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Abstract 

In this article, we present an informal introduction to the hydrodynamics 
of microscopic (self-)propelling particles, termed microswimmers. Due to 
the negligible inertia of the system, the dynamics are strongly restricted 
by the shape of the swimmer. Focusing on the mathematical structure of 
the system, we discuss some possible mathematical problems based on the 

author's interests. 

1 Introduction 

Even a single water droplet in a pond contains thousands of microorganisms. Many 

of these submillimeter living things are self-propelled often by using a slender ap-

pendage called cilia and flagella [1]. Since these organisms live in a fluid environment, 

the motion of the fluid is a strong mechanical constraint on their life. Studies on 

such biological locomotion under a microscope, termed microswimming, has rapidly 

expanded in these two decades, motivating the synthesis of artificial microswimmers 

such as magnetically-and electrically-activated microrobots, self-propelled colloids 

with chemical reaction, and combinations of engineered biological materials [2, 3]. 

This article is a (very) informal introduction to the hydrodynamics of microswimmer 

to showcase possible mathematical problems that might interest researchers working 

on rigorous mathematical analysis, though these problems are purely based on the 

author's interests and are far from a comprehensive survey or review of the field. 

For readers in a comprehensive review of the field, refer to some recent monographs 

on this topic [4, 5]. 
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In Sec. 2, we start with a brief introduction of the governing equations in the mi-

croswimmer hydrodynamics with a given shape gait, often referred to as a kinematic 

problem. We then proceed to the dynamics in a fluid flow and introduce a concept 

of hydrodynamic shape in Sec. 3. In Sec. 4, we extend our formulation to deal with 

a fluid-structure coupling, where the shape gait is determined by elasticity equations 

of a swimmer and fluid equation for the medium surrounding it. Concluding remarks 

are made in Sec. 5. 

2 Kinematic microswimmer hydrodynamics 

We first set up the governing equations of microswimmer hydrodynamics. Let 

V e配 bea region occupied by a fluid. We assume that the fluid satisfies the 

incompressible Navier-Stokes equations. Since the swimmer immersed in the fluid 

is microscopic, the Reynolds number for the fluid motion is typically very small. 

For a microorganism in water, the Reynolds number is at the order of 10-5 for a 
swimming bacterium, 10-3 for a mammalian sperm cell, and 10-1 for a larger ciliate 

such as Paramecium. Thus, as the governing equation of the system, we neglect 

all the inertia effects in the Navier-Stokes equations, yielding the so-called (steady) 

Stokes equations. For a velocity field ui and a stress field aij (i, j E {1, 2, 3}), the 
Stokes equation reads, 

枷•ij n ---.J au, 
= 0 and.:,:;..=: = 0, 

枷 j 8xi 
(2.1) 

where we use the Einstein summation convention for repeated indices. The stress 

tensor crij is given by the Newton's constitutive relation,叩=-p妬＋2μEij,where 
pis the pressure field, Eij is the rate of strain tensor, given by 

E三（詈鸞） (2.2) 

妬 isthe Kronecker delta and μ is the fluid visocity and assumed to be constant. 

We impose the no-slip boundary condition for the boundary of the fluid region and 

the fluid flow is then completely determined by the shape of the boundary and the 

values on it. Since the swimmer can deform by itself, the fluid region can move in 

time. The motion of the swimmer is represented by a summation of translation, 

rotation, and deformation. In the kinematic problem, we assume that the shape of 

the swimmer is a given function, and solve the translational and rotational velocities 
from the equations. Note that the shape gait is defined in the body-fixed coordinates 

and that the choice of the body-fixed coordinate possesses gauge freedom [6]. 

To close the system, we need the equations of motion for the center of mass of the 

swimmer. For microswimmers, the inertial effects are negligible and the momentum 
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and angular momentum conservations are reduced into relations of force balance 

and torque balance. Let S be the surface of the swimmer and ni be the outward 
(from the fluid region) normal to the surface, the balance relations are then written 

as 

JSび砂jdS = ls Eijk(Xj -X叫 ntdS= 0. 
s 

(2.3) 

Here, Eijk is the Levi-Civita symbol, the position vector Xj denotes a point fixed 

in the space, and the surface integral is performed over the variable Xj-Then the 

kinematic swimmer problem is closed by these equations. Indeed, existence and 

uniqueness have been analyzed in a formal manner [7]. 

One of the fundamental properties of kinematic microswimmer hydrodynamics is 

kinematic reversibility. This is well-known as the scallop theorem [8], which states 

that after one period of deformation, a microswimmer goes back to its original 
position, including its orientation if its deformation is reciprocal in time. This theo-
rem, therefore, is a strong mechanical constraint on the locomotion of a microscopic 

object. A formal proof of the theorem may be found in Ishimoto & Yamada [9]. 

