequel, we denote

S={reC|largA <7m—¢€}, Zc+v={A+7y|reX}

Then, the operator A generates a continuous analytic semigroup, is denoted by {e*tA }i>0 here.
By using {e7*4};>0, a unique solutionu(t) of equations (1) is written as

t
(1) u(t) = [ e 4 as

0
Refer to Yosida [35] concerning the fundamental theory about continuous analytic semigroups.
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Let 1 < ¢ < oo. If there exists a subspace Y of X such that for any f € L,((0,7"),Y") problem
(1) admits a unique solution u possesses the estimate:
T T
5) | Qo + lauyir a < e [ s a
In this case, we say that the opearator A has the maximal L,- Y regularity.
The basical maximal regularity result is the theorem due to Da Prato and Grisvard [11, Theo-

rem 4.7], which can be seen as the first abstract result on maximal regularity in the mathematical
litreture. Let

S B B dt\ 1/a
Da0.) = {o € X [ falog i= ([ " 1" ae a5 ) < o)

and [[z|p, . := l|lz[lx + []gq- The space Da(0,q) becomes a Banach space with norm || - [|g,q-
Then, Da Prato and Grisvard theorem tells us that problem (11) admits a unique solution u
possessing the estimate (5) with Y = D,(60,q). Here, T > 0 is finite time and C' depends on
T > 0. We know that D4 (. q) = (X, D(A))p,q, where (-,-)g 4 denotes real interpolation functor.
For this fact, refer to Lunardi [25, Chapter 1.2] for example.

To prove the global well-posedness for small data, we need the theory for T' = co. Namely.
the estimate (5) holds for 7" = oco. If we assume that 0 € p(A4), it may be possible to show that
(5) holds for T' = oo, and so nowardays analysis allows us to prove the global in time unique
existence theorem for small initial data for the corresponding nonlinear problem. But, in the
unbounded domain case, usually p(A) Z 0.

Danchin, Hieber, Much and Tolksdorf [6] treated the case where T' = oo replacing Da(6, q)
with homogeneous space T)A(Q, q). Their theory is so interesting that I quote it here without
fear of being mistaken. Refer to [6, Chapter 2] for detailes.

Assume that p(A) D X, and there exists a constant C' > 0 such that

(6) IAA=A) Hex) <C (A€
In particular, we have
(7) [tAe Y pxy <M (> 0).

Here and in the sequel, £(X) denotes the set of all bounded linear operators from X into itself
and || - [[z(x) denotes the norm of this space.

Assumption 1. The operator A is injective and there exists a normed vector space Y (not
necessarily complete) such that D(A) CY and there exist two constants Cy, Cy > 0 such that

(®) CillAz|x < |lzlly < CofAz]x  (z € D(A)).

In the case where A stands for the Laplace operator on RY = {x = (21,...,2x) € RN |2y >
0}, a prominent example of a couple (X,Y) is X = L,(RY) and Y = sz (RY) for 1 < p < oo.
Here,

WaRY) = {f |39 € S'®RY)/P(RY) such that glgy = f,V?g € Ly(RV)},
12y = V9l @v) | g € S'RY)/PRY) such that glex = f,V%g € Ly(RY)},
and P denotes the set of all polynomials on RY.

Definition 2. If —A satisfies Assumption 7, then define the domain of the homogeneous version
A of A by

D(A) := {y € Y | there exists a sequence (z3)reny C D(A) with klim zp=yin Y}
—00

With this definition, define A operating to y € D(A) by

Ay = lim Azy.
k—o0



Assume that X and Y are interpolation couple. That is, there exists a Hausdorff topological
vector space Z such that X and Y are subspaces of Z.

Assumption 3. The operator A and the normed vector space Y are such that

) D(A)N X = D(A).
Let

. . L dt\1/a
Damm:ueX+DMmeM@:(AHH%%MM§7) < oo},
We see that for any 6 € (0,1) and 1 < g < oo, there holds
(XvD(A))G,q = DA(G,q).
The homogeneous space version of Da Prato and Grisvard theorem reads as follows.

Theorem 4. Let § € (0,1), 1 < ¢ < oo and 0 < T < co. Then, ther exists a constant C > 0
such that for all f € Lqy((0,T),Da(0,q)) problem (1) admits a unique solution u defined by (4)
such that u(t) € D(A) for almost every t € (0,T) and the homogeneous estimate:

14l 0m,0200) = ClF L, 0m.0000)
Proof. Refer to [6, Chapter 2]. O

The Da Prato and Grisvard theorem holds for real interpolation space D4(6,q). For usual
Sobolev space like L, in space, we know L, in time and L, in space maximal regularity result
for 1 < p,q < co. I will explain the maximal regularity theory for 1 < g < oo below.

For this, first we recall a Dore and Venni theory [12]. Assume that p(A) D (0,00) and
t(t + A)~! is bounded in ¢ > 0, Moreover, we assume that the pure imaginary powers A* are
bounded linear operators and their operator norm is estimated by

4% < Ke¥l, seR

with some K > 1 aned 6 satisfying 0 < 67/2, which is independent of s. If A has a bounded
inverse, then for 1 < p < oo, the maximal L, regularity holds, that is problem (1) admits a
unique solution for given f € L,((0,7),X), 0 <T < o0, 1 < p < co such that

T T T
(10) Anmm&w+ﬁwmmw&wzcé|wm&w

with C = C(T,p, X) provided that X is a UMD space, that is to say such that the Hilbert
transform is bounded on L, (IR, X) for some (all) p € (1,00). Later, Giga and Sohr [17] extended
the Dore-Veni theorey to the case where A may not have a bounded inverse and the constant C
in (10) is independent of 7. Moreover, Weis [36] proved that the maximal L, regularity holds
if and only if A is an R sectorial operator, that is the set {A(AI — A)~! | Jarg\| < m — €} is
R-bounded for some € > 0. Here, the notion of R boundedness will be given in the next section.
In this sense, for 1 < p < oo, the maximal L, regularity is characterized completely, and it
is applied to many problems in a mathematic fluid mechanics. For example, Giga and Sohr
[17] proved regularity and large time behaviour of solutions to the Navier-Stokes equations with
non-splip condition in exterior domains, which was first prove by Iwashita [21] by extetending
the Fujita-Kato method ([22]) to the exterior domain case.

In (10), to take T" = oc is an important problem for application to the nonlinear problem
appearing in mathematical fluid mechanics. In the bounded domain case, usually we have
0 € p(A), and so the exponential stability of the linearized equations are obtained. But, in the
unbounded domain case, it is not the case that 0 € p(A), one of the typical method is to combine
the local maximal regularity result and some decay properties of semigroup {e*At}tZO for the
semilinear problem case [22, 21]. But, for the quasilinear problem case like free boundary
problem for the Navier-Stokes equations, in general the maximal regularity theorem for the
evolution equations with non-homogeneous boundary conditions which may not be covered in



the maximal regularity theorem for continuous analytic semigroup theorem stated above. We
treat the nonhomogeneous boundary condition case in the next chapter.

2. ABSTRACT FRAMEWORK FOR THE NONHOMOGENEOUS INITIAL BOUNDARY VALUE
PROBLEM

Let X, Y and Z be three Banach spaces such that X C Z C Y and the inclusions are
continous. Let A: X - Y, B: X — Z and W : Z — Y be bounded linear operators. In this
section, we consider an evolution equation:

(11) oU—-—AU=F, BU=G (t>0), U= ="Up.

Here, B is corresponding some boundary conditions for applications to PDE.
We consider the conditions to obtain maximal L, regularity for the evolution equations (11),
that is equations (11) admits a unique solution U having the regularity property:
(12) U € Ly((0,7), X) N W, ((0,T),Y)
as well as the estimate:
UL, 0,1),x) + 10U L 0.1),v)

(13) <0y

1Uoll(v,x)11/p, + 1F L, 0m),3) + 1Glwe0,1),v) + WGl L, 0,m),v))}-
Here, (Y, X)g, denotes a real interpolation space, L,(((0,T),X) is a X valued Lebesgue space,
and W7 ((0,T),Y) a'Y valued Sobolev space, and

Wy ((0,T), Z) = By, ((0,T), Z) = (Ly((0,T), Z), W, ((0,T), Z))ap for a € (0,1).
The L, norm is defined by

T 1/p B o 1/p
Mlsaoman = ([ 1700x at) ™, e Al = { [ r01x at} ™

2.1. L, maximal regularity for 1 < p < oco. In the case where 1 < p < oo, we use R-
boundedness of solution operators S(\). First, we give a definition of the R-boundedness of
operator families.

Definition 5. Let F and F be two Banach spaces. We say that an operator family 7 C L(E, F)
is R bounded if there exist constants C' > 0 and ¢ € [1,00) such that for any integer n,
{T3}5_1 € T and {f;}7_; C E, the inequality:

1 n 1 n
/0 IS r T £l du < C /0 1S () 1% du
j=1 j=1

is valid, where the Rademacher functions 7y, k € N, are given by 7 : [0,1] — {=1,1}; ¢t —
sign(sin 28 7t).
The smallest such C' is called R bound of 7 on £(X,Y"), which is denoted by Ry (g )T -
The detailed explanation of R-boundedness is given in [9, 20].

The reason we introduce the R-boundedness is to use Weis’s operator valued Fourier multiplier
theorem. For m(§) € Loo(R\ {0}, L(E, F)), we set

Tnf = F ' m@FIAE)] fe€SR E),
where F and F; ! denote respective Fourier transformation and inverse Fourier transformation
defined by

FUAT) = Felflir) = [ €7pe) dt FUA0 = 7AW = 5 [ )

To emphasize the Fourier transform and its inverse transform defined on R, we use R as a
subscript. T, is called an operator valued Fourier multiplier.
4



To state Weis’ theorem, we introduce an UM D space. A Banach space X is an UMD space
if the Hilbert transform is bounded on L,(R, X) for some p € (1,00) cf. [2, Sec.4.4] and [19,
Chapter 4]. For example, for 1 < ¢ < oo, the Lebesgue spaces L, are UMD spaces. Since the
subspaces of UMD spaces are also UMD spaces, and so for example the Sobolev spaces W are
UMD spaces.

Theorem 6 (Weis’s operator valued Fourier multiplier theorem). Let E and F be two UMD
Banach spaces. Let m(¢) € CHR\ {0}, L(E, F)) and assume that

Ree,ry({m(&) 1€ € RA{0}}) <y
Reery({Em'(E) [€ € R\{0}}) <7
with some constant ry, > 0. Then, for any p € (1,00), T € L(Ly(R, E), Ly(R, F)) and
1T fll L,y < Coroll fllL, & B)
with some constant Cp, depending solely on p.
Proof. For a proof, refer to L. Weis [36]. O
To obtain L, maximal regularity for equations (11), we use R bounded solution operators of
the corresponding generalized resolvent problem:
(14) M —Au=f, Bu=g.
For (14), we introduce the following assumption.

Assumption 7. There exist constants € € (0,7/2) and v > 0 such that for every A\ =~ + it €
e + 7, there exists an operator
SN :Y XY XY = X (F,Fy, F3)— S(\)(F1, Fy, F3)

satisfying the following three conditions:

(1) S(A) is an L(Y x Y x Y, X) valued holomorphic function defined on 3¢ + 7.

(2) ForAeXc+~, feY andge Z, u=S\)(f,\*g,Wg) is a unique solution of (22)

(3) S(N) satisfies

RL(YXYXZ,X)({(TaT)ZS()‘) [ A€ St <1
Reyxyxzy)y {70 (AS(A) | X € B} < 1o,
for € = 0,1 with some constant ry.
S(A) is called an R bounded solution operator, or R solver, for problem (14).
Remark 8. For the concrete problem, the exponent « is related to the following requirement:
For f € W;(((LT),Y) N Ly((0,7),X), f € W ((0,T),Y) and
1 llwe(o.1),2) < CUSwom),y) + 1 lL,01).x))-
Since the R boundedness implies the usual boundedness, we have

(15) [Aully + [lullx < rp([[flly + [Aglly + [Wglly).

This estimate is corresponding to the Agranovich-Visik type esitmate for the mixed problem
of the parabolic equations [3] and the Sakamoto type estimate for the mixed problem of the
hyperbolic equations [28, 29]

The simple example to catch the situation, that comes to author’s mind, is the generalized
resolvent problem for the heat equation with Neumann boundary condition, which reads

Mi—Au=f inQ, v-Vu=g on .

Here, © is a C? domain in the N-dimensional Euclidean space RY (N > 2) and 0 is its
boundary. v denotes the unit outer normal to 9Q and V = (d,...,0nN).



In this case, a prominent choice of solution spaces are
X=W2(Q), Z=W,(Q), Y = Ly(),
where 1 < ¢ < co. Moreover, A = —A = 7297:1 82/83,?, B=v-V,and W =V.
We now prove the unique existence of solutions of equations (11) under Assumption 7.

First Step. Forget the initial conditions and consider the following equations:
(16) oV —-—AV=F, BV=G (teR).

Let « be the constant appearing in Assumption 7. Let F and G satisfy the conditions: e "' F €
Ly(R,Y) and e "'G € WH(R,Y) N Ly(R, Z). Applying the Laplace transform with respect to
time variable ¢ implies that

M—Av=F, Bv=0G.

Here,

H = LIH|(\) = Fle "H](r) = /R e MHt) dt (A= +ir € S +7).

Thus, by Assumption 7, we have v = S(\)(F, \*G, WG). Let £~ denote the Laplace inverse
transform defined by

= %/Re)‘tJ(T) dr ="' FJ|().

Let Af be fractional derivative defined by

L7

ASG = LTHAYLIG)(N)].
We know that
(17) e ASG L, @y < Clle™ Gllwae.y)-

Applying Laplace inverse transformation, we define V' by
. N N 7t )
V =L SO\ (F, NG, WGE)] = Z—/ TSN Fle H(F,ACG, W) (T) dr.
T JR
and so
e MV = FYS(y + i) Fle "(F,A°G, WG)](7)].

Thus, applying the Weis operator valued Fourier multiplier theorem implies the following theo-
rem

Theorem 9. Let 1 < p < co. Let Assumption 7 hold. Then, for any F and G satisfying the
conditions:

(18) e MFeL,RY), e "GeL,R,Z)NWIR,Y)

problem (16) admits a solution V' satisfying the reqularity condition:
eV e Ly(R,X)NW,(R,Y)

as well as the estimate:

(19) |‘677tatv|‘Lp(R,Y) + HeﬂtVHLp(R,m

< C(le ™ Fllr,@y) + le " Clwaey) + e WG| L,@y))

for some constant C' independent of ~.



Second Step. Next step is to solve initial value problem:
(20) OW + AW =0, BW =0 fort>0, Wlo="Us— Vl|o.
Since V € W}(R,Y) N L,(R, X), by the trace method of the real interpolation we see that
igﬂge_ﬁuv('»t)H(ny)l_l/p,p <C(le 0V | L,my) + e VL, @x)

(21)
< C(H67WF|‘LP(R,Y) + H677tG|‘W;(R,Y) + |‘677tWG||Lp(R,Y))~

For simplicity, we set Wy = Uy — V|;=9. We consider the resolvent problem:
(22) Mo+ Aw = f, Bw=0.

