A Note on the Asymptotic Behavior in Time of the Kinetic Energy in a Liquid-Solid Interaction Problem

Giovanni P. Galdi

1 Introduction

Consider a sufficiently smooth, rigid body \mathscr{B} (the closure of a simply connected bounded domain of \mathbb{R}^3) completely immersed in a viscous liquid \mathscr{L} that fills the entire space outside \mathscr{B} . We assume that the center of mass G of \mathscr{B} is held fixed in a given position, while \mathscr{B} is allowed to rotate around G. The motion of the coupled system $\mathscr{S} := \mathscr{B} \cup \mathscr{L}$ is driven by a time dependent torque with respect to G, M=M(t), acting on \mathscr{B} .

Recently, the question of the large time behavior of \mathscr{S} has attracted the attention of several authors, also in the more general case when G is free to move. More specifically, in [2] for \mathscr{B} a sphere, and in [5, 7] in the general case, under diverse assumptions on the initial data and driving mechanism, the same conclusion is drawn, namely, that as time grows indefinitely large, the velocity u of \mathscr{L} as well as translational (ξ) and angular (ω) velocities of \mathscr{B} will tend to 0 in certain norms. Actually, in [2, 7] it is also shown that G (in absence of external forces and torques) will cover a finite distance.

However, in the more general and interesting case of a body of *arbitrary* shape, the asymptotic decay in time of the velocity field of \mathscr{L} is established in norms that do not ensure that the total kinetic energy of the coupled system, defined as

$$E(t) := \frac{1}{2} \left\{ \rho \int_{\mathcal{D}} |u(t)|^2 + m |\xi(t)|^2 + \omega(t) \cdot \mathbf{I} \cdot \omega(t) \right\}$$

with m and I mass and inertia tensor of \mathscr{B} , ultimately vanishes. Precisely, in [5, 7] it is proved that, as $t \to \infty$, while $\xi(t)$ and $\omega(t)$ tend pointwise to 0, the velocity field u tends to 0 in the L^q -norm if q > 2, thus excluding the case q = 2, representative of the kinetic energy of $\mathscr{L}^{(1)}$

Objective of this note is to show that the kinetic energy, E, of any solution belonging to a suitable function class, C, will eventually tend to 0. As shown in [5], the class C is certainly not empty, provided the initial data are prescribed in appropriate function spaces with their magnitude is opportunely restricted, and M(t) vanishes as $t \to \infty$ in the L^2 -sense. The method we use relies heavily upon establishing a space-weighted estimate on the solutions in combination with a uniform bound on the pressure field. Unfortunately, this approach does not seem to work if G is free to move, and therefore we defer to a future work the study of the more general case.

2 Equations of Motions and Preliminary Results

We shall describe the motion of the coupled system S with respect to a frame, \mathscr{S} , attached to \mathcal{B} and with its origin at an interior point of \mathscr{B} . In this way, in particular, the domain occupied by \mathcal{L} becomes time-independent, and we will denote it by \mathcal{D} (:= $\mathbb{R}^3 \setminus \mathcal{B}$) and by Σ its boundary. We suppose \mathcal{D} of class

⁽¹⁾As a matter of fact, in [5] it is only proved $\lim_{t\to\infty} ||u(t)||_6 = 0$. However, by elementary interpolation, for any $q \in (2, 6)$, we have $||u(t)||_q \leq ||u(t)||_2 ||u(t)||_6$, which, since $||u(t)||_2$ is uniformly bounded [5, Theorem 2.1], shows the claimed result.

 $C^2.$ Thus, with the notation introduced in the previous section, the governing equations of the motion of ${\mathscr S}$ are given by (see [4])

 $\mathsf{I} \cdot \dot{\omega} + \omega \times (\mathsf{I} \cdot \omega) + \int_{\Sigma} x \times \mathbb{T}(u, p) \cdot n = \mathsf{M}$

endowed with initial conditions

$$u(x,0) = u_0(x), x \in \mathcal{D}, \quad \omega(0) = \omega_0.$$
 (2.3)