The scallop theorem only holds when all the inertia effects are neglected in New-

tonian fluid dynamics. Then many studies have explored its extension and exact 

limitation of the condition that prohibits reciprocal swimming [10]. Indeed, some 
theoretical analyses with a simple mathematical model such as a deforming sphere, 

known as the squirmer model, demonstrate that the non-zero inertia generates net 

locomotion even with a reciprocal deformation [11, 12, 13, 14]. These perturbation 
analyses suggest a continuous breakdown of the scallop theorem due to finite, non-

zero Reynolds number. On the other hand, numerical investigations of an oscillatory 

flapping [15, 16] suggest an existence of a non-zero critical Reynolds number above 
which the fluid motion becomes unstable and thus generates locomotion for a recip-

rocal deformation. The numerical study by Ota et al. [16] implies the symmetry 
breakdown is related to the symmetry of the shape gait. This comes to the first 

problem in which the author has long been interested. 

Probem 1: Determine how the scallop theorem is broken by non-zero Reynolds 

numbers. 

The next question is whether we can lift the assumption of the Newtonian fluid for 

the scallop theorem. Laboratory experiments with a viscoelastic, non-Newtonian 

fluid reveal that non-reciprocal microswimming is possible [17]. Results of theo-
retical analyses for a general deforming self-propelled object suggest that non-linear 

viscoelasticity is required for reciprocal locomotion [18, 19]. However, another linear 

viscoelastic model can generate net locomotion even with a reciprocal swimmer [20]. 
Linear viscoelastic models should be interpreted as an effective description of the full 

non-linear model since the linear representation violates the material objectivity in 
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the constitutive relation of the material [21]. The second problem which the author 

is interested in is: 

Problem 2: Determine how the scallop theorem is broken by non-Newtonian effects. 

3 Microswimmers in fluid flows 

We then proceed to the dynamics of passive and active particles in a background 

fluid flow. Let us assume the background fluid flow u戸islocally approximated as a 

linear flow as 

u戸＝ U戸十 Eijk宵（咋ー X砂十Eご（咋ー X砂， (3.1) 

where U戸， 000and Eごarethe local linear velocity, local background rotational 

velocity, and the local rate-of-strain tensor of the background flow. With the 
linearity of the Stokes equation, one may solve the dynamics of the swimmer for-

mally. Furthermore, the hydrodynamic forces cay be decomposed into propulsion 

and hydrodynamic force from the surrounding flow, the latter of which is given by 

瓦＝ Ka凸 ＋9ajkE腐 (3.2) 

Here, we introduce a six-dimensional velocity Ua and a six-dimensional force瓦．
The 6 x 6 tensor Kゅ and6 x 3 x 3 tensor g叩kare, respectively, called the grand 

resistance tensor and grand shear-resistance tensor. For precise definitions, refer to 

the recent review paper [22]. The indices a and b move from 1 to 6, whereas the 

indices j and k move from 1 to 3. 

The components of resistance tensors depend on the body-fixed frame, but the 

tensors themselves are only determined by the (instantaneous) shape of the swimmer. 

We then introduce a symmetry of the resistance tensors, not from its actual shape. 

Let us consider a transformation of the body-fixed coordinates via Aij E 0(3). If 
the representation of the resistance tensors Kゅ andg叩k are invariant under this 

transformation, then we can define the hydrodynamic symmetry associated with 

Aij. For example, when we take Aij as a rotational matrix around an axis by an 

arbitrary angle. The geometrical symmetry associated with this transformation is 

a body of revolution and is usually called an axisymmetric object. However, the 
hydrodynamic symmetry associated with this transformation indeed corresponds to 

a wider class of objects. Such an object is called a helicoidal object and may be 

interpreted as a hydrodynamically-axisymmetric object [23, 24]. 

The dynamics of a helicoidal object are exactly solvable. Let Pi be a unit vector 

to express its direction of the axis of helicoidal symmetry. The dynamics of this 

orientation vector are derived as [23] 

か＝ Eijk，訂加＋ B(8iJ―PiPJ)E靡匹＋ ＋C句m(8jk-p氾）E店PcPm+ P『rap, (3.3) 
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where B and C are parameters only determined by the instantaneous shape and the 

last term is a contribution from self-propulsive rotation. If the object is geometrically 
axisymmetric (C = 0), the orientational dynamics are known as Jeffery's equation 
named after G. B. Jeffery, who first derived this equation for a spheroidal object 

in 1922 [25]. Then the third term vanishes and the shape is only represented by a 

single parameter B, which is known as the Bretheron parameter and interpreted as 
an effective aspect ratio [26]. The new constant in Eq. (3.3) is a contribution from 

shape chirality. Indeed, the locomotion of a bacterial cell with a helical flagellum is 

well explained by the equation. 

