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Abstract 

In this note, we recall two new estimates for plane stationary Navicr-Stokcs 
solutions in annulus type domains established in the recent paper [6]. Then, we 
explain how to use them to deduce various classical and recent results on the plane 
stationary N avier-Stokes equations in exterior domains. 

1 Introduction 

Notations. We use the notation z = x + yi = rei0 for an arbitrary point (x, y) E記
The open discs and circles centered at the origin will be denoted by Br = { lzl < r} and 
ふ＝ 8Br= {lzl = r}. We write似，r2= {z E配： r1< lzl＜乃｝．

We study the stationary Navier-Stokes equations in two dimensions, i.e., 

{—△w+(w• ▽)W 十▽p=0,
▽ •w=O, 

(SNS) 

where w, p are the unknown velocity and pressure fields respectively. With no loss of 

generality, we have set the viscosity coefficient of the fluid to be 1. The key open problem 

in the field is to prove the existence of solutions to the 2D flow around obstacle problem: 
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Here n =配＼ [Jis an exterior plane domain, U is the corresponding bounded open set 
(not necessarily connected) with smooth boundary in記 w00 is the far field constant 
velocity. The parameter入＞ 0will be referred to as the Reynolds number. e1 = (1, 0) is 
the unit vector along x-axis. Physically, the system (OBS) describes the stationary motion 

of a viscous incompressible fluid flowing past a rigid cylindrical body. The existence of 

solutions to (OBS) with arbitrary入wasincluded by Professor V.I. Yudovich in the list 

of "Eleven Great Problems in Mathematical Hydrodynamics" [13]. 
We are also interested in the exterior problem with more general boundary data: 

OOo ＋
 ↓
 

'

z

 

0

|

 

＝

＝

 

P

r

 

>

S

 

+

a

 

w

e

l

 

）

入

＝
 

▽
 
W

o

o

 

(
O
'
a
,
W
 

――_―↓ 

＋
 
w
 

△

W

Q

司
ヽ

.

8

 

-

>

w

w

 

’

V

、

(GEN) 

Here, the boundary datum a is an arbitrary (smooth) vector-valued function on the finite 

curve D. Another closely related problem is the whole-plane forced system: 

｛←．△ご。(:;〗,W 十▽p= f in厨
W →Woo=入e1as lzl→00. 

We often assume that f has compact support and enjoys w-1,2 local regularity. 

The above three problems are hard in 2D mainly due to the fact that the Dirich-

let integral JIR2 I▽fl2 dxdy alone is not sufficient to control the asymptotic behaviour of 

functions at spatial infinity. The elegant nonlinear structures of (SNS) are crucial for 

our research. There are many classical papers that study the problem (OBS), see, e.g., 

[5, 1, 4]. For the basic tools and the up-to-date results concerning the systems (OBS), 
(GEN) and (FOR), we refer the readers to professor Galdi's book [3] and the forthcoming 

survey [11]. 

In the recent paper [6], together with Julien Guillod, we established two new estimates 
for D-solutions1 in annulus type domains, which are called the First and Second Basic 

Estimates respectively. We recall these estimates as follows. 

(FOR) 

Theorem 1 (First Basic Estimate). Let w be the D-solution to the Na vier-Stokes system 

｛△w-（W • V)W —• p=O, 

▽ •w=O 

in the annulus type domain似，r2= {z E配： r1:::;lzl:::;乃｝． Then

lw(r1) -w(乃)|:::;c*✓log(2+ μ) D(r1，乃），

(1.1) 

(1.2) 

where 
1 

μ = ~'m := rnax{lw(r1)I, lw(r2)I}, D(r直）：＝/1Vwl2 (1.3) 

flr1,r2 

and C. is some universal positive constant (does not depend on w,乃， etc.).

1Solutions with finite Dirichlet integrals, i.e., JI▽wl2 dxdy < +oo. 
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Remark 2. Actually, in [6], instead of (1.2) we proved a weaker inequality 

lw(r1) -w（乃）I::::c.(1 + μ)J"J5<ii，乃）．

(1.2) can be deduced from (1.4) using the simple arguments in Section 2. 