By Assumption 7, we know the unique existence of solutions to equations (22), that is for any
A€ +~vand f €Y, problem (22) admits a unique solution w € X satisfying the estimate:

(23) [Awlly + lwllx < Cl flly-

Let D(A) and A be defined by

(24) D(A)={we X | Bw=0}, Aw=Aw forw e D(A).
By using A, problem (20) is rewriten as

(25) IW + AW =0, Wlmg = Wp.

In view of (23), the operator A generates a continuous analytic semigroup on Y such that
(1) ( W € C%([0,0),Y) N C*((0,00),Y) N C((0,00), D(A))
) W =T(t)Wp is a unique solution of equations (25).
3) hm I T(&)Wo — Wolly =0  for any Wy € Y.
)
)

(2

(

(4 HT( )WOHY < C’e“"HW()Hy, for any t >0 and Wy €Y.

(5) ITE)Wo| x + |0 T ()Wolly < Cert1|Wylly  for any t >0 and Wy € Y,

(6) [ T(t)Wolx + 10T &) Wolly < Ce"||Wylly  for any ¢ > 0 and Wy € X.
Combining estimates (5) and (6) above with real interpolation method implies that

* -t P ip
(26) { [ o @y + W ©)lx) at} " < ClIWolly ),y e
Let D(A)p = (Y, D(A))1_1/pp- And then, we have the following maximal regularity theorem for
equations (25).

Theorem 10. Let 1 < p < oo. Assume that Assumption 7 hold. Then, for any Wy € D,(A)
problem (25) admits a unique solution W satisfying the estimate (26).

If we set U = V + W, then by Theorems 9 and 10 U may be a solution of equations (11)
provided that Wy = Uy — V]t=¢ € D,(A). Since BV |t=¢ = Glt=o, the compatibility condition is
BUy — Glt=o € Dp(A). Summing up, we have proved the following theorem.

Theorem 11. Let 1 < p < oo and assume that Assumption 7 hold. Then for any initial data
Uo € (Y, X)1_1)p,p satisfying the compatibility condition: BUy— G|i=0Dy(A) and right hand side
F and G satisfying the conditions:

e M"FeL,RY), e"GeL,(R Z)NWIR,Y)
problem (11) admits a unique solution U satisfying the reqularity condition:
e U € Ly((0,00), X) N W, ((0,00),Y)
as well as the estimate:

le™ Ul L, ((0,00),%) + le""" U |, ((0,00).v) +t sup e Ul vix)1 0

€(0,00)

< CUoll(v.x),_1 ), + e FliL,@y) + le™ Cllwe@y) + le”" WG| L, @y))-



2.2. 27 periodic solutions. We next consider 27 time peridic boundary problem
(27) Oow—Aw=F, Bw=G forteR.

We assume that F(t) = F(t + 27) and G(t) = G(t + 27). Of couse, we can consider a general
time period T' > 0, but for the notational simplicity, we only consider the 27 period case.

Let T = R/27Z and Fr and F' be Fourier transform on T and its inverse transform defined
by

R0 =5 [ et 75w = X ettt
kEZ

To prove the L, maximal regularity for periodic solutions, we shall use the operator valued
de Leevw transference principle ([23]), which is stated as follows. Let

Torf = Fg ' [m(&)Fr[f1(E)]

be an operator valued Fourier multiplier on R, where m(§) € L(X,Y") for each £ € R\ {0}. We
consider the corresponding multiplier on T defined by

Tomrperf = Fr B FlfI8)] = 3 em(k)Folf1(k)  (k € 2).
kEeZ

Then, we have the following theorem.

Theorem 12. Let X andY be two Banach spaces, and 1 < p < 0o. Let m € Loo(R, L(X,Y)) be
a Fourier multiplier from Ly(R, X)) into Ly(R,Y"). Suppose that for all x € X the point k € Z is

a Lebesgue point of & — m(&)x, and set myx := m(k)x. Then, (my)kez is a Fourier multiplier
from L,(T,X) to Ly(T,Y), and in fact

1T minezll oo x),Lymy)) < [ Tmllom, @ x),L,@ )
Proof. For a proof, refer to [20, Proposition 5.7.1]. a
We assume that Assuption 7 holds. Let Ag > 0 be a large number such that
{i€ [ [€] = Ao, £ € R} C e 4,

where ¥, + « is the same set as in Assumption 7 (2). Let ¢(¢) € C°°(R) which equals 1 for
[t| > Ao+ 1 and 0 for [¢] < Ao+ 1/2 and set

Wi = F p(§)S (i) Frl(F, A G, WG)](€),
wy = fﬂfl[go(T)S(iT)fT[(F, NG, WG] (i1)].
From Assumption 7, we have
10WAl L, myy + Wil @ x) < CUFpllL,@y) + IAG L@ y) + WG, @y))-
Here, we have set H, = F ' [p(&) Fr[H](£)], and
MG = Falo(§) FalAG)(6)] = FrlX" FalFy [pFolCl]) = A°G.
Then, by Theorem 12 we have
lOcwillz, vy + lwillz,rx)y < CUEFM L, myy + Gl Lcryy + WGl L, ery))-
Here, we have set H, = Fy *[p(7)Fr[H](iT)], and
G% = Fr (k) Fr[A“G(ik)] = Fy [N Fr[Fp o Fr[G]] = A“G,,.

Thus, the problem is reduced to show the existence of finite number of solutions vy, of equa-
tions:

(28) iow + Aw = Fp[F|(ic), Bw = Fp[G](io).



And then,
w = wi + Z eiktvk
|k|<Xo+1/2
is a solution of (27).
Summing up, we have obtained the following theorem.

Theorem 13. Let X, Y, and Z be UMD spaces and let A € L(X,Y) and B € L(X, Z)NL(Z,Y).
Assume that Assumption 7 holds. Let 3. + v be the set in Assumption 7 and let \g > 0 be a
number such that {i& | [£] > Ao, & € R} C Xc + ..

Moreover, for k € Z with |k| < )Xo, let Xy, Vi, and 2, be Banach spaces such that (ikI+A)~! €
L( X, Vi), B € L(Xy, Zr), and such that for all (f,g) € Vi x 2y there exists a unique solution
w € Xy, to (28) with 0 = k such that

lwllx, < Cr(llfllye + llgllz.)
for some constant Cj, > 0.
Then, for any p € (1,00) and (F,G) defined by
ko ko
F(t)= > Fe™+Fy(t), G(t)= Y Gpe™ +Gy(t)

k=—ko k=—ko
with (Fy, Gy) € Vi x 2 for k € Z, |k| < ko, and (F,,Gy) € Ly(T,Y) x (L,(T, 2) N W(T,Y))
such that (Fr[F,](k), Fr[G)(k)) = 0 for all |k| < ko, there exists a unique element

(U -3 Uy Up) € Xy X -+ X Xy X (Lp(T, X) NW(T,Y))
with Frluy](k) =0 for |k| < ko, such that

ko
u(t) := Z ukeikt-l—wp
k=—ko

is a unique solution to time-periodic problem (27), and
HukHXk < Ck(HFkHyk + HGkHZk)7
lugllz, )i @y) < Cro(1FollL,my) + 1Gellwgmy) + WG, my))
for some constants Cy, and C.

Remark 14. I do not give any concreat example for periodic solutions to Stokes equations
and Navier-Stokes equations in the following sections. I want to mention my joint papers, co-
authored with Thomas Either and Mads Kyed, and co-authored solely with Thomas Either,
about periodic solutions for the initial-boundary problems for the Navier-Stokes equations.

(1) In [13], we proved the unique existence of time periodic solutions of the one-phase and
the two phase problem for the Navier-Stokes equations in bounded domains. We took
the surface tension into account. We used the coordinate system whose center is the
center of gravity. The incompressiblity guarantees that the center of gravity does not
move, and so the free boundary can be writtne as unknown functions in this coordinate
system and the surface tension gives us enough regularity of the functions describing the
free surface. Thus, we can use our R-solver approach to this problem.

A difficult problem for us to solve among time periodic problems is the free boundary
problem without surface tension. In fact, if we represent the unknown surfce by using
some functions, we do not obtain enough regularty of this functions, and so far, we could
not prove the existence of periodic solutions in our R-solver approach.

By the way, in the evolution problem case for the free boundary problem without
surface tension, we use the Lagrange transformation which will be explained later sections
below. In this case, the free surface is transformed to the boundary of the reference
domain, and so we do not have such difficulty. But, so far we find some difficulty to use
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the Lagrange transformation to treat the free surface problem without surface tension,
which should be solved in the future work.

(2) In [14], we proved the existence of time periodic solutions for the Navier-Stokes equations
with non-slip conditions in bounded domains and exterior domains by using the R solver
approach.

(3) In [15], we proved the unique existence theorem of solutions for the boundary value
problems for the Navier-Stokes equations with non-slip boundary conditions in bounded
or exterior domains, whose boundary is time periodically moving, by using the R solver
approach.

In [14] and [15], our essential contribution was that we treated the exterior domains.
In this case, our R solver approach is quite effective, and we can reduce the difficulty to
analysis of the finite number of spectral problems in exterior domains.

2.3. Li-maximal regularity. In this subsection, we discuss the L; maximal regularity for
equations (11). Unlike the L, case, we can not use the operator valued Fourier multiplier
theorem, and so instead of the operator valued Fourier multiplier with respect to time variable,
we use some combination of complex and real interpolation methods.

To obtain L; maximal regularity for equations (11), we also consider the corresponding gen-
eralized resolvent problem:

(29) M—Au=f, Bu=g.
For (29), we introduce the following assumption.

Assumption 15. There exist constants € € (0,7/2) and v > 0 such that for every A = vy +ir €
e + 7, there exists an operator

S()\)YXYXY%X (Fl,FQ,Fg))—>S(>\)(F1,F2,F3)
satisfying the following four conditions:

(1) S(A) is an L(Y XY x Y, X) valued holomorphic function defined on 3¢ + ~.
(2) ForAeXc+n~, feY andge Z, u=S\)(f,\*g,Wg) is a unique solution of (22)
(3) S(N) satisfies the generalized resolvent estimate:

(30) IASNElly + IS Fllx < CllFlyxyxy

for every X € ¥¢ + v with some constant C' > 0.
Moreover, there exist two small numbers o; € (0,1) and two triples of Banach sapces
Yy, X Y, x Yy, (i =1,2) such that

31) INSNElly + SO Flix < CIN™ I Fllv,, xva, xvs,  for F €Y,

g1°?
(32) [OXAS ) F)lly + 038N Fllx < CINT2 1 Flly,y xVoyxva, for F €Yy,
with some constant C.
(4) Let 6 € (0,1) be a number satisfying the relation : 1 = (1—0)(1 —o01)+6(2—02). Then,
we assume that Y = (Y5, Y5,)0,1-

Here, we write Z3 = Z x Z x Z for Z € {Y,Y,,,Y,,} for the notational simplicity.
If we consider a generalized resolvent problem for the heat equation with Neumann boundary
condition, which reads
Mi—Au=f inQ, v-Vu=g ondQ,
then we choose Y = B, |, and X = B:j2 forl <g<ooand —1+1/g < s < 1/q. If Qis a domain

in RY whose boundary is a compact C? hypersurface, a half-space, or a compactly perturbed half-
space, layer, perturbed layer and so on, then we can show the existence of a solver S(\) satisfying
(30). Moreover, for any small positive number o such that —1+1/¢g<s—o0 < s+o0 < 1/q, we
have (31) with Y, = B;j” and oy = 0/2, and (32) with Y, = B;|” and 02 =1 — ¢/2. Notice



that the requirement for the domains comes from the existence of a particion of unity consisting
of finite number of smooth functions.
We now prove the unique existence of solutions of equations (11) under Assumption 15.

First Step. As was seen in the L, case, first we forget the initial conditions and consider the
following equatuions:

(33) OV —AV=F, BV =G (teR).

We assume that I and G satisfy the conditions: e ™ "'F € Li(R,Y) and e "'G € W&(R,Y) N
Li(R, Z). Here, WX(R,Y) = (L1(R,Y), W (R,Y))q,1 and

W ((0,7),Y) = {f [ 3g € W{'(R,Y) such that g 1) = f},
I fllweo,m),y) = nf{llgllwe®y) [ 9 € Wi (R,Y) such that g[or) = f}-
We can show that
(34) e A fllymy) < Clle™ " fllwe @y

where A®f = L7UACLIf]).
Applying the Laplace transform to (33) in time variable ¢ implies that

(35) Mo —Av=F, Bv=0aG.
Here,

H = L[H](\) = Fle " H](r) = ./]R e NMH() At (A =7 +iT € X +7).

Thus, by Assumption 15, we have v = S(A)(F, \*G, WG). Let £7! denote the Laplace inverse
transform defined by

L0 = i [ ) a

T ominsee ) g AT

Let

(36) T(t)F = L7HS(\)F](t) for F = (F, Fy, F3) € Y3,

Let ' =Ty UI'_ be a contour in the complex plane C defined be
[y ={z=re®™9 | rec(0,00)}.
Employing the same argument as in the holomorphic semigroup theory ([35]), by (2) in the

Assumption 15, we have

1
Tt)F=— MS(V)F A\ for t >0,
(37) 270 1y

T(t)F=0 fort<D0.

Moreover, by (2) in Assumption 15, we have

(38) 10T () Flly + | T () Flx < Ce ™t | Flys .
Integration by parts gives
1 1
T(t)F = —— MOSNE AN, OT(t)F = —— MONAS(VF) dA.
OF = —go | RSOP A, aTWP =5 [ o080

Thus, by (3) in Assumtion 15, we have
(39) 1T @ Flly + IT@)Fllx < Ce™t*572|[Fllys .

In view of real interpolation theory, by (38), (39) and Y = (Y5, Y5, )s,1, we have

(40) [t ar ey + 1o 0 < e

11
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In fact, we write

/OO e (laT@®F|ly + T(®)F||x) dt

27+1

-y / BT Flly + |IT(0)F|x) dt
JEL

<SP —20) sup e AT F |y + [T F|x)
jez te(29,29+1)

= ZQjaj,
JEL

where we have set

aj=sup e "([BTH)F|y +|T()F|x).
te(27,29+1)

By (38) and (39)
2(1*01)1@], < CHFHY;‘lv 2(2*02)1% <C.
Let £ be the set of all sequences (a;);jez such that
; 1/p
l(ai)jezlley = {3 @™a;} " for 1<p<ox,
JEL
I(a5)jezllez, = sup 2™ a;.

JEZ

We know that €' = (€71, 072)g, for 1 < p,q,< o0, —00 < my < m < mp < oo and m =

(1—0)my +0ms cf. [5, 5.6.1. Theorem]. Thus, ¢} = (£1591,02592)y 1, where 6 € (0, 1) is satisfied
a relation: 1 = (1 —6)(1 —o1)+60(2 — 02). From this it follows that

/0 e AT F |y +IT(1)F|x) dt < C|Fly,, v,

o1 2)91'

By (4) in Assumption 15, we have (Y;,,Y5,)p1 =Y, we have
o0
) [ e 1aT@Fly +ITOF ) dt < | Flys.
0

We now consider equations (33). Then, by (35) and Assumption 15 (2), problem (16) admits
a solution V' defined by

V = LTUS(LIF], A L[G], WLIG))] = L7 S((L[F], LIAG], LW G])).