In the above equations, p is the pressure field of \mathcal{L} , ϱ its (constant) density, and $V(x,t) := \omega(t) \times x$. Also, \mathbb{T} is the Cauchy stress tensor given by

$$\mathbb{T}(u,p) = 2\mu \mathbb{D}(u) - p \mathbb{I}, \quad 2\mathbb{D}(u) := \nabla u + (\nabla u)^{\top},$$

with μ shear-viscosity coefficient and I identity. Moreover, m is the mass of \mathcal{B} and I its inertia tensor relative to G. Furthermore,

$$\mathsf{M}(t) = \mathbb{Q}^{+}(t) \cdot \mathsf{M}(t), \qquad (2.4)$$

with the tensor ${\mathbb Q}$ satisfying the following equation

$$\begin{cases} \dot{\mathbb{Q}} = -\mathbb{Q} \cdot \mathbb{O}(\omega) \\ \mathbb{Q}(0) = \mathbb{I} \end{cases} \qquad \qquad \mathbb{O}(\omega) = \begin{bmatrix} 0 & \omega_3 & -\omega_2 \\ -\omega_3 & 0 & \omega_1 \\ \omega_2 & -\omega_1 & 0 \end{bmatrix}$$
(2.5)

In particular, \mathbb{Q} is proper orthogonal, that is,

$$\mathbb{Q}^{\top}(t) \cdot \mathbb{Q}(t) = \mathbb{Q}(t) \cdot \mathbb{Q}^{\top}(t) = \mathbb{I}, \quad \det \mathbb{Q}(t) = 1, \quad \text{for all } t \in \mathbb{R}.$$

We wish to introduce a suitable class of functions satisfying (2.1). To this end, let (2)

$$\mathcal{R} := \{ \overline{u} \in C^{\infty}(\mathbb{R}^3) : \overline{u}(x) = \overline{u} \times x, \ \overline{u} \in \mathbb{R}^3 \}$$

and define

$$\mathcal{V}(\mathcal{D}) = \{ u \in W^{1,2}(\mathcal{D}) : \operatorname{div} u = 0 \text{ in } \mathcal{D}, \ u \mid_{\Sigma} = \overline{u}, \text{ for some } \overline{u} \in \mathcal{R} \}.$$

We also set

$$\begin{split} B_R &:= \left\{ x \in \mathbb{R}^3 : \ |x| < R \right\}; \quad R_* := 2 \inf \left\{ R \in (0,\infty) : \mathscr{B} \cap B_R \supset \mathscr{B} \right\}; \\ \mathcal{D}_R &:= \mathcal{D} \cap B_R, \quad \mathcal{D}^R = \mathcal{D} \backslash \overline{\mathcal{D}_R}, \quad R > R_* \,. \end{split}$$

Definition 2.1 A triple (u, p, ω) is in the class C, if

$$\begin{split} & u \in L^{\infty}(0,\infty;\mathcal{V}(\mathcal{D})), \quad \nabla u \in L^{2}(0,\infty;W^{1,2}(\mathcal{D})) \\ & \omega \in W^{1,2}(0,\infty), \quad \nabla p \in L^{2}(0,\infty;L^{2}(\mathcal{D})), \\ & u \in C([0,\tau];W^{1,2}(\mathcal{D}_{R})), \quad \partial_{t}u, \ p \in L^{2}(0,\infty;L^{2}(\mathcal{D}_{R})), \quad \text{for all } R \geq R_{*} \,, \end{split}$$

and, in addition, (u, p, ω) satisfies (2.1).

⁽²⁾We shall use standard notation for function spaces, see [1]. So, for instance, $L^q(\mathcal{A})$, $W_0^{m,q}(\mathcal{A})$, $W_0^{m,q}(\mathcal{A})$, etc., will denote the usual Lebesgue and Sobolev spaces on the domain \mathcal{A} , with norms $\|\cdot\|_{q,\mathcal{A}}$ and $\|\cdot\|_{m,q,\mathcal{A}}$, respectively. Whenever confusion will not arise, we shall omit the subscript \mathcal{A} . Occasionally, for X a Banach space, we denote by $\|\cdot\|_X$ its associated norm. Moreover $L^q(I; X)$, C(I; X) I real interval, denote classical Bochner spaces.

The class C is not empty, as secured by the following result, which is a particular case of [5, Theorem 2.1].

Theorem 2.1 Let $M \in L^2(0,\infty;\mathbb{R}^3)$ and $u_0 \in \mathcal{V}(\mathcal{D})$ with $u_0|_{\Sigma} = \omega_0 \times x$. Then, there is $\delta > 0$ such that if

$$||u_0||_{1,2} + |\omega_0| + ||\mathbf{M}||_{L^2(0,\infty)} \le \delta,$$
(2.6)

there exists at least one solution $(u, p, \omega, \mathbb{Q})$ to (2.1) - (2.5) with (u, p, ω) in the class C.

From Definition 2.1 and Sobolev inequality, we infer that

$$p \in L^2(0,\infty; L^6(\mathcal{D})), \qquad (2.7)$$

while we only have $p \in L^2(0, \infty; L^2(\mathcal{D}_R))$ for all $R > R_*$. Our first objective is to prove that the latter property holds, in fact, in the whole of \mathcal{D} . Precisely, we have the following.

