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1 Introduction

The AdS/CFT correspondence [1–3] plays a crucial role in understanding the holographic
nature of gravity and may give a hint on its quantization, but it is still mysterious even
though plenty of evidences and applications exist after the first proposal. While a large part
of the AdS/CFT correspondence can be understood in the context of the closed string/open
string duality with D branes, a complete understanding of this duality has not been attained
yet. It is widely accepted, however, that a particular type of CFT can be holographic dual
to bulk gravity theories, and such theories are called holographic CFT.

On the other hand, it is generally believed that the AdS radial direction emerges as
the energy scale of a renormalization group transformation applied to the dual CFT at the
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boundary. (For example, see ref. [4]). Among studies in such a direction, the continuum
version of multi-scale entanglement renormalization ansatz (cMERA) has been employed as
a real space quantum renormalization group, in order to generate the extra dimension as
a level of the coarse-graining [5–7]. In their approach, the geometric structure of the bulk
spacetime at a given time slice is determined from a quantum information metric for a CFT
state on the equal-time (boundary) surface. Indeed the bulk space-time becomes AdS for
the vacuum state, and thus the AdS spacetime naturally emerges from the boundary CFT.
More interestingly, their bulk construction can be applied not only to holographic CFT but
also to generic CFT or even to non-conformal field theories.

Following the philosophy of refs. [5–7], one of the present authors has proposed a similar
but different method to construct the Euclidean AdS space from Euclidean CFT by employing
a different coarse-graining technique called flow equations and applied it to various cases [8–
16]. Recently, an improved version of the flow equations has been found [17], and we call the
corresponding method a conformal smearing since the conformal transformations applied
to CFT fields on the boundary are literally mapped to a part of the general coordinate
transformations of the smeared fields in the bulk, which is the full isometry of the AdS space.

In this paper, in order to obtain deeper understanding of a mechanism for an emergent
extra dimension in AdS/CFT correspondences, we apply the conformal smearing to the O(N)
invariant critical λφ4 model in 3-dimensions, which has the asymptotic free UV fixed point
and the Wilson-Fisher IR fixed point, where λ has mass dimension one and breaks conformal
symmetry. This model is thought to be dual to higher spin theories [18], and this duality has
been investigated in terms of a bi-local field, where a magnitude of its relative coordinate is
interpreted as an extra bulk dimension [19–22]. The conformal smearing approach is different
from theirs. In particular, while the bulk geometry is assumed to be AdS in their approach,
it is determined by the information metric in our approach. Indeed, the previous study
employing the Gaussian smearing [9] has shown that the bulk space becomes the asymptotic
AdS space at both UV limit(near boundary) and IR limit (deep in the bulk), whose AdS
radii are different in two limits. Since the Gaussian smearing keeps only a part of the relation
between the conformal transformation and the AdS isometry [11], however, results in ref. [9]
are insufficient to understand the duality between the bulk theory and the boundary CFT.
For example, inequality for the AdS radii between two limits can not be determined, and
a change of the conformal dimension of the composite scalar operator between two limits
has not been investigated in terms of the bulk language. We, therefore, investigate this
duality using the conformal smearing in this paper.

We here summarize the main results of our study.

(1) The bulk space constructed from the interacting O(N) invariant critical φ4 model at
d = 3 by the conformal smearing is the 4-dimensional AdS space at the leading order
(LO) in the large N expansion. While, at the next-to-leading order (NLO), it becomes
the asymptotic AdS space both in the UV and the IR limit, which correspond to the
asymptotic free UV fixed point and the Wilson-Fisher IR fixed point, respectively. We
also observe that the AdS radius increases from UV to IR as RUV

AdS < RIR
AdS at the

NLO. Our naive interpretation is as follows. Since the number of dynamical degrees of
freedom decreases from UV to IR by the renormalization group, the corresponding bulk
space becomes less “AdS”, meaning that the negative cosmological constant reduces in
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magnitude and gets closer to the flat space. Therefore the AdS radius increases. This
result, however, is opposite to the prediction of the F-theorem that RUV

AdS > RIR
AdS [23–28].

(2) The bulk-to-boundary propagator of the O(N) invariant scalar field has been calculated.
In the z → 0 limit where z is the radial coordinate of the bulk space, this propagator
behaves as z1, showing that the conformal dimension of the corresponding O(N)
invariant scalar operator at the boundary is one [29]. This values agrees correctly with
∆φ2 = 1, the conformal dimension of the composite scalar operator φ2 (the spin zero
“current” J in ref. [18]) at the UV fixed point. On the other hand, in the IR limit
(z → ∞), the bulk-to-boundary propagator behaves as

z−2 ≃
(

z

z2 + x2

)2
, (1.1)

where x is the boundary coordinates. This behavior corresponds to ∆φ2 = 2, which is
the conformal dimension of φ2 at the IR fixed point.

These two findings show that the non-trivial dynamics of the boundary theory generated by
the non-conformal interaction term is correctly encoded in the bulk geometry and dynamics.

2 Model and conformal smearing

Throughout the paper, we are working on d = 3, where d is the dimension of the boundary.

2.1 O(N) model in 3 dimensions

We consider an O(N) invariant model for scalar fields, whose action is given by

S(φ) = N

∫
d3x

[
Zφ

2 ∂µφ · ∂µφ + m2Zm

2 Zφφ · φ + λZλ

4 Z2
φ(φ · φ)2

]
, (2.1)

where φ·φ :=
∑N

a=1 φaφa with a being an O(N) index, and Zφ, Zm and Zλ are renormalization
constants which relate bare to renormalized quantities as φa

0 =
√

Zφφa, m2
0 = m2Zm, and

λ0 = λZλ, respectively. Note that we have extracted a factor N to consider the large N

expansion, and m2Zm in our notation includes the additive mass counter terms.
We calculate correlation functions necessary in this paper in the large N expansion, by

employing the Schwinger-Dyson equation in appendix A, and results are summarized below.
In this paper, we consider the critical case, where the renormalized mass is tuned to

be zero. The 2-pt function N⟨φa(x)φb(y)⟩ := δabΓ(x − y) in this case (m2 = 0) is given
at the NLO in the large N expansion as

Γ(x) =
∫

p
eipx

[
Γ̃0(p) +

1
N

Γ̃1(p)
]

,

∫
p
:=
∫

d3p

(2π)3 , (2.2)

where

Γ̃0(p) =
1
p2 , Γ̃1(p) =

X(p2)
(p2)2 , X(p2) :=

∫
Q

[ 1
(Q − p)2 − 1

Q2

] −2λ0
1 + λ0B(Q2) (2.3)

with B(p2) = 1/(8|p|).

