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Abstract
Human-mediated	hybridization	between	native	and	non-native	species	is	causing	bio-
diversity	loss	worldwide.	Hybridization	has	contributed	to	the	extinction	of	many	spe-
cies	through	direct	and	indirect	processes	such	as	loss	of	reproductive	opportunity	
and	genetic	 introgression.	Therefore,	 it	 is	 essential	 to	manage	hybrids	 to	 conserve	
biodiversity.	However,	specialized	knowledge	is	required	to	 identify	the	target	spe-
cies	based	on	visual	characteristics	when	two	species	have	similar	features.	Although	
image	 recognition	 technology	can	be	a	powerful	 tool	 for	 identifying	hybrids,	 stud-
ies	have	yet	to	utilize	deep	learning	approaches.	Hence,	this	study	aimed	to	identify	
hybrids	 between	 the	 native	 Japanese	 giant	 salamander	 (Andrias japonicus) and the 
non-native	 Chinese	 giant	 salamander	 (Andrias	 cf.	 davidianus)	 using	 EfficientNetV2	
and	 smartphone	 images.	We	 used	 smartphone	 images	 of	 11	 individuals	 of	 native	
A. japonicus	(five	training	and	six	test	images)	and	20	individuals	of	hybrids	between	
A. japonicus and A.	cf.	davidianus	(five	training	and	15	test	images).	In	our	experimental	
environment,	an	AI	model	constructed	with	EfficientNetV2	exhibited	100%	accuracy	
in	identifying	hybrids.	In	addition,	gradient-weighted	class	activation	mapping	revealed	
that	the	AI	model	was	able	to	classify	A. japonicus	and	hybrids	between	A. japonicus 
and A.	cf.	davidianus	on	the	basis	of	the	dorsal	head	spot	patterning.	Our	approach	
thus	enables	the	identification	of	hybrids	against	A. japonicus,	which	was	previously	
considered	difficult	by	non-experts.	Furthermore,	since	this	study	achieved	reliable	
identification	using	smartphone	images,	it	is	expected	to	be	applied	to	a	wide	range	
of	citizen	science	projects.
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1  |  INTRODUC TION

Although	significant	effort	has	been	devoted	toward	conservation,	
biodiversity	 loss	 remains	a	global	 challenge	 (Johnson	et	al.,	2017). 
Anthropogenic	activities	such	as	urbanization,	agricultural	intensifi-
cation,	and	species	exploitation	reduce	biodiversity,	and	species	ex-
tinction	rates	are	progressing	much	faster	than	in	the	past	(Ceballos	
et al., 2015).	 In	 addition,	 globalization	 has	 led	 to	 the	 introduction	
of	organisms	 into	new	environments,	establishing	non-native	pop-
ulations	 in	 new	 areas	 (Pyšek	 et	 al.,	2020).	 These	 non-native	 spe-
cies	 negatively	 affect	 the	 ecosystem	 through	 direct	 and	 indirect	
effects	 such	 as	 predation,	 niche	 displacement,	 and	 introduction	
of	 diseases	 (Doherty	 et	 al.,	2016;	 Haubrock	 et	 al.,	2021;	 Kortz	 &	
Magurran, 2019;	Scheele	et	al.,	2019).	Moreover,	non-native	species	
are	recognized	as	a	further	driver	of	the	extinction	of	local	species	
(Bellard	et	al.,	2016).	Therefore,	the	mitigation	of	biological	invasions	
is	essential	to	conserve	biodiversity	because	the	impact	of	non-na-
tive	species	on	biodiversity	and	ecosystems	is	expected	to	increase	
in	the	future	(Pyšek	et	al.,	2020).