Proposition 2.1 Let $(u, p, \omega) \in C$. Then,

$$p \in L^2(0,\infty;L^2(\mathcal{D}))$$
.

In order to prove the proposition, we need the next two results, whose proofs are given in [5, Lemma 3.2] and [3, Lemma 3.1], respectively.

Lemma 2.1 Let (u, p, ξ, ω, Q) be in the class C. Then for a.a. $t \in (0, \infty)$

$$\nabla p \in L^{q_1}(\mathcal{D}^{2R_*}), \ p \in L^{q_2}(\mathcal{D}^{2R_*}), \ \text{for all } q_1 \in (1,6], \ q_2 \in (\frac{3}{2},\infty].$$

Lemma 2.2 Let $g \in C_0^{\infty}(\mathcal{D})$. Then the Neumann problem

$$\Delta \varphi = g \quad \text{in } \mathcal{D}$$

$$\frac{\partial \varphi}{\partial n} = 0 \quad \text{at } \Sigma$$
(2.8)

with the side condition

$$\lim_{|x| \to \infty} \nabla \varphi(x) = 0.$$
(2.9)

has one and only one solution such that for all $s \in (1,3)$

$$D^2 \varphi \in L^s(\mathcal{D}), \quad \nabla \varphi \in L^{3s/(3-s)}(\mathcal{D})$$

and

$$\int_{\mathcal{D}_K} \varphi = 0, \tag{2.10}$$

for a fixed $K > R_*$. Moreover, $\varphi \in L^{\infty}(\mathcal{D})$ and

$$\|\varphi\|_{s,\mathcal{D}_{K}} + \|\nabla\varphi\|_{3s/(3-s)} + \|D^{2}\varphi\|_{s} \le c\|g\|_{s}, \qquad (2.11)$$

where the constant c depends only on s, K and \mathcal{D} .

Proof of Proposition 2.1. By formally applying the div operator on both sides of $(2.1)_1$ and observing that

$$\operatorname{div}\left[\rho(\partial_t u + \omega \times x \cdot \nabla u - \omega \times u) - \Delta u\right] = 0,$$

one easily deduces that p satisfies for a.a. $t \in (0, \infty)$ the following Neumann problem in the distributional sense $\Delta n = \operatorname{div}(u, \nabla u)$ in \mathcal{D}

$$\frac{\partial p}{\partial n} = -[\rho\dot{\omega} \times x + \operatorname{curl} a] \cdot n \text{ at } \mathcal{D}, \quad a := \operatorname{curl} u.$$
(2.12)

Let g and φ be as in Lemma 2.2. Multiplying both sides of $(2.12)_1$ by g, integrating by parts over \mathcal{D}_r , and taking into account (2.8) and (2.12)₂, we show

$$\int_{\mathcal{D}_r} p g = -\int_{\Sigma \cup \partial B_r} \varphi \frac{\partial p}{\partial n} + \int_{\mathcal{D}_r} \varphi \operatorname{div} \left(u \cdot \nabla u \right) = \int_{\Sigma} \varphi \left[\rho \, \dot{\omega} \times x + \operatorname{curl} a \right] \cdot n + \rho \int_{\mathcal{D}_r} \varphi \, \partial_i \partial_j \left(u_i u_j \right) + \sigma_1(r) \,, \quad (2.13)$$

where we used the identity $\operatorname{div}(u \cdot \nabla u) = \partial_i \partial_j (u_i u_j)$, and set

$$\sigma_1(r) := -\int_{\partial B_r} (\varphi \frac{\partial p}{\partial n} - p \frac{\partial \varphi}{\partial n}) \,.$$

By a double integration by parts, we infer

$$\int_{\mathcal{D}_{r}} \varphi \,\partial_{i} \partial_{j}(u_{i}u_{j}) = \int_{\mathcal{D}_{r}} u_{i}u_{j} \partial_{i} \partial_{j}\varphi + \int_{\Sigma \cup \partial B_{r}} [\varphi \, u \cdot \nabla u \cdot n - u \cdot \nabla \varphi \, u \cdot n] \\
= \int_{\mathcal{D}_{r}} u_{i}u_{j} \partial_{i} \partial_{j}\varphi + \int_{\Sigma} [\varphi \, \omega \times x \cdot \nabla u \cdot n - (\omega \times x \cdot \nabla \varphi) \, \omega \times x \cdot n] + \sigma_{2}(r),$$
(2.14)

where

$$\sigma_2(r) := \int_{\partial B_r} [\varphi \, u \cdot \nabla u \cdot n - u \cdot \nabla \varphi \, u \cdot n] \, .$$