– 3 –



J
H
E
P
1
0
(
2
0
2
4
)
1
1
1

The 4-pt function is decomposed as

Ka1a2a3a4(x1, x2, x3, x4) := N3⟨φa1(x1)φa2(x2)φa3(x3)φa4(x4)⟩
= δa1a2δa3a4K(x1, x2;x3, x4) + (2 ↔ 3) + (2 ↔ 4), (2.4)

where K at the LO is given by

K0(x1, x2;x3, x4) =
4∏

i=1

∫
pi

eipixi

p2
i

× (2π)3δ(3)
( 4∑

i=1
pi

)
−2λ0

1 + λ0B((p1 + p2)2) . (2.5)

2.2 Conformal smearing

In ref. [17], the conformal smearing has been introduced to construct bulk field ϕa from φa as

ϕa(X) :=
∫

d3y S(x − y, z)φa(y) =
∫

p
S(p, z)φ̃a(p)eipx, (2.6)

where X := (z, x), φ̃a(p) and S(p, z) are the Fourier transforms of φa(x) and S(x, z),
respectively, and the smearing kernel in the momentum space is given with the modified
Bessel function K1 as

S(p, z) := pzK1(pz), p := |p⃗| . (2.7)

It is easy to see that ϕa(X) is the solution to the (conformal) flow equation [17] as

−η∂2
ηϕa(X) = □xϕa(X), ϕa(0, x) = φa(x), η := z2

4 . (2.8)

Furthermore, we define the normalized smeared field as

σa(X) := ϕa(X)√
γ(z)

, γ(z) :=
∑

a

⟨ϕa(X)ϕa(X)⟩, (2.9)

where ⟨· · · ⟩ is a vacuum expectation value in the O(N) model. It was shown that the conformal
transformations to φa(x) generate a part of general coordinate transformations applied to
the scalar σa(X) [17]. The translational invariance tells us that γ only depends on z.

At the NLO in the large N expansion, we explicitly obtain

γ(z) = γ0(z) +
1
N

γ1(z), (2.10)

where
γ0(z) =

∫
p

S2(p.z)
p2 , γ1(z) =

∫
p

S2(p, z)(p2)2X(p2). (2.11)

3 Bulk metric via the conformal smearing

In the smearing approach, the bulk metric corresponding to the vacuum state of the boundary
theory1 can be defined in terms of the normalized smeared field [8] as

gAB(X) := ℓ2⟨∂Aσa(X)∂Bσa(X)⟩, (3.1)
1The bulk metric depends on the boundary state. See [30] in the case of the metric for the thermal state.
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which can be interpreted as the Bures (quantum) information metric [11, 17], where ℓ is
some constant of the length scale. Note that a similar definition using Bures metric was
employed in ref. [5].

Non-zero components of the metric are given at the NLO as

gµν(z) =
δµν

3γ(z)

[
F0(z) +

1
N

F1(z)
]

,

gzz(z) =
(

γz(z)
2γ(z)

)2
− γz(z)

γ2(z)

[
G0(z) +

1
N

G1(z)
]
+ 1

γ(z)

[
H0(z) +

1
N

H1(z)
]

, (3.2)

where γz(z) :=
dγ(z)

dz
and the LO contributions are expressed as

F0(z) =
∫

p
S2(p, z), G0(z) =

∫
p

Sz(p, z)S(p.z)
p2 , H0(z) =

∫
p

Sz(p, z)Sz(p.z)
p2 , (3.3)

with Sz(p, z) := ∂zS(p, z). On the other hand, NLO corrections are

F1(z) =
∫

p

S2(p, z)
p2 X(p2),

G1(z) =
∫

p

Sz(p, z)S(p, z)
(p2)2 X(p2), H1(z) =

∫
p

Sz(p, z)Sz(p, z)
(p2)2 X(p2). (3.4)

3.1 Results at the LO

Using the integration formula (C.1), we obtain

γ0(z) =
3

64z
, F0(z) =

45
1024z3 , G0(z) = − 3

128z2 , H0(z) =
27

1024z3 . (3.5)

Therefore, the metric at the LO is given by

gLO
µν (z) = 5ℓ2

16
δµν

z2 , gLO
zz = 5ℓ2

16
1
z2 , (3.6)

which is the Euclidean AdS metric with the AdS radius [30]

RLO
AdS = ℓ

√
5
4 = ℓ

√
∆φ(d −∆φ)

d + 1 (3.7)

at d = 3, where ∆φ = (d − 2)/2 is the conformal dimension of a free massless scalar.

3.2 Results at the NLO

The metric at the NLO is given by

gNLO
µν (z) = gLO

µν (z)
[
1 + 1

N
Gs(z)

]
,

gNLO
zz (z) = gLO

zz (z)
[
1 + 1

N
Gσ(z)

]
, (3.8)

where Gs(z) and Gσ(z) are defined in eqs. (B.2) and (B.3). Their behaviors are shown in
figure 1 as functions of g = λ0z/8.
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1

g Gs Gσ (1)

(
−αη∂2

η + β∂η
)
φ̂a(x; η) = δµν∂µ∂ν φ̂

a(x; η) (2)

α

β
=

d− 2

2
−∆ (3)

〈Φ′
M1···Mn

(X ′)S′
µ···µp

(y′)〉 = 〈ΦN1···Nn(X)Sν···νp(y)〉 ×
∂XN1

∂X ′M1
· · · ∂X

Nn

∂X ′Mn

∂yν1

∂y′µ1
· · · ∂y

νp

∂y′µp

∣∣∣∣det
∂yν

∂y′µ

∣∣∣∣

∆S−p

d

(4)

〈Φ′(X ′)S′(y′)〉 = 〈Φ(X)S(y)〉 ×
∣∣∣∣det

∂yν

∂y′µ

∣∣∣∣

∆S
d

(5)

〈Φ̂(x, z)Ŝ(y)〉 ∝
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〈Φ̂(X)〉 ∝ z∆S 〈Ŝ(x)〉+ · · · (13)

∑

a

〈σaσa〉 = 1 (14)

〈gMN (X)〉T = (2
N∑

a=1

〈
∂σ̂a

∂XM

∂σ̂a

∂XN

〉

T

(15)

〈gMN (X)〉 = (2
N∑

a=1

〈
∂σ̂a

∂XM

∂σ̂a

∂XN

〉
(16)

Φ̂(X) =

∫
ddywη(x− y)Ô(y) (17)

1

g Gs Gσ (1)

(
−αη∂2

η + β∂η
)
φ̂a(x; η) = δµν∂µ∂ν φ̂

a(x; η) (2)

α

β
=

d− 2

2
−∆ (3)

〈Φ′
M1···Mn

(X ′)S′
µ···µp

(y′)〉 = 〈ΦN1···Nn(X)Sν···νp(y)〉 ×
∂XN1

∂X ′M1
· · · ∂X

Nn

∂X ′Mn

∂yν1

∂y′µ1
· · · ∂y

νp

∂y′µp

∣∣∣∣det
∂yν

∂y′µ

∣∣∣∣

∆S−p

d

(4)

〈Φ′(X ′)S′(y′)〉 = 〈Φ(X)S(y)〉 ×
∣∣∣∣det

∂yν

∂y′µ

∣∣∣∣

∆S
d

(5)

〈Φ̂(x, z)Ŝ(y)〉 ∝
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Figure 1. The 1/N corrections to the metric, Gs(z) (gray) and Gσ(z) (red), as a function of
g = λ0z/8. The horizontal axis is on a logarithmic scale for g. Also, g∂gGs = z∂zGs is depicted for
later convenience.

