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Abstract

Invasive alien plants cause severe global problems; therefore, determining the factors that lead to 
the success or failure of invasion is a critical question in the field of invasion ecology. In this study, 
we aimed to determine the factors underlying differences in the distribution range of alien plants in 
Japan by investigating why Lolium multiflorum thrives in a wide range of habitats while L. rigidum is 
mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through 
species distribution modelling and subsequently examined whether species traits influence the differ-
ences in range expansion between the two species. We used MaxEnt modelling to identify potential 
environmental niches for both species. The analysis revealed that L. rigidum was considerably less 
suited to the Japanese climate compared to L. multiflorum, with high summer precipitation in Japan 
identified as one of the climatic factors limiting the distribution of L. rigidum. Given that these 
winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried 
seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in 
autumn. The survival rate of L. rigidum seeds was significantly lower than that of L. multiflorum, par-
ticularly in paddy soil. Factors contributing to seed mortality may include the decay or early germina-
tion of L. rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance 
of considering local environmental factors alongside climate niche modelling in the risk assessment 
of invasive species. Moreover, the integration of species distribution modelling for large-scale evalua-
tions and manipulation experiments for fine-scale assessments proved effective in identifying climatic 
conditions and species traits influencing the success or failure of alien species invasion.

Key words: Coastal environment, invasion success, local environmental condition, MaxEnt, seed 
burial experiment, seed decay, species distribution modelling, summer rainfall

Introduction

Invasive alien plants cause issues such as loss of biodiversity, reduced crop yield, 
and health risks (Vitousek 1990; Pyšek and Richardson 2010; Vilà et al. 2010). 
However, not all introduced species become invasive in a new habitat. It has been 
hypothesised that only about 10% of species successfully progress through the 
consecutive steps of the invasion process. Specifically, approximately 10% of spe-
cies transported beyond their native range will be released or escape in the new re-
gions, about 10% of these introduced species will successfully establish themselves, 
and about 10% of established species will become invasive (tens rule; Williamson 
and Fitter 1996). Therefore, extensive long-term research has been conducted to 
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identify which environments facilitate the establishment of invasive species and 
which species’ characteristics contribute to the successful establishment (Richard-
son and Pyšek 2006; Hayes and Barry 2008; Hui et al. 2016).

The impact of climate on determining invasion success or failure has been ex-
tensively investigated using the species distribution modelling (SDM) approach. 
This approach can estimate suitable climate conditions for a target species based on 
historical climate and species occurrence data and predict the distribution suitabil-
ity of the species across geographic and temporal scales. This approach has revealed 
that specific climate factors can influence the potential geographic distribution of 
a species (Phillips et al. 2006; Phillips and Dudík 2008; Wiens et al. 2009). SDM 
is widely used in the risk assessment of invasive species, largely because the climat-
ic niche of invasive species in their new destination areas often resembles that in 
their source areas (Liu et al. 2020). Although SDM is a robust tool that combines 
statistical modelling and geographic information systems to gain insights into the 
potential environmental factors influencing species distributions (Phillips et al. 
2004), it cannot definitively establish causal relationships between environmental 
factors and species distribution (Merow et al. 2013). To identify the drivers of 
invasion processes in destination areas, experiments manipulating environmental 
factors are necessary; however, few studies have combined both SDM and experi-
mental manipulation approaches.

The genus Lolium includes two outcrossing annual species: L. multiflorum Lam. 
and L. rigidum Gaudin, which are native to the Mediterranean region (Terrell 
1968). They have been introduced as a forage crop and turfgrass in numerous 
countries across the globe (Humphreys et al. 2010), resulting in their escape from 
controlled areas and becoming problematic weeds. L. multiflorum is widely distrib-
uted throughout Europe, North America, South America, northern and eastern 
Africa, Australia, Central Asia, and eastern Asia (GBIF 2022a) (Fig. 1a). It directly 
reduces crop yield by spreading as a weed in agricultural fields (Liebl and Worsham 
1987; Sønderskov et al. 2020) and serving as a habitat for rice-ear bugs, which are 
important pests of rice (Yoshioka et al. 2011). L. rigidum is distributed throughout 
Europe, Australia, North America, South America, South Africa, East Asia, and 
West Asia (GBIF 2022b) (Fig. 1b). This species has developed tolerance to multi-

