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A Note on the Asymptotic Behavior in Time of the Kinetic 

Energy in a Liquid-Solid Interaction Problem 

Giovanni P. Galdi 

1 Introduction 

Consider a sufficiently smooth, rigid body !llJ (the closure of a simply connected bounded domain of配）
completely immersed in a viscous liquid.Y that fills the entire space outside妥． Weassume that the 
center of mass G of !llJ is held fixed in a given position, while勿 isallowed to rotate around G. The 
motion of the coupled systemダ：＝ !!IJUダ isdriven by a time dependent torque with respect to G, 
M=M(t), acting on俊
Recently, the question of the large time behavior ofダ hasattracted the attention of several authors, 
also in the more general case when G is free to move. More specifically, in [2] for沼 asphere, and in 
[5, 7] in the general case, under diverse assumptions on the initial data and driving mechanism, the 
same conclusion is drawn, namely, that as time grows indefinitely large, the velocity u of.2 as well as 
translational (~) and angular (w) velocities of !llJ will tend to O in certain norms. Actually, in [2, 7] it is 
also shown that G (in absence of external forces and torques) will cover a finite distance. 
However, in the more general and interesting case of a body of arbitrary shape, the asymptotic decay 
in time of the velocity field of.Y is established in norms that do not ensure that the total kinetic energy 
of the coupled system, defined as 

E(t) := ½ {p fv 1u(t) 12 + mlW)l2 + w(t) ・ I ・ w(t)} 
with m and I mass and inertia tensor of !!IJ, ultimately vanishes. Precisely, in [5, 7] it is proved that, as 
t → oo, while ~(t) and叫t)tend pointwise to 0, the velocity field u tends to O in the Lq-norm if q > 2, 
thus excluding the case q = 2, representative of the kinetic energy of.Y. (l) 

Objective of this note is to show that the kinetic energy, E, of any solution belonging to a suitable 
function class, C, will eventually tend to 0. As shown in [5], the class C is certainly not empty, provided the 
initial data are prescribed in appropriate function spaces with their magnitude is opportunely restricted, 
and M(t) vanishes as t→ oo in the L2-sense. The method we use relies heavily upon establishing a 
space-weighted estimate on the solutions in combination with a uniform bound on the pressure field. 
Unfortunately, this approach does not seem to work if G is free to move, and therefore we defer to a 
future work the study of the more general case. 

2 Equations of Motions and Preliminary Results 

We shall describe the motion of the coupled system S with respect to a frame,ダ， attachedto B and 
with its origin at an interior point of !llJ. In this way, in particular, the domain occupied by£ becomes 
time-independent, and we will denote it by D(：＝配＼B)and by ~ its boundary. We suppose D of class 

(l) As a matter of fact, in [5] it is only proved Jim,→oo llu(t)116 = 0. However, by elementary interpolation, for any 
q E (2, 6), we have llu(t)llq :S llu(t)ll2llu(t)ll6, which, since llu(t)ll2 is uniformly bounded [5, Theorem 2.1], shows the 
claimed result. 
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C2. Thus, with the notation introduced in the previous section, the governing equations of the motion 
ofダ紅egiven by (see [4]) 

砂 u= div1I'(u,p)d~v~~: V) •Vu+ w x u] } 
in'D x (O,oo) 

divu = 0 

endowed with initial conditions 

u = V at I: x (0, oo) 

lim u(x, t) = 0, t E (0, oo) 
因→OO

1-w+wx(l-w)+ lxx1l'(u,p)・n=M 
〉

u(x, 0) = uo(x), x EV, w(O) = wo. 