Thus, by (36) and T'(t) = 0 for ¢t < 0,

V=CL7US0) / e*AT(R AYG,WG) dr]
R

- / L oim [ Q@ aee we) a

271 R—oo _R

:/t T(t — 7)(F, A“G, WG)(-, 7) dr.



Thus, by (41) and Fubini’s theorem we have
|eve ol a
0

: /om 6_”{/; IT(t = 7)(F,A°G, WG)(-, )]l dr }
N /OO {/Oo e T =) (FAG WE)(7)x dt} dr

—00 T

_ /OO e—W{/OOO e TWO(E NG, WE) (7 dt} dr

—00

:/ e T|[(FAYG, WG)(-, 1)y dr.

—00
To estimate the time derivative, using equations (33) and the assumtion that A : X — Y is a
bounded linear operator, that is [[Av|ly < C|lv||x for some constant C' > 0, we have

/ MOV (- )|ly dt
0
S/ e_"’t||F(-,t)Hy dt—l—/ e_”’t||AV(~,t)Hy dt
0 - 0
<c / MFC Dy + IV H)x) dt
0

= C/_Oo eM(F (), A, 1), WG()) Iy dt.

Summing up, we have proved the following theorem.

Theorem 16. Assume that Assumption 15 holds. Then, for any F' and G satisfying the condi-
tions:

(42) e "FeLi(RY), e"GeLi(R Z)NW}R,Y)
problem (33) admits a solution V' satisfying the reqularity condition:
e MV e Li(R,X)NW, (R,Y)

as well as the estimate:
(43) ||€77t5tV||il((o,oo),Y) + ‘|€7'ytj/HL1((0,oo),X) 3
<C(le™Fllp, gy + lle wGHW{X(R,Y) + e WG Ly myy)
for some constant C' independent of ~.

Second Step. Next step is to solve initial problem:
(44) oW+ AW =0, BW =0 fort>0, Wl=g=Uy— V|=o.
Since V € WH(R,Y) N L1 (R, X), we see easily that

supe "V, )y < Cle 0V |, @y
(45) teR

< C(‘|67’YtFHL1(R,Y) + ‘|67’YtG||WZ?(R,Y) + ||677tWGHLp(]R,Y))'
For simplicity, we set Wy = Uy — V|;—9. We consider the resolvent problem:
(46) w4+ Aw=f, Bw=0.
By Assumption 15, problem (46) admits a unique solution w = S(A)(/f,0,0) for any A € X, + v
and f € Y, which satisfies the estimate:

(47) [Awlly + llwllx < Cllf]y-
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Let D(A) and A be defined by
(48) D(A)={we X | Bw=0}, Aw=Aw forw e D(A).

As is well-known, w = (AI+.A4) 71 f for any A € ¥+, and in reality, (\I+.A) 7' f = S(\)(f,0,0).
Let I" be the contour given in (37). From the well-known theory of holomorphic semigroup [35],
the operator A generates a continous analytic semigroup {7 () }¢>0, which is defined by

T f = N AL+ A)"Lf d).
v
By (37), we have T (t)f = T(t)(f,0,0). In particular, by (41), we have
(49) AOO e (o TM Ny +ITOF|x) dt < ClIf[ly-
Moreover, by the theory of holomorphic semigroup, we know that {7 (¢)};>0 satisfies the follow-

ing properties:

(1) T(t)f € C%([0,00),Y) NC((0,00),Y) N C%((0, 00), D(A)).
(2) KT (t)f+ AT (t)f =0forany t >0 and f €Y.

(3) Jim [T(®) — flly =0 for any f < Y.

(4)

()

IT@) flly < Ce|flly foranyt>0and f €Y.
10T () flly + T ()l x < Cet || flly  foranyt>0and fEY.
©) 10T fly + IT@) fllx < Ce™|[fllx  for any t >0 and f € D(A).

In particular, W = T (¢)(Up — V|i=o) satisfies equations (44) as well as estimates:
oo
/ e oW t)lly + W (1) x) dt < Cl[To = Vieolly-
0

Set U =V +W. Using (45), (49) and the first step we have the following L; maximal regularity
theorem for equations (11).

Theorem 17. Assume that Assumption 15 holds. Then for any initial data Uy € Y and right
hand side F' and G satisfying the conditions:

e "FeLi(RY), e"GeLi(R Z)NW(R,Y)
problem (11) admits a unique solution U satisfying the regularity condition:
e "'U € Ly((0,00),Y) N W} ((0,00),Y)
as well as the estimate:
le™" Ullz (0.000.3) + € AUl Ly (0,00 1) + o e MUy

< CUolly +lle " Fllryey) + le " Gllwp@y) + le WG, @y))-

3. FREE BOUNDARY PROBLEM FOR THE NAVIER STOKES EQUATIONS IN THE Lj-L; MAXIMAL
REGULARITY FRAMEWORK

In this section and the next section, we consider free boundary problem for the Navier-Stokes
equations. The mathematical problem for the free boundary problem of the Navier-Stokes
equations is to find a time dependent domain €Y, ¢ being time variable, in the N-dimensional
Euclidean space RV, the velocity field v(z,t) = (vi(2,t),...,v5(x,t)), and the pressure field



p(x,t) satisfying the NavierStokes equations in €; with free boundary conditions, which reads

v+ (v-V)v=Div(uD(v) —pI) =0 in U Q x {t},
0<t<T
divv=0 in () Q x({t},
0<t<T
(50) (uD(v) —pIn; = cH(Ty)n, —pon on | J Ty x {t},
0<t<T
Vn:V'l‘lt on U th{t}.‘
0<t<T
Vizo=vo inQ, Qli=0=0Q

Here, T, is the boundary of €, n; = (ns,...,n:n) the unit outer normal to I'y, 9, = 9/0k,
vo = (vo1, ..., voN) a given initial data, Q the reference domain, D(v) = (D;;(v)) = Vv+(Vv)
the doubled deformation tensor, I the N x N identity matrix, H(I';) the N—1 fold mean curvature
of T'y, which is given by H(T'y)n; = Ar,z with z € I'y, A, being the Laplace-Beltrami operator
on I', V,, the evolution speed of free surface I'; in the direction ny, pg the outside pressure, and
4 and o are positive constants representing respective the viscous coefficient and the coefficient
of the surface tension. Moreover, for any matrix field K = (Kj;), Div K denotes the N-vector
b component is Z;Vﬂ D;K;j, D; = 0/0x;. For any N-vector of function
h

of functions whose i
v, divv = Zjvzl Djv; and v - Vv denotes the N vector of functions whose 7°
N
>j=1 v Djvi.
In particular, the i*" component of equations (50) reads as

component is

N N
Osv; + ZUijUi — ZMDjDij(V) + sz =0 in U 0 x {t},

j=1 j=1 0<t<T
N
E Djv;=0 in U Q x {t},
j=1 0<t<T

(51) N
z wDij(V)ng — png = o H(T)ng — pony on U Ty x {t},
=1 0<t<T

Vo = Zvjntj =0 on U Iy x {t},
j=1

0<t<T

Ui‘tzo = Vo5 in Q, Slt|t:0 = .

Concerning the outside pressure pg, the equilibrium state is that v .= 0 and so from the first
equation it follows that Vp = 0, that is p is constant. Moreover, ny = n and o H(I';) = cH(T)
for any t > 0. Here, I is the boundary of the reference domain €2 and n is the unit outer normal
to I'. Thus,

po=ocH(L) +p.

In this note, we consider the simplest problem, that is the o = 0 case, without surface tension
problem. In this case, we set p — pg = ¢, which is the new pressure field. Namely, we consider

15
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the following problem:

Ov+ (v-V)v=Div(uD(v) —pI) =0 in [ J @ x {t},
0<t<T
divv=0 in (] @ x{t},
0<t<T
(52) (uD(v) —pI)n; =0  on U Iy x {t},
0<t<T
Vo=v-n, on U Iy x {t},
0<t<T
Vimo=vo inQ, Qli—o=0Q

Since € is unknown, the first step to solve (52) is to transform € to some known domain.

To this end, we use the Lagrange transform. Let y = (y1,...,yn) be Lagrange coordinates and
let X = X(y,t) be a solution to the ordinary differential equtions:
dX
o= v(X,t) fort>0, X(y,0)=y.
If we define u(y, t), the Lagrange velocity field, by u(y,t) = v(X(y,t),t), then
¢
(53) o= Xaly.) =+ [ uly.s) ds.
0
which is called the Lagrange transform and this map gives the correspondence between Euler
coordinate system x = (z1,...,zy) € {; and Lagrange coordinate system y = (y1,...,yn) € Q.

dX
Since T n; = v - ng, the kinematic condition: V;, = v - n; is automatically satisfied. And

U={r=X(yt)|yeQ}, I'i={r=X(@yt)|yel}

Let q(y,t) = p((X(y,t),t) and we are going to find u(y, t) and ¢(y,t). To find equations satisfied
by u and q, we consider the inverse map: y — x which should exist under the condition that

t
(54) sup / (Vu(y, $)llr.. o) ds < co << 1.
0<t<T Jo

In fact, if u exists, then u(y1,t) — u(ya, t) = Vu(yz2 + 0(y1 — y2)) - (y1 — y2) as follows from the
mean value theorem, and so by (54)

T
IXu(y1,t) = Xu(ya: t)| > [y1 — val —/0 [V (u(yr,s) —a(yz, $)llLo@ = (1 —co)lyr — yal,

which, combined with ¢y < 1, implies that the map = = X (y, ) is injective. Thus, the Lagrange
map is bijective from € onto {2, under the assumption (54).

In the sequel, we consider the case where () = R{,\_' only, which is a model problem.

Since the Jacobian matrix of the transformation Xy, (y,t) is given by

(55) VyXu(y,t) =1+ /O.t Vyu(y, 7)dr,

the invertibility of Xy(y,t) in (53) is guaranteed for all ¢ € (0,7) if u satisfies
/Otvyu(-,T)dT

which may be achieved by a Neumann-series argument. By virtue of (56), we may write

(57) Aulyt) = (VXu(p 1) = (-/ V() df)l.

=0

(56) sup

t
< sup / IV 0y, )o@ ds < cp << 1,
t€(0,T) 0

Loo(Riv) o<t<T




With the above notation, for T > 0 Problem (52) in Lagrangian coordinates reads as

du — Div (uD(u) — q) = F(u) in RY x (0,7),
(58) divu = Ggiy(u) = div G(u) in RY x (0,7),
(uD(u) — q)n = H(u)ny on ORY x (0,7),
uli=g=a in Rf,

where ng = (0,...,0,—1). The right-hand members F(u), Ggiv(u), G(u), and H(u) represent
nonlinear terms given as follows:

F(u) = (/Ot vudT> (9~ ) +ﬂ(1+/0

+ uVy ((AI -I): Vyu),
(59)  Gaiw(u) := (I—A}): Vyu,
G(u):=(I-Ay)u,
H(u) == u((Vyu+ (Ay) ' [Vyu] " Aw)T - Ay)
(X (A HIVyu] Ay + [Vyu] (I - Ay)).

t
Vu dT) div,, ((AUAI - I)Vyu>

Here, KT denotes the transposed K for any vector K or matrix K. Recall that for N x N matrices
A = (Aj;) and B = (Bj1,), we write A: B = Z;Vk A; . Bj ). For the detailed derivation of (58)
and (59), refer [30, Section 3.3.3]. Notice that all the nonlinear terms in (58) and (59) do not
contain the pressure term q.

Since Lagrange transformation (53) gives a C! diffeomorphism under the assumption (56) in
our functional space settings in this section and the next section, instead of equations (52), we
consider equations (58) in the sequel.

For the reader’s convenience, we provide here how to derive (59). To this end, we use the
following well-known formulas:

(60) Ve =AYy, div(-) =AL: Vy(-) = divy(Ay-),
AIHO : T . T T
(61) n= ATny|’ Vaedivg(r) = Ay Vydivy () + A Vy(Ay —I): V),
u

In fact, as it was proved in [33], there holds det Ay, = 1 as follows from the divergence free
condition, which yields the first formula V, = AIVy. By using these formulas, it is easy to
verify the representations of Ggiy(u) and G(u). Hence, it suffices to derive the representations
of F(u) and H(u).

By a direct calculation, we observe

(62) Div (uD(v) — pI) = pAyv + pVdiv v — Vep.

‘We see that

(63) v+ (v-Vy)v =0,

(64) Apv = div,V,v = div, (AyAL Vyu) = div, (AyA — T)V,u) + Ayu,
(65) Vediv,v = ALV, (A} : V,u) = ALV, (A, —T): V,u) + A V,div,u,
(66) Vaib = Ay Vya.

17



18

Since A[ is invertible and (A])~! =T+ fg Vudr, the first equation in equation (52) is trans-
formed into

O — pAyu — pVydiv,u +Vyq

t t
- ( / Vud7> (atu— MAyu) + (I + / vudT)divy((AuAI - I)Vyu)
0 0

+ /LVy((AlTl -I): Vyu).
Combined this formula with
(67) Div (uD(u) — qI) = pAyu+ pV,divyu - Vyq,

we have the representation of F(u). Note that F(u) does not contain the pressure ¢.
It remains to deal with H(u). It is easy to find that

(68) uD(u) — pI = N(szyu + [Vu]TAu) gL
From the third line of equations (52), it follows that
Aln Aln
T T utlo ull0 N
(69) p,(Au V,u + [Vul Au) Ain At =0 onorY.
Multiplying this equation by |A]ng|(A[)~! yields
(70) u(Vyu + (AI)’I[VU}TALJ Aing—qng=0  on JRY.

We consider only the velocity field, and then
(vyu + (AI)*l[vyu}TAu) Alng
= (Vyu+ (AD V1) AL (AL - Do

+ (Vyu +(A] )_1[Vyu]TAu)n0

= (Vyu+ (AD ' V,u) T A) (AL - Ty
+ (Tyu+ (AD ™ = DIVyu) Ay + [Vyu) (A = 1) + [Vyu] )ng
= (Vyu+ (AD) [V, TAG) (AL - Tng

(
+ ((AD) ! = DIV, u)" Au+ [Vyu] T (Ay = D)) ng + (Vyu + [Vyu] ng
Thus, we have

(D(u) = q)ng

= n((Vyut (A V] AT AD) + (1= (AD))[Vyu] Ay + [Vu] (- Au) )no
Hence, we obtain the representation of H(u).

3.1. Stokes equations with free boundary conditions. In this section, we shall discuss the
Stokes equations with free boundary conditions which reads as

da—Div(uD(u) —qI) =F  in RY x (0,00),
divu = Ggiy =divG  in RY x (0,00),
(pD(u) — qI)n = Hny on ORY x (0,00),

N
uli=p =a in RY,

(71)
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Here, F, Gg;v, G and H are given functions, and
ORY ={z = (z1,...,zy) e RN | zy = 0}.
The corresponding generalized resolvent problem reads as
Av —Div (uD(v) —pI) =f  in RY,
(72) divv = ggiv = divg in Rf,
(uD(v) —pI)n =hny,  on IRY.

First of all, we shall state the existence of R bounded solution operators for equations (72). To
this end, we introduce variables F' = (Fy, Fy, F3, Fy, Fs, Fg), where Fy € Ly(RY)N,| Fy € Ly(RY),
Fy € LyRY)N, Fy € LyRY)N, Fy € Ly(RY)N and Fy € Lq(Rf)NQ, and Iy, Fy, F3, Fy, F5
and Fy are corresponding variables to f, /\Uzgdiv , nglv . AG, A\/2h and Vh, respectively. Set

My = 4N + 1+ N2, namely, F € Ly(RY)M~. Let Wlo(]RN) denote a homogeneous space
defined by

WE(RY) = {u € LyjocRY) | Vu € Ly(RY),  ulsy—o = 0},
and 1 <g<ooand ¢ =q/(qg—1).