Figure 1. The distribution of A L. multiflorum and B L. rigidum. This distribution map was made using the occurrence data from GBIF 
(GBIF 2022a, 2022b).
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ple herbicides, posing a serious challenge (Heap 2023), particularly in wheat culti-
vation in Australia (Owen et al. 2014). In Japan, L. multiflorum has predominantly 
been introduced as forage and revegetation materials but has spread as weeds in 
universal environments such as farmland and riverbanks. Conversely, L. rigidum 
has mainly been introduced to Japan through imported grains contaminated with 
L. rigidum seeds and subsequently became established (Shimono et al. 2015; Hi-
guchi et al. 2017; Hirata et al. 2023). Originally a weed in agricultural fields, it has 
only been specifically established in local environments, such as sandy beaches, in 
Japan (Hirata et al. 2023).

In this study, we aimed to investigate environmental factors and species traits 
that contribute to the distribution expansion of alien plants in Japan using both 
SDM and manipulation experiments, focusing on congeneric species of the genus 
Lolium with different distribution ranges in Japan. Specifically, we investigated 
why L. multiflorum thrives in a wide range of habitats whereas L. rigidum has not 
been able to spread to agricultural fields. We initially examined the suitability of 
the climate in Japan for the spread of these Lolium species using the MaxEnt model 
(Phillips et al. 2006), which is the most common SDM approach. MaxEnt analysis 
revealed summer precipitation as a key climatic factor limiting the distribution of 
L. rigidum in Japan. In addition, as L. rigidum and L. multiflorum are winter an-
nuals that exist as seeds during the summer, we evaluated the seed survival rates of 
both Lolium species in the soil from summer to autumn.

Methods

Species distribution modelling

Global distribution data for L. multiflorum and L. rigidum were acquired from 
the Global Biodiversity Information Facility (GBIF; https://www.gbif.org/) in 
July 2022 (GBIF 2022a, 2022b). Although the GBIF data contained accurate 
information on the coordinates, we used all the data without specifying it. This 
approach helps us avoid the risk of simultaneously losing data from specific re-
gions that would have been lost had we specified the accuracy of the coordinates. 
As environmental data, we used 19 bioclimatic variables worldwide derived from 
temperature and precipitation records from 1970 to 2000 (See Suppl. material 
1: table S1), sourced from the WorldClim database (https://www.worldclim.org/) 
(Fick and Hijmans 2017). This dataset is frequently used for ecological studies fo-
cusing on SDM (Booth et al. 2014). The raster data resolution was set to 10 min. 
Duplicated occurrence points were eliminated in the modelling process, resulting 
in one occurrence point per cell. As a result, 4,099 and 9,040 points were retained 
for L. rigidum and L. multiflorum, respectively.

According to Phillips (2008), 10,000 ‘background’ (or ‘pseudo-absence’) points 
are typically sufficient for MaxEnt modelling. However, the number should be 
sufficient to adequately account for the range of climate variability in the study 
area, and > 10,000 points may be needed for a large number of occurrence records. 
In accordance with this recommendation, the background for this study, involving 
an expansive area and a large number of occurrence records, was set at 30,000 for 
L. rigidum and 50,000 for L. multiflorum. Model performance can be further im-
proved by restricting the occurrence of background points to fractions containing 
occurrence points (Phillips 2008; Anderson and Raza 2010). Therefore, we limited 

https://www.gbif.org/
https://www.worldclim.org/
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the occurrence of background points to locations within a radius of 500 km from 
the occurrence points of Lolium species.