(2.1) 

(2.2) 

(2.3) 

In the above equations, p is the pressure field of£, i2 its (constant) density, and V(x, t) := w(t) xx. 
Also,']['is the Cauchy stress tensor given by 

'lI'(u,p) = 2μlill(u) -pIT, 2lill(u)：＝▽u+（▽u)T, 

with μ shear-viscosity coefficient and][identity. Moreover, m is the mass of B and I its inertia tensor 
relative to G. Furthermore, 

M(t) = (QT (t) ・ M(t), 

with the tensor (Ql satisfying the following equation 

{ 0= -Q•((J)仰）
(Ql(O) = Il 叫 ＝ ［ ゚>1 一悶t] 

In particular, Q is proper orthogonal, that is, 

Q丁(t).Q(t) = Q(t). (Q戸(t)=][， detQ(t) = 1, for allt E艮．

We wish to introduce a suitable class of functions satisfying (2.1). To this end, let C2J 

冗：＝ ｛豆 Eび（配） ：豆(x)＝豆 XX, 豆E配｝，

and define 

We also set 

V(D) = { u E W1•2(D): divu = 0 in D, u|刃＝豆， forsome豆ER}.

BR:= {x E ~3: lxl < R}；凡：＝ 2inf{RE(O,oo):知 nBRコ沼｝；

加：＝ DnBR, 炉＝D＼冗， R>R..

Definition 2.1 A triple (u,p叫 isin the class C, if 

u E L00(0, oo; V(D)），▽UEび(O,oo;W叫 D))

wEW叫 O,oo), ▽pEび(O,oo;L心）），

u E C([O,T];W叫加）），如， pEだ(0,00；び（応））， forallR 2". R., 

and, in addition, (u,p,w) satis且es(2.1). 

(2.4) 

(2.5) 

<2lwe shall use standard notation for function spaces, see [1]. So, for instance,い（A),wm,q(A), w;戸(A),etc., will 
denote the usual Lebesgue and Sobolev spaces on the domain A, with norms II ・ llq,A and II ・ llm,q,A, respectively. Whenever 
confusion will not arise, we shall omit the subscript A. 0cc邸ionally,for X a Banach space, we denote by II ・ I Ix its associated 
norm. Moreoverい(I;X), C(I; X) I real interval, denote cl邸 sicalBochner spaces. 
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The class C is not empty, as secured by the following result, which is a particular case of [5, Theorem 
2.1]. 

Theorem 2.1 Let MEび(O,oo国） anduo E V(D) with uolE = w。xx.Then, there is o > 0 such that 
if 

lluoll1,2 +|wol + IIMIIL2(0,=) :c; 8' 

there exists at least one solution (u, p，w,(Q) to (2.1) -(2.5) with (u,p，w) in the class C. 

From Definition 2.1 and Sobolev inequality, we infer that 

p E L2(0, oo; L6(D)), 

(2.6) 

(2.7) 

while we only have p Eだ（O,oo;び（D幻forall R > R.. Our first objective is to prove that the latter 
property holds, in fact, in the whole of'D. Precisely, we have the following. 

p roposition 2.1 Let (u,p，叫 EC.Then, 

pEび(O,oo;L刊'D)).

In order to prove the proposition, we need the next two results, whose proofs are given in [5, Lemma 
3.2] and [3, Lemma 3.1], respectively. 

Lemma2.1 Let(u,p,,,w,Q) beintheclassC. Then fora.a. tE(O,oo) 

▽pE炉 (D2R.)'pE 炉 (D2R•), for all q1 E (1,6], q2 E (~,oo]. 

Lemma 2.2 Let g E C/]°(D). Then the Neumann problem 

△<.p=g inD 

如
- ＝ 0 at S 
珈

with the side condition 
lim▽rp(x) = 0. 
Ix|→~ 

has one and only one solution such that for alls E (1, 3) 

D2rp E L8(D)，▽<.p E L3s/(3-sl(D) 

and 

J ¢= 0, 
応

for a fixed K > R.. Moreover, <p E L亨） and

111.plls,'DK + II▽<pll3s/(3-s) + IID知lls~ cllglls, 

where the constant c depends only on s, K and D. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Proof of Proposition 2.1. By formally applying the div operator on both sides of (2.l)i and observing 
that 

div[p(D四十wX X.'vu -w Xu)―△u] =0, 

one easily deduces that p satisfies for a.a. t E (0, oo) the following Neumann problem in the distributional 
sense 

△p= div(u ・▽u) in D, 

fJp 

8n 
- ＝ -［p山xx + curl a] • n at D, a:= curl u. 