We have the following theorem concerning the R bounded solution operators for equations
(72)

Theorem 18. Let 1 < g < oo and € € (0,7/2). Then, there exist oprators S(\) and P(X\) with
S(X) € Hol (S, L(Ly(RI)MY W2(RY)Y)),
P(N) € Hol (S, L(Lg(RY)YMN WHRY) + W) o(RY)))

such that the following two assertions hold:

(1) For any A € S¢ and f € Ly(RY), gaiv € WH(RY), g € Ly(RY)N, and h € W} (RY)Y,
problem (72) admits unique solutions u € Wg(Rf) and p € Wy RY) + Wlo(RN) such
that u = S(A\)F and Vp = P(A\)F, where

F = (f,\"%g4iv , Vgaiv . Ag. A\'/?h, Vh).

(2) There hold
Re(Ly@Y )M L@y ({(T0 ) AS(N) [ A€ S} <
RL(Lq(Rf)MN,Lq(Rf)NZ)({(Ta ) (Al/QVS(/\)) | A€ X))
R (Ly@yyn @y vy ({(707) “VES(N) [ A €S}
RL(Lq(]RN)MN Lo(RY) {0, J(VP(V) [Ae X)) <

for £ =0,1 with some constant r, depending solely on € and q.

| /\

| /\

In the sequel, we give the sketch of a proof of Theorem 18. One of basical tools to solve
equations (71) is the unique solvablity of the weak Dirichlet problem which reads as

(73) (Vu, Vo) = (f,Vy) forany ¢ € qulﬁo(Rf).
We know the following result cf [31].

Lemma 19. Let 1 < q¢ < oco. Then, for any f € Lq(Rf)N, problem (73) admits a unique
solutoin u € W;O(Rﬁ) satisfying the estimate:

IVullL,@yy < ClIEN L, @y
Let IC be an operator defined by u = Kf.
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Later, we introduce Stokes semigroup, and to this end at this point the Helmholtz decompo-
sition is introduced. Let J4(RY) be Solenoidal space defined by

(74) Jo(RY) = {g € Ly(RY) | (g, Vp) = 0 for every ¢ € Wy o(RY)}.

According to Lemma 19, for any f € Lq(Rf ), there exists a unique u € W;,O(Rf ) such that
equation (73) holds. Thus, setting g = f — Vu, we see that g € J,(RY), and setting G,(RY) =
{Vu|ue W;M]Rf)}, we have

(75) LyRYN = J,(RY) @ Go(RY) (@ means the direct sum).

This called the second Helmholtz decomposition. We have the following lemma.

Lemma 20. Let 1 < g < oo. Then, for u € Lq(]Rf), what divu = 0 in the distribusion sense
is equivalent to what u € Jy(RY).

Now, we shall discuss solution formulas of problem (72). Let € € (0,7/2) and recall that

Se={AeC\ {0} | |arg\| < 7 — e}

3.2. Solution formulas. We shall give solution formulas of equations (72)

Step 1: Reductions. Let 0 < ¢ < 7/2, v > 0 and A € ¥, + 7. Let f, g € Lq(Rf)N,
Jdiv € qu (Rﬂ\_f ), and hy € qu (Rf ). Assume that there holds gq;y = divg. According to
Corollary 19, the weak Dirichlet problem,

76) {(th V) = (f — g + 2uVgai, V) for all p € W) o(RY),
Dlory = (—hn + 2p9aiv)lory s
admits a unique solution q; € W (RY) + /VIZ}#O(]RJJX ). In fact, q; is defined by
g1 = —hn + 2pgaiv + K(f — Ag + Vhy).
In addition, by Lemma 20 q; satisfies the estimate
(77) 19012y < € (I, + 190 Bl ) + 108l ey )
Let u; = (u1,1,...,u1y) € W7 (RY)N be a solution to the following elliptic system:
(A= pA)ay =f —Vq + pVgg,  inRY,
(78) u1,j

Ivur Nory = gaivlory-

oryy =0, j=1,...,N—1,

Notice that the solution u; € W(IZ(Rf )Y to equations (78) necessarily satisfies the divergence
conditions:

(79) divu; = ggiy = divg in Rf.

In fact, for any ¢ € ﬁ/\ql,yo(]Rf), we may write

(80) (A — pAuy, Vo) = (f = Var + uVgaiv, Vo) = (A& — 1V gdiv, V)
In addition, there holds
(81) (Auy, Vo) = (Vdivuy, V) for all g € W) o(RY).

Combining (80) and (81) gives
(82) (Mur — g), Vo) — u(V(divuy — gai), Vi) =0 for all p € W) o(RY).



Noting that W(},’O(Rﬂ\:) C ﬁ/\ql,o(Rf) and that divg = gqiv, we may show that
(83) A(divuy = gaiv, ) + #(V(divuy — gaiv), Vo) = 0 for all W, o(RY).

Moreover, it holds divuj — gaiy = 0 on 9RY due to the boundary conditions (78)s,3. Thus, from
the uniqueness of solutions to the resolvent problem for the weak Dirichlet problem we deduce
that divuy = ggiy = divg. Thus, we arrive at (79).

Since q1 = —hny + 2ugaiy on ORY, we have (2udnuin — q1) = hy on ORY. Therefore, u;
and q; necessarily satisfy the following Stokes system:

Ay — Div (uD(uy) — qiI) = £ in RY,
divu; = gqiy = divg in Rf,
84
(84) uy; =0, on 8Rf7

ZuaNuLN — 1 = th(')]Rf on BRf

where j runs from 1 through N — 1.

We now set us :=u—u; and q2 := q — q; with uy = (ug,1,...,ug,n). Then (us,q2) solves
Auy — Div (uD(uy) — g2I) = 0 in RY,
divuy =0 in RY,
(85)

p(Onuzj + Ojuz,n) = (hy — p(Onurg + Ojur,y)) [y on ORY
(2#8]\/’&27]\[ - q2) =0 on 6Rf

for j=1,...,N — 1. Clearly, u = u; + uy and q = g1 + q2 are solutions to (72).

Step 2: Solution formulas. We next derive the boundary symbol for the systems (78) and
(85). To this end, in the sequel, let ¢ € (0,7/2). For each & = (&,...,6n-1) € RV we
define A = [¢/| = (Zé\;l 5]2.)1/2. In addition, for each ¢ € RN~! we define complex functions
B = B(\¢') and M, = M(\ & zn) in the following way. Let B = B(A,£’) be the principal
branch of the square root of A+ |¢/|2, i.e., B = /1A + |¢|2 for A € ¥¢ with Re B > 0; and
for x> 0 let My, = M(X, &, xn) be defined by

e—Bl‘N o e—AzN

(86) MmN = ]\/[()\7 é’la Z‘N) = B_ A )
which is called a Stokes kernel. We also define
(87) Dap = B®+ AB* + 3A’B — A%,

which is the determinant of the Lopatinskii matrix.
To derive the boundary symbol for Systems (78) and (85), it suffices to consider the following

systems:

Awp — pAwy =f in RJ_‘\L
(88) wij=0  ondRY,

anl,N =0 on 8Rf,

Awg — pAwy =0 in Rf

(89) woj =0 on 8Rf,

N
Onwa N = gdiv|aRf on IR,
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Aws — div (uD(w3) — Q3I) =0 in Rf,

divws =0 in RY,

(90) w(Onws ; + Ojws N) = hj|aR§ on ORY,
2uonws N — Q3 =0 on ORf .

Here, j runs from 1 through N — 1. Indeed, by replacing h; by h; — p(Onui,; + Oju,n) for
every j = 1,...,N — 1, we see that w; + wy and (w3, Q3) are solutions to (78) and (85),

respectively, i.e., u; = wi + wa, up = w3, and g2 = Q3. The functions w; = (w1 1,...,w1N)
and wp = (wa1,..., w2 N) given by
FL18) FIAIE)
91 w -:]-"1{7] ] : wN:J-'*l{iN ] 7
OV s =5 X0 Ly R P |
—1 e_BIN ! !
(92) wy,j =0, waN = —Fg | —5—F [9a]()

solve (88) and (89), respectively. Here, j runs from 1 through N — 1, and f¢ and f° denote
respective the even extension of f to xy < 0 and the odd extension of f to xx < 0, which are
defined by setting

rowy = {1 (x>0, o f@ (o3 > 0).
f@, —zN) (zn < 0), —f(z',—xnN) (zny < 0).
To derive the formulas for w3 and @3, we apply the Fourier transform in the tangential direction
2’ with covariable ¢’ and solve the transformed problem (i.e., a boundary value problem for an
ordinary differential equation on R, ). Following the computations in [31, Subsec. 3.5.3], we
observe that (w3, Q3) is given by

—Bzy e -+ —Bxy
oy 1€ Al_ZngzN el Tt i§je _ el T /
o) = Pt |y = S i i+ B - )W),
. —Bz N .
(93)  wan(z) = F' {Aéﬂ%e W)+ ——(B - A€’ - h')} (@),
pnAB KW AB
7A$N ~
Qs(z) = 7]-‘571 {%23%' SR (),
Dap

where j = 1,..., N — 1 and we have set i¢’ - b = Zé\;l iﬁjﬁj(ﬁ’,O).
3.3. Estimate of multipliers. In the sequel, € € (0,7/2) and 1 < ¢ < 0.
The whole space case

Proposition 21. Let m(\, &) be a function defined on B¢ x (RV\ {0}) such that for any X € 3.
and for any multi-index o € NYY (Ng = NU{0}) there exists a constant C, depending on o and
€ such that

(94) [0Em(A, €)] < Calg| 7
for any (A, €) € B x (RN \ {0}). And, for any & € RN\ {0}, m(\, &') is a holomorphic function
with respect to X € X.. Let Ky be an operator defined by

Kot = 7 mOOFIO = [ e mn O FLA(E) de

Then, the set {Ky | X € X} is R-bounded on L(Ly(RN)) and

(95) Reaeyy({Ex[A€ED) < Cyn o Ca

with some constant Cy n which depends solely on q and N.



Proof. For a proof, refer to [16, Section 3]. O

Since R boundedness implies the boundedness, we have

(96) [N L, evy < (Con oo, Co) 1 £l Ly m™ys

which directly follows from the Mikhlin-H6lmander Fourier multiplier theorem.
Lemma 22. Let € € (0,7/2). Then, there holds

€

A+ pl€?] > sin S (1M + plg]?).

Half-space case.

Let m(\, &) be a function defined on ¥, x (R¥=1\ {0}), which is holomorphic with respect
to A = v + it € 3, for any fixed £ € RV~1\ {0} and C* with respect to ¢ € RVN~1\ {0} for
any fixed A € ¥.. We say that m()\, &) is an M, ; symbol if for any o’ € Nj/ ™', there hold

108 ((r0,) m(\ €)] < Car(INZ + 1™ (£=0,1).
And also, we say that m(X,¢’) is an M, o symbol if for any o’ € Név_l, there hold
08/ (7o) mA EDI < Car (A2 + [T (6= 0,1).

Let

mlm,,; = ‘g}%%/-

Lemma 23. Let B = \/A+|¢|2 and Dap = B3+ AB? + 2A2B — A3. Then, for any v € R,
BY is a M1 symbol and DZ_’B a M3, 2 symbol.

Proof. The proposition follows from [31, Lemma 3.5.9]. d

Proposition 24. Let 0 < ¢ < 7/2 and 1 < ¢ < oo. Given multipliers ny € M_o;1 and
ny € M1y, let operators T;(X) (i = 1,2) acting on h = h(x',zy) € W] (RY) be defined by

Ti(\) f = Fz'[Be P™Vny (X ) FIR)(E, 0)](2)),
To(A) f = F ' [AMyyna(N, &) FIRI(E, 0)](2).

Then, there exist operator families T;(A) € Hol(Xe, L(Lqg(RY )N, W2A(RY))) such that for any
A€ X and h € W;(Rf), T,(Mh = Ti(\)(AY2h,Vh), and there exists a constant rj > 0
depending on ||n;|m_,, such that

Rﬁ(Lq(Rf)NJrl,Lq(Ri’))({(Tdr)e()\/ﬁ(A)) |Xe X)) <,
Ra(Lq(M)NH,Lq(M)N)({(TQT)E(AWVTK)\)) A€ X)) <,
Rﬁ(Lq(RQ’)NH,Lq(RQ')N?)({(T@T)E(VQ'E()\)) |xe ) <,
fort=0,1andi=1,2.
Proof. For a proof, see Lemma 3.5.13 in [31]. O

Proposition 25. Let 0 < ¢ < 7/2 and 1 < q < oco. Given multiplier ng € M_1 1, let operator
T3()) acting on h = h(z/,xn) € WHRY) be defined by

T3(\h = Fi ' [Ae™ "N ny (A, &) FIR)(€,0)](«).
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Then, there exists an operator family T3(X) € Hol(S, L(Ly(RY )N WHRY))) such that for
any X\ € 3¢ and h € W;(Rf), T3(\h = T3(N\)(A\Y/2h, Vh), and there exists a constant rj > 0
depending on |n;|lm_, , such that
Rc(Lq(M)NH,Lq(M))({(Tar)[%()\) | A€ ne}) <rj,
RK(LQ(M)NH,LQ(M)N)({(Tar)e(vﬁ()\)) | A e X)) <,
for 0 =0,1andi=1,2.

3.4. Existence of R-solvers, A proof of Theorem 18. Before starting with the proof of
Theorem 18, we give a lemma which tells us that the R norm has the same property as the
usual norm has.