By employing Hölder inequality, we deduce

$$\int_{R_*}^{\infty} |\sigma_2(r)| \mathrm{d}r \le \|\varphi\|_{\infty} \|u\|_2 \|\nabla u\|_2 + \|\nabla\varphi\|_2 \|u\|_4^2,$$
(2.15)

and, likewise, we infer

$$\int_{2R_*}^{\infty} r^{-\frac{1}{2}} |\sigma_1(r)| \mathrm{d}r \le \|\varphi\|_{\infty} \|r^{-\frac{1}{2}}\|_{3,(2R_*,\infty)} \|\nabla p\|_{\frac{3}{2},\mathcal{D}^{2R_*}} + (2R_*)^{-\frac{1}{2}} \|\nabla \varphi\|_2 \|p\|_2.$$
(2.16)

In view of Lemma 2.1, and the fact that $u \in C$, we find that the right-hand side in both equations (2.15) and (2.16) is finite. Therefore, there exists an unbounded sequence $\{r_n\}$ such that

$$\lim_{r_n \to \infty} [\sigma_1(r_n) + \sigma_2(r_n)] = 0$$

Employing this information in (2.13), (2.14) we conclude

$$\int_{\mathcal{D}} p g = \int_{\Sigma} \left\{ \varphi \left[\rho \dot{\omega} \times x + \operatorname{curl} a \right] \cdot n + \rho \left[\varphi \, \omega \times x \cdot \nabla u \cdot n - (\omega \times x \cdot \nabla \varphi) \, \omega \times x \cdot n \right] \right\} + \rho \int_{\mathcal{D}} u_i u_j \partial_i \partial_j \varphi$$

$$:= I_{\Sigma 1} + I_{\Sigma 2} + I_{\Sigma 3} + I_{\Sigma 4} + I_{\mathcal{D}}.$$
(2.17)

In the following estimates, we shall use several times the classical trace inequality

$$\|w\|_{1,\Sigma} \le c \|w\|_{1,1,\mathcal{D}_K} \,. \tag{2.18}$$

We thus have

$$|I_{\Sigma 1}| + |I_{\Sigma 4}| \le c \left(|\dot{\omega}| + |\omega|^2 \right) \|\varphi\|_{2,2,\mathcal{D}_K} \,. \tag{2.19}$$

Moreover, employing (2.18) along with Schwarz inequality, we get

$$|I_{\Sigma 3}| \leq c \, \||\varphi||\nabla u|\|_{1,1,\mathcal{D}_K} \leq c \left(\|\varphi\|_{2,\mathcal{D}_K}\|\nabla u\|_{2,\mathcal{D}_K} + \|\varphi\|_{1,2,\mathcal{D}_K}\|\nabla u\|_{1,2,\mathcal{D}_K}\right) \,,$$

which, in turn, gives

$$|I_{\Sigma 3}| \le c \, \|\nabla u\|_{1,2,\mathcal{D}_K} \|\varphi\|_{2,2,\mathcal{D}_K} \,. \tag{2.20}$$

Also, by Schwarz inequality,

$$|I_{\mathcal{D}}| \le \|u\|_4^2 \|D^2 \varphi\|_2.$$
(2.21)

The estimate for $I_{\Sigma 2}$ requires a little care. Let ζ be a function which is one in a neighborhood of Σ and zero at large distances. We have

$$I_{\Sigma 2} = -\int_{\mathcal{D}} \operatorname{div} \left(\varphi \operatorname{curl} \left(\zeta a\right)\right) = -\int_{\mathcal{D}} \nabla \varphi \cdot \operatorname{curl} \left(\zeta a\right).$$
(2.22)

Using the identity

$$-\operatorname{curl} A \cdot B + \operatorname{curl} B \cdot A = \operatorname{div} (A \times B)$$

with $A = \zeta a$ and $B = \nabla \varphi$, from (2.22), (2.18) and Schwarz inequality we show

$$|I_{\Sigma 2}| = \left| \int_{\Sigma} a \times \nabla \varphi \cdot n \right| \le c ||\nabla u||\nabla \varphi||_{1,1,\mathcal{D}_K} \le c \left(||\nabla u||_{2,\mathcal{D}_K} ||\nabla \varphi||_{1,2,\mathcal{D}_K} + ||D^2 u||_{2,\mathcal{D}_K} ||\nabla \varphi||_{2,\mathcal{D}_K} \right),$$

which leads to

$$I_{\Sigma 2}| \le c \, \|\nabla u\|_{1,2,\mathcal{D}_K} \|\varphi\|_{2,2,\mathcal{D}_K} \,. \tag{2.23}$$

