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Abstract
Human-mediated hybridization between native and non-native species is causing bio-
diversity loss worldwide. Hybridization has contributed to the extinction of many spe-
cies through direct and indirect processes such as loss of reproductive opportunity 
and genetic introgression. Therefore, it is essential to manage hybrids to conserve 
biodiversity. However, specialized knowledge is required to identify the target spe-
cies based on visual characteristics when two species have similar features. Although 
image recognition technology can be a powerful tool for identifying hybrids, stud-
ies have yet to utilize deep learning approaches. Hence, this study aimed to identify 
hybrids between the native Japanese giant salamander (Andrias japonicus) and the 
non-native Chinese giant salamander (Andrias cf. davidianus) using EfficientNetV2 
and smartphone images. We used smartphone images of 11 individuals of native 
A. japonicus (five training and six test images) and 20 individuals of hybrids between 
A. japonicus and A. cf. davidianus (five training and 15 test images). In our experimental 
environment, an AI model constructed with EfficientNetV2 exhibited 100% accuracy 
in identifying hybrids. In addition, gradient-weighted class activation mapping revealed 
that the AI model was able to classify A. japonicus and hybrids between A. japonicus 
and A. cf. davidianus on the basis of the dorsal head spot patterning. Our approach 
thus enables the identification of hybrids against A. japonicus, which was previously 
considered difficult by non-experts. Furthermore, since this study achieved reliable 
identification using smartphone images, it is expected to be applied to a wide range 
of citizen science projects.
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1  |  INTRODUC TION

Although significant effort has been devoted toward conservation, 
biodiversity loss remains a global challenge (Johnson et al., 2017). 
Anthropogenic activities such as urbanization, agricultural intensifi-
cation, and species exploitation reduce biodiversity, and species ex-
tinction rates are progressing much faster than in the past (Ceballos 
et  al., 2015). In addition, globalization has led to the introduction 
of organisms into new environments, establishing non-native pop-
ulations in new areas (Pyšek et  al., 2020). These non-native spe-
cies negatively affect the ecosystem through direct and indirect 
effects such as predation, niche displacement, and introduction 
of diseases (Doherty et  al., 2016; Haubrock et  al., 2021; Kortz & 
Magurran, 2019; Scheele et al., 2019). Moreover, non-native species 
are recognized as a further driver of the extinction of local species 
(Bellard et al., 2016). Therefore, the mitigation of biological invasions 
is essential to conserve biodiversity because the impact of non-na-
tive species on biodiversity and ecosystems is expected to increase 
in the future (Pyšek et al., 2020).

When non-native species are introduced into a new habitat, they 
sometimes encounter close relatives. In such cases, hybridization oc-
curs owing to incomplete reproductive isolation from closely related 
species (Todesco et al., 2016). Hybridization in non-native species 
is frequently observed and considered an evolutionary mechanism 
that determines invasion success (Bock et al., 2021). For example, 
native California tiger salamanders (Ambystoma californiense) and in-
troduced barred tiger salamanders (Ambystoma tigrinum mavortium) 
have hybridized and formed a hybrid swarm in California. Fitzpatrick 
and Shaffer (2007) reported that hybrid tiger salamanders exhibited 
higher fitness than individuals containing mostly native or mostly 
introduced alleles (hybrid vigor). Hybrid vigor is defined as the supe-
rior growth or reproduction of hybrids compared with parental lin-
eages (Vilà & D'Antonio, 1998); this genetic admixture can increase 
the fitness of colonizers in biological invasion (Qiao et al., 2019). In 
addition, hybrids sometimes have intermediate traits or different 
traits from the parent species (Hayden et al., 2011), and some traits 
may determine the establishment success of non-native species 
(Coulter et  al., 2020). For instance, a meta-analysis of plants, ani-
mals, and fungi demonstrated that non-native hybrids have a larger 
body size and are more fecund than their parent species (Hovick & 
Whitney, 2014). Although early non-native populations are affected 
by density-dependent processes such as the Allee effect (Camacho-
Cervantes et al., 2023), hybridization provides mating partners for 
non-native species, which could reduce the Allee effect and pro-
mote invasions (Yamaguchi et al., 2019).

