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1 Introduction

Consider a sufficiently smooth, rigid body 2 (the closure of a simply connected bounded domain of R?)
completely immersed in a viscous liquid . that fills the entire space outside 2. We assume that the
center of mass G of A is held fixed in a given position, while Z is allowed to rotate around G. The
motion of the coupled system . := Z U .Z is driven by a time dependent torque with respect to G,
M=DM(t), acting on ZA.

Recently, the question of the large time behavior of . has attracted the attention of several authors,
also in the more general case when G is free to move. More specifically, in [2] for Z a sphere, and in
[5, 7] in the general case, under diverse assumptions on the initial data and driving mechanism, the
same conclusion is drawn, namely, that as time grows indefinitely large, the velocity u of .Z as well as
translational (§) and angular (w) velocities of # will tend to 0 in certain norms. Actually, in [2, 7] it is
also shown that G (in absence of external forces and torques) will cover a finite distance.

However, in the more general and interesting case of a body of arbitrary shape, the asymptotic decay
in time of the velocity field of .Z is established in norms that do not ensure that the total kinetic energy
of the coupled system, defined as

B0 =4 {o [ O + migP +w(0)-1-w10)}

with m and | mass and inertia tensor of 2, ultimately vanishes. Precisely, in [5, 7] it is proved that, as
t — oo, while £(t) and w(t) tend pointwise to 0, the velocity field u tends to 0 in the L9-norm if ¢ > 2,
thus excluding the case ¢ = 2, representative of the kinetic energy of .Z.(1)

Objective of this note is to show that the kinetic energy, F, of any solution belonging to a suitable
function class, C, will eventually tend to 0. As shown in [5], the class C is certainly not empty, provided the
initial data are prescribed in appropriate function spaces with their magnitude is opportunely restricted,
and M(t) vanishes as t+ — oo in the L?-sense. The method we use relies heavily upon establishing a
space-weighted estimate on the solutions in combination with a uniform bound on the pressure field.
Unfortunately, this approach does not seem to work if G is free to move, and therefore we defer to a
future work the study of the more general case.

2 Equations of Motions and Preliminary Results
We shall describe the motion of the coupled system S with respect to a frame, ., attached to B and

with its origin at an interior point of Z. In this way, in particular, the domain occupied by £ becomes
time-independent, and we will denote it by D (:= R3\B) and by ¥ its boundary. We suppose D of class

(D As a matter of fact, in [5] it is only proved lim; oo [[u(t)|ls = 0. However, by elementary interpolation, for any
q € (2,6), we have |[u(t)|lq < [lu(t)|2|lu(t)|le, which, since |[u(t)||2 is uniformly bounded [5, Theorem 2.1], shows the
claimed result.
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C?2. Thus, with the notation introduced in the previous section, the governing equations of the motion
of . are given by (see [4])

00yu = divT(u,p) — o[(u — V) - Vu+ w X ul
in D x (0,00)

divu =0
u="V at X x (0,00) (2.1)
‘zlliinoo’u,(:l;,t) =0, t€(0,00)
I-w+w><(I-w)—l—/mxT(u,p)-n:M (2.2)
endowed with initial conditions ’
u(z,0) =up(z), z €D, w(0)=uwp. (2.3)

In the above equations, p is the pressure field of £, p its (constant) density, and V(z,t) := w(t) X x.
Also, T is the Cauchy stress tensor given by

T(u,p) = 2uD(u) — pI, 2D(u) := Vu+ (Vu) ',

with p shear-viscosity coefficient and I identity. Moreover, m is the mass of B and | its inertia tensor
relative to G. Furthermore,

M(t) = QT (1) - M(1). (2.4)
with the tensor Q satisfying the following equation
@--Q-0) 0w e
Ow)= | —wg 0 wi (2.5)
Q(O) =1 w9 —Ww1 0

In particular, Q is proper orthogonal, that is,
QT(t)- Q) =Q)- Q" (1) =1, detQ(t) =1, forallteR.
We wish to introduce a suitable class of functions satisfying (2.1). To this end, let (2)
R:={ucC®R% u(z)=uxxz, ucR},

and define
V(D) = {uc WD) :divu=0in D, ul|s =1, for some @ € R}.

We also set
Br:={r€R3: |2| < R}; R,:=2inf{R€(0,00): BN Br > AB};

Dr:=DNBp, D" =D\Dp, R>R,.
Definition 2.1 A triple (u,p,w) is in the class C, if
u € L>®(0,00; V(D)), Vu € L?(0,00; WH2(D))
w e Wr20,00), Vpe L*0,00; L?(D)),
u€ C([0,7); WH2(DR)), O, p € L?(0,00; L*(DRr)), for allR > R,

and, in addition, (u,p,w) satisfies (2.1).