If we employ (2.19)-(2.23) in (2.17) and take into account (2.11), we arrive at

$$\left| \int_{\mathcal{D}} pg \right| \le c \left(|\dot{\omega}| + |\omega|^2 + ||u||_4^2 + ||\nabla u||_2 + ||D^2 u||_2 \right) ||g||_2.$$
(2.24)

Since g is arbitrary in $C_0^{\infty}(\mathcal{D})$, and, by Sobolev embedding theorem,

$$\|u\|_{4}^{2} \leq c \|u\|_{2}^{\frac{1}{2}} \|\nabla u\|_{2}^{\frac{3}{2}}, \qquad (2.25)$$

from (2.24) it follows that $p \in L^2(\mathcal{D})$ for a.a. $t \in (0, \infty)$ and

$$\|p\|_{2} \le c \left(|\dot{\omega}| + |\omega|^{2} + \|u\|_{2}^{\frac{1}{2}} \|\nabla u\|_{2}^{\frac{3}{2}} + \|\nabla u\|_{2} + \|D^{2}u\|_{2} \right).$$

$$(2.26)$$

The proposition is then a consequence of (2.26) and the fact that (u, ω) is in the class C.

We conclude this section with another preparatory result concerning the asymptotic behavior of functions in the class \mathcal{C} .

Lemma 2.3 Let (u, p, ω) be in the class C. Then,

$$\lim_{t \to \infty} \|u(t)\|_6 = 0.$$
(2.27)

Proof. For $R \ge 2R_*$, let $\psi_R = \psi_R(r)$ be a smooth, non-increasing "cut-off" function such that $\psi_R = 1$ for $r \le R$, $\psi_R = 0$ for $r \ge 2R$, and $|\nabla \psi_R| \le C R^{-1}$, for some constant C independent of R. We then test $(2.1)_1$ by ψ_R div $\mathbb{T}(u, p)$ to get

$$\int_{\mathcal{D}} \psi_R \partial u_t \cdot \operatorname{div} T = \|\sqrt{\psi_R} \operatorname{div} T\|_2^2 - \rho \int_{\mathcal{D}} (\psi_R u \cdot \nabla u \cdot \operatorname{div} T - \psi_R \Phi \cdot \operatorname{div} T) .$$
(2.28)

By integration by parts, we formally show the following identity that can be rigorously justified by a standard approximation procedure

$$\int_{\mathcal{D}} \psi_R \partial u_t \cdot \operatorname{div} \mathbb{T} = \int_{\mathcal{D}} \left[\operatorname{div} \left(\psi_R \, \partial_t u \cdot \mathbb{T} \right) - 2\mu \, \psi_R \, \mathbb{D}(\partial_t u) : \mathbb{D}(u) \right] \\ = \int_{\Sigma} \dot{V} \cdot \mathbb{T} \cdot n - \mu \frac{d}{dt} \| \sqrt{\psi_R} \mathbb{D}(u) \|_2^2 - \int_{\mathcal{D}} \nabla \psi_R \cdot \mathbb{T} \cdot \partial_t u \,.$$

Set $\Phi := \omega \times x \cdot \nabla u - \omega \times u$ and recall [6, Lemma 2.4(b)]

$$\Phi \cdot n = 0 \quad \text{at } \Sigma \tag{2.29}$$

Thus, integrating by parts and with the help of (2.29) we show

$$\int_{\mathcal{D}} \psi_R \Phi \cdot \operatorname{div} \mathbb{T} = 2\mu \int_{\Sigma} \Phi \cdot \mathbb{D}(u) \cdot n - 2\mu \int_{\mathcal{D}} \psi_R \partial_i \Phi_j(\mathbb{D}(u))_{ij} - \int_{\mathcal{D}} \nabla \psi_R \cdot \mathbb{T} \cdot \Phi \,. \tag{2.30}$$

Next, since $\operatorname{div} u = \operatorname{div} V = 0$, we get

$$2\partial_i \Phi_j(\mathbb{D}(u))_{ij} = \operatorname{div}\left(\Phi \cdot \nabla u + \frac{1}{2}V |\nabla u|^2\right) + \omega \times \nabla u_i \cdot \nabla u_i - \nabla(\omega \times u) : \nabla u,$$

so that, substituting the latter in (2.30) and using Gauss theorem, we infer

$$\int_{\mathcal{D}} \psi_R \Phi \cdot \operatorname{div} \mathbb{T} = -\mu \int_{\mathcal{D}} \psi_R \left(\omega \times \nabla u_i \cdot \nabla u_i - \nabla (\omega \times u) : \nabla u \right) + \mu \int_{\Sigma} \left(n \cdot \nabla u \cdot \Phi - \frac{1}{2} V \cdot n |\nabla u|^2 \right) \\ + \int_{\mathcal{D}} \nabla \psi_R \cdot \left[2\mu (\nabla u^\top \cdot \Phi + \frac{1}{2} V |\nabla u|^2) - \mathbb{T} \cdot \Phi \right] .$$
(2.31)