In the UV limit that z → 0, from explicit expression of F n
ij(g) in eq. (C.14), we see that

the D1
11 term in F 1

11(g) dominates in the limit. Therefore the metric becomes

gNLO
µν (z) ≃ gLO

µν (z)
[
1− g

N

128D1
11

3π4

]
,

gNLO
zz (z) ≃ gLO

zz (z)
[
1− g

N

128D1
11

15π4

]
, (3.9)

as g := λ0z/8 → 0, where D1
11 = −π2/4 is given in eq. (C.17) with c1 = 1. This means that

the NLO correction is sub-leading of the order z in the UV limit so that the AdS radius is
unchanged: RUV

AdS = RLO
AdS and the metric describes the asymptotic AdS space.

In the IR limit that z → ∞, on the other hand, eq. (C.20) leads to

gNLO
µν (z) ≃ gLO

µν (z)
[
1− 4

3π2N
CIR

]
,

gNLO
zz (z) ≃ gLO

zz (z)
[
1 + 4

3π2N

(48
5 + 3CIR

)]
(3.10)

as g → ∞, where

CIR = 512
45π2

∫ ∞

0
dp p2

(15
16 − p2

)
K2

1 (p) ln
(
p2
)
= −77

30 . (3.11)

By the change of the z coordinate as

z̃ = z

[
1 + 4

3π2N

(24
5 + 2CIR

)]
, (3.12)

we finally obtain

g̃NLO
AB (z̃) ≃ (RLO

AdS)2 δAB

z̃2

[
1 + 4

3π2N

(48
5 + 3CIR

)]
, (3.13)
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which describes the AdS space with the radius given by

RIR
AdS := RLO

AdS

[
1 + 2

3π2N

(48
5 + 3CIR

)]
. (3.14)

Since
48
5 + 3CIR = 19

10 , (3.15)

the radius in the IR limit is larger than the one in the UV limit: RIR
AdS −RUV

AdS = O(1/N) > 0.
As an interpolation between UV and IR, we may define the “effective AdS radius” by
Reff

AdS = 1/A′ where A is the exponent of the warp factor in the line element written as
ds2 = e2Adx2 + dr2 and the prime is the derivative with respect to r := −

∫
dz

√
gzz, whose

difference from the AdS radius in the UV limit RUV
AdS, normalized by RUV

AdS, is given by

Reff
AdS − RUV

AdS
RUV

AdS
= Gσ + z∂zGs

2N
+O

(
N−2

)
. (3.16)

As shown in figure 2, this quantity is positive, and increases from g = 0, the UV limit, to
g ∼ 10. Then, it decreases toward its asymptotic value 19/15π2 in the IR limit with g → ∞
corresponding to r → −∞. This can be understood as follows. Since the number of effective
degrees of freedom decreases from UV to IR by the renormalization group (smearing in our
case), corresponding contributions to the negative cosmological constant in the bulk also
decrease, so that the AdS radius increases. This result, however, is opposite to the prediction
by the F-theorem in quantum field theories at d = 3 [26–28]. Since the free energy F on a
3-sphere is expected to decrease from UV to IR and the AdS/CFT correspondence predicts
F ∝ R2

AdS, the AdS radius decreases accordingly. In the pioneering work on the holographic
c-theorem [23], it is discussed that the monotonically decreasing behavior of Reff

AdS = 1/A′

is equivalent to the null energy condition when the bulk theory is the Einstein gravity plus
matter fields. Applied to our model, it means that our bulk theory (analytically continued
to the Lorentzian one) should not be the Einstein gravity with the null energy condition
always satisfied. While we do not understand the reason for this discrepancy precisely at this
moment, one of the most plausible explanations is that a decrease or increase of the AdS
radius is NOT universal under the renormalization group transformation. Indeed, in our
previous work for the same model by the different smearing [9], we have found at the NLO
that RUV

AdS < RIR
AdS for the Gaussian smearing while RUV

AdS > RIR
AdS if we add an interaction

term to the Gaussian smearing. Therefore it is reasonable to expect that we may realize
RUV

AdS > RIR
AdS by modifying the conformal flow.

4 Bulk-to-boundary scalar propagator

In this section, we consider the O(N) invariant scalar field

O(y) :=: φb(y)φb(y) : , (4.1)

where : : denotes the normal ordering. The bulk-to-boundary propagator for this operator
can be defined as the correlation function with the corresponding bulk (smeared) operator:

Π(X, y) := ⟨σa(X)σa(X)O(y)⟩ . (4.2)
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ddyJ(y)Ŝ(y)〉 (11)

AJ(x) =

∫
ddy

J(y)

(x− y)2∆S
∝

∫
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ddy〈Ŝ(x)Ŝ(y)〉J(y) (12)
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Figure 2. The difference between the effective AdS radius and the one in the UV limit (3.16) is shown
as a function of g = λ0z/8 as in figure 1. Here, we have taken the large N limit after multiplying it
by N . Its non-monotonicity comes from z∂zGs, which has the bump as seen in figure 1.

At the LO in the large N expansion, we obtain

Π(X, y) = 1
N

[2Π0(x − y, z) + Πλ(x − y, z)] +O
( 1

N2

)
(4.3)

where

Π0(x − y, z) = 1
γ0(z)

[∫
p

eip(x−y)S(p, z)Γ0(p)
]2

(4.4)

= 1
γ0(z)

[∫
d3y1 S(x − y1, z)Γ0(y1 − y)

]2
= 4

3π2

[
z

z2 + (x − y)2

]
, (4.5)

which is nothing but the bulk-to-boundary propagator (except a factor two) in the free
theory [17]. This behavior tells us that the conformal dimension of the O(N) invariant
composite scalar operator φ2 is given by ∆φ2 = 1 in the free theory.