(2.12) 

Let g and r.p be as in Lemma 2.2. Multiplying both sides of (2.12)i by g, integrating by parts over応
and taking into account (2.8) and (2.12)2, we show 

Lr pg = -hu8Brrp鷹＋J互rpdiv (u▽u) = h, rp [pw x x+curla] ・n+p 1ェ鵡(u叫＋叫r),(2.13) 
where we used the identity div (u ・▽u) =8;む(u氾j),and set 

叫 r)：= -J(虚 -P閏．
8Br 枷枷

By a double integration by parts, we infer 

J 亨 (u叫＝J 妬砂炉＋J い・▽u・n-u・匹 U・n]
'Dr J'Dr JEU8Br 

= J'Dru,u位心＋Jい XX・ ▽U• n-(w XX ・匹） wxx•n]+a2(r),
2 

(2.14) 

where 

疇） ：＝ J l<pu • ▽u. n -U • ▽<pU ・ n]. 
8Br 

By employing Holder inequality, we deduce 

l~ la2(r)ldr::::; ll'Pll=llull2II▽ull2 +||匹||2llull~,
R. 

(2.15) 

and, likewise, we infer 

J~バ|び1(r)ldr :s; ll'P|に|r_打|3,(2R→)I ▽PII½ ，ゎ2R, + (2凡）―占I▽'Pll2IIPll2 ・ 
2R. 

(2.16) 

In view of Lemma 2.1, and the fact that u EC, we find that the right-hand side in both equations (2.15) 
and (2.16) is finite. Therefore, there exists an unbounded sequence {rn} such that 

lim加(rn)＋四(rn)]= 0. 
rn→OO 

Employing this information in (2.13), (2.14) we conclude 

Jpg =J位 [p山xx+curia]・ n + p [cpw xx・ ▽u ・ n-(w xx・ ▽<p）w x x. nl} ＋PJい位叩
'D JE J'D 

:=h1 +I四＋JE3+h4 +Iv. 
(2.17) 

In the following estimates, we shall use several times the classical trace inequality 

|切 ||1,~ :','. cllw II 1,1，叩・ (2.18) 
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We thus have 

IIE1I + IIrnl：：：： c (|山|＋ |wl2) ll'Pll2,2,vK・

Moreover, employing (2.18) along with Schwarz inequality, we get 

IJE31：：：： C II l'PI I▽ulll1,1，わk ：：：： C (ll'Pll2，っ叶▽ull2,vK+ ll'Pll1,2,vK II▽ull 1,2,v砂，

which, in turn, gives 

Also, by Schwarz inequality, 

IJd <::: c IIVull1,2,'DK ll'Pll2,2，叩・

II'D|<::: llu|~IID2cpll2 ・ 

(2.19) 

(2.20) 

(2.21) 

The estimate for h2 requires a little care. Let (be a function which is one in a neighborhood of刃and

zero at large distances. We have 

Ir:2 = -l  div(r.pcurl((a)) = -1▽r.p • curl ((a). 
1) 

(2.22) 

Using the identity 

-curl A・ B + curlB ・A= div (Ax B) 

with A=  (a and B =四 from(2.22), (2.18) and Schwarz inequality we show 

IIE2I = ll ax匹・ nl S clll▽u||匹 |||1,1,'DKSC (I▽ull2,叩|匹|1,2,叩+||D%|い|匹||2，叩），
刃

which leads to 

IIE2I ~ c llv'ull1,2,vK ll'Pll2,2，加・ (2.23) 

If we employ (2.19)-(2.23) in (2.17) and take into account (2.11), we arrive at 

lpgl ~ C(|wl + lwl2 + llu闘＋ 1|▽ull2 + IID2ull2) 119112. 
ゎ

(2.24) 

Since g is arbitrary in C0(D), and, by Sobolev embedding theorem, 

llull~ さ:cllu|| 至 ||v'ull 至， (2.25) 

from (2.24) it follows that p E L刊D)for a.a. t E (0, oo) and 

IIPll2 ~ C(山|+ |wl2 + llull1 II▽ull! + 11▽ull2 + IID2ull2). (2.26) 

The proposition is then a consequence of (2.26) and the fact that (u, w) is in the class C. 
ロ

We conclude this section with another preparatory result concerning the asymptotic behavior of 

functions in the class C. 