We implemented variable selection in the subsequent steps because of multi-
collinearity among environmental variables potentially decreasing prediction ac-
curacy (Heikkinen et al. 2006; Dormann et al. 2013). Firstly, we calculated the 
Pearson correlation matrix for all combinations of variables. Secondly, we utilised 
the MaxEnt v.3.4.3 software to run a MaxEnt model with all 19 variables. Then, 
we extracted variable pairs with a correlation coefficient > 0.7, as per the criteria set 
by Green (1979). The variable with a smaller contribution to the MaxEnt model 
was then removed based on the variable importance of MaxEnt output. Finally, 
the MaxEnt model was reconstructed using only the remaining variables. We con-
ducted five-fold cross-validation and assessed goodness of fit using the area under 
the receiver operating characteristic (ROC) curve (AUC) value, which ranges from 
0 to 1; a value of 0.5 indicates random guessing, whereas a value of 1 signifies 
perfect classification (Fielding and Bell 1997). A response curve was created for 
each variable (meaning that a predictive model was created for each variable), and 
the contribution of each variable to the model was evaluated using a jackknife test 
(both are built-in functions of the MaxEnt software). The response curve was over-
laid with the density distribution of the corresponding climate variable in Japan. 
Other MaxEnt settings were set as default.

To identify the environmental variables impacting the suitability of Lolium spe-
cies in Japan, we set one Japanese climate variable to the optimal value determined 
from MaxEnt output response curves while keeping the remaining variables at 
their original values to simulate changes in distribution suitability. MaxEnt was 
performed for each value-adjusted variable using the same parameter settings as 
mentioned above.

Seed burial experiment

L. rigidum and L. multiflorum are both winter annuals, germinating in autumn, 
flowering in spring, and dispersing seeds in early summer. Therefore, seed burial 
experiments were performed to assess their survival rates from summer to autumn. 
In June 2021, mature seeds of L. rigidum and L. multiflorum were collected from 
naturalised populations along a sandy beach (34.7923°N, 136.558°E) and the le-
vee of a paddy field (34.7991°N, 136.5342°E) in Mie Prefecture. Paddy soil con-
sisting mainly of clay was collected from the experimental field at Kyoto University 
(35.0321°N, 135.7835°E) and beach soil was collected at 5-cm depths on seven 
sandy beaches in central Japan (Suppl. material 1: table S2), where L. rigidum 
growth was confirmed. We used sandy beach soils collected from multiple loca-
tions because the sand grain size varies depending on the location.

Fifty seeds of each species were packed into non-woven fabric bags (length: 
9 cm; width: 7 cm) that also contained 5.0 g of autoclaved paddy soil or beach 
sand to prevent the seeds from adhering to each other. One bag containing each 
species was buried at depths of 7 cm and 15 cm in plastic pots (diameter: 16.8 cm; 
height: 19.8 cm) filled with paddy soil and beach soil in July 2021, respectively. 
There were three and seven replications per species for beach soil and paddy soil, 
respectively. Intense sand movement by strong wind in sandy beaches and tillage 
in paddy fields results in seeds being buried at varying depths. Therefore, to inves-
tigate whether differences in burial depth affect survival rates, two burial depths 
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were set in this study. The plastic pots were placed on the experimental field at 
Kyoto University, remained exposed to rainfall, and then retrieved in October 
of the same year, coinciding with the germination period under natural condi-
tions. The precipitation from July to October 2021 was 390 mm (July), 468 mm 
(August), 180 mm (September), and 41 mm (October) (Japan Meteorological 
Agency 2024).

Additionally, in 2024, similar experimental setups were conducted using pad-
dy soil from Kyoto University and sandy beach soil collected in Mie Prefecture 
(34.7923°N, 136.558°E), measuring soil moisture contents (%) from June to July 
using digital handheld moisture meter (PMS-714, Omega Engineering inc.).