When	non-native	species	are	introduced	into	a	new	habitat,	they	
sometimes	encounter	close	relatives.	In	such	cases,	hybridization	oc-
curs	owing	to	incomplete	reproductive	isolation	from	closely	related	
species	 (Todesco	et	al.,	2016).	Hybridization	 in	non-native	 species	
is	frequently	observed	and	considered	an	evolutionary	mechanism	
that	determines	 invasion	success	 (Bock	et	al.,	2021).	For	example,	
native	California	tiger	salamanders	(Ambystoma californiense) and in-
troduced	barred	tiger	salamanders	(Ambystoma tigrinum mavortium) 
have	hybridized	and	formed	a	hybrid	swarm	in	California.	Fitzpatrick	
and	Shaffer	(2007)	reported	that	hybrid	tiger	salamanders	exhibited	
higher	 fitness	 than	 individuals	 containing	mostly	 native	 or	mostly	
introduced	alleles	(hybrid	vigor).	Hybrid	vigor	is	defined	as	the	supe-
rior	growth	or	reproduction	of	hybrids	compared	with	parental	lin-
eages	(Vilà	&	D'Antonio,	1998);	this	genetic	admixture	can	increase	
the	fitness	of	colonizers	in	biological	invasion	(Qiao	et	al.,	2019).	In	
addition,	 hybrids	 sometimes	 have	 intermediate	 traits	 or	 different	
traits	from	the	parent	species	(Hayden	et	al.,	2011),	and	some	traits	
may	 determine	 the	 establishment	 success	 of	 non-native	 species	
(Coulter	 et	 al.,	2020).	 For	 instance,	 a	meta-analysis	 of	 plants,	 ani-
mals,	and	fungi	demonstrated	that	non-native	hybrids	have	a	larger	
body	size	and	are	more	fecund	than	their	parent	species	(Hovick	&	
Whitney,	2014).	Although	early	non-native	populations	are	affected	
by	density-dependent	processes	such	as	the	Allee	effect	(Camacho-
Cervantes et al., 2023),	hybridization	provides	mating	partners	 for	
non-native	 species,	 which	 could	 reduce	 the	 Allee	 effect	 and	 pro-
mote	invasions	(Yamaguchi	et	al.,	2019).

Hybrids	of	similar	species	pose	a	threat	to	genetic	diversity	be-
cause	 introduced	 alleles	may	 eventually	 replace	 the	 native	 alleles	
(Fitzpatrick	 &	 Shaffer,	 2007).	 Although	 it	 is	 necessary	 to	 control	
hybrids	to	conserve	biodiversity,	the	difficulty	in	distinguishing	be-
tween	native	and	hybrid	species	is	one	of	the	critical	issues	in	man-
aging	and	controlling	hybrids.	Hybrids	can	often	be	detected	using	
morphological	 characteristics	 (Allendorf	 et	 al.,	 2001). However, 
morphological	characteristics	cannot	be	used	to	determine	whether	

an	individual	is	a	first-generation	or	backcross-generation	hybrid.	In	
addition,	 the	misidentification	of	species	can	also	cause	conserva-
tion	problems.	For	example,	incorrect	identification	of	target	species	
could	negatively	impact	native	species;	native	frogs	have	been	killed	
in	Australia	because	of	misjudgments	while	removing	the	non-native	
cane	toad	(Rhinella marina)	(Somaweera	et	al.,	2010).

The	development	of	molecular	genetic	techniques,	such	as	PCR	
and	eDNA,	has	overcome	these	challenges	 (Allendorf	et	al.,	2001; 
Rees et al., 2017).	 DNA	 analysis	 allows	 accurate	 species	 identifi-
cation	 and	 can	 reveal	 the	 degree	 of	 hybridization,	 previously	 dif-
ficult	 to	 determine	 using	 morphological	 traits.	 However,	 the	 cost	
of	molecular	analysis	 remains	high	 for	 some	methods,	 and	 labora-
tory	work	and	expertise	are	required	to	analyze	samples	(Martinez	
et al., 2020;	 Stein	 et	 al.,	2014).	On	 the	 contrary,	 visual	 identifica-
tion	of	target	species	using	photographs	is	less	expensive,	and	data	
can	be	easily	collected	with	minimal	disturbance	for	the	individuals	
(Hou	et	al.,	2020).	In	addition,	citizen	science	surveys	using	photo-
graphs	are	a	valuable	approach	for	the	early	detection	of	non-native	
species	because	 they	can	be	used	 to	collect	data	over	 large	areas	
(Werenkraut	et	al.,	2020).	For	example,	new	tools	and	datasets	such	
as	 iNaturalist	 and	 eBird	 are	 emerging	 that	 allow	 people	 to	 report	
observations	at	any	time	and	from	any	location	(Larson	et	al.,	2020). 
Despite	these	advantages,	photographic	identification	is	time-con-
suming	 when	 the	 observer	 must	 check	 large	 databases	 (Bogucki	
et al., 2019).