Lemma 2.3 Let (u, p, w) be in the cl邸 sC. Then, 

lim llu(t) 116 = 0. 
t→OO 

(2.27) 
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Proof. For R ~ 2R., letゅR=ゆR(r)be a smooth, non-increasing "cut-off'function such thatゅR=l
for r ~ R,咋＝ 0for r ~ 2R, and|▽伽I~ C R-1, for some constant C independent of R. We then 
test (2.l)i by咋 div1I'(u,p)to get 

Jっ峠如 •divT=||《写divTII~ —。jの（伽u ・ v'u ・ divT—疇 •divT). (2.28) 

By integration by parts, we formally show the following identity that can be rigorously justified by a 
standard approximation procedure 

J 咋如・div']['=l [div （峠如 •T)-2µい(8tu):][))(u)]~ ¥&RB,, divT : 2ゎVT n-μ羞IIぷ D(U)はーJゎ▽咋 T 如
Set q, := w x x •• u -w x u and recall [6, Lemma 2.4(b)] 

4> ・ n = 0 at 1: (2.29) 

Thus, integrating by parts and with the help of (2.29) we show 

JDゆ謹 div'JI'=2μ h <I> -llll(u) ・ n -2μ 1戸豆(llll(u))ij―JD▽伽 11'.<I>. (2.30) 

Next, since divu = divV = 0, we get 

28;<I>j(llll(u))ij = div（<I>.▽u+占V|▽ul2)+ w x▽ui ・ ▽U;―▽（W Xu)：▽u, 

so that, substituting the latter in (2.30) and using Gauss theorem, we infer 

Jつゆ呼 •div'll'= -μ L緑 (wX ▽叫• ▽糾ー▽(wx u) ：▽u)+µh(n· ▽U·<P — ½V•n|▽叩）

+j  ▽咋 •[2µ（▽UT ・<P十らV|Vul2)-1l'・<I?].
ゎ

Collecting (2.28), (2.30) and (2.31) we deduce 

d µか II亨(u)II~+ 11亭 div言＝i[v -11'. n -(!μ (n▽u <I>ーもV叫▽叩）］
(2.31) 

+(!J峠 [u・▽u-div'll'+μ(wx ▽糾• ▽ぃ—▽(w XU)：▽u)] (2.32) 
1J 

-(!j ▽咋 •[11'· 知＋ 2µ（戸· <I> ＋罰▽叩）ー11'・<I>]:=JE +Iゎ十JR
1J 

Arguing exactly as in the proof of [5, Eq. (3.22)] we show 

t 

此虹la'IR=0, for all t > 0. 

Furthermore, as shown in the proof of [5, Theorem 2.1], we have 

IInl :','. c (II]]))(u)II~ + 11]]))（u)lli + 11]]))(u)I悶）十¾II div 1'11~ 

Finally, using (2.18) multiple times along with the inequality [4, Lemma 4.9] 

lwl :','. ell▽ull2, 

(2.33) 

(2.34) 

(2.35) 
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one can prove, in a way entirely similar to [5, Eq. (4.11)] 

II叫:s:c [lwl(II▽叫1,2+ IIPll1,2) + llllll(u)II~ + llllll(u)I 月十 ¾lldivTII~. (2.36) 

We now integrate both sides of (2.31) over (0, t), t E (0, oo), let R→ oo and employ (2.33), along with 
Lebesgue dominated convergence theorem. If we differentiate with respect to t the resulting equation, 
and take into account the estimates (2.34) and (2.36), we conclude, in particular, 

羞 llllll(u)II~ :S: c[|山（1|▽ull1,2+ IIPll1,2) + llllll(u)II~ + llllll(u)lli + llllll(u)II月：＝ h(t) (2.37) 

Since (u,p,w) EC, and also in view of Proposition 2.1 we infer, on the one hand, h Eじ(0,oo遺） and,
on the other hand, the existence of an unbounded sequence of times { tn} such that 

lim llllll(u(tn))ll2→ 0. 
tn→OO 

Thus, integrating both sides of (2.37) over the interval (tn, t), t > tn, we get 

00 
IIII])(u(t))II~::; IIII])(u(％））||各+J h(s)ds 

tn 

which implies 

lim IIII])(u(t)) 112→ 0. 
t→OO 

The latter furnishes the desired result after we use the inequality [4, Eq. (4.75)] 

lull6 ::; c lllill(u) 112, u EV. 