Seeds were collected from the soil, and those without hard embryos were 
discarded. Traces of rooting were checked. The remaining seeds were placed on 
9.0-cm Petri dishes and germinated in an incubator (LH-30-8CT, Nippon Med-
ical & Chemical Instruments) at 30/20 °C with alternating 12/12 h cycles (i.e., 
12 h light and 12 h dark) for a week. These conditions were based on Rodriguez et 
al. (1998). Finally, we used the 2,3,5-triphenyltetrazolium chloride (TTC) method 
to differentiate between dormant and dead seeds with ungerminated, hard embry-
os. The seeds were bisected to expose the embryo, then immersed in a 1% TTC 
solution, and incubated overnight at 25 °C in the dark. The following morning, 
we examined the seeds to determine whether the embryos had been stained. The 
total number of viable seeds during the burial period was calculated by summing 
the number of individuals that had already germinated in the soil (but were alive 
at the time of retrieval), those that germinated in the incubator, and those that 
were stained by the TTC method. The total number of dead seeds was calculated 
by summing the number of individuals that lacked hard embryos (including those 
that showed traces of germination and had already died) and those that were not 
stained by the TTC method.

A hierarchical linear model with binomial errors was employed to evaluate the 
survival rate of Lolium spp. seeds. The primary effects examined in this study were 
Lolium spp., soil type (paddy or beach soil), and burial depth, whereas the random 
effects were plastic containers and beach soil collection sites. Statistical analysis was 
performed using the rstan package (Stan Development Team 2024) in R ver. 4.2.3 
(R Core Team 2023).

Results

Species distribution modelling

After variable selection, eight variables remained for L. rigidum: mean diurnal 
range (bio2), temperature seasonality (bio4), mean temperature of the wettest 
quarter (bio8), mean temperature of the warmest quarter (bio10), precipitation 
seasonality (bio15), precipitation of the driest quarter (bio17), precipitation of the 
warmest quarter (bio18), and precipitation of the coldest quarter (bio19). Similar-
ly, seven variables remained for L. multiflorum: annual mean temperature (bio1), 
mean diurnal range (bio2), temperature annual range (bio7), mean temperature 
of the wettest quarter (bio8), precipitation of the wettest month (bio13), precipi-
tation seasonality (bio15), precipitation of the coldest quarter (bio19) (See Suppl. 
material 1: table S3 for correlation coefficients and Suppl. material 1: table S4 for 
variable contributions).
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The average AUC values were 0.77 and 0.82 for L. rigidum and L. multiflorum, 
respectively. These values are considered moderately predictive according to the 
AUC criteria described by Vanagas (2004). The jackknife test showed that the 
most useful and unique information for predicting the global distribution was 
temperature seasonality (bio4) for L. rigidum and annual mean temperature (bio1) 
and temperature annual range (bio7) for L. multiflorum (Fig. 2).

Based on the MaxEnt model of Lolium species projected for Japan, the mean 
probability of L. rigidum presence was 0.055 (SD: 0.035), whereas that for L. mul-
tiflorum was 0.31 (SD: 0.076) (Fig. 3).

Fig. 4 displays the response curves and density distributions of both Lolium 
species in Japan for each bioclimatic variable. Japanese climate varies considerably 
from the optimum ranges for L. rigidum in terms of temperature seasonality (bio4) 
and precipitation of the warmest quarter (bio18) and for L. multiflorum in the 
mean temperature of the wettest quarter (bio8).

When Japanese bioclimatic variables were fixed to the values that maximise suit-
ability for L. rigidum, which had a particularly low probability of presence in Japan, 
in the response curves, changes in mean diurnal range (bio2), mean temperature 
of the wettest quarter (bio8), mean temperature of the warmest quarter (bio10), 

Figure 2. Relative predictive power of each bioclimatic variable based on the regularised training gain in MaxEnt models, as estimated 
using the jackknife test, for A L. rigidum and B L. multiflorum.
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Figure 3. Probability of presence in Japan estimated by MaxEnt for A L. rigidum and B L. multiflorum.

A B

Figure 4. A response curves for L. rigidum (red lines and blue shades) and density distributions of Japanese bioclimatic variables (green 
histograms) B response curves for L. multiflorum (red lines and blue shades) and density distributions of Japanese bioclimatic variables 
(green histograms). The horizontal axis displays the variation range of the bioclimatic variables. The first vertical axis shows the predicted 
suitability of the target species, while the second vertical axis shows the density distribution of Japanese bioclimatic variables. The red line 
represents the mean of the five iterations of the estimation, while the blue shade indicates its standard deviation.