(1.4) 

Remark 3. (1.2) is qualitatively precise, since for a solution to (OBS) in the case of small 
入(firstconstructed by Finn and Smith [2] in 1967), the opposite inequality 

holds, see [9]. 

J1▽wl2 ::; C(O) 炉
log(2 + ½) 

Q 

(1.5) 

Theorem 4 (Second Basic Estimate). Let wk be a sequence of D-solutions to the Na vier-

Stokes system 

｛△wK -（WK • ▽)Wk―▽加＝ 0,
▽ •Wk= 0 

in the annulus type domains Orlk,r2k. Suppose, in addition, that 

r1k→ +CX), r2k —• +oo, 
rlk 

and there exist two vectors Wo, w00 E配 suchthat 

Then 

m_?X lwk(z) -wol→0, 
zESr1k 

m_?,X lwk(z) -wool→0 ask→00. 
zES,2k 
| 

D* 
lwo-w叫 ~c*＊ー，

m 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

is some universal where m := max{lwol, lwool}, D. =血 fn...・-・ IVw出， andC*＊ ・ 
K→00 rlk,r2k 

positive constant (does not depend on wk, etc.). 

Remark 5. For an arbitrary function f with bounded Dirichlet integral, it is easy to show 

that 
1 / f _. n..  ¥ ½ / T9 ¥ ½ 

|］（叫ー］（n）|三冨 (l<lzl<r2I▽fl2 dxdy) 2 (1n >). (1.10) 

(See, e.g., [7, Lemma 2.1].) We emphasize that Theorem 1 improves the trivial estimate 

(1.10) when r2 ≫ r1. Theorem 4 further improves Theorem 1 in the asymptotic case (1.7) 
if D. ≪ m乞

The proof of Theorem 1 is based on ideas from [8, 5, 1], in particular, the topological 

structure of <l>-level sets is involved.（<l> = ¥ + p is the Bernoulli function.) The proof 
of Theorem 4 is based on ideas from [10], in particular, we need a blow-down argument 

which uses fine estimates of the Euler solutions to control asymptotic behaviour of the 

Navier-Stokes solutions. 

These two Basic Estimates are very useful in the study of (OBS), (GEN) and (FOR), 
for example: 
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a) Using Theorem 1, we give a new proof for the boundedness and convergence of D-

solutions in exterior domains. This result was first obtained by Amick [1] under the 

zero-total-flux and the axi-symmetry conditions, and recently proved by Korobkov, 

Pileckas and Russo [7] in the general case. 

b) Using Theorem 1, we prove a pointwise estimate for small Reynolds number D-

solutions to (OBS). This estimate was originally proved in [9] as a key step in the 

proof of the unconditional uniqueness theorem for (OBS). 

c) Using Theorem 1, we can apply Leray's invading domain method [12] to (FOR) and 

construct a D-solution W£ to (FOR)i,2 for arbitrary compactly supported w-1,2 

force. This is one of the main results in [6]. The square root on D(rぃ乃） in
(1.2) plays a key role in obtaining certain uniform bounds for the invading domain 
solutions. 

d) Using Theorem 4, we are able to determine the limit of Leray solutions2 to (OBS) 

with small Reynolds numbers and to (FOR) in two scenarios. These are treated in 

[10] and [6]. It is crucial that in (1.9) there is no square root on Dぷ

In this note, we shall explain the proof of (1.2) using (1.4), and the above items a) and 

b). For items c) and d), we refer to the recent papers [10], [6] and the forthcoming survey 
[11]. The content of this note will also be included in the doctoral thesis (in Chinese) of 
the second author. 