On the other hand, the contribution coming from the interaction is given by

Πλ(x − y, z) := 1
γ0(z)

∫
d3y1 d3y2 S(x − y1, z)S(x − y2, z)K0(y1, y2; y, y) , (4.6)

which is evaluated as

Πλ(x − y, z) = 1
γ0(z)

∫
p1,p2

ei(p1+p2)(x−y) S(p1, z)S(p2, z)
p2

1p2
2

−2λ0B(p2
12)

1 + λ0B(p2
12)

(4.7)

= 1
γ0(z)z2

∫
p1,p2

K1(p1)K1(p2)
|p1||p2|

ei(p1+p2)(x−y)/z −2g

p12 + g
, (4.8)

where p12 := |p1 + p2|.
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Combining (4.4) and (4.7), the LO contribution in eq. (4.3) turns out to be

Π(x − y, z) = 2
Nγ0(z)

∫
p1,p2

ei(p1+p2)(x−y) S(p1, z)S(p2, z)
p2

1p2
2

1
1 + λ0B(p2

12)

= 2
Nγ0(z)z2

∫
p1,p2

K1(p1)K1(p2)
|p1||p2|

ei(p1+p2)(x−y)/z p12
p12 + g

. (4.9)

Note that the factor 1 + λ0B(p2
12) on the first line is nothing but the wavefunction renormal-

ization ZO of the composite operator O = φ2 in eq. (A.52) with the renormalization scale µ

replaced by p12, as expected from the construction (4.2). We use this expression to discuss
the IR limit later. Now we start with the UV limit.

4.1 UV limit

Since S(p, z) = 1 + O(z2) in the UV limit (z → 0), eq. (4.7) leads to

Πλ(x − y, z) = −128λ0z

3
[
Ω(x − y) +O(z2)

]
, (4.10)

where

Ω(x) =
∫

p1,p2

ei(p1+p2)x

p2
1p2

2

1
8p12 + λ0

. (4.11)

The explicit form of Ω is given in eq. (A.58). In total, we obtain

Π(X, y) ≃ 64z

3
1
N

[ 1
8π2

1
z2 + (x − y)2 − 2λ0Ω(x − y)

]
(4.12)

as z → 0, where the second term represents a correction due to the non-zero coupling λ0.
Therefore, even in the presence of the interaction, we see

Π(X, y) ≃ z
∆UV

φ2 × 64
3
〈
φa(x)φa(x)φb(y)φb(y)

〉
c
+O(z3), z → 0 (4.13)

where the connected correlation function of φ2 is obtained in eq. (A.57), and ∆UV
φ2 = 1

corresponds to its conformal dimension at the asymptotic free UV fixed point of the boundary
theory. Moreover, as shown in appendix A.3.2, we see

〈
φa(x)φa(x)φb(y)φb(y)

〉
c
∝


|x − y|−2, |x − y| ≪ 1

λ0
(UV),

|x − y|−4, |x − y| ≫ 1
λ0

(IR).

(4.14)

4.2 IR limit

Let us expand the factor p12/(p12 + g) in eq. (4.9) for g ∝ z → ∞. Then we get

Π(x − y, z) =
∞∑

n=1
Πn(x − y, z), (4.15)

where
Πn(x, z) := 2

Nγ0(z)z2
(−1)n+1

gn

∫
p1,p2

K1(p1)K2(p2)
p1p2

ei(p1+p2)·x/zpn
12. (4.16)
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The leading contribution is the n = 1 term, which can be further expanded as

Π1(x, z) = 1
Nz2

512
3π4λ0

∞∑
k=0

(k + 1)(−1)kAk

(2k + 3)!

(
x2

z2

)k

, (4.17)

where
Ak :=

∫ ∞

0
dp1

∫ p1

0
dp2 K1(p1)K1(p2)

[
(p1 + p2)2k+3 − (p1 − p2)2k+3

]
. (4.18)

This integral converges, and especially, we find A0 = 3π2/2.
Thus, at large z, the bulk-to-boundary propagator behaves as

Π(X, y) = 1
z2

256A0
9π4λ0N

[
1 +O

(
z−1

)]
= 1

z2
128

3π2λ0N

[
1 +O

(
z−1

)]
, (4.19)

where the NLO contribution ∝ z−3 in the large z comes from Π2(x − y, z). This behavior is
consistent with the LO behavior of the bulk-to-boundary propagator for the scalar field with
the conformal dimension ∆IR

φ2 in the presence of conformal symmetry, which is

[
z

z2 + (x − y)2

]∆IR
φ2

∼ z
−∆IR

φ2 , z → ∞. (4.20)

The z
−∆IR

φ2 behavior also satisfies the EOM of the free scalar field at z → ∞, whose mass m

is given by m2 ∝ ∆IR
φ2(∆IR

φ2 − d). Therefore the z dependence of the bulk-to-boundary scalar
propagator at z → ∞ in eq. (4.19) correctly reproduces ∆IR

φ2 = 2 (the conformal dimension
of φ2) at the Wilson-Fisher IR fixed point.

In this section, we have shown that z → 0 and z → ∞ behaviors of the bulk-to-boundary
propagator constructed by the conformal smearing correspond to conformal dimensions of φ2

at the asymptotic free UV and Wilson-Fisher IR fixed points, respectively, in the interacting
theory. Note that this property is robust in the sense that it holds even for a general smearing
function S(x, z) rather than the conformal smearing, as discussed in the appendix D.

5 Conclusion

In this paper, we have investigated the bulk space dual to O(N) invariant critical φ4 model
in 3-dimensions combining the conformal smearing with the large N expansion, and obtained
the following results, which are also schematically summarized in figure 3.

The metric in the bulk space at the NLO is given by eq. (3.8), which describes the
asymptotic AdS space both UV (z → 0) limit in eq. (3.9) and IR (z → ∞) limit in eq. (3.10).
Moreover, the AdS radii satisfy RIR

AdS − RUV
AdS = O(1/N) > 0, which reflects the fact that the

number of the degrees of freedom decreases from UV to IR by the renormalization group.
This result, however, is opposite to the prediction by the F-theorem [23–28]. To understand
this discrepancy is left to future investigation.