A
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seasonality of precipitation (bio15), precipitation in the driest month (bio17), and 
precipitation in the coldest month (bio19) had minimal impact on the probability of 
the presence in Japan, with mean values of 0.055, 0.058, 0.055, 0.051, 0.046, 0.058, 
respectively (Suppl. material 1: fig. S1). Conversely, temperature seasonality (bio4) 
and precipitation of the warmest quarter (bio18) increased the probability of pres-
ence to mean values of 0.28 (SD: 0.038) and 0.26 (SD: 0.14), respectively (Fig. 5).

Figure 4. Continued.

B
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Seed burial experiment

The diurnal variation of soil moisture contents for 1 month (from June 22nd to July 
20th, 2024) revealed that the soil moisture of beach soil decreased rapidly in the 
absence of rain, and, on all days, the soil moisture was higher in paddy soil than 
in beach soil (Fig. 6). An average of 94% (SD: 4.1%) of seeds were retrieved from 
soil-filled bags. The average seed survival rates of L. rigidum and L. multiflorum 
were 63% and 79%, respectively (Fig. 7). Hierarchical linear model results showed 
that L. rigidum had a significantly lower seed survival rate than that of L. multi-
florum and that the seed survival rate was significantly higher in sandy beach soils 
than that in paddy soils, with a minor impact of burial depth (Fig. 8a). The mod-
el-estimated survival rates of both Lolium spp. at different depths in paddy and 
beach soils indicated that the seed survival rate of L. rigidum in paddy soil was the 
lowest among all combinations, dropping below 50% (Fig. 8b).

Figure 5. Probability of presence estimated by Maxent for L. rigidum when the bioclimatic variables fixed at their optimum values a shows 
bio04 and b shows bio18.

A B

Figure 6. Daily precipitation in Kyoto City (top) and soil moisture content (bottom) from June 22th to July 20th.
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Figure 7. Breakdown of seeds retrieved from soil-filled bags. PDY represents paddy soil, whereas the remaining seven symbols indicate 
the collection sites of sandy beach soil samples. For further details, refer to Suppl. material 1: table S2.

Figure 8. A estimated coefficients for survival rates (median and 95% estimate interval) of L. rigidum compared to L. multiflorum (up-
per), sandy beach soil compared to paddy soil (middle), and burial depth of 15 cm compared to 7 cm (lower) on a logit scale B estimated 
survival rates of L. multiflorum (green) and L. rigidum (blue) in each soil and at each depth. Error bars indicate 95% estimate intervals.

A

B
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Discussion

In the present study, the MaxEnt results indicated that L. rigidum was less suit-
ed to the Japanese climate than L. multiflorum. The Japanese climatic conditions 
that deviated considerably from the predicted suitability range for L. rigidum were 
temperature seasonality and summer precipitation. Temperature seasonality is a 
determinant influencing the northern limits of plants and animals in the Northern 
Hemisphere (Wiens et al. 2006; Qian et al. 2022). L. rigidum is found in temper-
ate zones, and as Japan is not located at the northern limit, it is currently unclear 
what ecological significance can be ascribed to temperature seasonality as a climatic 
variable that explains the distribution of Lolium species in Japan.

MaxEnt predicted that high summer precipitation in Japan renders the envi-
ronment unsuitable for L. rigidum. The burial seed experiment conducted during 
summer revealed a higher mortality rate for L. rigidum seeds than for L. multiflo-
rum seeds. Potential reasons for seed mortality in this experiment include seed de-
cay or premature germination. Additionally, in real-world field conditions, various 
factors such as predation and fungal infections, which were not accounted for in 
our experiment, could further reduce seed survival rates (Ranganathan and Groot 
2023). To better evaluate the fitness, the survival rate of seedlings after germination 
in each field should be investigated in future studies. Nevertheless, comparing our 
experimental findings with L. multiflorum, which has successfully expanded its 
distribution across a wide range of environments, suggests that seed decay due to 
heavy summer rains likely reduces the fitness of L. rigidum in the field.