Collecting (2.28), (2.30) and (2.31) we deduce

$$\mu \frac{d}{dt} \| \sqrt{\psi_R} \mathbb{D}(u) \|_2^2 + \| \sqrt{\psi_R} \operatorname{div} \mathbb{T} \|_2^2 = \int_{\Sigma} \left[\dot{V} \cdot \mathbb{T} \cdot n - \varrho \mu \left(n \cdot \nabla u \cdot \Phi - \frac{1}{2} V \cdot n |\nabla u|^2 \right) \right] \\
+ \varrho \int_{\mathcal{D}} \psi_R \left[u \cdot \nabla u \cdot \operatorname{div} \mathbb{T} + \mu \left(\omega \times \nabla u_i \cdot \nabla u_i - \nabla (\omega \times u) : \nabla u \right) \right] \\
- \varrho \int_{\mathcal{D}} \nabla \psi_R \cdot \left[\mathbb{T} \cdot \partial_t u + 2\mu (\nabla u^\top \cdot \Phi + \frac{1}{2} V |\nabla u|^2) - \mathbb{T} \cdot \Phi \right] := I_{\Sigma} + I_{\mathcal{D}} + I_R$$
(2.32)

Arguing exactly as in the proof of [5, Eq. (3.22)] we show

$$\lim_{R \to \infty} \int_0^t I_R = 0, \text{ for all } t > 0.$$
(2.33)

Furthermore, as shown in the proof of [5, Theorem 2.1], we have

$$|I_D| \le c \left(\|\mathbb{D}(u)\|_2^3 + \|\mathbb{D}(u)\|_2^4 + \|\mathbb{D}(u)\|_2^6 \right) + \frac{1}{4} \|\operatorname{div} \mathbb{T}\|_2^2$$
(2.34)

Finally, using (2.18) multiple times along with the inequality [4, Lemma 4.9]

$$|\omega| \le c \, \|\nabla u\|_2 \,, \tag{2.35}$$

one can prove, in a way entirely similar to [5, Eq. (4.11)]

$$|I_{\Sigma}| \le c \left[|\dot{\omega}| (\|\nabla u\|_{1,2} + \|p\|_{1,2}) + \|\mathbb{D}(u)\|_2^3 + \|\mathbb{D}(u)\|_2^4 \right] + \frac{1}{4} \|\operatorname{div} \mathbb{T}\|_2^2.$$
(2.36)

We now integrate both sides of (2.31) over (0, t), $t \in (0, \infty)$, let $R \to \infty$ and employ (2.33), along with Lebesgue dominated convergence theorem. If we differentiate with respect to t the resulting equation, and take into account the estimates (2.34) and (2.36), we conclude, in particular,

$$\frac{d}{dt} \|\mathbb{D}(u)\|_{2}^{2} \le c \left[|\dot{\omega}| (\|\nabla u\|_{1,2} + \|p\|_{1,2}) + \|\mathbb{D}(u)\|_{2}^{3} + \|\mathbb{D}(u)\|_{2}^{4} + \|\mathbb{D}(u)\|_{2}^{6} \right] := h(t)$$
(2.37)

Since $(u, p, \omega) \in C$, and also in view of Proposition 2.1 we infer, on the one hand, $h \in L^1(0, \infty; \mathbb{R})$ and, on the other hand, the existence of an unbounded sequence of times $\{t_n\}$ such that

$$\lim_{t_n \to \infty} \|\mathbb{D}(u(t_n))\|_2 \to 0$$

Thus, integrating both sides of (2.37) over the interval $(t_n, t), t > t_n$, we get

$$\|\mathbb{D}(u(t))\|_{2}^{2} \leq \|\mathbb{D}(u(t_{n}))\|_{2}^{2} + \int_{t_{n}}^{\infty} h(s) \,\mathrm{d}s$$

which implies

$$\lim_{t \to \infty} \|\mathbb{D}(u(t))\|_2 \to 0$$

The latter furnishes the desired result after we use the inequality [4, Eq. (4.75)]

$$\|u\|_6 \le c \, \|\mathbb{D}(u)\|_2, \quad u \in \mathcal{V}.$$

3 Main Result

Therefore, we only have to show

In this section we will give a proof of the following result, representing the major achievement of this note.