Hybrids of similar species pose a threat to genetic diversity be-
cause introduced alleles may eventually replace the native alleles 
(Fitzpatrick & Shaffer,  2007). Although it is necessary to control 
hybrids to conserve biodiversity, the difficulty in distinguishing be-
tween native and hybrid species is one of the critical issues in man-
aging and controlling hybrids. Hybrids can often be detected using 
morphological characteristics (Allendorf et  al.,  2001). However, 
morphological characteristics cannot be used to determine whether 

an individual is a first-generation or backcross-generation hybrid. In 
addition, the misidentification of species can also cause conserva-
tion problems. For example, incorrect identification of target species 
could negatively impact native species; native frogs have been killed 
in Australia because of misjudgments while removing the non-native 
cane toad (Rhinella marina) (Somaweera et al., 2010).

The development of molecular genetic techniques, such as PCR 
and eDNA, has overcome these challenges (Allendorf et al., 2001; 
Rees et  al.,  2017). DNA analysis allows accurate species identifi-
cation and can reveal the degree of hybridization, previously dif-
ficult to determine using morphological traits. However, the cost 
of molecular analysis remains high for some methods, and labora-
tory work and expertise are required to analyze samples (Martinez 
et  al.,  2020; Stein et  al., 2014). On the contrary, visual identifica-
tion of target species using photographs is less expensive, and data 
can be easily collected with minimal disturbance for the individuals 
(Hou et al., 2020). In addition, citizen science surveys using photo-
graphs are a valuable approach for the early detection of non-native 
species because they can be used to collect data over large areas 
(Werenkraut et al., 2020). For example, new tools and datasets such 
as iNaturalist and eBird are emerging that allow people to report 
observations at any time and from any location (Larson et al., 2020). 
Despite these advantages, photographic identification is time-con-
suming when the observer must check large databases (Bogucki 
et al., 2019).

In recent years, deep learning image recognition technology, a 
novel group of artificial intelligence approaches, has begun to be uti-
lized to identify both species and individuals in ecology. Identifying 
and counting animal species in images provides basic but essential 
information (Tuia et  al.,  2022). Many previous studies have com-
bined camera traps and deep learning to identify species. For in-
stance, Norouzzadeh et al. (2018) identified wild mammals and birds 
using 3.2 million images obtained from camera traps in the Serengeti 
National Park. In addition, these techniques have been applied to 
individual identification, such as green turtles (Carter et al., 2014), 
chimpanzees (Schofield et  al.,  2019), and brown bears (Clapham 
et  al.,  2020). Furthermore, deep learning algorithms have already 
been used to detect non-native species. For example, Ashqar and 
Abu-Naser  (2019) classified Hydrangea with a dataset containing 
approximately 3800 images taken in a Brazilian national forest, 
demonstrating the feasibility of this approach. Guo et al. (2022) also 
developed a novel deep learning model to identify common reed 
(Phragmites australis) from unmanned aerial vehicle (UAV) images. In 
another study, tall goldenrod (Solidago altissima) was detected from 
action camera images using the chopped picture method, and the 
suitability of this method in citizen science was considered (Takaya 
et al., 2022). Although a similar approach may provide a new method 
for identifying hybrids, studies have yet to apply deep learning mod-
els to their identification.