In	 recent	years,	deep	 learning	 image	 recognition	 technology,	 a	
novel	group	of	artificial	intelligence	approaches,	has	begun	to	be	uti-
lized	to	identify	both	species	and	individuals	in	ecology.	Identifying	
and	counting	animal	species	 in	 images	provides	basic	but	essential	
information	 (Tuia	 et	 al.,	 2022).	 Many	 previous	 studies	 have	 com-
bined	 camera	 traps	 and	 deep	 learning	 to	 identify	 species.	 For	 in-
stance,	Norouzzadeh	et	al.	(2018)	identified	wild	mammals	and	birds	
using	3.2	million	images	obtained	from	camera	traps	in	the	Serengeti	
National	 Park.	 In	 addition,	 these	 techniques	have	been	 applied	 to	
individual	 identification,	such	as	green	turtles	 (Carter	et	al.,	2014), 
chimpanzees	 (Schofield	 et	 al.,	 2019),	 and	 brown	 bears	 (Clapham	
et al., 2020).	 Furthermore,	 deep	 learning	 algorithms	 have	 already	
been	used	 to	detect	non-native	 species.	For	example,	Ashqar	and	
Abu-Naser	 (2019)	 classified	 Hydrangea with a dataset containing 
approximately	 3800	 images	 taken	 in	 a	 Brazilian	 national	 forest,	
demonstrating	the	feasibility	of	this	approach.	Guo	et	al.	(2022) also 
developed	 a	 novel	 deep	 learning	model	 to	 identify	 common	 reed	
(Phragmites australis)	from	unmanned	aerial	vehicle	(UAV)	images.	In	
another	study,	tall	goldenrod	(Solidago altissima)	was	detected	from	
action	camera	 images	using	 the	chopped	picture	method,	and	 the	
suitability	of	this	method	in	citizen	science	was	considered	(Takaya	
et al., 2022).	Although	a	similar	approach	may	provide	a	new	method	
for	identifying	hybrids,	studies	have	yet	to	apply	deep	learning	mod-
els	to	their	identification.

Deep	 learning	 has	 achieved	 remarkable	 success	 in	 various	
fields,	 although	 its	 lack	 of	 transparency	 is	 a	 major	 disadvantage	
(Kakogeorgiou	&	Karantzalos,	2021;	Petch	et	al.,	2022). This tech-
nique	 is	 sometimes	 considered	 a	 “black	 box”	 method	 in	 that	 it	 is	
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unclear	how	and	why	a	particular	 classification	decision	 is	 arrived	
at	 (Brunese	et	 al.,	2020; Montavon et al., 2017).	Recently,	 several	
approaches	have	been	developed	 to	overcome	 this	 challenge.	 For	
example,	 gradient-weighted	 class	 activation	 mapping	 (Grad-CAM)	
provides	a	heatmap	visualization	of	the	regions	that	influenced	the	
model's	predictions,	giving	valuable	information	for	the	interpreta-
tion	of	results	(Selvaraju	et	al.,	2017).	In	ecological	research,	Grad-
CAM	is	applied	in	individual	re-identification	(De	Silva	et	al.,	2022) 
and	species	 identification	 (Banan	et	al.,	2020). Although this tech-
nique	 provides	 visual	 information	 for	 classifying	 hybrids,	 research	
applying	 this	 technique	 to	detect	hybrids	 in	biological	 invasions	 is	
lacking.