口

3 Main Result 

In this section we will give a proof of the following result, representing the major achievement of this 
note. 

Theorem 3.1 Let (u,p, w) be in the class C. Suppose that 

~uo E L2('D），（r :＝戸）．

Then, 

t見應E(t)= ½ t世~ (llu(t) II~+ w(t) ・I・ w(t)) = 0. 

Proof. We begin to observe that by assumption w E W1•00(0, oo国） whichdelivers 

lim lw(t)I = 0. 
t→(X) 

Therefore, we only have to show 

lim llu(t) 112 = 0. 
t→~ 

(3.1) 

To this end, let咋＝咋(r)be the "cut-o『'functionintroduced in Lemma 2.3. By dot-multiplying 
through both sides of (2.1) by切叫nr u, integrating by parts over D, and using the fact that▽ゆR・WXX= 
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Employing Holder ineq叫 itymultiple times, and recalling the properties of証 weget 

J {lnru% ・ ▽咋ー2(]]])(u))ij[ln r(u戌咋＋疇心）］ ＋ pu• ▽伽｝
ゎ

::; 11 lnr|叫 |1い (llulll+ 211]]])（u)ll2llull4 + IIPll2llull4) 

::;cR→(llulll + 11]]])(u)lli + IIPlln ・ 
On account of (u,p) EC and (2.26) we thus infer 

i四l{L{lnru2u．▽伽ー2(]]])位））ij[lnr（→虹＋砂吐）］ ＋ pu• ▽伽｝｝ ds=O, forallt>O. 
0 lJ'D 

(3.3) 
Similarly, using Hardy's inequality 

J二：：：：：411▽噂
'D r 

furnishes 

J ！炉U· 竺＋ pu• 巴ー 2(lill(u))ij(u戸＋ u，凸） :s; cllr-1ull2 (llull~ + IIPll2 + lllill(u)ll2) 
vr I r r - -r r 

:s; c (llull! + IIPII~ + II▽u|芸)

which, in turn, since (u,p) EC, with the help of Proposition 2.1 and (2.25) entails 

[｛f；研u．:＋pu・ご―2(lill(u)加(u亨＋ U亨） ｝dt < oo. (3.4) 

Finally, using (2.18) with w = lill(u) and w = p, and recalling (2.35), we obtain 

J峠 lnrwxx-1l'(u,p)・nl:s;cll▽ull2 (I▽ull2 + IID2ull2) + IIPll1,2) 
x 

which, because (u,p) EC, with the help of Proposition 2.1 provides 

「J伽 lnrwxx •1l'(u,p) ・nl dt < oo. 
0 IJE 

(3.5) 

We now integrate both sides of (3.2) over [O, t], arbitrary t > 0, and then pass to the limit R→ 00. 
Taking into account (3.3), that切RS: 1, and employing Fu.bini's theorem, we thus receive, in particular, 

llv'lnru(t)II 各— ||v'lnruo||~ S: 2 fo'{Lt lu2u.：： +pu• :: -2(11Ji(u))ij(u戸＋ U凸 ds, (3.6) 
0 LJTJT 

~ +ui~)I} 

which, by (3.4), (3.5) and the assumption, furnishes 

言心u(t)||；S:M < oo. (3.7) 
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For any fixed R, employing also Holder inequality, we have 

llu(t)II~ = llu(t)llhR + llu(t)||；か:::;cR2llu(t)II~ + ~IIぷ五(t)|| ；,VR'

which, by (3.7), entails 

llu(t)||含::;cR2llu(t)|闘＋
M 
． 

lnR 

Therefore, if we operate with lim supt→00 on both sides of this relation, use (2.27) and then let R→ oo, 
we arrive at (3.1), thus completing the proof of the theorem. 
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