Deep learning has achieved remarkable success in various 
fields, although its lack of transparency is a major disadvantage 
(Kakogeorgiou & Karantzalos, 2021; Petch et al., 2022). This tech-
nique is sometimes considered a “black box” method in that it is 
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unclear how and why a particular classification decision is arrived 
at (Brunese et  al., 2020; Montavon et  al., 2017). Recently, several 
approaches have been developed to overcome this challenge. For 
example, gradient-weighted class activation mapping (Grad-CAM) 
provides a heatmap visualization of the regions that influenced the 
model's predictions, giving valuable information for the interpreta-
tion of results (Selvaraju et al., 2017). In ecological research, Grad-
CAM is applied in individual re-identification (De Silva et al., 2022) 
and species identification (Banan et al., 2020). Although this tech-
nique provides visual information for classifying hybrids, research 
applying this technique to detect hybrids in biological invasions is 
lacking.

The Japanese giant salamander (Andrias japonicus) is an amphib-
ian endemic to Japan and is threatened with extinction as a result 
of decreasing population due to habitat degradation and fragmen-
tation (Taguchi & Natuhara, 2009; Tochimoto et al., 2007; Yamasaki 
et al., 2013). In the 2022 IUCN Red List, the conservation status rank 
of this species was changed from Near Threatened to Vulnerable 
(IUCN, 2022). One reason for the status change in A. japonicus is 
the hybridization with the congeneric but non-native Chinese giant 
salamander (Andrias cf. davidianus). This species is also threatened 
with extinction in its original habitat, but individuals introduced to 
Japan in the early 1970s have become wild and hybridized with A. 
japonicus. For example, a Kyoto City government survey revealed 
that only four (2%) out of 244 individuals captured in the Kamo 
River Basin in Kyoto were native A. japonicus, and the remaining 
240 (98%) were A. cf. davidianus or hybrids between A. japonicus 
and A. cf. davidianus (HYB), a problem requiring rapid action (The 
Kyoto City Government,  2015). Moreover, the number of areas 
where HYB have been caught is increasing, with hybrids already 
confirmed in eight prefectures in western Japan (Kyoto, Mie, Nara, 
Shiga, Okayama, Hiroshima, Aichi, and Gifu). Currently, HYB is iden-
tified by visual screening and DNA analysis (Fukumoto et al., 2015). 
Although detecting HYB by spot patterning would allow their rapid 
identification in the field, this approach requires specialized knowl-
edge (Figure 1). Generally, A. davidianus has a darker body color with 

paler spots than A. japonicus, although the body color and spot pat-
terning differ among individuals of both species. The accurate iden-
tification of HYB from images would require less time and expense 
than DNA analysis. It would also facilitate the early detection and 
effective capture of suspected HYB individuals via citizen science, 
particularly in areas where hybrids have not yet been found, thereby 
contributing to the effective conservation of A. japonicus.

Our aim was to identify HYB using a computer-based algorithm 
employing deep learning. The wide availability of the Internet and 
smartphones provides the opportunity for identifying species and 
reporting their locations (Larson et al., 2020). Our approach allows 
the public to photograph and detect HYB individuals without spe-
cialized knowledge because A. japonicus and HYB often appear in 
rivers flowing through urban areas and less populated rural areas. In 
recent years, citizen science has been adopted to manage non-native 
species (Larson et al., 2020), and a similar method could be applied 
to HYB. Secondly, we developed an efficient method to recognize A. 
japonicus and HYB. Spot patterns are more difficult to quantify than 
morphological traits such as body size; thus, few people can utilize 
this information. However, techniques such as Grad-CAM allow vi-
sualization of the important region for predicting whether the spe-
cies is A. japonicus or HYB by the AI model. If specific essential areas 
for identifying HYB can be clarified, that information will be valuable 
for helping the general public to identify HYB.