The	Japanese	giant	salamander	(Andrias japonicus)	is	an	amphib-
ian	endemic	to	Japan	and	 is	threatened	with	extinction	as	a	result	
of	decreasing	population	due	to	habitat	degradation	and	fragmen-
tation	(Taguchi	&	Natuhara,	2009;	Tochimoto	et	al.,	2007;	Yamasaki	
et al., 2013).	In	the	2022	IUCN	Red	List,	the	conservation	status	rank	
of	 this	 species	was	 changed	 from	Near	 Threatened	 to	Vulnerable	
(IUCN,	2022).	One	 reason	 for	 the	 status	 change	 in	A. japonicus is 
the	hybridization	with	the	congeneric	but	non-native	Chinese	giant	
salamander	 (Andrias	cf.	davidianus). This species is also threatened 
with	extinction	in	 its	original	habitat,	but	 individuals	 introduced	to	
Japan	in	the	early	1970s	have	become	wild	and	hybridized	with	A. 
japonicus.	 For	 example,	 a	 Kyoto	 City	 government	 survey	 revealed	
that	 only	 four	 (2%)	 out	 of	 244	 individuals	 captured	 in	 the	 Kamo	
River	 Basin	 in	 Kyoto	 were	 native	 A. japonicus,	 and	 the	 remaining	
240	 (98%)	were	A.	 cf.	 davidianus	 or	 hybrids	 between	A. japonicus 
and A.	 cf.	davidianus	 (HYB),	 a	 problem	 requiring	 rapid	 action	 (The	
Kyoto	 City	 Government,	 2015).	 Moreover,	 the	 number	 of	 areas	
where	 HYB	 have	 been	 caught	 is	 increasing,	 with	 hybrids	 already	
confirmed	in	eight	prefectures	in	western	Japan	(Kyoto,	Mie,	Nara,	
Shiga,	Okayama,	Hiroshima,	Aichi,	and	Gifu).	Currently,	HYB	is	iden-
tified	by	visual	screening	and	DNA	analysis	(Fukumoto	et	al.,	2015). 
Although	detecting	HYB	by	spot	patterning	would	allow	their	rapid	
identification	in	the	field,	this	approach	requires	specialized	knowl-
edge	(Figure 1).	Generally,	A. davidianus	has	a	darker	body	color	with	

paler spots than A. japonicus,	although	the	body	color	and	spot	pat-
terning	differ	among	individuals	of	both	species.	The	accurate	iden-
tification	of	HYB	from	images	would	require	less	time	and	expense	
than	DNA	analysis.	 It	would	also	facilitate	 the	early	detection	and	
effective	capture	of	suspected	HYB	individuals	via	citizen	science,	
particularly	in	areas	where	hybrids	have	not	yet	been	found,	thereby	
contributing	to	the	effective	conservation	of	A. japonicus.

Our	aim	was	to	identify	HYB	using	a	computer-based	algorithm	
employing	deep	 learning.	The	wide	availability	of	 the	 Internet	and	
smartphones	provides	 the	opportunity	 for	 identifying	 species	and	
reporting	their	locations	(Larson	et	al.,	2020).	Our	approach	allows	
the	public	to	photograph	and	detect	HYB	individuals	without	spe-
cialized	 knowledge	because	A. japonicus	 and	HYB	often	 appear	 in	
rivers	flowing	through	urban	areas	and	less	populated	rural	areas.	In	
recent	years,	citizen	science	has	been	adopted	to	manage	non-native	
species	(Larson	et	al.,	2020),	and	a	similar	method	could	be	applied	
to	HYB.	Secondly,	we	developed	an	efficient	method	to	recognize	A. 
japonicus	and	HYB.	Spot	patterns	are	more	difficult	to	quantify	than	
morphological	traits	such	as	body	size;	thus,	few	people	can	utilize	
this	information.	However,	techniques	such	as	Grad-CAM	allow	vi-
sualization	of	the	important	region	for	predicting	whether	the	spe-
cies is A. japonicus	or	HYB	by	the	AI	model.	If	specific	essential	areas	
for	identifying	HYB	can	be	clarified,	that	information	will	be	valuable	
for	helping	the	general	public	to	identify	HYB.