Theorem 3.1 Let (u, p, ω) be in the class C. Suppose that

$$\sqrt{\ln r} u_0 \in L^2(\mathcal{D}), \quad (r := \sqrt{x_i x_i}).$$

Then,

$$\lim_{t \to \infty} E(t) \equiv \frac{1}{2} \lim_{t \to \infty} \left(\|u(t)\|_2^2 + \omega(t) \cdot \mathbf{I} \cdot \omega(t) \right) = 0 \,.$$

Proof. We begin to observe that by assumption $\omega \in W^{1,\infty}(0,\infty;\mathbb{R}^3)$ which delivers

$$\lim_{t \to \infty} |\omega(t)| = 0.$$

$$\lim_{t \to \infty} ||u(t)||_2 = 0.$$
(3.1)

To this end, let $\psi_R = \psi_R(r)$ be the "cut-off" function introduced in Lemma 2.3. By dot-multiplying through both sides of (2.1) by $\psi_R \ln r u$, integrating by parts over \mathcal{D} , and using the fact that $\nabla \psi_R \cdot \omega \times x =$

0, we show

$$\frac{1}{2}\frac{d}{dt}\|\psi_R\sqrt{\ln r}\,u(t)\|_2^2 = \frac{1}{2}\int_{\mathcal{D}}\left(\ln r\,u^2 u\cdot\nabla\psi_R + \psi_R u^2\,u\cdot\frac{x}{r^2}\right) - 2\int_{\mathcal{D}}\ln r\,\mathbb{D}(u):\mathbb{D}(u) \\ -2\int_{\mathcal{D}}(\mathbb{D}(u))_{ij}[\ln r(u_j\partial_i\psi_R + u_i\partial_j\psi_R) + \psi_R(u_j\frac{x_i}{r^2} + u_i\frac{x_j}{r^2})] \\ + \int_{\mathcal{D}}p\,u\cdot\left(\nabla\psi_R\,\ln r + \psi_R\frac{x}{r^2}\right) + \int_{\Sigma}\psi_R\,\ln r\,\omega\times x\cdot\mathbb{T}(u,p)\cdot n\,.$$
(3.2)

Employing Hölder inequality multiple times, and recalling the properties of ψ_R , we get

$$\begin{split} \int_{\mathcal{D}} \Big\{ \ln r \, u^2 u \cdot \nabla \psi_R - 2(\mathbb{D}(u))_{ij} \, \left[\ln r(u_j \partial_i \psi_R + u_i \partial_j \psi_R) \right] + p \, u \cdot \nabla \psi_R \Big\} \\ & \leq \| \ln r |\nabla \psi_R| \|_{4, \mathcal{D}^R} \left(\|u\|_4^3 + 2\|\mathbb{D}(u)\|_2 \|u\|_4 + \|p\|_2 \|u\|_4 \right) \\ & \leq c \, R^{-\frac{1}{2}} \left(\|u\|_4^3 + \|\mathbb{D}(u)\|_2^{\frac{3}{2}} + \|p\|_2^{\frac{3}{2}} \right) \, . \end{split}$$

On account of $(u, p) \in \mathcal{C}$ and (2.26) we thus infer

$$\lim_{R \to \infty} \int_0^t \left\{ \int_{\mathcal{D}} \left\{ \ln r \, u^2 u \cdot \nabla \psi_R - 2(\mathbb{D}(u))_{ij} [\ln r(u_j \partial_i \psi_R + u_i \partial_j \psi_R)] + p \, u \cdot \nabla \psi_R \right\} \right\} \mathrm{d}s = 0 \,, \quad \text{for all } t > 0 \,.$$

$$(3.3)$$

Similarly, using Hardy's inequality

$$\int_{\mathcal{D}} \frac{u^2}{r^2} \le 4 \|\nabla u\|_2^2$$

furnishes

$$\begin{split} \int_{\mathcal{D}} \frac{1}{r} \left| u^2 u \cdot \frac{x}{r} + p \, u \cdot \frac{x}{r} - 2(\mathbb{D}(u))_{ij} (u_j \frac{x_i}{r} + u_i \frac{x_j}{r}) \right| &\leq c \|r^{-1} u\|_2 \left(\|u\|_4^2 + \|p\|_2 + \|\mathbb{D}(u)\|_2 \right) \\ &\leq c \left(\|u\|_4^4 + \|p\|_2^2 + \|\nabla u\|_2^2 \right) \end{split},$$

which, in turn, since $(u, p) \in \mathcal{C}$, with the help of Proposition 2.1 and (2.25) entails

$$\int_0^\infty \left\{ \int_{\mathcal{D}} \frac{1}{r} \left| u^2 u \cdot \frac{x}{r} + p \, u \cdot \frac{x}{r} - 2(\mathbb{D}(u))_{ij} (u_j \frac{x_i}{r} + u_i \frac{x_j}{r}) \right| \right\} \mathrm{d}t < \infty \,. \tag{3.4}$$