(2)We shall use standard notation for function spaces, see [1]. So, for instance, Li(A), W™d(A), Wy"?(A), etc., will
denote the usual Lebesgue and Sobolev spaces on the domain A, with norms || -||4,.4 and || - |l;n,q,.4, respectively. Whenever
confusion will not arise, we shall omit the subscript \A. Occasionally, for X a Banach space, we denote by ||-|| x its associated
norm. Moreover L9(I; X), C(I; X) I real interval, denote classical Bochner spaces.



The class C is not empty, as secured by the following result, which is a particular case of [5, Theorem
2.1].

Theorem 2.1 Let M € L?(0,00; R3) and ug € V(D) with ug|s = wo x x. Then, there is § > 0 such that
if

lluollt,2 + lwol + [IM[[22(0,00) < 0, (2.6)
there exists at least one solution (u,p,w,Q) to (2.1) — (2.5) with (u,p,w) in the class C.

From Definition 2.1 and Sobolev inequality, we infer that
p € L*(0,00; LY(D)), (2.7)

while we only have p € L2(0,00; L?(Dg) for all R > R,. Our first objective is to prove that the latter
property holds, in fact, in the whole of D. Precisely, we have the following.

Proposition 2.1 Let (u,p,w) € C. Then,

p € L*(0,00; L2(D)) .

In order to prove the proposition, we need the next two results, whose proofs are given in [5, Lemma
3.2] and [3, Lemma 3.1], respectively.

Lemma 2.1 Let (u,p,&,w, Q) be in the class C. Then for a.a. t € (0,00)

Vp e (D), pe L®=(D*™), forall g € (1,6], g2 € (3,00].

Lemma 2.2 Let g € C§°(D). Then the Neumann problem

Ap=g¢g inD
2.8)
Op (
— = t X
o 0 a
with the side condition
| llim Vp(x) =0. (2.9)

has one and only one solution such that for all s € (1,3)
D% e L*(D), Ve L*/6G-9)(D)

and

/DK ©=0, (2.10)

for a fixed K > R... Moreover, ¢ € L*(D) and

lells,pic + 1V llas/3-s) + 1ID*0lls < cllglls , (2.11)

where the constant ¢ depends only on s, K and D.
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Proof of Proposition 2.1. By formally applying the div operator on both sides of (2.1); and observing
that
div [p(Ou+w x - Vu —w xu) — Au| =0,

one easily deduces that p satisfies for a.a. ¢ € (0, 00) the following Neumann problem in the distributional
sense

Ap =div(u-Vu) in D,

9p

on
Let g and ¢ be as in Lemma 2.2. Multiplying both sides of (2.12); by g, integrating by parts over D,,
and taking into account (2.8) and (2.12)3, we show

(2.12)
=—[pw x z+curla]-n at D, a:=curlu.

. P .
/ pg= —/ goa—p+/ e div (u-Vu) :/ cp[pwxx-i-curla]»n—&-p/ ©0;0;(ujuj)+o1(r), (2.13)
D, »udB, In D, ) D,

where we used the identity div (u - Vu) = 0;0;(u;u;), and set

o op _ Oy
o1(r) = /chr(wﬁn pan)'

By a double integration by parts, we infer

/ © 0;0;(uiuj) :/ uiujaiajgo—i-/ [(pu-Vu-n—u-Vou-n|
D, D, NUSB,

(2.14)
:/ uiujc?iaj(p—i-/[gaw><w~Vu-n—(w><:E~V<p)w><;r~n]+02(r),
D, ¥
where .
oa(r) ::/ [pu-Vu-n—u-Vou-n].
oB,

By employing Holder inequality, we deduce

/R loa(r)|dr < [lellollull2[ Va2 + [[Vello[lul? (2.15)
and, likewise, we infer

/R r2 o (r)ldr < [l@lloollr™ 2[5, 25..00) [ VPIlg p2r- + (2R4) "2 [[Vell2[|pll2 - (2.16)

In view of Lemma 2.1, and the fact that u € C, we find that the right-hand side in both equations (2.15)
and (2.16) is finite. Therefore, there exists an unbounded sequence {r,} such that

lim [oy(rn) 4+ o2(rn)] =0.