2  |  MATERIAL S AND METHODS

2.1  |  Image acquisition

In	this	study,	11	 individuals	of	native	A. japonicus and 20 individu-
als	of	HYB	were	used	 (Figures S1 and S2). The Chinese giant sala-
mander	 has	 been	 categorized	 into	 several	 species	 in	 recent	 years	
(Chai	et	al.,	2022;	Turvey	et	al.,	2019;	Yan	et	al.,	2018).	Because	it	is	
unknown which Chinese Andrias	species	was	 introduced	to	Japan,	
we	will	 be	 referred	 to	 as	Andrias	 cf.	 davidianus	 in	 this	 study.	 The	

F I G U R E  1 Dorsal	head	spot	patterning	of	Andrias japonicus	(a),	HYB	(b),	and	Andrias davidianus	(c).	The	image	of	A. davidianus was 
provided	by	Dr.	Benjamin	Tapley,	Zoological	Society	of	London.
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native	 individuals	were	kept	at	 the	Conservation	Breeding	Facility	
in	Hiroshima	City	Asa	Zoological	Park,	which	is	a	leading	facility	in	
Japan	for	the	research,	conservation,	and	breeding	of	this	species.	
The	 HYB	 were	 captured	 in	 the	 wild	 and	 then	 transferred	 to	 this	
facility.

The 11 A. japonicus individuals were photographed on August 20, 
2022,	at	11:00 a.m.	Each	individual	in	the	water	was	recorded	on	Full	
HD	video	from	above	(Figure S3)	for	approximately	30 seconds	using	
an	 iPhone	 11,	 from	which	 still	 images	were	 obtained	 for	 analysis.	
The	dorsal	head	spot	patterning	of	A. japonicus was recorded at ap-
proximately	60 cm	from	the	camera,	and	the	water	depth	was	about	
20 cm.	To	reduce	glare	due	to	reflection	from	the	water	surface,	the	
recording	was	performed	under	a	black	umbrella.	The	videos	were	
converted	 to	 10	 still	 JPEG	 images	 (1920 × 1080)	 per	 second	using	
Free	Video	to	JPG	Converter	version	5.0.101	(DVDVideoSoft	Ltd.).

The	20	HYB	were	recorded	on	Full	HD	video	on	November	19,	
2022,	at	2:00 p.m.	using	an	iPhone	SE	2020.	The	method	of	image	
collection	was	the	same	as	that	for	A. japonicus.

2.2  |  Ethics declaration

A. japonicus	 are	protected	as	a	National	Natural	Monument	under	
the	 Law	 for	 the	 Protection	 of	 Cultural	 Properties.	 Therefore,	 this	
study	required	permission	and	was	approved	by	Hiroshima	City	Asa	
Zoological	Park	under	the	auspices	of	the	Agency	for	Cultural	Affairs	
and	was	categorized	as	a	non-invasive	study.

2.3  |  Framework

The	heads	in	the	images	were	automatically	detected	using	YOLOv5	
(Redmon	 et	 al.,	 2016)	 and	 used	 as	 either	 training	 or	 test	 images	
(Figure 2).	The	training	data	comprised	five	individuals	of	A. japoni-
cus	and	five	HYB	individuals	selected	randomly	from	the	two	groups	
(Table 1; Figures S1 and S2).	The	six	remaining	A. japonicus individuals 
and	15	remaining	HYB	individuals	not	used	in	training	were	selected	
as	test	images.	These	images	were	resized	to	224 × 224	pixels	to	en-
sure	consistency	in	size.	Additionally,	augmentation	(rotation,	crop,	
brightness,	Gaussian	noise,	color	jitter,	and	saturation)	was	applied	
to	the	training	data	to	prevent	overfitting.	Each	type	of	augmenta-
tion	was	applied	with	a	probability	of	50%.	For	example,	applying	
rotation	and	cropping	resulted	in	three	patterns	of	 images	with	(1)	
both	processes	applied,	 (2)	one	of	 the	 two	processes	applied,	and	
(3)	neither	process	applied.	After	augmentation,	70%	of	the	images	
used	 for	 training	 and	30%	of	 the	 images	used	 for	 validation	were	
randomly	separated	for	analysis.

2.4  |  Visualization using Grad-CAM

Gradient-weighted	 class	 activation	 mapping	 generates	 a	 heatmap	
that	 indicates	 the	 importance	 of	 pixels	 in	 the	 feature	maps	 of	 an	

input	image	(Selvaraju	et	al.,	2017). These highlighted regions in an 
image	provide	an	explainable	view	of	deep	 learning	models.	Using	
this	method,	we	 extracted	 the	 feature	maps	 of	 the	 final	 convolu-
tional	layer	in	the	model	and	calculated	the	gradients.	These	gradi-
ents	were	subjected	to	global	average	pooling	to	obtain	the	weights.	
We	used	a	weighted	combination	of	 feature	maps	 to	 form	output	
images	using	the	ReLU	(rectified	linear	unit)	function,	which	allows	
features	 with	 a	 positive	 effect	 on	 the	 category	 of	 interest	 to	 be	
identified.