The shape parameters such as B and C integrate all the detailed shape geometry and 

thus the hydrodynamic shape is much simpler than the actual geometrical shape. It 
is therefore natural to ask the following question: 

Problem 3: Determine all the possible hydrodynamic symmetries and shape pa-

rameters. 

In [24], the author specified all the objects with n-fold rotational symmetry (n 2:: 3). 

In particular, when n 2:: 4, the dynamics are found to be expressed by Eq. (3.3). 

The parameter B typically ranges from -1 (the limit of a disk) to 1 (the limit of a 

rod), however, there exists an object beyond this range [27]. The shape parameter C 

has also been estimated for several microswimmers [28, 29]. Then one may ask how 
we can manufacture an object with a very large C, for instance. The next problem 

the author would like to propose is: 

Problem 4: Determine an actual shape of a micro object with given shape param-

eters. 

The form of Eq. (3.3) is even applicable for a rapidly deforming swimmer as emergent 

time-average slow dynamics [30, 31]. In these studies, they demonstrate the asymp-

totic form of the dynamics using the classical multi-scale analysis. Interestingly, 

the effective shape parameter in the slow dynamics depends on the shape gait. 

Also, this generalized Jeffery equation covers a rapidl> spinning swimmer such as 

wobbling bacterium [32, 33]. The emergent slow dynamics are derived by the multi-
scale analysis and the effective shape parameters are affected by individual shape 

gait. For interested readers, refer to [22]. 

4 Microswimmer elastohydrodynamics 

In the kinematic problem discussed in the previous section, the shape gait is a given 

function of time. However, many biological swimmers required internal actuation 
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that deforms the shape of the swimmer with interacting surrounding viscous fluid. 

In this case, the shape is no more a given function, but an unknown function to be 
determined by equations of motion. The swimmer is often modeled as an elastic 

material and thus these swimming problems containing fluid-structure interactions 

are called elastohydrodynamics. 

As we drive the deformation by internal actuation, the dynamics system becomes 

non-autonomoum and non-equilibrium. In the swimmer dynamics, the energy is 

typically injected from molecular scales, converted to deformation, and dissipated 

by the surrounding viscous medium. Such a non-equilibrium state of matter has 

recently gathered a special attention as a matter violating Newton's third law [34]. 

Recently, the description of an elastic material is extended to capture the energy 

injection from a microscopic scale, by non-symmetric components of the elastic 

matrix, termed odd elasticity [35, 36]. With this concept, we can write down the 

elastohydrodynamic system via an autonomous equation. We first label the shape 

of a swimmer by N dimensional vector,叩， whereo: moves from 1 to N. For a 

general swimmer in three-dimensional space, the state of the swimmer is designated 

by N + 6-dimensional vector, z = (x1, x公知， 01,02,0ふ釘，び2,...，叩，．．．，知）T_The 
first six components indicate the position and the angle variables. We then write the 

odd-elastic fluid-structure interactions at low Reynolds number in the form [37, 38], 

-MabZb = Lab祢， (4.1) 

with the indeces, a and b, moving from 1 to N + 6. The matrix Mab is a generalized 

resistance matrix that encodes the hydrodynamic interaction. The matrix on the 

right-hand side represents the elastic interaction, which also includes odd elasticity. 

Let us designate the right bottom components as La+6,(3＋6 = Ka(3，and other com-
ponents of this matrix are set to be zero. The N x N matrix Ka(3is a generalization 

of the elastic interactions between the units of the active material. In an ordinary 

elastic material, we usually assume that the elastic force is conservative and thus 

represented by a gradient of potential. The matrix Ka/3 then must be symmetric, as 

known as Maxwell-Betti reciprocity. An odd elastic matrix allows its non-symmetric 

components, and we consider such situations where Ka(3ヂK(3心

The resistance matrix on the right-hand side is determined only by the instantaneous 

shape, and we can also consider Ka(3as a function of the shape. The simplest case, 

however, is a constant Ka(3matrix and this is a generalization of the linear elasticity 

[37]. With the linear odd elasticity, the swimmer can generate a self-sustain wave 

pattern through geometrical non-linearity without any controlled, tuned actuation, 
although only a pusher-type swimmer, swimming with an appendage at the rear 

of the body, is possible. To express a general swimmer performing a periodic 

deformation, we can further extend the odd elasticity to a non-linear regime [38], 
which enables a unified description of active elastic material in a viscous fluid. A real 

biological cell can perceive external chemical and mechanical stimuli and respond 
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to them, by changing its gait pattern. This fact further motivates the description of 

active soft material including smart behaviors of cells. This brings our final problem: 

Problem 5: Determine and classify possible constitutive relations of active elastic 

materials 

5 Concluding remarks 

In this article, an informal introduction to microswimmer hydrodynamics is pre-
sented based on the author's interests. Microswimmers are still very active research 

fields where many research disciplines including physics, biology, medicine, engineer-

ing, data science, and mathematics, meet and are integrated. 
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