Ty —00

Employing this information in (2.13), (2.14) we conclude

/pg :/ {(p[pu')xx—i-curla]-n+p[<pw><x~Vu~n—(wxx~V<p)w><x~n]}+p/uiujaiajgﬁ
D b D
= Is1 +Iso + Is3 + Isu + Ip.
(2.17)

In the following estimates, we shall use several times the classical trace inequality

lwll1s: < cllwlliiog - (2.18)



We thus have
| + | Isa| < ¢ (J&] + [w]?) loll2,2.Dx - (2.19)

Moreover, employing (2.18) along with Schwarz inequality, we get
[ss| < clllellVullliioe < c(lllzpi IVullzpk + 011206 IVulli2pk)

which, in turn, gives
ss| < cllVulli2,pk[1€ll2,2,0k - (2.20)

Also, by Schwarz inequality,
[Ip| < [[u]I2| D%z - (2.21)

The estimate for Iy requires a little care. Let ¢ be a function which is one in a neighborhood of 3 and
zero at large distances. We have

Isy = —/Ddiv (pcurl (Ca)) = —/DVQO ~curl (Ca). (2:22)

Using the identity
—curl A- B+ curl B- A =div (A x B)

with A = (a and B = Vy, from (2.22), (2.18) and Schwarz inequality we show

52| = ‘/Za x Vo -n| < cf[VullVollliioc < ¢ (IVullpg IVelh2nx + 1D*ull2pi Vell2x)

which leads to
52| < el|[Vulli2,px l€ll2,2,05 - (2:23)

If we employ (2.19)—(2.23) in (2.17) and take into account (2.11), we arrive at
[ 98] < Qo+ ol 4 Jull + 19l + 197l Ll (224)
Since g is arbitrary in C§°(D), and, by Sobolev embedding theorem,
Julld < ellull3 [Vl (2.25)
from (2.24) it follows that p € L?(D) for a.a. t € (0,00) and
Ipllz < e (61 + [wf + Jul§ IVul + [ Vullz + 1 D?ull2) - (2.26)
The proposition is then a consequence of (2.26) and the fact that (u,w) is in the class C.
O

We conclude this section with another preparatory result concerning the asymptotic behavior of
functions in the class C.

Lemma 2.3 Let (u,p,w) be in the class C. Then,

Jlim fJu(t)]ls = 0. (2.27)
—00
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Proof. For R > 2R,, let 1)r = ¥g(r) be a smooth, non-increasing “cut-off” function such that ¢ = 1
for r < R, ¢ = 0 for r > 2R, and |Vep| < C R™!, for some constant C' independent of R. We then
test (2.1)1 by ¢ divT(u, p) to get
/ YrOus - divT = ||\/rdiv T2 — g/ (Ypu-Vu-divl —¢p®-divT) . (2.28)
D D

By integration by parts, we formally show the following identity that can be rigorously justified by a
standard approximation procedure

/ PYpouy - divT = / [div (YrOiu-T) — 2u g D(Opu) : D(u)]
D D

= [VoTon = I - [ VT
Set @ := w x z - Vu — w x u and recall [6, Lemma 2.4(b)]
¢-n=0 at ¥ (2.29)

Thus, integrating by parts and with the help of (2.29) we show

/d)RtP ~divT = 2;1/ ¢ -D(u)-n— 2u/ RO ®;(D(u))i; — / Vi -T- . (2.30)

D b D D

Next, since divu = divV = 0, we get

20;%;(D(u))i; = div(® - Vu+ 2V |Vul?) + w x Vu; - Vu; — V(w x u) : Vu,

so that, substituting the latter in (2.30) and using Gauss theorem, we infer
/’;EJR@ ~divT = fu/ Y (wx Vu; - Vu; — V(w x u) : Vu) + M/ (n-Vu-®— 1V -n|Vul?)
D D by

+/ Vg - [20(Vu' - @+ 2V|Vul?) - T- @] .
D

(2.31)
Collecting (2.28), (2.30) and (2.31) we deduce
/J,%H\/’Q/JRD(U)H% +||VOrdivT|3 = / [V “T-n—op(n-Vu-&—3V- TI,‘V’U,P)}
b
+g/ Yru-Vu-divT + p (w X Vu; - Vu; — V(w X u) : V)] (2.32)
D
79/ Vor - [T-Ou+2u(VuT - @+ 2V|Vu|?) =T @] :=Ix +Ip + Ir
D
Arguing exactly as in the proof of [5, Eq. (3.22)] we show
t
lim Ir=0, forallt>0. (2.33)
R—oo Jg
Furthermore, as shown in the proof of [5, Theorem 2.1], we have
IIp| < ¢ (ID(u)]3 + D)z + ID(w)I3) + §lIdiv T3 (2.34)

Finally, using (2.18) multiple times along with the inequality [4, Lemma 4.9]

ol < e[ Vullz, (2.35)
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one can prove, in a way entirely similar to [5, Eq. (4.11)]
1Is| < ¢ [l (IVulliz + Ipll,2) + D)3 + [ID(u)]l3] + §lldiv T3 - (2.36)