2  |  MATERIAL S AND METHODS

2.1  |  Image acquisition

In this study, 11 individuals of native A. japonicus and 20 individu-
als of HYB were used (Figures S1 and S2). The Chinese giant sala-
mander has been categorized into several species in recent years 
(Chai et al., 2022; Turvey et al., 2019; Yan et al., 2018). Because it is 
unknown which Chinese Andrias species was introduced to Japan, 
we will be referred to as Andrias cf. davidianus in this study. The 

F I G U R E  1 Dorsal head spot patterning of Andrias japonicus (a), HYB (b), and Andrias davidianus (c). The image of A. davidianus was 
provided by Dr. Benjamin Tapley, Zoological Society of London.
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native individuals were kept at the Conservation Breeding Facility 
in Hiroshima City Asa Zoological Park, which is a leading facility in 
Japan for the research, conservation, and breeding of this species. 
The HYB were captured in the wild and then transferred to this 
facility.

The 11 A. japonicus individuals were photographed on August 20, 
2022, at 11:00 a.m. Each individual in the water was recorded on Full 
HD video from above (Figure S3) for approximately 30 seconds using 
an iPhone 11, from which still images were obtained for analysis. 
The dorsal head spot patterning of A. japonicus was recorded at ap-
proximately 60 cm from the camera, and the water depth was about 
20 cm. To reduce glare due to reflection from the water surface, the 
recording was performed under a black umbrella. The videos were 
converted to 10 still JPEG images (1920 × 1080) per second using 
Free Video to JPG Converter version 5.0.101 (DVDVideoSoft Ltd.).

The 20 HYB were recorded on Full HD video on November 19, 
2022, at 2:00 p.m. using an iPhone SE 2020. The method of image 
collection was the same as that for A. japonicus.

2.2  |  Ethics declaration

A. japonicus are protected as a National Natural Monument under 
the Law for the Protection of Cultural Properties. Therefore, this 
study required permission and was approved by Hiroshima City Asa 
Zoological Park under the auspices of the Agency for Cultural Affairs 
and was categorized as a non-invasive study.

2.3  |  Framework

The heads in the images were automatically detected using YOLOv5 
(Redmon et  al.,  2016) and used as either training or test images 
(Figure 2). The training data comprised five individuals of A. japoni-
cus and five HYB individuals selected randomly from the two groups 
(Table 1; Figures S1 and S2). The six remaining A. japonicus individuals 
and 15 remaining HYB individuals not used in training were selected 
as test images. These images were resized to 224 × 224 pixels to en-
sure consistency in size. Additionally, augmentation (rotation, crop, 
brightness, Gaussian noise, color jitter, and saturation) was applied 
to the training data to prevent overfitting. Each type of augmenta-
tion was applied with a probability of 50%. For example, applying 
rotation and cropping resulted in three patterns of images with (1) 
both processes applied, (2) one of the two processes applied, and 
(3) neither process applied. After augmentation, 70% of the images 
used for training and 30% of the images used for validation were 
randomly separated for analysis.

2.4  |  Visualization using Grad-CAM

Gradient-weighted class activation mapping generates a heatmap 
that indicates the importance of pixels in the feature maps of an 

input image (Selvaraju et al., 2017). These highlighted regions in an 
image provide an explainable view of deep learning models. Using 
this method, we extracted the feature maps of the final convolu-
tional layer in the model and calculated the gradients. These gradi-
ents were subjected to global average pooling to obtain the weights. 
We used a weighted combination of feature maps to form output 
images using the ReLU (rectified linear unit) function, which allows 
features with a positive effect on the category of interest to be 
identified.

2.5  |  EfficientNetV2

In this study, we trained EfficientNetV2 to classify images. This con-
volutional neural network scales down the number of layers while 
scaling down the model (Tan & Le, 2019). EfficientNetV2 is an im-
proved version of EfficientNet with increased training speed and 
parameter efficiency (Tan & Le, 2021). The EfficientNetV2 model 
employs a neural architecture search (NAS) to optimize the model ac-
curacy, size, and training speed. In this study, the EfficientNetV2-B0 
model was used as the network, and fine-tuning was performed 
using a model that had been pre-trained with the ImageNet21k data-
set. The number of epochs was set to 50, and the batch size was 
set to 32 for training. Adam was used as the optimization algorithm 
(optimizer), and dropout was set to 0.3. We employed early stopping 
to prevent overfitting. Automatic termination was performed when 
the validation loss did not improve by more than 0.001 for five con-
secutive epochs. These analyses were performed using an NVIDIA 
DGX Station A100. Finally, overall accuracy was used for evaluation.