2 Proof of (1.2) using (1.4) 

Notice that (1.2) and (1.4) are equivalent in the case μ < 1. Hence, using (1.4), for 
the case μ ::; 1 Theorem 1 is already proved. We ony need to consider the case μ > 1, 

r1m < 1. There are a few subcases. (1) If r2m ~ 1, we further consider two subcases: 
(la) If max{lw(m―1)1，憧（r2)|}三悶， thenlw(r1)1 = m. Hence, by (1.10), 

lw(ri) -w(r2)I ::; Cm::; Clw（八）一w(m―1)1 (2.1) 

::; cJi面µ~ (2.2) 

こCVlog(2+ μ)VD(rm)．（2.3) 

(lb) If max{lw(m―1)1, lw(r2)I}>閉， thenby (1.4) and (1.10), we get 

lw(r1) -w(r2)I ::; lw(m―1) -w(r2)1 + lw(ri) -w(m―1)1 (2.4) 

三 CVD(m-1,r砂＋Cylogµ~ (2.5) 

こCVlog(2+μ)VD(n，乃）．（2.6)

(2) If r2m::; 1, then again by (1.10), 

lw(r1) -w（乃） 1 さ cR;~ (2.7) 

こCVlog(2+ μ)VD(rぃ乃）． （2.8) 

In conclusion, Theorem 1 holds for μ > 1 case as well. 

2Solutions constructed by the invading domains method. 
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3 The boundedness and convergence of arbitrary D-

solutions in an exterior domain 

Theorem 6 ([7]). Let w be a D-solution to the Navier-Stokes equations in the exterior 
domain 01,+=, then there exists a constant vector w0 E配 suchthat w converges uni-
formly tow。atinfinity. In particular, w is uniformly bounded in a neighbourhood of 
infinity. 

The proof of this theorem went through a rather long path, see [5, 1, 7]. A discussion 
on the history can be found in the forthcoming survey [11]. Here, we present a rather 
short proof using Theorem 1. Note that this short proof does not mean Theorem 6 is 
trivial, since Theorem 1 itself is highly nontrivial. 

Proof. Let 乃＞八~ 1. For any c > 0, By Theorem 1 we have, when max{lw（r1)I, lw(乃)|｝ > 
c, 

1 
lw(r1) -w（乃）1さCylog (~ + 2) D(r1五）． (3.1) 

When max{lw(r1)I, lw(乃)|｝ ＜s, there clearly holds 

lw(門)-W（乃）I:::;2s. (3.2) 

Hence, for any E: > 0, 

lw(r1) -w（乃） I~ C(s)JY5(i;.，乃）＋2s. (3.3) 

Since as r1→ +(X)，D(r1，乃）→0, we know that w(r) is a Cauchy sequence as r→ +(X)． 
Hence, there exists a vector w0 E配 suchthat 

lim w(r) = wa. 
r→+00 

(3.4) 

Denote w(r, z) ＝点 J。~1rw(z + rei0)d0. By [9, Lemma 6] (the technique of finding good 
circles), for any z E D10，十00,there exists r E（閉，号）， suchthat on the circle S;:(z), 

lw-w(r,z)I::::; C1/D（凰，2lz1)- (3.5) 

Again by [9, Lemma 6], there exists f E（舟喘）， suchthat on the circle Sr(O), 

lzl 
lw-w(f)I：：：： C1い（万，2lz1). (3.6) 

Observe that Sr(O) n Sr(z)ヂ0.By the definition of D-solutions, as lzl→ +oo, 

D（旱，2lz1)→O (3.7) 
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Hence, according to (3.3), if lzl is sufficiently large, 

lzl 
滴(1,z)一叶，z)I~ C(c)1/ D(―,2lz1) + 2c ~ 3c. (3.8) 

2 

Combining (3.4)―(3.8), we get that if lzl is sufficiently large, 

lw(l,z) -wo|さ4s.

Since E can be taken arbitrarily small, we get, as lzl→十oo,

lw(l, z) -w01→0. 

(3.9) 

(3.10) 

By the local Stokes estimates (see, e.g., [9, Lemma 8]) and (3.10), (3.7), as lzl→ +oo, 
we have 

IVw(z)I→0. (3.11) 

(For explicit decay estimates of IVwl, see [5].) By (3.10)-(3.11), as lzl→ ＋oo, we have 
lw(z) -w01→0. ロ

4 Uniqueness of D-solutions to (OBS) 

In [9], we proved that, when入issmall (and nonzero), (OBS) is uniquely solvabl岱inthe 
class of D-solutions. The key step is the following pointwise estimate, see [9, Lemma 16 
and eq. (5.8)]. Without loss of generality, we assume that切，十00c n. In the sequel, the 
constants C may depend on n. 