2.5  |  EfficientNetV2

In	this	study,	we	trained	EfficientNetV2	to	classify	images.	This	con-
volutional	neural	network	scales	down	the	number	of	 layers	while	
scaling	down	the	model	 (Tan	&	Le,	2019).	EfficientNetV2	is	an	 im-
proved	 version	 of	 EfficientNet	 with	 increased	 training	 speed	 and	
parameter	 efficiency	 (Tan	&	 Le,	2021).	 The	 EfficientNetV2	model	
employs	a	neural	architecture	search	(NAS)	to	optimize	the	model	ac-
curacy,	size,	and	training	speed.	In	this	study,	the	EfficientNetV2-B0	
model	 was	 used	 as	 the	 network,	 and	 fine-tuning	 was	 performed	
using	a	model	that	had	been	pre-trained	with	the	ImageNet21k	data-
set.	The	number	of	epochs	was	 set	 to	50,	 and	 the	batch	 size	was	
set	to	32	for	training.	Adam	was	used	as	the	optimization	algorithm	
(optimizer),	and	dropout	was	set	to	0.3.	We	employed	early	stopping	
to	prevent	overfitting.	Automatic	termination	was	performed	when	
the	validation	loss	did	not	improve	by	more	than	0.001	for	five	con-
secutive	epochs.	These	analyses	were	performed	using	an	NVIDIA	
DGX	Station	A100.	Finally,	overall	accuracy	was	used	for	evaluation.

3  |  RESULTS

3.1  |  Classification of native species and HYB

The	six	individuals	of	A. japonicus	and	15	HYB	used	in	the	test	(1881	
images)	 were	 all	 correctly	 classified,	 namely	 with	 an	 accuracy	 of	
100%,	 in	 our	 experimental	 environment.	 The	 classification	 results	
are	presented	in	a	confusion	matrix	(Figure 3),	where	the	vertical	axis	
is	the	ground	truth	and	the	horizontal	axis	is	the	model's	prediction.	
The	number	in	each	cell	indicates	the	number	of	images	classified	as	
native	species	or	HYB,	and	the	color	of	each	cell	indicates	the	per-
centage	of	images	per	ground	truth.	For	example,	pale	blue	indicated	
a	ratio	of	0.0,	meaning	that	no	images	were	classified	for	that	cell.	In	
contrast,	dark	blue	indicated	a	ratio	of	1.0,	meaning	that	all	images	
were	classified	for	that	cell.

3.2  |  Visualization using Grad-CAM

The	red	regions	are	those	considered	by	the	model	when	outputting	
the	prediction	results	(Figure 4 and Figures S4 and S5). The dorsal 
head	spot	patterning	was	a	key	area	for	classifying	A. japonicus and 
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HYB.	The	visualizations	 for	A. japonicus indicate that the network 
learned	 to	 recognize	 the	 relatively	 distinctive	 large	 black	 spots.	
On	 the	 contrary,	 the	 visualizations	 for	 the	 HYB	 indicate	 that	 the	
network	 learned	 to	 focus	on	 the	pale	 and	ambiguous	wide	 region	
rather	than	the	black	spots.	However,	because	the	dorsal	head	spot	

patterning	differed	individually,	the	results	of	Grad-CAM	visualiza-
tion	also	varied	among	them	(Figures S4 and S5).

4  |  DISCUSSION

We	 identified	 HYB	 from	 images	 using	 deep	 learning.	 Historically,	
visual	 screening	 by	 experts	 and	 DNA	 analysis	 have	 been	 applied	
to	identify	HYB.	However,	the	scarcity	of	experts	and	the	time	and	
cost	 of	 DNA	 analysis	 have	 been	 barriers	 to	 effective	 screening.	
Therefore,	we	proposed	a	novel	approach	to	 identifying	HYB	that	
uses	an	image	recognition	technique.	A	total	of	six	native	A. japonicus 
and	15	HYB	individuals	were	used,	and	all	were	correctly	classified	
by	the	AI	model,	namely	the	accuracy	was	100%,	in	our	experimental	
setting.	Furthermore,	highlighted	regions	that	affect	the	AI	model's	
prediction	suggested	that	the	model	distinguished	between	native	
A. japonicus	and	HYB	on	the	basis	of	spot	patterns.	Although	deep	
learning	has	already	been	applied	to	identify	species	and	individuals,	
to	our	knowledge,	this	is	the	first	study	in	which	it	is	used	to	identify	
hybrid	individuals.