3  |  RESULTS

3.1  |  Classification of native species and HYB

The six individuals of A. japonicus and 15 HYB used in the test (1881 
images) were all correctly classified, namely with an accuracy of 
100%, in our experimental environment. The classification results 
are presented in a confusion matrix (Figure 3), where the vertical axis 
is the ground truth and the horizontal axis is the model's prediction. 
The number in each cell indicates the number of images classified as 
native species or HYB, and the color of each cell indicates the per-
centage of images per ground truth. For example, pale blue indicated 
a ratio of 0.0, meaning that no images were classified for that cell. In 
contrast, dark blue indicated a ratio of 1.0, meaning that all images 
were classified for that cell.

3.2  |  Visualization using Grad-CAM

The red regions are those considered by the model when outputting 
the prediction results (Figure 4 and Figures S4 and S5). The dorsal 
head spot patterning was a key area for classifying A. japonicus and 
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HYB. The visualizations for A. japonicus indicate that the network 
learned to recognize the relatively distinctive large black spots. 
On the contrary, the visualizations for the HYB indicate that the 
network learned to focus on the pale and ambiguous wide region 
rather than the black spots. However, because the dorsal head spot 

patterning differed individually, the results of Grad-CAM visualiza-
tion also varied among them (Figures S4 and S5).

4  |  DISCUSSION

We identified HYB from images using deep learning. Historically, 
visual screening by experts and DNA analysis have been applied 
to identify HYB. However, the scarcity of experts and the time and 
cost of DNA analysis have been barriers to effective screening. 
Therefore, we proposed a novel approach to identifying HYB that 
uses an image recognition technique. A total of six native A. japonicus 
and 15 HYB individuals were used, and all were correctly classified 
by the AI model, namely the accuracy was 100%, in our experimental 
setting. Furthermore, highlighted regions that affect the AI model's 
prediction suggested that the model distinguished between native 
A. japonicus and HYB on the basis of spot patterns. Although deep 
learning has already been applied to identify species and individuals, 
to our knowledge, this is the first study in which it is used to identify 
hybrid individuals.

EfficientNetV2 demonstrated that dorsal head spot patterning 
can be used to identify A. japonicus and HYB. One reason why all 
individuals were successfully classified was the quality of the train-
ing and test images. In this study, photographs were taken from a 
short distance; thus, the high accuracy can be attributed to the clear 
spot patterns in the images. Another reason is that the heads were 
photographed from a similar angle (Figure S3). For example, previous 
studies have demonstrated that taking photographs from different 
angles reduces identification accuracy (Arzoumanian et  al.,  2005). 
Instead, we photographed all individuals from directly above the 
dorsal head and used them for training and testing images. Training 
and test images were also obtained on the same day, which could 

F I G U R E  2 Framework of the classification model for Andrias japonicus and HYB using smartphone photographs.

TA B L E  1 Dataset summary showing the date and purpose of the 
images taken.

Species Year Date Training Test

A. japonicus 2022 August 20 468 525

Hybrids 2022 November 19 439 1356

F I G U R E  3 Binary classification of the native Andrias japonicus 
and HYB.
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also have contributed to the high performance. In the future, the 
performance of our approach should be carefully evaluated in a var-
ied environment, using images from different dates and locations, 
before it is implemented in the field.