The bulk-to-boundary propagator in eq. (4.2) at the LO encodes ∆φ2 (the conformal
dimension of the composite scalar operator φ2) in its z dependence at UV as eq. (4.13) and
at IR as eq. (4.19), corresponding to ∆φ2 = 1 at the asymptotic UV fixed point and ∆φ2 = 2
at the Wilson-Fisher IR fixed point, respectively. Interestingly, the UV limit in eq. (4.13)
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Figure 3. A schematic figure for the (effective) AdS radius (Reff
AdS(z)) and the (effective) conformal

dimension of φ2 (∆eff
φ2(z)) as a function of λ0z.

reproduces an expected GKP-Witten relation for the interacting theory with non-zero λ0,
whose z∆φ2 behavior is controlled by ∆φ2 = 1, the value at the UV fixed point, while the
|x− y| behavior of the two-point function for φ2 shows complicated behavior that |x− y|−2 at
λ0|x−y| ≪ 1 (UV in the O(N) model)) or |x−y|−4 at λ0|x−y| ≫ 1 (IR in the O(N) model).

As the conformal smearing approach works well for the O(N) invariant critical φ4 model
in 3-dimensions, one may use it to derive some properties of the higher spin theories in
4-dimensions [31], which is expected to be dual to the O(N) model in 3-dimensions.
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A O(N) model in 3 dimensions

A.1 Schwinger-Dyson equation

The Schwinger-Dyson equation (SDE) for the action S(φ) in eq. (2.1) is compactly written as

〈
δO(φ)
δφ(x)

〉
=
〈

O(φ)δS(φ)
δφ(x)

〉
(A.1)

where
⟨O(φ)⟩ := 1

Z

∫
Dφ O(φ)e−S(φ), Z :=

∫
Dφ e−S(φ). (A.2)
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We define the connected part of n-point functions with appropriate powers of N as

Γab(x, y) := N⟨φa(x)φb(y)⟩, (A.3)
Ka1a2···an = Nn−1⟨φa1(x1)φa2(x2) · · ·φan(xn)⟩c (A.4)

for n = 4, 6, , · · · . The O(N) symmetry tells us

Γab(x, y) := δabΓ(x − y) (A.5)
Ka1a2a3a4 =δa1a2δa3a4K(x1, x2;x3, x3) + (2 ↔ 3) + (2 ↔ 4), (A.6)

Ka1a2···a6(x1, x2, · · · , x6) = δa1a2δa3a4δa5a6H(x1, x2;x3, x4;x5.x6) + (14 perm.). (A.7)

Taking O = φa(x), the Schwinger-Dyson equation leads to

δ(3)(x − y) =
[
−□+ m2Zm + λZλZφΓ(0)

]
ZφΓ(x − y)

+
λZλZ2

φ

N

[(
1 + 2

N

)
K(x, y;x, x) + 2Γ(0)Γ(x − y)

]
, (A.8)

while the one for O = φa2(x2)φa3(x3)φa4(x4) gives

0=
[
−□+m2Zm+λZλZφ

(
1+ 2

N

)
Γ(0)

]
Z2

φK(x1,x2;x3,x4)

+λZλZ3
φΓ(x1−x2)

[
2Γ(x1−x3)Γ(x1−x4)+

(
1+ 2

N

)
K(x1,x1;x3,x4)+

2
N

K(x1,x3;x1,x4)
]

+
λZλZ3

φ

N

[(
1+ 2

N

)
H(x1,x1;x1,x2;x3,x4)+

2
N

H(x1,x2;x1,x3;x1,x4)
]

+
2λZλZ3

φ

N
[Γ(x1−x3)K(x1,x2;x1,x4)+Γ(x1−x4)K(x1,x2;x1,x3)] , (A.9)

where eq. (A.8) has already been used.

A.2 Large N expansion

A.2.1 2-pt function at the LO

Using the Fourier transformation of the 2-pt function that

Γ(x) =
∫

d3p

(2π)3 eipxΓ̃(p), Γ̃(p) = Γ̃0(p) +
1
N

Γ1(p) + · · · , (A.10)

the 2-pt function at the LO satisfies

1 =
[
p2 + m2Zm + λZλZφΓ0(0)

]
ZφΓ̃0(p), Γ0(0) =

∫
d3p

(2π)3 Γ̃0(p). (A.11)

We adopt the renormalization conditions for the 2-pt function that

Γ̃−1
0 (p)

∣∣∣
p2=µ2

= m2 + µ2,
d

dp2 Γ̃
−1
0 (p)

∣∣∣∣
p2

= 1, (A.12)

which lead to

Zφ = 1, m2Zm = m2 + λZλ

(
m

4π
− Λ

2π2

)
, (A.13)

where we use

Γ0(0) =
∫

d3p

(2π)3
1

p2 + m2 = Λ
2π2 − m

4π
(A.14)

with Λ being the momentum cut-off and m ≥ 0 being assumed.
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A.2.2 4-pt function at the LO

The SDE relevant for the 4-pt function at the LO is written as

(−□1 + m2)K0(12; 34) + λZλΓ0(12)K0(11; 34) = −2λZλΓ0(12)Γ0(13)Γ0(14), (A.15)

where we expand K = K0 + K1/N + · · · , and employ short-handed notations such as
Γ0(ij) = Γ(xi − xj) and K0(ij; kl) = K(xi, xj ;xk, xl).

Introducing the amputated 4-pt function in the momentum space as

K0(12; 34) :=
4∏

i=1

(∫
d3pi

(2π)3
eipixi

p2
i + m2

)
(2π)3δ(3)

( 4∑
i=1

pi

)
G0(p1, p2; p3, p4), (A.16)

the SDE becomes

G0(p1, p2; p3, p4) + λZλ

2∏
i=1

(∫
d3qi

(2π)3
1

q2
i + n2

)
G0(q1, q2; p3, p4)δ(3) (q1 + q2 + p3 + p4)

= −2λZλ, (A.17)

where p1 + p2 + p3 + p4 = 0.
The solution to the above equation is given by G0(p1, p2; p3 + p4) = G0(p2

12) with
p12 := p1 + p2 and

G0(p2) = −2λZλ

1 + λZλB(p2) , (A.18)

where
B(p2) =

∫
d3q

(2π)3
1

q2 + m2
1

(p − q)2 + m2 = π − 2 arctan(2m/|p|)
8π|p|

, (A.19)

which becomes simple in the massless limit as

lim
m2→0

B(p2) = 1
8|p| , (A.20)

and thus

lim
m2→0

G0(p1, p2; p3, p4) =
−2λZλ

1 + λZλ/(8|p12|)
. (A.21)

We take the renormalization condition for the amputated 4-pt function as

G(p1, p2; p3, p4)|p2
12=µ2 = −2λ, (A.22)

which gives G0(µ2) = −2λ at the LO. We thus obtain

Zλ = 1
1− λB(µ2) −→ 1

1− λ/(8µ) , m2 → 0. (A.23)

Now all renormalization constants are fixed at the LO.
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A.2.3 2-pt function at the NLO