EfficientNetV2	demonstrated	 that	dorsal	head	 spot	patterning	
can	be	used	 to	 identify	A. japonicus	 and	HYB.	One	reason	why	all	
individuals	were	successfully	classified	was	the	quality	of	the	train-
ing	and	test	 images.	 In	 this	study,	photographs	were	 taken	 from	a	
short	distance;	thus,	the	high	accuracy	can	be	attributed	to	the	clear	
spot	patterns	in	the	images.	Another	reason	is	that	the	heads	were	
photographed	from	a	similar	angle	(Figure S3).	For	example,	previous	
studies	have	demonstrated	that	taking	photographs	from	different	
angles	 reduces	 identification	 accuracy	 (Arzoumanian	 et	 al.,	 2005). 
Instead,	 we	 photographed	 all	 individuals	 from	 directly	 above	 the	
dorsal	head	and	used	them	for	training	and	testing	images.	Training	
and	test	 images	were	also	obtained	on	the	same	day,	which	could	

F I G U R E  2 Framework	of	the	classification	model	for	Andrias japonicus	and	HYB	using	smartphone	photographs.

TA B L E  1 Dataset	summary	showing	the	date	and	purpose	of	the	
images	taken.

Species Year Date Training Test

A. japonicus 2022 August 20 468 525

Hybrids 2022 November	19 439 1356

F I G U R E  3 Binary	classification	of	the	native	Andrias japonicus 
and	HYB.
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6 of 9  |     TAKAYA et al.

also	 have	 contributed	 to	 the	 high	 performance.	 In	 the	 future,	 the	
performance	of	our	approach	should	be	carefully	evaluated	in	a	var-
ied	environment,	 using	 images	 from	different	dates	 and	 locations,	
before	it	is	implemented	in	the	field.

The	visualized	distribution	of	the	heatmaps	was	different	for	A. 
japonicus	and	HYB.	For	the	former,	the	model	focused	on	their	dis-
tinctive	large	black	spots,	whereas	for	latter,	it	focused	on	the	pale	
and	ambiguous	wide	region.	These	results	suggest	that	the	differing	
spot	patterns	between	A. japonicus	and	HYB	can	be	utilized	for	clas-
sification.	In	general,	A. japonicus	have	such	black	spots	(Figure S1), 
whereas	the	spots	of	HYB	are	more	 indistinct	 (Figure S2).	Experts	
use	these	spot	pattern	differences	as	one	of	the	criteria	to	identify	
HYB	individuals.	Our	study	revealed	that	deep	learning	distinguishes	
between	A. japonicus	and	HYB	using	the	same	pattern	recognition	
as	experts.	The	heatmap	could	be	used	as	an	instruction	guide	for	
the	 general	 public	 on	 HYB	 identification	 because	 the	 highlighted	
graphical	 figures	 are	 visually	 comprehensible.	 However,	 we	 could	
not	analyze	A.	cf.	davidianus	because	they	are	rarely	found	in	Japan.	
Therefore,	the	dorsal	head	spot	patterning	of	A.	cf.	davidianus should 
also	be	analyzed	in	cooperation	with	Chinese	research	institutions.