The visualized distribution of the heatmaps was different for A. 
japonicus and HYB. For the former, the model focused on their dis-
tinctive large black spots, whereas for latter, it focused on the pale 
and ambiguous wide region. These results suggest that the differing 
spot patterns between A. japonicus and HYB can be utilized for clas-
sification. In general, A. japonicus have such black spots (Figure S1), 
whereas the spots of HYB are more indistinct (Figure S2). Experts 
use these spot pattern differences as one of the criteria to identify 
HYB individuals. Our study revealed that deep learning distinguishes 
between A. japonicus and HYB using the same pattern recognition 
as experts. The heatmap could be used as an instruction guide for 
the general public on HYB identification because the highlighted 
graphical figures are visually comprehensible. However, we could 
not analyze A. cf. davidianus because they are rarely found in Japan. 
Therefore, the dorsal head spot patterning of A. cf. davidianus should 
also be analyzed in cooperation with Chinese research institutions.

Although our approach achieved high accuracy in identifying A. 
japonicus and HYB in this study, several challenges still exist. Firstly, 
we did not consider the hybridization degree, which affects the spot 
pattern in HYB. The HYB used in this study were first generation 
(Shimizu et al., 2022), suggesting that these individuals have inter-
mediate traits between A. japonicus and A. cf. davidianus. Since the 
HYB is fertile, the dorsal head spot pattern will depend on several 
factors, such as the generation. Future work should examine the re-
lationship between the degree of genetic introgression and the iden-
tification accuracy. Secondly, it is essential to combine this method 
with DNA analysis because deep learning-based identification has 
limitations. For example, due to hybridization, some HYB have spots 
indistinguishable from those of A. japonicus. DNA analysis is the only 
suitable method to determine the species in such cases. However, 
our technology can be applied for the early detection of suspected 
HYB through citizen science and rapid identification by computer 

vision. In addition, further advances in deep learning might enable 
the identification of backcrossed hybrids that are difficult to distin-
guish even for experts because their spots are extremely close to 
those of A. japonicus. Thirdly, the sample size was small because only 
five individuals were used for training. Therefore, greater accuracy 
can be expected by using additional training datasets. However, all 
HYB could be identified even when the sample size was small, sug-
gesting that image recognition is an effective approach to detecting 
HYB. Finally, this study was conducted in the daytime under uniform 
photographic conditions, whereas A. japonicus and HYB must be 
photographed under artificial light in field surveys because they are 
nocturnal. In the future, it is necessary to determine whether images 
obtained under various light conditions can be used to identify HYB.

Hybridization between native and non-native species is one of 
the major causes of biodiversity loss (Bourret et al., 2022). Moreover, 
hybrid individual detection is challenging when they are similar to 
the native species. Deep learning image recognition techniques can 
be a valuable tool to support the visual identification of hybrids. We 
proposed a new approach for classifying A. japonicus and HYB using 
smartphone images that could be utilized in citizen science. The ar-
tificial intelligence employed in this approach identifies HYB on the 
basis of spot patterns, a technique previously limited to experts, thus 
allowing the public to detect HYB easily. In particular, the distribu-
tion of HYB is expanding, meaning that managing them is a priority 
task for the conservation of A. japonicus. Our findings can potentially 
prevent their future spread by providing a method for the efficient 
discovery of such individuals. For example, citizens can find A. japon-
icus or HYB in the field and upload photos to social media such as 
X (Twitter), and our technology can facilitate the utilization of such 
online images.

5  |  CONCLUSION

We applied deep learning to identify A. japonicus and HYB. It was 
successfully demonstrated that the dorsal head patterning is an 

F I G U R E  4 Visualization images generated by gradient-weighted class activation mapping (Grad-CAM). The three individuals on the left 
(8, 9, 11) were Andrias japonicus. Heatmaps indicate that the network learned the relatively distinctive large black spots of A. japonicus. The 
three individuals on the right (12, 13, 15) were HYB. In the case of HYB, the network learned the pale and ambiguous wide region.
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    |  7 of 9TAKAYA et al.

effective region for classification by Grad-CAM. Although the visual 
identification of HYB has historically been restricted to specialists, 
our approach enables the public to identify them, making it particu-
larly useful within the context of citizen science.
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