Lemma 26. (1) Let X and Y be Banach spaces, and let T and S be R bounded families in
L(X,Y). Then, T+S={T+S|T T, SeS} isalso an R-bounded family in L(X,Y) and

Rex ) (T +8) S Rexvy(T) + Rex vy (S)-

(2) Let X, Y, and Z be Banach spaces, and let T and S be R-bounded families in L(X,Y) and
L(Y,Z), respectively. Then, ST ={ST | S €S, T €T} also an R-bounded family in L(X,Z)
and

Rex,2)(ST) < Rexyy(S)Re(y,z)(T).
Proof. For a proof, refer to [9, p.28, Proposition 3.4]. O

We start a proof of Theorem 18. Let q; be defined by
q1 = —hn + 2pgaiv + K(f — Ag + Vhy),

then g satisfies equations (76) as well as the estimate:

(97) IVaillz,@y) < Coll(£; Vaaiv ; A&, VAN) | 1, m2y)-

for some constant Cyp > 0. Thus, we define P;(A) by P1(A\)F = —Fgn+2uF3+VIK(Fy—F4+Fsn),
where Fg = (Fg1,...,Fon) and Fg; € Ly(RY)N are the corresponding variables to Vh; for
h = (hy,...,hn). Obvisouly,

(98) Pi(NF =Vqy, RE(LQ(M)MN,L,,(M)N)({(Tar)epl()\) [ AEXD) <o

for £ = 0,1. Here, F = (f, \'2g4iv , Vgaiv , AG, A'/?h, Vh).
In view of Proposition 21, Lemma 22, and (91), there exists an operator Wy (\) with

Wi(X) € Hol (B¢, Ly(RY)N, W2(RY)™M)))

such that for any A € ¥ and f € Ly(RY)N, wi = Wi (M is a solution of equations (88) and
there hold

Rc(Lq(M)N,Lq(M)N)({(Tar)z(kwl(/\)) [ A€ E}) <o,
(99) RL(L,,(M)N,LQ(M)N%({(TOT)Z(AWVWI(/\)) A€ X)) <,
Rﬁ(Lq(Mw,Lq(M)NS)({(Tar)[(vzwl(/\)) |A€X}) <7

for £ = 0,1 with some constant r;, depending on € and ¢q. By Proposition 24, Lemma 23, and
(92), there exists an operator Wx(\) € Hol (S, £(Lg(RY)N L, Wg(Rf)N)) such that for any

A€ X and ggiv € W;(Rf), Wy = Wz()\)()\l/zgdiV,ngiv) is a unique solution of equations
(89), and there holds

RL(LQ(M)%LQ(M)N)({(Taf)l()\WZ(A)) [A€X}) <,
(100) Rﬁ(Lq(RJI)Q’Lqu)Nz)({(7'87_)5()\1/2VW2(>\)) [ A€ X)) <y,
RL(LQ(M)Z,LQ(M)N%({(Tar)e(VQVv?()\)) [AeX}) <



for £ = 0,1 with some constant r, depending on € and ¢. Thus, if we set q1 = —hn + 2194iv +
K(f — Mg+ Vhy), and u; = Wi(A)(f — Va1 + uVgaiv ) + Wa(A) (M %g4iv , Vaiv ), then up and
qq are solutions of (84). Thus, we define an R bounded solution operator U; (\) with

Us (V) € Hol (S, L(Lg(RY)M™, W (RT)™))
by Uy (A\)F = Wi (A)(FL —P1(A\) F+ puF3) +Ws(A\)(Fa, F3). From the definition of U (\) obviously
it follows that u; = Uy (A\)F with F = (£, \12g4, , Vgaiv , Ag, A/2h, Vh), and by (99), (100) and
Lemma 26, we have
Re(Ly®)2,,@Y)w) (170 ) AU (V) [ A € ) < o,
(101) R (g @y2 Lo@yyn) ({(70r) VUL (V) [ A e R <
RL(Ly®Y)2,LoRY)N?) (T (VU (X)) [ A€ T} <1y
Likewise, by Propositions 24 and 25, Lemma 23, and (93), there exists an operator Ws(\) €
Hol, (Se, L(Ly(RY)N*=1 W2(RY)N)) and Q3()) € Hol (S, L(Ly(RY)N*~1, L(RY)Y)) such that
for any A € S and h' = (h1,...,hy—1) € WIRDN L wy = W3 (N) (A2 1/, Vh') and
VQ3 = Q3(\)(A\/2, 1, VI') satisfy equations (90) and there hold

RE(LQ(Rf)NZ*l,Lq(Rﬁ)N)({(Ta Y OW(A) | A€ B} <
(102) Re(g@yyne-1, p,@yyvs) ({(707)° CAPYWE(N) [ A € B <
Ry gty {0 (VW) | A € 2)) < r
RL(LQ(RQ)NQ—QLQ(R%N)({( ) 3(A) [Ae X)) <
for £ = 0,1 with some constant r, depending on € and g. Thus, setting u; = (u11,...,u1n) and
H' = p(Onu1r + 01uin, - - -, Onuin—1 + On—1uin) = p(D(ug)ng — (D(up)ng, ng)ng, we define v
and Vp by

v =y + Wi\ (A2, Vi) — Wi(\)(AV2H, VH),
Vp = PLAF + Q3(\) (A2, Vh') — Q3(\)(\/?H/, VH').
Then, v and Vp satisfy equations (72). Thus, we define S(\) and P(X) by
SF = U (NF + Wa(\)(F, F§) = Wa(A) (A (D (U (A) F)no — (D@ (V) F)ng, no)no),
V(DU (N)F)ng — (DU (M) F)ng, ng)ny)),
PA) = Pi(AF + Qs(N)(F3, F) — Q3(NA*(DUL (N F)ng — (DU (M) F)ng, no)mo),
VDU (A F)ng — (DU (A) F)ng, ng)ng)).
Obviously, S(\)F = v and P(A\)F = Vp.
Moreover, by Lemma 26, (98), (101) and (102), S(A) and P()) satisfy (2) of Theorem 18.
This completes the proof of Theorem 18. g

To estimate lower order derivatives of solutions to equations (72), we shall use the following
lemma.

Lemma 27. (1) Let 1 < p,q < oc and let D be a domain in RN. Let m = m(\) be a bounded
function defined on a subset of C and let My, (\) be an operator defined by My,(N)f = m(\)f
for any f € Lq(D) Then, Rﬂ(Lq(D))({Mm()‘) | e U}) < CN,q,DHmHLw(U)'

(2) Let n = n(7) be a C' function defined on R\ {0} that satisfies the conditions: |n(7)| < v
and |t/ ()| < v with some constant y for any T € R\ {0}. Let T,, be an operator-valued Fourier
multiplier defined by Tnf = F Y [nF[f]] for every f with F[f] € D(R,Ly(D)). Then, T, is
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extended to a bounded linear operator from Ly(R, Ly(D)) into itself. Moreover, denoting this
extension also by T,,, we have

1Tz, 2qg(0)) < Cpg.07-
Proof. For a proof, refer [9, p.27, Remark 3.2]. O

Combining Theorem 18 and Lemma 27 (1), we have the following corollary.

Corollary 28. Let 1 < g < 0o ande € (0,7/2). Let S(\) € Hol (B¢, L(Ly(RY )MV Wg(Rf)N))
be an solution operators for problem (72) given in Theorem 18. Then, for any v > 0 there hold
RL(Lq(IRf)M(N),Lq(]Rf)N)({(TaT)ZS(A) [ AE€Tc+7}) <M,

1o R 5 (70, (VSO | A € Se 7)) <7 2r
L(Lg(RY)MIN), Ly (RY)N?) T eT V)Y b

for £ = 0,1 with some constant r, depending on € and q.

3.5. L,-L, maximal regularity theorem for Stokes equations (71). According to Theorem
18 and Corollary 28, we know the existence of R-bounded solution operators for problem (71).
First, we consider the following evolution equations for whole time interval:

du—Div(uD(u) —gqI)=F  in RY xR,
(104) divu = Ggy =divG  in RY xR,
(4/D(u) —qI)n =Hny,  on IR} x R.
According to the argument as in the First Step of subsection 2.1, we have the following propo-
sition.

Proposition 29. Let 1 < p,q < co. Let v > 0 be any number. Assume that F, Ggv, G and
H, the right member of equations (104), satisfy the conditions:

e 'F € LR, LyRY)Y), e 'Gaiw € Ly(R,WHRY)) N WA(R, Ly(RY)
e "G e W (R, Ly(RY)N), e "H € LR, W, (RY)N) nW/A(R, Ly(RY)

=

Z

).
Then problem (104) admits a solution u and q such that
e e Ly(RW2RY)Y) NWER, Ly(RY)Y), ¢ 7'Vq € L(R, L®Y)™),
as well as
|‘677tu||Lp(R,W3(Rf)) + HeﬂtatuHLp(R,Lq(M)) + ‘|677th‘|LP(R,Lq(R$))
< C(lle™(F, G|, m,L,@Y)) + Heth(Gdiv7H)HLZ,(R,L(,(M))
+ e (Gaiv , H)

”Wé“(R,LqM)))'

Moreover, if F, Gaiv , G and H satisfy the conditions:
F € Ly(R,Ly(RY)Y), Gaw € Ly(R, W, (RY)) N W;/Z(R, Ly(RY))
G e Wy (R, LyRV)Y), H e LR, W (RY)N) n W/ A(R, Ly(RY)Y),

then
O € Ly(R, LyRY)N),  V2u e Ly(R, Ly(RNN), Vg e Ly(R, L(RY)N)
as well as
||V2u||LP(R,Lq(M)) 10l L@y + 1Vl @ L, @)
< CI(F; G Iz, &, Lo@yy) + IV (Gaiv s D) 2, @2)) + 1(Gaiv ’H)HWJ/Z(RM(M)))'



To prove the existence of Cy analytic semigroup associated with problem (71), we consider
the following equations:

du —Div (uD(u) —gI) =0 in RY x (0, 00),

diva =0 in RY x (0, 0),

0s) ¥ 0,00

(uUD(u) —gI)n =0  on IRY x (0, c0),
uli—g=a in Rf,

Since q does not have time evolution, we have to eliminate q.
We consider the corresponding resolvent problem to equations (105) which reads as

. N
Av —Div (pD(v) —pI) =f  in RY,
(106) divv=0 inRY,
(uD(v) —pI)n =0 on B]Rf.
Noting that Div (uD(v)—p) = pDiv D(v)—Vp, we consider the second Helmholtz decomposition

of uDivD(v). Namely, for v.e WARY )N, let u = K(v) € ﬁ/\é’o(Rf) be a solution to the weak
Dirichlet problem:

(Vu, V) = (uDivD(v), Vo) for every ¢ € W\;/7O(Rf)
subject to u = (uD(v)n,n) on IRY. We see that v € J,(RY) is equivalent to divv = 0. If
f € J,(RY), then p = K(v). In fact, for any ¢ € /W;,7O(Rf)7 we have
0= (£, V) = (Av, Vo) — (uDivD(v), Vo) + (Vp, Vi) = (V(p — u), V).

Moreover, on the boundary, p = (uD(v)n,n) = K(v), and so by the uniqueness of solutions
implies that p = w.
Thus, from (106) it follows that for f € J,(RY), v € WZ(RN) satisfies equations:

Av — Div (uD(v) — K(v)I) = in RY,
(107) divv=0  inRY x (0,00),
(uD(v) = K(v))n = on GRJ_'Y.

Since (uD(v) — K(v))n,n) = (uD(v)n,n) — K(v) = 0 is automatically satisfied, the actual
boundary conditions are yD(v)n — (uD(v)n,n)n = 0, that is the tangential component of
uD(v)n vanishes on the boundary.

Let the domain D(A) and an operator A be defined by

D(A) = {£ € J,(RY) NWA(RY) | uD(v)n — (D(v)n, m)n = 0 on IR},
Av = —Div (uD(v) — K(v)I) for v € D(A).
We can write (107) as

(108)

AL+ Av =f forfe J,(RY)and v e D(A).

From Theorem 18 and Corollary 28, v = S(A\)(f,0,---,0) and VK (v) = Vp = P(N)(f,0,---,0)
and

(109) ||)‘V||Lq(11§§) + ||V2V||LQ(R$) < CHfHLq(Rf)
for any A € X.. Thus, (AT + .A)~! exists and satisfies
[ACAL + *A)ilfHLq(Rf) < C”fHLq(Rf)

for any f € jq(Rf ) and A € .. From this it follows the generation of C analytic semigroup
{T'(t)}+>0, called a Stokes semigroup, associated with problem (105). Especially, for any initial
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data a € J,(RY), u = T(t)a is a unique solution of equations (105) with q = K(T'(t)a).
Moreover, from (109) we have \|T(t)a||Lq(R$) < C”f”Lq(Rﬁ) as well as
HAT(t)a”Lq(RQ) < ClefHLq(RQ’)v ||AT(t)aHLq(Rf) < CHAf“Lq(Rfy
Since we have the estimate:
V2Vl @y < CIAVIL, @)
for any v € D(A), we have
||V2T(t)f”Lq(R§\r’) < Ct_IHfHLq(Rf)» HVZT(t)fHLq(RQ) < Cllfllpay-

Thus, by real interpolation method and the fact that 9;T'(¢t)f = —AT(¢)f, we have
o0
2 p
| 10T, ) @t < CUEl 0000,

Let Dy q(RY) = (Lg(RY), D(A))1_1/p,- Note that D, (RY) € J,(RY) N Bgy /7 (RY). More-
over, if v € Jy(RY) N Bg,(plfl/p)(Rf) and the trace D(V)n|a]Rf exists, then v € D, (RY). If

ve J,RY)N ngfl/p) (RY) but the trace D(V)n|8R¢r does not exist, then v € D, ,(RY).
Summing up, we have obtained

Theorem 30. Let 1 < p,q < 0. Let F, Gaiv , G and H satisfy the conditions:
F e LR, LyRY)Y),  Gaiw € Ly(R,WHRY)) N W, 2R, Ly(RY)),
G € Wy (R, Ly(RY)Y), H e LR, W (RY)N) n W, /2(R, Ly (RY)Y).

Moreover, initial data a € B2~ /P

(RY) satisfies the compatibility conditions:
a— Gli— € J(RY), (D(a)n— (D(a)n,n)n — (Hji—o — (H|t—o,n)n))|spy = 0.

Here, the second condition should not be satisfied if the trace does not exist. Then, problem (71)
admits unique solutions u and q such that

dru, 9;0pu € Ly((0,00), Ly(RY)Y), Vg € Ly((0, 00), Ly(RY)™)
for j,k=1,...,N as well as
2
100, Vo, Va)| (0,000, 2 (RY)) t:(})l’l;) ||U('7t)|\33,<;fl/p>(M)

< C("a||Bgf;*1/P)(Rf) + ||(F7 atG» vC;’div 5 VH)”LP(R,Lq(Rf)) + H(Gdiv ’H)”WZ}/Q(R,LQ(Rf))).

Theorem 31. Let 1 < p,q < oo and~y > 0. Let F, Ggiv , G and H satisfy the conditions:
CMF € LR, L(RY)Y), e "Gy € Ly(RWARY) N W2(R, L(RY),
e G e Wy (R, Ly(RY)Y), e"H e LR, W} (RY)N) nWL2(R, Ly(RY)M).

Moreover, initial data a € Bg

fpl_l/p) (RY) satisfies the compatibility conditions:
a— Gl € J(RY), (D(a)n— (D(a)n,n)n — (Hji—o — (H|i—o,n)n))|ppy = 0.

Here, the second condition should not be satisfied if the trace does not exist. Then, problem (71)
admits unique solutions u and q such that

e " € Ly((0,00), W2R)N) N W, ((0,00), Ly(RY)N),  e77'Vq € Ly((0,00), Ly(RY)M),
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as well as
e Opu, VOl L, ((0,00),Lg®Y)) T ”e_PYtu”Lp((O,oo),WqQ(Rf)) + . S(gp )6_%”“( Ol 20-1/0) ()
€(0,00
< Clllall g2a-1m ) + le™(F, G, VGaiv, VH) | 1, (gL, =)

+ e 'Yt(GdiV, H)| I/Z(R,Lq(Rf)))‘

3.6. Global well-posedness of equations (52). In this subsection, we shall prove the global
well-posedness of equations (52) with small initial data. Since Lagrange transformation (53) gives
a O diffeomorphism under the assumption (54) as a solution u exists, instead of equations (52)
we shall prove the global well-posedness of equations (58) for small initial data. In fact, we have
the following theorem

Theorem 32. Let N > 3. Let qo, ¢1 and g2 be exponents such that

N 1 1490 1
>l =2g, — =
21+ 0) q1 do @

N ao’
where 0 is a small positive number. Then, there exist an exponent p > 2 and a small constant

o > 0 such that if initial data a € ﬂ qu71p 1/p) (]RN) satisfying the compatibility conditions:

qo =

diva=0 inRY, uD(a)ng— (uD(a)ng,ng)ng =0 on RY,

then problem (58) admits unique solutions u and ¢ such that
ue ﬂ Wz (R)N) N W5 (0, 00), Lg, (RY)™)),

Vg e m Ly((0,00), Ly, (Rf)N)y
=0

as well as

100l (0,00, L (&Y ) T+ ||V211\|Lp((o,oo),qu(M))
2
+Y I+ )0l L, ((0,00), L, &Yy + (1 + t)VzuHLp«o,oo),Lqi(M)) < Co.
i=1
for some constant C' independent of o > 0.