Finally, using (2.18) with $w = \mathbb{D}(u)$ and w = p, and recalling (2.35), we obtain

$$\left| \int_{\Sigma} \psi_R \ln r \, \omega \times x \cdot \mathbb{T}(u, p) \cdot n \right| \le c \, \|\nabla u\|_2 \left(\|\nabla u\|_2 + \|D^2 u\|_2 \right) + \|p\|_{1,2} \right)$$

which, because $(u, p) \in \mathcal{C}$, with the help of Proposition 2.1 provides

$$\int_{0}^{\infty} \left| \int_{\Sigma} \psi_{R} \ln r \, \omega \times x \cdot \mathbb{T}(u, p) \cdot n \right| \, \mathrm{d}t < \infty \,.$$
(3.5)

We now integrate both sides of (3.2) over [0, t], arbitrary t > 0, and then pass to the limit $R \to \infty$. Taking into account (3.3), that $\psi_R \leq 1$, and employing Fubini's theorem, we thus receive, in particular,

$$\|\sqrt{\ln r} u(t)\|_{2}^{2} - \|\sqrt{\ln r} u_{0}\|_{2}^{2} \leq 2 \int_{0}^{t} \left\{ \int_{\mathcal{D}} \frac{1}{r} \left| u^{2}u \cdot \frac{x}{r} + p \, u \cdot \frac{x}{r} - 2(\mathbb{D}(u))_{ij}(u_{j}\frac{x_{i}}{r} + u_{i}\frac{x_{j}}{r}) \right| \right\} \mathrm{d}s \,, \qquad (3.6)$$

which, by (3.4), (3.5) and the assumption, furnishes

$$\sup_{t \ge 0} \|\sqrt{\ln r} u(t)\|_2^2 \le M < \infty.$$
(3.7)

For any fixed R, employing also Hölder inequality, we have

$$\|u(t)\|_{2}^{2} = \|u(t)\|_{2,\mathcal{D}_{R}}^{2} + \|u(t)\|_{2,\mathcal{D}^{R}}^{2} \le c R^{2} \|u(t)\|_{6}^{2} + \frac{1}{\ln R} \|\sqrt{\ln r} u(t)\|_{2,\mathcal{D}^{R}}^{2}$$

which, by (3.7), entails

$$|u(t)||_2^2 \le c R^2 ||u(t)||_6^2 + \frac{M}{\ln R}$$

Therefore, if we operate with $\limsup_{t\to\infty}$ on both sides of this relation, use (2.27) and then let $R\to\infty$, we arrive at (3.1), thus completing the proof of the theorem.

Acknowledgment. I would like to thank Mr. Jan A. Wein for helpful conversations.

References

- [1] Adams, R.A., Sobolev Spaces, Academic Press, New York (1975)
- [2] Ervedoza, S., Maity, D., and Tucsnak, M., Large time behaviour for the motion of a solid in a viscous incompressible fluid. Math. Ann. 385 (2023), no. 1-2, 631–691
- [3] Galdi, G.P., Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation. *Recent developments in partial differential equations*, 1–35, Quad. Mat., 2, Dept. Math., Seconda Univ. Napoli, Caserta, 1998.
- [4] Galdi, G.P., On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Mechanics, Elsevier Science, Vol. 1 653–791 (2002)
- [5] Galdi, G.P., Large-time behavior of a rigid body of arbitrary shape in a viscous fluid under the action of prescribed forces and torques. J. Math. Fluid Mech. 25 (2023), no. 3, Paper No. 43, 11 pp.
- [6] Galdi, G.P., Silvestre, A.L.: Strong Solutions to the Problem of Motion of a Rigid Body in a Navier–Stokes Liquid Under the Action of Prescribed Forces and Torques. Nonlinear Problems in Mathematical Physics and Related Topics, I, pp. 121–144. International Mathematical Series (N. Y.), vol. 1. Kluwer/Plenum, New York (2002)
- [7] Maity, D., and Tucsnak, M., Motion of rigid bodies of arbitrary shape in a viscous incompressible fluid: Wellposedness and Large Time Behaviour. J. Math. Fluid Mech. 25 (2023), no. 3, 74

University of Pittsburgh Department of Mechanical Engineering and Materials Science Pittsburgh, PA 15260 U.S.A E-mail address: galdi@pitt.edu