Water availability is the primary limiting factor for terrestrial plant production 
(Lambers and Oliveira 2019), and soil hydrological properties at a fine scale ef-
fectively determine plant distribution (Silvertown et al. 1999). As sandy beaches 
are generally arid environments (Brakenhoff et al. 2019), our experimental results 
confirmed that under the same precipitation conditions, soil moisture content was 
lower in sandy soil than in paddy soil. This lower moisture content suggests that 
seeds of L. rigidum are less likely to decay in such areas, and consequently, the 
establishment of L. rigidum in Japan is possibly locally limited to sandy beaches.

L. rigidum is native to the Mediterranean region (Terrell 1968) and has emerged 
as a major weed problem, especially under the Mediterranean-type climate of 
Western Australia (Owen et al. 2014). Japan, with its monsoon climate, receives 
considerably higher precipitation than the aforementioned regions (annual precip-
itation of 1,668 mm/year in Japan versus 733 mm/year in the Perth metropolitan 
area, Australia) (Commonwealth of Australia 2023; The World Bank 2023). In 
addition, as a consequence of the widespread cultivation of rice paddies through-
out the country, the soil moisture content in Japanese agricultural land is generally 
high. Given this context, seed decay can be considered a weed control method 
in Japan (Kida and Asai 2006; Aoki et al. 2012). Although the drought sensitiv-
ity and flood tolerance of seedlings have been previously assessed to understand 
plant distribution patterns (Engelbrecht and Kursar 2003; Jansen et al. 2005), seed 
moisture tolerance has mostly been neglected and underestimated.

Sandy coasts are typically arid, nutrient-poor, and highly susceptible to salt 
spray, sand deposition, and strong winds, all of which are limiting factors for plant 
establishment (Maun 1994). Dryland salinity is a major problem in agricultural 
areas in Australia (Briggs and Taws 2003; George et al. 2006), and L. rigidum, a 
weed that thrives in such environments, may be highly tolerant to drought and 
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salinity stress. Weeds that have become problematic in arid agricultural areas, not 
only in Australia, may have the potential to establish themselves on sandy beaches 
in wetter areas because of their drought and salt tolerance.

In the present study, niche modelling solely based on climate variables indicated 
that L. rigidum was not well-suited for distribution in Japan; however, it is actually 
expanding its distribution on sandy beaches. This suggests that climate niche mod-
elling is insufficient for fine-scale predictions and underestimates the invasion risk 
of alien species in some specialised habitats. When applying SDM to finer scales, 
local predictors, such as soil conditions and topography, must be considered (Pear-
son and Dawson 2003). However, acquiring these variables over a large spatial 
extent is challenging (Bradley et al. 2012).

In summary, we conducted large-scale niche modelling to identify environmen-
tal factors predicted to limit the distribution of invasive species. Subsequently, we 
examined whether these factors actually affect the fitness of these species through 
manipulative experiments. Although manipulative experiments alone cannot ac-
count for all factors, focusing on environmental factors suggested by niche mod-
elling and estimating the causality of invasion success through these experiments 
are highly valuable.

Conclusions

In this study, we focused on the alien L. rigidum, which has only expanded locally 
on sandy beaches in Japan, and L. multiflorum, which has been successfully estab-
lished across various environments in Japan. We investigated the limiting factors 
for the distribution expansion of L. rigidum. Through manipulative experiments, 
we found that L. rigidum had a higher seed mortality rate, especially in paddy soil, 
than that of L. multiflorum. This result aligns with a suggestion from SDMs that 
the summer rainfall in Japan may be excessive for L. rigidum.

Predictions based solely on climate variables using SDM revealed that 
L. rigidum is not suitable for the Japanese environment. However, L. rigidum is 
actually expanding its distribution on Japanese sandy beaches. This indicates that 
niche modelling based on specific climate variables alone may underestimate the 
invasion risk of alien species. The combined use of large-scale niche modelling 
and manipulative experiments, as conducted in this study, demonstrates the im-
portance of this approach for assessing the invasion risk of species in both regional 
and local environments.
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