Remark 33. In the exterior domain case, the global well-posdeness was proved in Shiata’s
lecture note [30].

The free boundary problem in the half-space was proved by Oishi and Shibata [24] when
N > 3. The proof of theorem presented here is slightly modified thanks to discussion with
Piotr Mucha and Tomasz Piasecki, Warsaw University [26]. The essential point is to use the
homogeneous spaces unlike Oishi and Shibata [24].

As is well-known, one of important points to prove the global well-posedness for small initial
data is to show some suitable decay estimate for the linearized equations. Namely, for some
large exponent r for the time variable, we can show that

(X + 10l ((1,00),L4, @2y + 11+ t)vzuHL,.((l,oo),qu ®RY))
< CUA+OF, G, VGaiv, VAL, & L, Ly, @) T 1A+ )Gl & 1, 0L, @)

TN+ G s B)llyreg 1, o, )
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(L + 10l L, ((1,00),L4, @2y + 11+ t)v2uHLr((1,oo),Lq1 ®Y))
<O+ 0)(F, G, VGaiv , VH) I, & 1, nL, &Y)) T 10+ DG it L, L, (RQI)))
+ |1+ £)(Gaiv , H)

lyir2/ *(R.LggNLy; (RY )))'

To obtain these estimates, we consider the equations satisfying tu which reads as
d(tu) — Div (uD(tu) — (tq)I) =u+tF  in RY xR,
(110) div (tu) = tGaiy = div (tG)  in RY xR,
(uD(tu) — (tq)I)n = tHny on ORY x R

By using Theorem 18 and Weis’s operator valued Fourier multiplier theorem, we have

[t0pallp, (&, L,y + ||tv2u“LT(1R,Lq(RQ’))
< Cry(|[ully, @z, @) + [ VGaiv, VH) 1, 1,2
+ 10 (G L, (1 vy + (G aiv , H)

vy (R,Lg(RY))’

Thus, the point is to estimate ||uHLT_(R’Lq(R$)).

A known idea to estimate this term is to use the homogeneous parabolic type embeddings. In
the inhomogeneous case, such embeddings have been used in many cases, for example Solonnikov
[33]. But, here we give a different method based on our spectral analysis given in Theorem 18.

To this end, we use the following Sobolev’s imbedding theorem.

Lemma 34. Let 1 <p<qg<ooands=N(1/p—1/q) <1. Then,

£z, e < O e IV A1

Proof. Tn the RN case, this lemma is known as Gagliardo-Nirenberg’s inequality, cf. [34, Theorem
3.3]. For the proof in the s = 1, refer to [34, Lemma 3.7]. When 0 < s < 1, we shall give a proof
based on the L,-L, estimates of heat kernel.

Let H(t)f = [pn E(t,z —y) f(y) dy, where E(t) = (47rt)N/26*‘“‘2/<4t). This gives a solution
of the heat equation:

(111) @ —ANu=0 inRY, u_g=7f
for w = H(t)f. As we know well, there hold

_N(1_1)
) V)l < O F Gl gy,
1 _N(1_ 1
IVH®) fllp, @ < O 26Dl mmy
We write

f=H(t)f - /0 O, H(r)f dr

Since 0, H(7)f = AH(7)f = VH(7)(Vf), by (112) and (??) we have

t
£z, @y < CIH@) L,y +/0 IVH(T)(V Pz, @) dT

1

_N(1_1 t 11
(113) <ot 6D £l v + [ 219l g, )

1 1

,,(,,L) 1 ,ﬂ(,,;)
<O 2\ fllp,myy 2t 2N VL wyy)-
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1 1

_N(1_1 _N(1_1
We choose ¢ > 0 in such a way that ¢ 2 (P ‘1)||f||LP(RN) = t3t 2 (P ‘I)HVfHLP(RN), and so
t= (||f”LP(RB’)/va||Lp(RN>)2. Inserting this relation into (113) gives

1

(=N (L1_1
11y < U@ /19, @)™ G £l )
N(%fé)vaHNGfl)
L

1— 1
— q
= Il @) p(BY)

When f is define on Rf , then applying Lemma 34 to the even extension of f implies the required

estimate. This completes the proof of Lemma 34. g

Let S(A) and P(A) be solution operators given in Theorem 18, and set
u= LT SWLIF]], q=L[PLF]]

with F = (F,A'2G4iv , VGaiv , 0,G, AY?H, VH), where AY2f = £=1\Y2£[f]]. Then, u and
p are unique solutions of equations (71). Let F' = L[F]. Let I' be a contour in C defined by
=T, Ul and 'y = {\=7e™9 |0 <r < oo} (A€ X,). First, we consider the case where
F is independent of A, and set U(t)F = L[S(\)F](t). Since ||S(/\)F||Lq(R§) < rb|)\\*1||F||Lq(R$)
for any A € X as follows from Theorem 18, we have

U(t)F = ! / MSWF A\ fort>0, UBF=0 (t<0).
T4y

T or

Write A = re*(™=9) and then Re A = v — rcose and |\| > sin(e/2)(y + 7). By Lemma 34 and
Theorem 18,

[SFl L, @y) < CISA)F] IL;(SM)HVS(/\)F||SLP<R§) < Crb\/\|_%\|F||Lp(Rf)
for s=N(1/p—1/q) <1 with 1 < p < g < oo. Thus,
1 o —cosert [ : —
10 OFlay < 2Crs [~ e sinfe2) -+ 1) 2 drllFly gy

e s [T 0)—s)2
- 5 — COs el p—s
< C’f’b?t 2 A e l dZHF”LP(lRf)

for t > 1. Since this inequality holds for any v > 0, we have
,g(;,;)
10 OF ]y < Orit~ 2 G |F ) o,

When 0 < t < 1, using the estimate: ||S()‘)FHLQ(RQ) < Tb|)‘|7l||FHLq(IR$) and the well-known
argument in the theory of analytic semigroup theory, we have

IUCOF @y < CIFI L, @y)-

Therefore, for t > 0 we have

1

_N(1_1
(114) WU OF I, m < 1+ F G PN gy + 1Pl )

Since U(t)F = 0 for ¢ < 0, we have (114) for all t € R\ {0}.
Now, we consider F' = L[F], and then

u(-,t):/RU(t—e)f(e) dﬁ:/t U(t — 0)F(0) de.

—00
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Thus, choosing r in such a way that 7’% (% — é) > 1, by Minkowski’s integral inequality

Il £, (0,00, Lq (&)

([ w605 wy a) )"
-

) C/’ {/0 ! +t)*¥(—*—) U7 Ol @y + 17 Dl )" dt}w de
< C/R(|\f(~,f)|\Lp(R§r’> +1FC 0y e) A0

o 1/r!
<c( / (407 )" (I + OF g, g zyery + 10+ OF L, gz, m2),
with F = (F,AY2G4iv , VGaiv , 0;G, AY?H, VH). In this way, we can show that

2
1L+ 8)(B%, VIl L, (0,00, L (YY)
< C(\|a||33§;—1/r>(Ry) + A+ 8)F, VGaiv, VH) 1, (&, L, (8 )L, &)

+I+ t)G”W%(R,Lp(M)ﬂLq(M)) A+ (Gaie , H)ly W2 (R, Ly (RY )N Lg (RY))
with large r with »(N/2)(1/p—1/q) > 1 for 1 <p < g < 0.

4. FREE BOUNDARY PROBLEM FOR THE NAVIER-STOKES EQUATIONS IN THE L; - BESOv
SPACES MAXIMAL REGULARITY FRAMEWORK

4.1. Ly - Besov spaces maximal regularity for the Stokes equations with free bound-
ary conditions. In this subsection, we discuss free boundary problem (58) in the L in time
and By (RY) in space framework. Here and in the sequel, B; . stands for the inhomogeneous
Besov space By, or the homogeneous Besov space qur. To obtain the maximal Ly in space and
Besov in space regularity, there is no difference in technical issues between the homogeneous
Besov space case and the inhomogeneous Besov space case, and so we write B . to denote both
of By, and Bé - at the same time. The discussion in this section deeply depends on my joint
Work with Keuchl Watanabe, [32]. Let

B RY) = {f € B;,(RY) | Vf e B (RN},
BiRP®Y)={fe B (RY) | Vfe B (RY)Y, VfeB, RY)NY,
Bl (RN) ={f|3ge BTl (RY) such that Vg e B;l(RN), suppg C @, glRi’ = f}.

q,r,0 q,r,loc

Remark 35. When —1+1/¢ < s < 1/q, then s+1 > 1/q. Thus, for f € Bgtlo(]RN) f|8Rf =0.

To prove the L; - B] | maximal regularity of linear problem (71), in view of Theorem 16, it is
sufficient to prove some estimates, given in Theorem 36 below, for the corresponding generalized
resolvent problem (72). Namely, the main point of our proof of L;-B; ; maximal regularity is to
prove the following theorem.

Theorem 36. Let 1 < g < oo, —1+1/qg<s<1/q and~ > 0. Let v, = 0 when BSJ(]R]X) =
B;I(R{,\_’) and let v, = v when BS?I(RJ_‘Y) = B;,l(Rﬁ)- Then, there exist operator families S(\)
and P(\) with

S(A) € Hol (S, +, L85, (RY)M™, B 12(RY)N)),

115
(o) P(N) € Hol (S + v, L(B5(RY)M, B2 | (RY)Y))
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such that for any X\ € B¢+ and £ € Bi(RY)N, gaiw € B(‘;jl(Rf), g € B;l(Rf)N, and

h e B;jl(]Rf)N, problem (72) admits unique solutions u € B(‘;jQ(Rf)N and p € B;jl(Rﬂf) +
B (RY) with u = S(NF and Vp = P(A)F, where F = (£,A2gq;, , Vgaiv , Ag, AY/?h, Vh), as

well as
[NV VRSO Fllgs ) < Cill Fllss .

(116)
VPN Ellss  wyy < CollFllgs  my)

for any A\ € X+ y,. Here and in the sequel, we write Vg = V2 when B, = B;l and V% =V?
when By | = By |, and C), denotes general constants which is independent of - when By | = 33,1
and depends on v > 0 when B;l(Rf) = Bs,l(Rf).

Moreover, let o > 0 be a small positive number such that —1+1/¢g < s—o < s < s+0o < 1/q.
Then, for any A € X + vy, there hold

1/2 2 _e
1) AV, VSN Ellgs |y < ColA ™21 Fllgso ey
IVP)E s, @y) < Col Al 2 1F | 5540 vy

provided F € B;ja RN B;J(Rf), as well as

118) |\(/\1/2V7VQ)GAS(A)F||B;1(M) < Cb‘)‘|7(17%)HF”BZH”(Rf)v
IVONP(N) Fllgs  my < Cb\)\|_(l_%)\|F||B;‘3°(M)

provided F € BZHU(R_,A_[) N 32,1(R¥)~

Following the argument in Subsection 2.3 and using Theorem 36, we have the following L1-5;
maximal regularity theorem for equations (71).

Theorem 37. Let 1 < g < 0o and —1+1/q < s < 1/q. Then, we have the following two
maximal regularity theorem as follows:

(1) (Inhomogeneous Besov space case) Let v > 0. Let F, Gaiy , G, H and a be data for equations
(71) such that

e MF € Li(R, B3, (RY)Y), e "Gy € Li(R, BT (RY)) nW, 2 (R, B, (RY)),
e G e WH(R, By (RY)Y), e ""H € L (R, B (RY)) n W;,{Z(R, B: (RIHY),
as well as a € B;l(Rf)N satisfies the compatibility conditions: div(a — Gli=g) = 0 in RY.
Then, problem (71) admits unique solutions u and q such that
e Mu e Li((0,00), By A(RY)N) N W ((0,00), By (RY)Y),
eV € L1((0,00), By, (RY)Y)

as well as

lle™™ull 1, ((0,00), B2y + €770 Ly (0,00, 35, (&Y + 1677 Vall 0,000, 85, m2) M)
< Clllallps , my) + e (F,9,G, VGaiy s VE)II 2, r,3: , Y))

ot
+ e (Gaiv 7H)|‘W11/2(R,B;=1(R$))).

(2) (Homogeneous Besov space case ) Let F, Gaiy , G, H and a be data for equations (71) such
that

S S ir1/2 5s
FeLi(R B (RNY), Gav € Li(R, BT (RY)) N Wqﬁ (R, B3, (RY)),
. . .. e
G e W!(R, By ,(RY)Y), He Li(R, BT (RY)N) N qu{ (R, B; , (RHM),
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as well as a € B;I(RQ)N satisfies the compatibility conditions: div(a — Gli=o) = 0 in RY.
Then, problem (71) admits unique solutions u and q such that

u, 8j8ku7 Vq € Ll((0,00), 5,1 (RJJ\:)N% uc BO([07 OO), ;,1(R§)N)>
t'/2Vu € Loo((0, 0), By (RY)™)
for g,k =,..., N, as well as there holds
2 ) . . . ; 1/2 . .
[|(Opu, V*u, Vq)HLl«O’OO)’B;l(Rg)) + teb(ggo) flu( 775)”3;,1(11{1)) + teb(gf.)o)t [Vu( 7t)|‘33,1(u§f)
< C(“a”Bgl(Rf) + H(F7 8tG7 VC'ydiv ) VH)HLl(RqBZJ(Rf)) + ||(Gdiv ’ H)|‘W11/2(R73,§1(R$)))
Idea of my proof of Theorem 36. Since my proof is based on interpolation theorems and

since my method seems to be applicable to prove the L; - Bj ; maximal regularity in many initial

boudary value problems for the system of parabolic or hyperbolic-parabolic equations appearing
in mathematical physics, I will focus on how to use the interpolation results.
We assume that 1 < ¢ <ooand —14+1/¢g < s < 1/q. Bs,l is taken as a basic space, and the

reason is only that CG°(Q) is dense in BS,(Q) for @ € {RV,RY}. In the sequel, T()\) denotes
one of AS(\), A'/2VS()). Analytic evaluation of operators is only initial evaluation in HIRY).
In the sequel, we write

Hy(RY) = {f € S'®Y) | | fllrg vy = |IF (1 + P 2F UL, mr) < oo}

Hy (RY) = {f € S®Y)/PRY) | If | g vy = IF (€1 F U @y < 00}
Here, P(RY) denotes the set of all polynomials on RY. Note that H; RN) = qu (RN) and
H;(RN) = {f € Lyoc(®RY) | Vf € LyRM)N}/{constants}. Here, {-}/{constants} means
that if Vf = 0, then f = 0 as a member of {-}. Note that H(RY) = (Ly(RY), H}(R))(q) for
a € (0,1), where (-, -);q stands for complex interpolation functors.