The 2-pt function at the NLO, necessary in the main text, is also calculated here.
At the NLO, we write

Zφ = 1 + 1
N

Z(1)
φ , Zm = Z(0)

m + 1
N

Z(1)
m , Zλ = Z

(0)
λ + 1

N
Z

(1)
λ , (A.24)

where the LO parts have already been determined.
The SDE relevant for the 2-pt function at the NLO reads

0 = (−□+ m2)Γ1(12) +
[
m2(Z(1)

m + Z(0)
m Z(1)

φ ) + λ0(Γ1(0) +
Z

(1)
λ

Z
(0)
λ

+ 2Z(1)
φ

]
+ λ0 [K0(12; 11) + 2Γ0(0)Γ0(12)] , (A.25)

where λ0 := λZ
(0)
λ at this order. Using the relation obtained from eq. (A.15) as

λ0 [K0(x, x; 0x, 0) + 2Γ0(0)Γ0(x)] = − 1
Γ0(0)

(−□1 + m2)K0(x1, x;x, 0)
∣∣∣∣
x1=x

, (A.26)

the SDE becomes

(−□+ m2)Γ1(12) = −
[
m2

(
Z(1)

m + Z(0)
m Z(1)

φ

)
+ λ0

(
Γ1(0) +

Z
(1)
λ

Z
(0)
λ

+ 2Z(1)
φ

)]

+ −□1 + m2

Γ0(0)
K0(x1, x;x, 0) |x1=x, (A.27)

whose last term is further evaluated as

−□1 + m2

Γ(0) K0(x1, x;x, 0)
∣∣∣∣∣
x1=x

=
∫

d3p

(2π)3
eipx

p2 + m2

∫
d3Q

(2π)3
G0(Q)

(Q − p)2 + m2

=
∫

d3p

(2π)3
eipx

p2 + m2

∫
d3Q

(2π)3
1

(Q − p)2 + m2
−2λ0

1 + λ0B(Q2) .

(A.28)

Using the expression in the momentum space as

Γ1(x) =
∫

d3p

(2π)3
X(p2)

(p2 + m2)2 eipx, (A.29)

the SDE leads to

X(p2) = −
[
m2

(
Z(1)

m + Z(0)
m Z(1)

φ

)
+ λ0

(
Γ1(0) +

Z
(1)
λ

Z
(0)
λ

+ 2Z(1)
φ + 2Y (p2)

)]
, (A.30)

where by definition

Γ1(0) =
∫

d3p

(2π)3
X(p2)

(p2 + m2)2 , (A.31)
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while
Y (p2) =

∫
d3Q

(2π)3
1

(Q − p)2 + m2
1

1 + λ0B(Q2) . (A.32)

Inserting eq. (A.30) into eq. (A.31), we obtain

Γ1(0) = −
m2

(
Z

(1)
m + Z

(0)
m Z

(1)
φ

)
+ λ0

(
Γ1(0) +

Z
(1)
λ

Z
(0)
λ

+ 2Z
(1)
φ + 2Y (p2)

)
1 + λ0I(m2) , (A.33)

where
I(m2) :=

∫
d3p

(2π)3
1

(p2 + m2)2 = − d

dm2Γ0(0) =
1
8π

1√
m2

. (A.34)

The 2-pt function at the NLO in the momentum space is expressed as

ZφΓ̃(p) =
(
1 + 1

N
Z(1)

φ

)
Γ̃0(p) +

1
N

Γ̃1(p) =
1 + 1

N Z
(1)
φ

p2 + m2 − 1
N X(p2)

, (A.35)

and thus the renormalization condition at p2 = µ2 reads(
1− 1

N
Z(1)

φ

)
(µ2 + m2)− 1

N
X(p2) = µ2 + m2, (A.36)

1− 1
N

Z(1)
φ − 1

N

d

dp2 X(p2)
∣∣∣∣
p2=µ2

= 1, (A.37)

which leads to relations among renormalization constants at the NLO as

m2
(
Z(1)

m +Z(0)
m Z(1)

φ

)
=Z(1)

φ (µ2+m2)−λ0

(
Γ1(0)+

Z
(1)
λ

Z
(0)
λ

+2Z(1)
φ +2Y (µ2)

)
, (A.38)

Z(1)
φ = 2λ0

d

dp2 Y (p2)
∣∣∣∣
p2=µ2

. (A.39)

We then finally obtain

X(p2) = −2λ0Yr(p2)− Z(1)
φ (µ2 + m2), Yr(p2) := Y (p2)− Y (µ2), (A.40)

which is UV-finite, thanks to the subtraction.
In the main text, we consider the case with m2 = µ2 = 0, which leads to

X(p2) =
∫

d3Q

(2π)3

[ 1
(Q − P )2 − 1

Q2

] −2λ0
1 + λ0B(Q2) = 2λ0p

(2π)2 L

(
λ0
8p

)
, (A.41)

where

L(x) = x2

2

[
ln2 x + 1

x
−
(
ln x − 1

x
− 2iπ

)
ln x − 1

x
+ 4ln x + 1

x

]
+ x2

[
Li2

(
x

x + 1

)
− Li2

(
x

x − 1

)]
(A.42)

with
Li2(x) := −

∫ x

0
dt

ln(1− t)
t

. (A.43)

In two limits (x → 0 or x → ∞), we have

L(x) −→


2(1 + ln x)x − π2

2 x2 + · · · , x → 0,

− 2
9x

(1 + 3 ln x) + · · · , x → ∞.

(A.44)
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A.3 Renormalization group analysis in the massless case at the LO

A.3.1 Beta function

We define a dimension less coupling constant as gR := λ/µ at the LO, which is written
in terms of λ0 at m2 = 0 as

gR = λ0/µ

1 + λ0/(8µ) . (A.45)

Since λ0 is µ independent, the β function for gR can be calculated as

β(gR) := µ
d

dµ
gR(µ) = −gR

(
1− gR

8

)
. (A.46)

Therefore gR = 0 corresponds to an asymptotic free (UV) fixed point, while gR = 8 is the
Wilson-Fisher (IR) fixed point.