Lemma 7. Suppose w is a D-solution to (OBS) with su伍cientlysmall and nonzero入，

then lw(z) —入e叶三 Ce入]こ□：可
Here, we give a different proof of Lemma 7 using the First Basic Estimate. 

Proof. Let c = ~ ≪ 1. First of all, we recall a result proved in [9], 
ぃ面国

D:= 11▽wl2dxdy ~ Cs呪．
Q 

Apply Theorem 1 tow, with八＝ r，乃→ ＋oo, we have 

1 
limsupμ ~— 
四→＋00 r入

and 

lw(r) -Ae1I:::;叫 log(1匹四μ+2)D:::; Cr=;入

In particular, as r 2='.入-1 

lw(r) —入e叶三 Ce入

3Solvability was already shown by Finn and Smith [2] in 1967. 

(4.1) 

(4.2) 

(4.3) 
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By [9, Lemma 6], there exists a sequence of numbers rk E [2¥ 2k+1], k = 1, 2, 3, • • •, such 
that on the circle Srk, 

lw-w(rk)I：：：：： CDら：：：：： Ce入

By (4.2) and (4.4), on the circle Srk, 

lw-屈 |:S:Cs入りlog(喜+2)．

(4.4) 

(4.5) 

For any z E Q10,+00, by [9, Lemma 6], we can find r, E（苧，苧）， suchthat on Sr. (z), 
lw-w(r., z)I :S CD½ :S Cc入． Observethat there exists k ~ l, such thatふ(O)nSr.(z)cJ 
0. Hence, 

lw(r., z) —入e叶さ C叫log( 入]z| ＋ 2)． (4.6) 

Consider the case I z I 2". 10入―1first. Apply Theorem 1 with z as the center and take 
T1 =入―1，乃＝八， weget 

lw（入―1,z) -w(r., z)I ::; C』

By (4.6)-(4.7), we have 
lw （入―1,z) —入e11 ::; Cs入

Consider the rescaled solutions 

剥•) ＝入―lW（入―1.+z), p＝入―2P（入―1.+z), 

then 
lw(l) -e叶:::;Cc, (4.10) 

J恥 1▽詞dxdy=入―2h2>.-1(z) I▽wl2dxdy:::;いD::;Cc2. (4.11) 

By the local Stokes estimates ([9, Lemma 8]) and (4.10)―(4.11), 

sup|▽wl::; Cc 
B1 

ヽ

ー

，

、

I
,

7

8

 

•• 4
4

 

＇
ー
、
，
ー
、

(4.9) 

(4.12) 

By (4.12) and (4.10), lw(O) -e叶さ Cc,hence for lzl 2'. 10入―1,we have the uniform 
estimate lw(z) —入e1I ::; Cc入．
Next, consider the case 3 < lzl < 10入―1This time, we define the rescaled solutions 

w(•) = lzlw(lzl．十z), P = lzl2P(lzl．十z) (4.13) 

then 

1 
戸 /lzl)-lz|入e叶:::;Cr::lz|入ylog（可＋2)乏1, (4.14) 

！B〗|▽釘dxdy = lz12 L¾lzl(z) I▽wl2dxdyさ zl2D:::;Cぶ腎． （4.15) 
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By the local Stokes estimates [9, Lemma 8] and (4.14)-(4.15), we get 

sup|▽剥:::;Cslz|入
B½ 

(4.16) 

By (4.16) and (4.14), lw(O)―|z|入e叶::;Cc:lz|入¥/log（古＋2),hence for 10 < lzl < 10入―19

we have the uniform estimate lw(z) —入e叶こ Ce入りこ［［口り．
Finally, combined with [9, Lemma 11], the desired pointwise estimate follows. ロ
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