We now integrate both sides of (2.31) over (0,t), t € (0,00), let R — oo and employ (2.33), along with
Lebesgue dominated convergence theorem. If we differentiate with respect to ¢ the resulting equation,
and take into account the estimates (2.34) and (2.36), we conclude, in particular,

%HD(")H% <e [[ol(IVallz + [Iplli.2) + D)3 + ID(w)[|3 + [ID(w)[I3] = A(t) (2.37)

Since (u,p,w) € C, and also in view of Proposition 2.1 we infer, on the one hand, h € L'(0,c0; R) and,
on the other hand, the existence of an unbounded sequence of times {¢,} such that

Tim_[[D(u(t))l2 = 0.
Thus, integrating both sides of (2.37) over the interval (¢,,t), t > t,, we get

ID(u(®)]3 < [D(u(t)] + /rm (s) ds

which implies
Jim [D(u(t)) ]2 0.

The latter furnishes the desired result after we use the inequality [4, Eq. (4.75)]

lulle < clD@)]2, weV.

3 Main Result

In this section we will give a proof of the following result, representing the major achievement of this
note.

Theorem 3.1 Let (u,p,w) be in the class C. Suppose that
Vinrug € L*(D), (r:= /xiz;).
Then,
lim E(t) = 3 lim (|[u(t)]3 +w(t)-1-w(t) =0.

t—o0

Proof. We begin to observe that by assumption w € W1°(0, 00; R?) which delivers
lim |w(t)]=0.
t—o0

Therefore, we only have to show
tlim [lu(®)|l2=0. (3.1)

To this end, let g = g(r) be the “cut-off” function introduced in Lemma 2.3. By dot-multiplying
through both sides of (2.1) by ¢ g Inr u, integrating by parts over D, and using the fact that Vi gp-wxz =
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0, we show

%%HV’R Vinru(t)||3 = %/D (ln ruu- Vg + hruu - %) - 2/1) Inr D(u) : D(u)

Lj

9 / (D(u))i; (I 7 (w0 m + widj0R) + Pr(tt— + u; )] (3.2)
. " "

+/Dpu~ (Vz//R lnr—&-z/)R%) +/21/JR Inrwxz-T(u,p)-n.
Employing Holder inequality multiple times, and recalling the properties of ¢, we get
/D{ Inrv?u- Vor — 2(D(w)i; [Inr(uoir +uidjvr)] + pu- Vir}
< r|Ver|llapr (lullf + 2D ) ll2llulla + Ipll2]ulls)
< R (Jlullt + D)3 + Ipl3 ) -

On account of (u,p) € C and (2.26) we thus infer

t
lim
R—o0 0

{/ {Inrwu- Vg — 2(D(w))i;[Inr (w0 r + w0;0R)] + pu - V?ZJR}} ds=0, foralt>0.
D

(3.3)
Similarly, using Hardy’s inequality

2
u 2
[ 5 < v
furnishes
1 T T T; T _
e e T =202+ w)| <l ulla (el + ol + D))
< e (lullf + Ipll3 + 1V ull3)

which, in turn, since (u,p) € C, with the help of Proposition 2.1 and (2.25) entails

/Ooo{/pl ‘uZu Zipu- % - Q(D(U))ij(uj% +ui%)‘}dt <oo. (3.4)

r r

Finally, using (2.18) with w = D(u) and w = p, and recalling (2.35), we obtain

< cl[Vullz (IVull2 + [D%ull2) + [Ipll.2)

/z/;R Inrwxz-T(u,p)-n
b

which, because (u,p) € C, with the help of Proposition 2.1 provides

r

We now integrate both sides of (3.2) over [0,¢], arbitrary ¢ > 0, and then pass to the limit R — oc.
Taking into account (3.3), that ¥ p < 1, and employing Fubini’s theorem, we thus receive, in particular,

Wir ol - Virwlg <2 [{ [ a2 epue 2 ool +u[fas 6o

t
0

/%Z)R Inrwxx-T(u,p) - n|dt < oo. (3.5)
»

which, by (3.4), (3.5) and the assumption, furnishes

sup [|[VInru(t)||2 < M < oc. (3.7)
>0



For any fixed R, employing also Holder inequality, we have
1
@13 = lw®I3.0, + @300 < e Rl + 5 1VInr @5 pr

which, by (3.7), entails

M
DI < eR?|lu(®)|? + — .
lu@®)z < crZflu®)lls + e

Therefore, if we operate with limsup,_, ., on both sides of this relation, use (2.27) and then let R — oo,
we arrive at (3.1), thus completing the proof of the theorem.
O
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