A.3.2 Anomalous mass dimension of the composite scalar operator

We calculate the anomalous dimension of the O(N) invariant scalar operator, given by

OR := ZOφa
0φa

0 = ZOZφφaφa, (A.47)

where ZO is the renormalization factor, from which the anomalous mass dimension of O

is defined as

γO := −µ
d

dµ
lnZO. (A.48)

At the LO where Zφ = 1, we have

⟨O(x1)φa3(x3)φa4(x4)⟩ =
ZOδa3a4

N2 [2Γ0(13)Γ0(14) + K(0(11; 34)] , (A.49)

whose Fourier transformation should be equal to the tree-level contribution that

4∏
i=3

∫
d3xie

ipixi ⟨O(x1 = 0)φa3(x3)φa4(x4)⟩|tree =
δa3a4

N2 2Γ̃0(p3)Γ̃0(p4) (A.50)

at p2
34 = µ2. Since

4∏
i=3

∫
d3xie

ipixi K0(11; 34) = Γ̃0(p3)Γ̃0(p4)
∫

d3p

(2π)3
G0(p2

34)
[p2 + m2] [(p34 − p)2 + m2] , (A.51)

we obtain

ZO =
[
1 + 1

2G0(µ2)B(µ2)
]−1

= 1 + λ0B(µ2). (A.52)

Therefore the anomalous dimension is calculated as

γO = − λ0
1 + λ0B(µ2)µ

d

dµ
B(µ2). (A.53)
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In the massless case (m2 = 0), we obtain

γO = gR

8 = λ0
8µ + λ0

=


0 (µ → ∞),

1 (µ → 0).
(A.54)

Therefore, the total conformal (mass) dimension of O in the IR fixed point at µ → 0 becomes

∆O := 2∆φ0 + γO = 2, (A.55)

where ∆φ0 = 1/2 is the conformal dimension of φ0, while ∆O = 1 in the UV fixed point
(µ → ∞).

From the above result, it is straightforward to calculate the connected 2-pt function of
φ2 without ZO at the LO in the large N expansion. In the massless limit, it becomes

⟨φ2(x)φ2(y)⟩c =
2
N

∫
p1,p2

ei(p1+p2)·(x−y)

p2
1p2

2

1
1 + λ0B(p2

12)
(A.56)

= 2
N

[ 1
16π2(x − y)2 − λ0Ω(x − y)

]
, (A.57)

where Ω(x) is defined in eq. (4.11), whose explicit form can be written as

Ω(x) = |x|−1

128π2 [Ci(χ) sin(χ)− si(χ) cos(χ)] (A.58)

with χ := |x|λ0/8 and the trigonometric integrals

Ci(z) := −
∫ ∞

z
dt
cos t

t
, si(z) := −

∫ ∞

z
dt
sin t

t
. (A.59)

In the UV limit that |x − y| ≪ 8/λ0, we get Ω(x − y) ≈ |x − y|−1/256π, and thus, the
tree level contribution ∝ (x − y)−2 in (A.57) dominates the 2-pt function.

In the IR limit that |x − y| ≫ 8/λ0, on the other hand, we have

Ω(x − y) = (x − y)−2

16π2λ0

(
1− 2(8/λ0)2

(x − y)2 +O
(
(x − y)−4

))
. (A.60)

Therefore, the 2-pt function (A.57) behaves as

⟨φ2(x)φ2(y)⟩c ≈
1
N

16
π2λ2

0

1
(x − y)4 , (A.61)

as expected from (A.55).

B Metric at the NLO

The metric at the NLO is given in eq. (3.8) in the main text as

gNLO
µν (z) = gLO

µν (z)
[
1 + 1

N
Gs(z)

]
, gNLO

zz (z) = gLO
zz (z)

[
1 + 1

N
Gσ(z)

]
, (B.1)
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where

Gs(z) :=
F1(z)
F0(z)

− γ1(z)
γ0(z)

= 32g

π4

[64
45F 3

11(g)−F 1
11(g)

]
, (B.2)

Gσ(z) :=
1
5

(9H1(z)
H0(z)

− γ1(z)
γ0(z)

− 8G1(z)
G0(z)

)
= 32g

5π4

[64
3
{

F 3
00(g)−F 2

01(g)
}
−F 1

11(g)
]

, (B.3)

with g := λ0z/8 and

F n
ij(g) :=

∫ ∞

0
dp pnKi(p)Kj(p)L

(
g

p

)
. (B.4)

Analytic expressions of F n
ij(g) are given in the appendix C in two limits that g → 0 (UV)

or → ∞ (IR).

C Momentum integrals

Here we present several momentum integrals used in the main text.

C.1 Integral formula for Bessel functions

We present useful formulas for integrals of Bessel functions.

(1) 6.576-4 in [32]:

∫ ∞

0
dxx−λKµ(ax)Kν(bx)= 2−2−λa−ν+λ−1bν

Γ(1−λ)
∏
±
Γ
(1−λ±µ+ν

2

)
Γ
(1−λ±µ−ν

2

)

×2F1

(
1−λ+µ+ν

2 ,
1−λ−µ+ν

2 ;1−λ;1− b2

a2

)
(C.1)

for Re(a + b) > 0, Re λ < |Re µ| − |Re ν|.

(2) 6.671-5 in [32]:

∫ ∞

0
dx Kν(ax) sin(bx) = π

4
a−ν

sin(νπ/2)

[(√
b2 + a2 + b

)ν
−
(√

b2 + a2 − b
)ν]

√
a2 + b2

(C.2)

for Re a > 0, b > 0, |Re ν | < 2, ν ̸= 0.

C.2 F n
ij in two limit

We split F n
ij(g) defined in eq. (B.4) into two part as F n

ij(g) = F n,a
ij (g) + F n,b

ij (g), where

F n,a
ij (g) :=

∫ g

0
dp pnKi(p)Kj(p)L(g/p), F n,b

ij (g) :=
∫ ∞

g
dp pnKi(p)Kj(p)L(g/p), (C.3)

and evaluate it in UV and IR limits.
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C.2.1 IR limit

We first consider the IR (g → ∞) limit.
Using an expansion in terms of 1/g at g = ∞ as∫ g

0
dx f(x) ≃

∫ ∞

0
dx f(x) + 1

g
lim

g→∞
f(g) dg

d(1/g) + · · · , (C.4)

we have

F n,a
ij (g) ≃

∫ ∞

0
dp pnKi(p)Kj(p)L(g/p)− 1

g
lim

g→∞
gn+2Ki(g)Kj(g)L(1) + · · ·

≃ − 2
9g

∫ ∞

0
dppn+1Ki(p)Kj(p) (1 + 3 ln g/p)

= − 1
3g

[(2
3 + ln g2

)
Cn+1

ij − Ln+1
ij

]
, (C.5)

where the second term in the first line vanishes exponentially, the asymptotic behavior of
L(x) in (A.44) is used to obtain the second line, and constants in the third line are defined as

Cn
ij :=

∫ ∞

0
dp pnKi(p)Kj(p), Ln

ij :=
∫ ∞

0
dp ln p2 pnKi(p)Kj(p). (C.6)

On the other hand, F n,b
ij is evaluated by the steepest-descent method after a change

of variable p = gy as

F n,b
ij (g)= gn+1

∫ ∞

1
dy ynKi(gy)Kj(gy)L(1/y)≃ gn+1yn

0 Ki(gy0)Kj(gy0)L(1/y0), (C.7)

which vanishes exponentially as g → ∞, where 1 ≤ y0 < ∞ is a point which gives the largest
contribution to the integral. The point y0 is either given as a solution to S′(y) = 0, where

S(y) := ln [ynKi(gy)Kj(gy)L(1/y)] , (C.8)

or y0 = 1 if no solution exists.
In total we obtain

F n
ij(g) ≃ − 1

3g

[(2
3 + ln g2

)
Cn+1

ij − Ln+1
ij

]
(C.9)

in the IR (g → ∞) limit.