Let
HO®Y) = {f | 3g € HI(RY) such that glay = f,
1 lle ey = mE{llgllag ey [ 9 € Hg(RY) such that 9lry = £}

We see that HIRY) = (Lg(RY), HE(RY)) ) for o € (0,1). Moreover, Hy (RY) = W} (RY) and
HIRY) = {f € Lypoe(®RY) | V1 € Ly(RY)N}/{constants}. |
We denote that Hg(2) = HJ(Q) when B, (Q) = Bj () and Hy () = HF(Q) when
01(Q) = 3271(9)7 where Q € {RY,RY}. Let H(‘;‘A’O(RJ_‘Y) denotes the closure of C§°(RY) in
Hi(RY).
We use the following results concerning the real and complex interpolations.
Proposition 38. Let 1 < ¢ < oo and ¢ = q/(q—1). Let Q € {]RN,R{X}. Then, the following
assertions are valid.
(1) For1<r <oc and —oco < s < oo, it follows that (’H;;(RN))' = H(;S(]RN), (H;;’O(Rf))’ =
Hy (Y).
(2) For —d/q < s < d/q, it follows that (H;(]Rf))’ = Hq_,SO(Rf) and (H;;’U(Rf))'
H,*(RY).
(3) Let 1 < qo,q1,70,71,7 < 00, —00 < 50,81 < 00, Sg # $1, and 0 < 0 < 1. Let s and q be
defined by s = (1 — 0)sg+0s1 and 1/q = (1 —0)/qo + 0/q1. Then, there hold

(119) (H* (), Hg* (Q2))o.r = By, (1),
(120) (Bgro (), By, (2)or = By (1),

(121) [H0 (), Hy! ()] = Hy(Q)



If sq, s1, and s satisfy additionally s; > —1+ 1/q;, j € {0,1}, and s < d/q ( or

s<d/qifr=1), then there hold

(122) (H20(Q), H2M(2)g, = BS.(Q),
(123) (B3, (Q), Bk, ()o.r = By (),
(124) [H20 (), H3H(Q)]p = HJ(9).

with s :== (1 —0)sp+ 0s1 and 1/qg = (1—0)/q0 + 0/q1.
(4) For 1 < q1 < qo <ooand1 <r <1y < oo, and s € R, it follows that B , () <
By (@),
Roughly speaking, the idea of my proof of Theorem 36 is the following: Below, we assume
that 1 < ¢ <ocand —1+1/g<s<1/q.
(1) When 0 < s < 1/q, the starting evaluation is done in H;. Then, using the complex
interpolation to obtain the estimates in Hf (0 < g < 1/q). Finally, by real interpolation, we
arrive at the estimates in B ;.
(2) When —1+41/g < s < 0. First, we consider the dual operator and we evaluate it in Hé,.
Secondly, we use the complex interpolation to obtain the estimates of dual operators in ’Hf;,
(0 < pu<1/¢ =1-1/q). Thirdly, by the duality argument, we obtain the estimates in H, "
Finally, by real interpolation, we arrive at the estimates in B;,r
(3) The esitmates in BY ; follows from the real interpolations between B ; and B,1
First, we consider the case 0 < s < 1/q. We assume that
Assumption 4.1. Let 1 < ¢ < co and v > 0. We assume that the starting evaluations hold as
follows:
For any f € Cg°(RY) and A € £, + 75, the following estimates hold:

(125) IT)f ey < Collf llaga ey

(126) TNz myy < Coll Fll, @y

(127) TNy < ColAI™ 1/2\|f||1-[1 (RY)
(128) [ONT (M) fllaga mayy < ColA™ 1”f“7~£1 (RY)
(129) [ONT (M) Fll L,y < Col Al IHfHLq(Rfy
(130) [ONT (A F 33 vy < Cb‘/\rl/QHfHLq(]Rf)‘

Here and in the sequel, v = 0 when Hg = H{‘I)’ and v, = v > 0 when Hg = H', and Cp is a
condtant independent of v when Hg = H 4 and depending on v when Hg = Hg'. Then7 we have
Proposition 39. We assume that Assumption 4.1 above holds. Let q and 7y be the same as

in Assumption 1. Let 1 < r < co. Let 0 < s < 1/q and let o > 0 be numbers such that
0<s—o<s<s+o<1/q. Then, for any A € S+, and f € C°(RY), there hold

(131) T sy, ey < ol ey
(132) 1T Nlss, myy < Cb|)‘|7§“f|‘83f;"(Rf)v
(133) 0Tl a3y < CoM 0 Pl F gy

Here and in the sequel, v, = 0 when 851 = =

condtant independent of v when B’ 1= B 1 and depending on y when B(’;l = B”

qland’yb—7>0whenl’j’ 1andCb7jsa

Proof. Below, we always assume that f € C°(RY) and A € X +v,. Choose p and g/ in such
a way that 0 < s < s+o0 < ¢ < p < 1/q. Estimates (125), (126), ande (127) are interpolated

35
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with complex interpolation method to obtain

(134) TNz wyy < Coll Fll, @y

(135) IT M) f e wyy < Coll Fllags ey

(136) 700 gy < Coll g ey
(137) TN Fllz,@y) < ColAT21f ey
By interpolating (134) and (135) with real interpolation method,
(138) ITN)fllss,.myy < Collfllss, myy-

Choosing 6 = s/u’ and setting A = pu(1 — s/p’), by (136) and (137) wtih real interpolation
method,

(139) ITN)Sf g, @y < Ob|A|‘?||fHBs+A<RN>

Now, we choose p and g/ in such a way that s < s+ 0 < s+ A, that is, we choose p and p’ in
such a way that o/pu+ s/’ < 1 and s+ o0 < ' < p < 1/q. Thus, choosing § € (0,1) in such a
way that s + 0 = (1 — 0)s+ 0(s + A), that is, 6 = 0 /A, by (138) and (139) we have

(140) 170 sy vy < ColN 3 1l gt

Therefore, we have (131) and (132)
Now, we shall prove (133). Let p be a number such that 0 < s < s+o0 < p < 1/g. Combining

(128) and (129), and (128) and (130) with complex interpolation method, implies that
(141) 15Tl ) < ColA 1 ey

(142) ONT(A) f g vy < Cb\)\|_1”f\|7{5(Rf)»

(143) [ONT (M) fll s vy < Cb‘A|7(17%)||fHLq(]R$)’

Combining (141) and (142) with real interpolation method yields
(144) IONT ()l ey < oAl e

Now, choosing ¢’ and 6 in such a way that 0 < ¢/ < p and 6 = ¢//p € (0,1) and combining
(142) and (143) with complex interpolation, we have

(145) I\T ) gy < ColM =0 W20 g

as follows from 6 4+ (1 — p/2)(1 —0) =1 — (u/2)(1 —0) =1—-5(1 - “;—/) =1—(1/2)(p— ).

Next, we will combine (141) and (145) with real interpolation method for s = 6u, Namely,
we choose 0 = s/p € (0,1) and so O/ = (u'/p)s,

0 5
(1= /2)(p=mN0+1=0)=1-5n—p)=01- @(M - ).
Thus, we have
(146) 1ONT N flls; ey < ColA ™D gy
o (RY

Finally, we will combine (144) and (146) with real interpolation method. We choose 0 < p1/ < g

in such a way that (1//p)s < s—o0 < s, that is 0 < p/ < (1 — g)p. And, we choose 6 € (0,1)
s

in such a way that s —o = (1 —0)s + 0(u'/u)s, that is § = /A with A = s(1 — //p). In this
case, we have

_ S =1 ¥ _sAo _ . @
(1-0)+0(1 2N(u w)) =1 2( )9—1 e A= 173



Thus, by (144) and (146), we have
(147) IONT (M) flls, myy < Cb|)\|7(17%)||f|\B;;G(M)'

Therefore, we have proved Proposition 39. g

Next, we consider the case where —1 +1/¢ < s <0, that is 0 < |s| <1—1/g =1/¢". We
assume the existence of dual operators T'(\)* and 9\T'(\)* such that
Assumption 4.2. Let 1 < ¢ < o0, ¢ = ¢/(¢—1) and v > 0. For any ¢ € C°(RY) and
A € 3¢ + 7, there hold

(148) 1T @l w) < Collellz,, @),
(149) ITOY el gy < Coll el
(150) ITOY @l @) < G2l s )
(151) 1Tl ) < CoA el oy
(152) INT ) Pl ety < CoA s ey
(153) INT O el ety < CoN 2l ey

Here, the dual operators means that for any f, ¢ € C§° and A € 3¢ 4+, there hold

(T el = 1T ) [OT NS0l = [(f, T (A) ¢

where (a,b) = [pn a(z)b(x) dz. Note that we do not take the complex conjugate to define the
+ .

dual operator in order not to consider the operator for parameter A.

We shall prove the following proposition.

Proposition 40. We assume that Assumption 4.2 above holds. Let q and v be the same as in
Assumption 2. Let 1 < r < oco. Let =1+ 1/q < s < 0 and let o > 0 be a number such that
—1+1/g<s—o0<s<s+0c<0. Then, for any A\ € X¢ + v and f € CF(RY), there hold

(154) TN fllss, ) < Collfllss, my)s
(155) TN f s, @iy < ColA 2 11£llggte gy
(156) INT (N Fllsg ) < ColM™ 2 Fllggo ey

Proof. Since —1+1/q < s <0, we have 0 < |s| <1—1/g =1/q'. Let p, ¢/ and o be positive
number such that

(157) O<p <|s|—o<|s|<p<1/d.

In the same manner as in the proof of Proposition 39, using the complex interpolation method,
by (148), (149), and (150), we have

||T(/\)*<PHLQ,(R$) < CbH%OHLq,(Rf)v
||T(/\)*<PHH§,(M) < CbH@HH;‘/(Mw
Tl ) < Oolllg gy

1TVl ey < CoN T lpllgs, ety
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By the duality argument, we have

(158) IO yw) < Collfll ey,
(159) ITO) gy < Coll i gay
(160) TN gy < Ol ot ey
(161) ITO) ey < ColA 205, o)

In fact, note that #,"(RY) = ('Hf;, o(RY))*. For any f and ¢ € C§°(RY), by the dual argument
we have
(TN o) =1, TN )
< Wl 17O Pl ey
< HfHH;#(]Rf)CbH@HH;‘,(Rﬁ)>
which implies (159). Likewise, we have (160) and (158). And also,
(TN 0)| = (T )]
< 1y [Tl
< ||fHLq(Ry)Cb\)\|_”/2||<P||HZ,(RQ’),
which imples (161).

Now, we shall prove (154) and (155) in Proposition 40. Combining (158) and (159) with real
interpolation method, we have

(162) HT()\)fHB;‘;l(Rf) < Cb”f“gq—lj\(Rf)a

which shows (154).
Next, recall that 0 < p/ < |s| —o < |s| < p < 1/¢" as follows from (157). Choose 6 € (0,1) in

s

such a way that —|s| = —p(1 — 6) — /0, that is 6 = r= - Combining (160) and (161) with
—p

real interpolation method implies that
1Tl o1 gy < ColA =27 \|f|\5< W)

Therefore, we have

(163) T g gy < N i

o
Bgr M7

Since 0 < i/ < |s| — o and 0 < pu — |s| < p — ¢/, we have

/ f—
—ls| < —=|s]+ 0 < ,“(“7‘;9”.
—p
Choose 6 € (0,1) in such a way that
#(p—|s)

—|s|+o=(1—-8)(—|s|]) +6(—
s (1=0)(=lsD) +6( P )
Combining (162) and (163) with real interpolation method implies that

1T g gy < CA 55 Ol e gy

(p—p)o
p(ls] = ')

Inserting 0 = , we have

”T()\)‘f”B;,‘f‘(Rﬁ) S CbHA'_E‘|f|‘8;‘1§\+0(RJI)'



which shows(155).
Now, we shall show (156). Combining (151), (152) and (153) with complex interpolation
method for |s| < p, ' <1—1/q=1/q', we have

(164) H&\T(}\)*‘P”Lq/(u{f) < Cb\)\|_1||80||Lq,(Rf)y
(165) “8>\T(>\)*90||H5',(R11) < Cb‘)‘rl”‘PHHZ,(Rf)v
(166) IOATO) @l gy < CoAT Nl ey
(167) INT Yl < GNPl ey
Thus, by the dual argument we have

(168) IAT (N Fllpymyy < ColMTHIF Il @),
(169) 1NT ) oy < G oy
(170) IOXT O Flly i vy < Col M 1y
(171) IONTON Ly gy < Gl D oy

Noting that —1 4+ 1/¢ < —p < —|s] < 0 and combining (168) and (169) with real interpolation
method implies

—1
(172) 1OXT )l gy < ColA 1 gy

Choosing # € (0,1) in such a way that |s|] = p/6 and combining (170) and (171) with real
interpolation method, we have

05T OV Sl 1 gy < Ol ey

Here,

1 w8l

=0-(1-0)1-5H=-1420-2

a 1-00-5=-1+50-7)

s s| s s

c=—p0—p(l—0)=— e (1 = //) = —ls| =l - u’) = (sl +p( - u/))'
Thus, we have obtained

—(1—E(1—
(173) [T N Fll g 1y < ColAT 50

nldlFy .
;:ISIJru(l*V))(Rf)

Now, we choose ¢/ € (0,1) in such a way that

|s]
—ls| > =[s] = > —[s| = u(1 - /7)7

that is

(174) sy c1 2y,

n—0c

Since ¢ > 0 may be chosen so small that p/(1n — o) is very close to 1, we can choose p/ in such
a way that |s| < g/ and (174) holds.
We choose 6 € (0,1) in such a way that

—|s| —o = —|s]0 — (|s]| + —S—| -
5] 510 = s + p(1 = 7)) (1 = 0).

/
Combining (172) and (173) with real interpolation method implies that
—d
Ha}‘T()\)f”B;LSl(Rf) S C‘Al Hf”B;lf\*V(RJI)v
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where
d:0+(1—0)(1—%( —‘Mi,‘)):l—%.
Thus, we have
IONT ) fll 5,101 vy < Cb\)\|_(1_%)Hf||3;\7_s\—a<M>~

Namely, we have (156), which completes the proof of Proposition 40. O

When s = 0, we have the results for s = +w with very small w > 0. Thus, by real interpolation
method, we have

||T(/\)f”z§g,,.(nw) < CbeHBU (RY)

q,r

TN fllsg, ) < CylA"2 /1l 5g, &2y
[T (M) fllsg, myy < Cb|)\\7(17%)”f\|3,;;?<w)

provided that Assumption 1 and Assumption 2 hold.
Summing up, we have obtained the following theorem.

Theorem 41. Let 1 <g<oo, 1 <r<oo, —1+1/g<s<1/q, ande € (0,7/2). Let o > 0 be
a small number such that =14+ 1/q < s—0o < s < s+ o < 1/q. Assume that Assumption 4.1
and Assumption 4.2 hold. Let Q) € {]RN,Rf}. Then, we have the following two assertions:

(1) For any f € C§°(Q) and X € X, there hold

1Tl s ) = CllA s -
TNl @) < CIA 21l gt (@)
HaAT(/\)fHB;l(Q) < C’|)\|_1_5||f||333"(9)

for some constant C'.
(2) Let v > 0. For any f € C§°(Q) and \ € X, + ~, there hold

TN fllBs @) < Cyll Fllss ()
I £ll5;, @) < Cy A2 111l e -
1OXT (V) £l ) < CYN T2 fll g
for some constant C,, depending on .