Although	our	approach	achieved	high	accuracy	in	identifying	A. 
japonicus	and	HYB	in	this	study,	several	challenges	still	exist.	Firstly,	
we	did	not	consider	the	hybridization	degree,	which	affects	the	spot	
pattern	 in	HYB.	The	HYB	used	 in	 this	 study	were	 first	generation	
(Shimizu	et	al.,	2022), suggesting that these individuals have inter-
mediate	traits	between	A. japonicus and A.	cf.	davidianus.	Since	the	
HYB	is	fertile,	the	dorsal	head	spot	pattern	will	depend	on	several	
factors,	such	as	the	generation.	Future	work	should	examine	the	re-
lationship	between	the	degree	of	genetic	introgression	and	the	iden-
tification	accuracy.	Secondly,	it	is	essential	to	combine	this	method	
with	DNA	analysis	because	deep	 learning-based	 identification	has	
limitations.	For	example,	due	to	hybridization,	some	HYB	have	spots	
indistinguishable	from	those	of	A. japonicus.	DNA	analysis	is	the	only	
suitable	method	to	determine	the	species	 in	such	cases.	However,	
our	technology	can	be	applied	for	the	early	detection	of	suspected	
HYB	 through	 citizen	 science	 and	 rapid	 identification	 by	 computer	

vision.	 In	addition,	further	advances	 in	deep	 learning	might	enable	
the	identification	of	backcrossed	hybrids	that	are	difficult	to	distin-
guish	even	 for	experts	because	 their	 spots	are	extremely	close	 to	
those	of	A. japonicus.	Thirdly,	the	sample	size	was	small	because	only	
five	individuals	were	used	for	training.	Therefore,	greater	accuracy	
can	be	expected	by	using	additional	training	datasets.	However,	all	
HYB	could	be	identified	even	when	the	sample	size	was	small,	sug-
gesting	that	image	recognition	is	an	effective	approach	to	detecting	
HYB.	Finally,	this	study	was	conducted	in	the	daytime	under	uniform	
photographic conditions, whereas A. japonicus	 and	 HYB	 must	 be	
photographed	under	artificial	light	in	field	surveys	because	they	are	
nocturnal.	In	the	future,	it	is	necessary	to	determine	whether	images	
obtained	under	various	light	conditions	can	be	used	to	identify	HYB.

Hybridization	between	native	and	non-native	species	 is	one	of	
the	major	causes	of	biodiversity	loss	(Bourret	et	al.,	2022). Moreover, 
hybrid	 individual	detection	 is	 challenging	when	 they	are	 similar	 to	
the	native	species.	Deep	learning	image	recognition	techniques	can	
be	a	valuable	tool	to	support	the	visual	identification	of	hybrids.	We	
proposed	a	new	approach	for	classifying	A. japonicus	and	HYB	using	
smartphone	images	that	could	be	utilized	in	citizen	science.	The	ar-
tificial	intelligence	employed	in	this	approach	identifies	HYB	on	the	
basis	of	spot	patterns,	a	technique	previously	limited	to	experts,	thus	
allowing	the	public	to	detect	HYB	easily.	In	particular,	the	distribu-
tion	of	HYB	is	expanding,	meaning	that	managing	them	is	a	priority	
task	for	the	conservation	of	A. japonicus.	Our	findings	can	potentially	
prevent	their	future	spread	by	providing	a	method	for	the	efficient	
discovery	of	such	individuals.	For	example,	citizens	can	find	A. japon-
icus	or	HYB	in	the	field	and	upload	photos	to	social	media	such	as	
X	(Twitter),	and	our	technology	can	facilitate	the	utilization	of	such	
online	images.

5  |  CONCLUSION

We	applied	deep	 learning	to	 identify	A. japonicus	and	HYB.	 It	was	
successfully	 demonstrated	 that	 the	 dorsal	 head	 patterning	 is	 an	

F I G U R E  4 Visualization	images	generated	by	gradient-weighted	class	activation	mapping	(Grad-CAM).	The	three	individuals	on	the	left	
(8,	9,	11)	were	Andrias japonicus.	Heatmaps	indicate	that	the	network	learned	the	relatively	distinctive	large	black	spots	of	A. japonicus. The 
three	individuals	on	the	right	(12,	13,	15)	were	HYB.	In	the	case	of	HYB,	the	network	learned	the	pale	and	ambiguous	wide	region.
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    |  7 of 9TAKAYA et al.

effective	region	for	classification	by	Grad-CAM.	Although	the	visual	
identification	of	HYB	has	historically	been	restricted	to	specialists,	
our	approach	enables	the	public	to	identify	them,	making	it	particu-
larly	useful	within	the	context	of	citizen	science.
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