C.2.2 UV limit

In the UV (g → 0) limit, F n,a
ij is evaluated with p = gy as

F n,a
ij (g)= gn+1

∫ 1

0
dy ynKi(gy)Kj(gy)L(1/y)≃ cicjg

∫ 1

0
dy (gy)n−i−jL(1/y), (C.10)

where ci is given in the small x expansion of the Bessel function as Ki(x) = cix
−i + · · · with

x−i read as ln x for i = 0. For example, c0 = −1, c1 = 1, and c2 = 2. The y integral is
convergent for n − i − j > −2 since L(1/y) ∼ y ln y for small y as seen in (A.44).
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For n − i − j > 0, F n,b
ij is evaluated straightforwardly as

F n,b
ij (g) ≃ 2g

∫ ∞

0
dp pn−1Ki(p)Kj(p) [1 + ln(g/p)] (C.11)

For n = i = j = 1, we calculate F n,b
ij as

F 1,b
11 =

∫ ∞

g
dp p

[
K2

1 (p)−
c2

1
p2

]
L(g/p) + c2

1

∫ ∞

1
dy

L(1/y)
y

, (C.12)

where the second term is a g-independent constant, while the first term can be evaluated
using the UV limit of L(x) in (A.44) by∫ ∞

g
dp p

[
K2

1 (p)−
c2

1
p2

]
L(g/p) ≃ 2g

∫ ∞

0
dp

[
K2

1 (p)−
c2

1
p2

]
(1 + ln(g/p)) . (C.13)

In total, we have

F n
ij(g) ≃ −g

[
(2 + ln g2)Cn−1

ij − Ln−1
ij

]
− gn+1−i−jDn

ij (C.14)

for n − i − j > 0, where Cn
ij and Ln

ij are already given in eq. (C.6), and

Dn
ij := cicj

∫ 1

0
dy yn−i−jL(1/y), (C.15)

while for n = i = j = 1 one should replace C0
11 and L0

11 with

C̃0
11 :=

∫ ∞

0
dp

[
K2

1 (p)−
c1
p2

]
, L̃0

11 :=
∫ ∞

0
dp

[
K2

1 (p)−
c1
p2

]
ln p2, (C.16)

respectively, and

D1
11 := c2

1

∫ ∞

0
dyy−1L(1/y). (C.17)

C.3 Some calculations in the IR limit

In the IR limit, we have a universal formula as
X1(z)
X0(z)

≃ − 4
3π2

[2
3 + ln g2 − CX

]
, X = γ, F, G, H, (C.18)

where

Cγ = 32
3π2 L2

11, CF = 512
45π2 L4

11,

CG = 64
3π2 L3

01 = Cγ + 2, CH = 512
27π2 L4

00 = −5
3CF + 8

3Cγ + 64
9 . (C.19)

By combining these, we have

Gs(z) ≃ − 4
3π2 CIR, Gσ(z) ≃

4
3π2

(48
5 + 3CIR

)
, (C.20)

where
CIR := Cγ − CF = 512

45π2

(15
16L2

11 − L4
11

)
. (C.21)

Importantly, ln g2 terms are cancelled in Gs(z) and Gσ(z), so that the metric describes the
AdS space in the IR limit.
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C.4 Πλ,1(x, z) in the IR limit

We here evaluate Πλ,1(x, z) in the IR limit. Integrating the angle between a vector p1 + p2
and a vector x, we have

Πλ,1(x,z)= 4
γ0(z)z2g(2π)4r

∫ ∞

0
p1dp1 p2dp2 K1(p1)K2(p2)

∫ π

0
sinθdθ sin(p12r), (C.22)

where r := |x|/z and θ is an angle between p1 and p2, so that p12 =
√

p2
1 + p2

2 + 2p1p2 cos θ.
By expanding sin(p12r), the θ integral is performed as

∞∑
k=0

(−1)kr2k+1

(2k + 1)!

∫ 1

−1
da (p2

1 + p2
2 + 2p1p2a)k+1/2

=
∞∑

k=0

(−1)kr2k+1

(2k + 3)p1p2(2k + 1)!
[
(p1 + p2)2k+3 − |p1 − p2|2k+3

]
, (C.23)

which leads to eq. (4.17) with eq. (4.18).

D Bulk-to-boundary propagator by a general smearing

In this appendix, we investigate the UV and the IR behaviors for the bulk-to-boundary
propagator of the composite scalar operator using a general smearing function S(p⃗, z), which
satisfies S(p⃗, 0) = 1 since ϕa(x, z = 0) = φa(x) by construction. In order to keep the rotational
symmetry at the boundary and to avoid the introduction of extra dimensionful parameters,
we assume S(p⃗, z) = S(pz) with p := |p⃗|.

The bulk-to-boundary is compactly written in terms of S(pz) as

Π(X, y) = 2
Nγ0(z)

∫
p1,p2

ei(p1+p2)·(x−y) S(p1z)S(p2z)
p2

1p2
2

1
1 + λ0B(p2

12)
(D.1)

= 2
Nγ0(z)z2

∫
p1,p2

ei(p1+p2)·(x−y)/z S(p1)S(p2)
p2

1p2
2

p12
p12 + g

, (D.2)

where
γ0(z) :=

∫
p

S2(pz)
p2 = c

z
, c :=

∫
p

S2(p)
p2 . (D.3)

In the z → 0 limit, the first expression leads to

lim
z→0

Π(X, y) = 2z

Nc

∫
p1,p2

ei(p1+p2)·(x−y)

p2
1p2

2

1
1 + λ0B(p2

12)
= z

c
⟨φ2(x)φ2(y)⟩c. (D.4)

In the z → ∞ limit, on the other hand, the second expression gives

lim
z→∞

Π(X, y) = 1
z2

16
Ncλ0

∫
p1,p2

S(p1)S(p2)
p12
p2

1p2
2
∼ 1

z2 , (D.5)

which leads to ∆φ2 = 2.
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