Applying Theorem 41 to (A, A1/2V, V?)S(A) and VP(A), we have Theorem 36 when B3, () =
Bgﬁl(Q) and v, = 0. And, applying Theorem 41 to (A, A\1/2V,V?)S(\) and VP()\), we have
Theorem 36 when Bj () = By () and 3 =~ >0
4.2. Free boundary problems in the Li- ;,1(]1%5) maximal regularity framework. In
this subsection, first I consider equations (58), and I will state the global well-posedness for
small initial data and the local well-posedness for large initial data. In the small data case, the
proof relies on the linear theory, namely the unique existence theory follows from the Banach
fixed point theore in the framework of the Li-By | (Rf\rf ) maximal regularity theory for the Stokes
equations with free boundary conditions (71). But, for large initial data, even for the local
well-posedness we need some idea to treat the nonlinear terms H(u) because we have to use the

non-local norm ||H(u) HWIJ (8,55, (BY))"

First, I would like to mention our theorem obtained in [32].

Theorem 42 (Local well-posedness). Let N —1 < ¢ < N and =1+ N/q < s < 1/q. Let
ae Bg}l(Rf) be initial data which satisfies the compatibility condition: diva = 0 in Rf. Then,
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there exists time T > 0 depending on a such that problem fbp.2 admits unique solutions u and
q with
we Li((0,7), By 2(RY)™) n Wi (0, T), By 1 (RY)Y)

satisfying the estimate:

Il 0.y, Be 2y + 19eall 1, (o,), 83, @Yy < Cllallps | @Y)-
Theorem 43 (Global well-posedness). Let N —1 < ¢ < 2N and s = —1+ N/q. Then,
there exists a small constant c¢o > 0 such that for any initial data a € Bg’l(Rf) satisfying the
compatibility condition diva = 0 in RY and the smallness condition: “aHle(Rf) < cp, then

q,
problem (58) admits unique solutions u and q with
Owu, 0;0,u, Vg€ Lq((0, oo),B;;_rl(RﬂY))N)

for j,k=1,..., N satisfying the estimate:

2
100, V20, V)|, (0,00, 2y + e laC B)lls; ,@y) < Ceo

where C' is some constant independent of cg.

We now consider problem (52). Let T, = T' < oo when Bj ; = B;; and T), = co when B} | =
B[;,r We know existence of solutions u and q for equations (58) with Lagrange coordinates and
u € Li((0,T), B (RY)N) or u € BC((0,T), B ,(RY)N) and Vu € L1((0,T3), ;il(M)NS),

thus the Lagrange map:
t

0

is C! diffeomorphism from RY onto €, where Q; = {2 = Xu(y,t) | y € RY}. Moreover, we
know the smallness condition (56) holds, and so there exists an inverse map: y = X, '(z,t) for
each ¢t € (0,7}). For any function F € B;;’I(Riv), 1 <qg<oo,s€e (—min(N/q,N/¢'),N/q), it
follows from the chain rulde that

IF o X s o) < ClEl s, )
with some constant C' > 0. Setting v(z,t) = u(Xu(x,t),t), we see that v.€ BC in time
with value in B () and 9;0,v € L1((0,T}), 85 (). In fact, setting Ay = (V,Xyu) ' and
Al = (Aj), we have

N

0,00y = Y (AjeDy(Arpdyw) 0 X' k=1, N,
L0=1

Moreover, for the time derivative of v, we have
v = (9u) 0 X = ((u- X1) - Vv,

From these observations and Theorems 42 and 43, we have the theorems for problem (52) as
follows.

Theorem 44 (Local well-posedness). Let N —1 < ¢ < N and =1+ N/q < s < 1/q. Let
ac B;’I(Rf) be initial data which satisfies the compatibility condition: diva =0 in Rf. Then,
there exists time T > 0 depending on a such that problem 52 admits unique solutions v and p
with

ve B ()Y, v e By ()N, Vpe B ()Y
for each t € (0,T) which satisfy the estimate:

T
2
1.0 V8) ) g 0) < Clallg e
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Theorem 45 (Global well-posedness). Let N — 1 < ¢ < 2N and s = —1 4+ N/q. Then,
there exists a small constant c¢g > 0 such that for any initial data a € Bg’l(Rf) satisfying the
compatibility condition diva = 0 in RY and the smallness condition: ||aHBSl<RN) < ¢, then
q, +
problem (58) admits unique solutions v and p with
Ov, 0;0Lv, Vpe B;jl(ﬂt))N
forjk=1,...,N andt € (0,00) which satisfy the estimate:
oo
/0 1008, 729 900 Ol A+ s IV Ol < Co
0.00 ,
where C' is some constant independent of cg.
Concerning the proof, one of the points is the following propositions concerning the products
estimate in the Besov spaces, which was proved in [1] and [18].
Proposition 46. Let 1 < ¢ < g1 < o0o. If s € R satisfies
d d 1 1

—— <5< — if —+—<1,
(175) q1 q1 q 1
d d 1 1

—— <s< — if —+—>1,
q q1 q q1

then for every u € By, (RY) and v € Bg{f&(Rf) N Loo(RY), there holds
(176) HUUHB;J(Rf) < CHUHBZJ(R%HUHB?{?@(RQ)mLm(Rﬁ)‘

We introduce propositions to estimate our nonlinear terms expressed by (59).
Proposition 47. Let 1 < g < oo. If s € R satisfies

d d
“1+-<s<- if  1<qg<2d,
(177) 4 4
d d )

——<s< - if 2d <q<oc.

q q
then for every u € By, (RY) and v € Bd/q(RN) there holds
(178) HUU”B;l(Rf) < C||“HB;1(R$)\|U|\ijlq(Riz)-
Proof. First, we consider the case that ¢ < 2. In this case, setting g1 = ¢ in the second case of
Proposition 46, for s € (—d/q’,d/q), we have
(179) ol ey < Clll vy 1ol o ey
Here, notice that there holds —d/q’ < —14d/q. Since we have BS{,%(RN)mL RY) « Bd/q(RN)

as follows from Proposition 38, we obtain (178) for the case ¢ < 2. On the other hand, 1f q>2,
we choose ¢1 = ¢ in the first case of Proposition 46. Then for s € (—d/q,d/q) we see that

(180) luvllg gy < Cllullsg Mol gars vynp @y

When ¢ < 2d, it holds —d/q < —1+ d/q. Thus, noting that BZ/O%(RN) N Lo (RY) = Bd/q(RN)
we have (178) provided that 2 < ¢ < 2d. On the other hand, when 2d < ¢ < oo, it holds
—1+d/q < —d/q, and hence (178) holds for —d/q < s < 1/q. The proof is complete. O

Proposition 48. Let d —1 < ¢ < d and —1+d/q < s < 1/q. For every u € By L(RY) and
v e Bd/q(RN) there holds

(181) lvll s ey < Cllul gz @an 101l pare -



Proof. We first consider the case ¢ < 2. From the proof of Proposition 47, we have (181) provided
that d — 1 < ¢ < 2 and —d/¢’ < s —1 < d/q. In addition, we see that 1 —d/q¢ < —1+d/q
due to d > 2, and hence (181) holds provided that —1 + d/q < s and ¢ < 2. Concerning the
remaining case ¢ > 2, we infer from the proof of Proposition 47 that (181) is valid provided that
—d/q < s—1<d/q. Since q < d is equivalent to 1 — d/q < —1 + d/q, we obtain the desired
estimate assuming that 2 < ¢ < d and —1+d/q < s. O

Proposition 49. Let 1 < q¢ < co. For every u, v € Bd/q(]RN) there holds

(182) Huv“ijf(Rf) < C”uHBjy/l“(Rf)HUHB%“(Rf)'

Namely, Bsﬁq(RJI) is a Banach algebra.

Proof. According to [18, Prop. 2.3], there holds

(183) vl ey < Ol s Pty + ol oy 191 ey

provided that 1 < ¢ < oco. By B d/q J(RY) < Loo(RY), we have the desired estimate. a

The following result on composite functions is stated in [18, Prop. 2.4] (cf. [4, Thm. 2.87]).

Proposition 50. Let I C R be open. Let s > 0 and o be the smallest integer such that o > s.
Let F: I — R satisfy F(0) = 0 and F' € WZ(I). Assume that v € BS (RY) has values in J € I.
Then it holds F(v) € Bg’T(Rf) and there exists a constant C depending only on s, I, J, and d
such that

(184) IF@) g, ) < C(1+ 10l )) I g o ol

To prove Theorems 42 and 43, we use the Banach fixed point argument. Namely, given w,
let u and q be solutions to the linear system of equations:

Ou — Div (uD(u) — q) = F(w) in Rﬂy x (0,7,
(185) divu = Ggiy(u) = divG(w)  in RY x (0,7),
(#D(u) — q)n = H(w)n on ORY x (0,7),
uli—g=a in RY,

Noting that F(w), G(w) and H(w) vanish at ¢ = 0, we extend them suitable to R. When initial
data are small, using Theorem 37, we prove the map w — u is a contractive on some underlying
space ‘H when the initial data are small enough. The proof is quite standard.

On the other hand, to prove the local well-posedness, we have to treat the largeness of the
initial data, and so we need some idea. As far as I understand, to prove the local well-posedness
for the large initial data gives us some difficulty usually. At this time, such difficulty of the

proof is due to the fact that we have to estimate |H(w)]| Wi (®,Bs | (R))’ which is non-local.

Thus, instead of using the norm || - HW]I/Q(IR,B‘;J(]R{X) , we use || - HW1((O )BT RY)- Namely, we

use the properties: Wi ((0, T),B;;El(RﬂY)) N Ll((O’T)’ngl(RiY)) C Wll/z((O,T), s (RY)) =
(Ll((O,T)7B§,1(Rf))7Wll((O,T),Bgyl(Rﬂ\:))[l/g]. Then, we have to pay the price to product
estimates (cf. Proposition 48). Namely, the range of s is only —1 + d/q¢ < s < 1/q and
d—1 < g <d. Especially, 0 < s < 1/q. We can not consider problems in non-positive order
spaces unlike the small data case.

The key argument is the following. H(w) has the following form:

H(w) = VWF</Ot deT>
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with some nonlinear function F with F(0) = 0. It follows from Propositions 48, 49, and 50 that
t
‘ Ot(VW F(/ VWdT))
0 Boi' ®Y)

t t

< H(&Vw) F(/ VWdT> + HVWVW F’(/ VWdT)
0 Byy (RY) B
¢

F( / Vw d7'>
0
¢

Vw F'( / Vw dT)
0

< C(HatW”B,f,l(Rf)||VW||L1((0,T),B;Y{Q(RQ)) + HW“B;I(HQ)||W||Bgl/q+1(R$))-

B3 (RY)

< c{llawlls, )

N/
By (RY)

+ HVWH354 RY) }
a1 (RY Bé\j]/q(Rf)

Essential assumption is that —14+N/q < s, that is N/¢+1 < s+2. Thus, we may choose 6 € (0,1)
such that N/g+1 = s(1—0)+(s+2)(1—0), and hence we infer from the interpolation inequality

that ||WHB:;,/]{1+1 < C'||WHB§ L®Y) HWH%‘;? Thus, by the embedding Bd/q+1(]RN) —

f+1 RY) &)
B;‘;jl(Rf ) and the Young inequahty7 there holds

19035, Il oo gy < IR o [ W1z
(186)

—0
< ColelWllag @y + € TTIWIE o)

for every € > 0. Thus, we have

2-0

0
1B, 0,m) 2wy < O (MWl 32y + ¢ WL o.m, s vy T

(187

0wl 2, 0,19, 85, @) WLy 0,7, 8572 MD)'

Thus, the first term of the right hand side can be controlled by first choosing € > 0 small as
much as we want and second choosing T > 0 small enough according to e/~ The second
term is a normal squre term. This is an idea to control the boundary term when the initial data
are arbitrary large.

5. NOTATION

Let N, Z, R and C denote the set of natural numbers, integers, real numbers and complex
numbers, respectively. Set Ng = N U {0}. Let 9, = 9/t and 92 = 9l*l /o - - 0gN for any
multi-index o = (a1, ...,an) € NY, where |a| = a3 + -+ ay. Let Vf = {99f | |a| = 1},
Vf=A{02f [lal <1}, V2f ={03f | |o] = 2}, and V2f = {02 f | |a| < 2}.

Let X be a Banach space with norm || - [[x. Let Ly(Q,X), W, X), B;, (€, X) and
B;’T(Q, X)) denote the standard X-valued Lebesgue spaces, Sobolev spaces, inhomogeneus Besov
spacse, and homogeneous Besov spaces while | - ||z q,x), | - HW(;n(ng), I| - ||Bs L(@x), and || -
I Bs (9.X) denote their norms. When X = R or C, we omit X, namely for example Ly(Q) and

I llz, @)

Wi (Q) = {f € Lypoc(@) | Vf € Ly( @)}, WioRY) = {f € W (RY) | flory =0}



Let
W RY) = {f € W]ieo(RY) [ 97 f € Ly(RY) (la] = m)},
WeRN) = (Ly(RY), W (RY)) gy = {f | IF T EPFLA |z, @n) < o0},
W (Q) = {f | 3g € W/(RY) such that gl = f},
1F iy () = f {llgllyirge vy | 39 € Wi (RY) such that glo = f},
W2 () = {f | 3g € W;(RY) such that glo = f},
1F iz () = E {llgllyirgn zavy | 39 € Wi (RY) such that gla = £},
JuRY)Y ={f € Ly(RIN | (£, V) =0 for every ¢ € /W;,’O(Rf)},
W, (R, X) = {f € Ly(R, X) | & € Ly(R, X)},
Wy (R, X) = {f € Wpioe(R, X) | 0:f € Ly(R, X)},
WER, X) = (Lg(R, X), W/ (R, X)), Wi (R, X) = (Ly(R, X), W, (R, X)),

where m > 2,0 < s < land 1 < ¢ < oo. (+,-) denote complex interpolation functors and
(+,-)op denote real interpolation functors for 6 € (0,1) and 1 < p < co. For v > 0 we write

1/q
-t —{ [ vary
lle™ " fllL,.x) {/I(e £ @)x) t}

For Banach spaces X and Y, £(X,Y) denotes the set of all bounded linear operator from X
into Y, and we write £(X, X) = £(X). Let U be a domain in C and let Hol (U, X') be the set
of all X-valued holomorphic functions defined in U.

Let F and F; ! be respective the Fourier transform with respect to z € RV and its inversion
formula defined by

FUNO = [ @) do. Flale) = g [ e 0(e) de

Let £ and £-! be respective the Laplace transform with respect to ¢+ € R and its inversion
formula defined by

£ = [ ) dt = P £ = 5 [ () ar =gl
where A =y +i7 € C. Let
2.={AeC\{0} | |argA| <71 —€}, Zc+yv={rv+A|AeX}

For any two N vectors a = (ay,...,ay) and b = (by,...,by), (a,b) =a-b = Ejvzl a;jbj. The
character C' denotes general constants and C(a,b,---) = Cyy.... denotes that the constant C

depends on a, b, ---. C' and C(a,b, ), Cqp... may change from line to line.
For z = (z1,...,2y), we write 2/ = (z1,...,2N_1).
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