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An E_-ring is a spectrum equipped with commutative multiplicative law up to coherent
homotopy.

Lurie refined the notation of E..-ring by using oo-operad Na(Fin,). In 2001, Mandell,
May, Schwede and Shipley considered diagram spectra, especially Z-indexed ring spectra.
Lurie consider Z-grading on E.-ring by using Z with order preserving morphisms. I think
some professionals already noticed that the symmetric monoidal structure on discrete
graded rings and modules are obtained by the Day convolution.

We have symmetric monoidal oo-categories Na(OF) — Na(Fin,) and Na(OF) —
Na(Fin,). By using these symmetric monoidal co-categories, we concretely define graded
E.-rings and graded modules over them, and study their properties. We construct projec-
tive schemes associated to connective N-graded E..-rings in spectral algebraic geometry.
Actually, Torii and I gave these construction in more general situation, please see [8]. In
this paper, I use an expedient ; I state their properties by using co-operads.

Under some finiteness conditions, we show that the co-category of almost perfect quasi-
coherent sheaves over a spectral projective scheme Proj(A) associated to a connective
N-graded E_.-ring A can be described in terms of Z-graded A-modules.

1. GRADED E,-RINGS AND GRADED MODULES

For a symmetric monoidal category consisting of one object {0} with the unique iso-
morphism, we have a category Fin,. The map {0} — N and {0} — Z are the symmetric
monoidal functors.

Definition 1.1. Let €® — Na(Fin,) be a symmetric monoidal co-category. We ob-
tain a symmetric monoidal co-category Funy, gin.)(Na(Z), @)® — Na(Fin,) by the Day
convolution which is denoted by &.



We use the notation Algg (M) for the fibration M — O of co-operads and given
oo-operads O — O.

For X € Funy, (gin,)(Na(Z), (3)3, X, is the value at i € Z of the underlying functor of
X.

We take the symmetric monoidal co-categories Sp” and Mod$, where R is an E, -ring.

Key diagram. Consider the following diagram
Na(Fin,)<—Na(0F) < Nu (Fin,)

A
A(o0) Ao
Sp” :

where the map 0 is induced from {0} — Z, the map i is the structure map of symmetric
monoidal structure and A(co) is the operadic left Kan extensions of A along 7. Then,

(i) Ag is an Eq-ring, i.c., A is an object in Algy, (gin,)/na #in.) (SD),

(i) A(co) is an E-ring, i.e., an object in Algy, (sin.)/na(Fin.) (SP”)-
Especially, the functor (—)o commutes with the graded tensor. We call A(co) the under-
lying E..-ring of A. Roughly speaking, A(c0) is such as a form of direct sum with respect
to grading.

Definition 1.2. o We define the co-category of Z-graded E..-rings by

AlgNA(?in*)/NA(iTin*)(FunNA(ﬁn*)(NA(Z)7 SP)®)7

and call its object a Z-graded E-rings.

e We say that a Z-graded E..-ring A is connective if each A; for i € Z is a connective
spectrum.

e Let R be an E-ring. We define the oco-category of Z-graded E..,-rings over R by

Algy, (Fin,)/Na (Fin) (Funy, (gin.) (Na(Z), Modg)®),
and call its object a Z-graded E.-rings over R.

We denote by CAlgp(Z) and CAlgg(N) the oco-category of Z-graded and N-graded
E.-rings over R, respectively. We identify objects of CAlg(N) with that of CAlg(Z).

1.1. Modules over graded E.-rings.

Definition 1.3. For a Z-graded E.-ring A and an E_-ring R, the co-category of Z-graded
A-modules is

Mod a(Funy, in.) (Na(Z), Sp)®),
where the notation Mod(—) is in the sense of Lurie. Let us denote the co-category of
Z-graded A-modules by Mod 4(Z).
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We call a morphism in CAlg(Z) and Mod4(Z) a morphism of degree 0 or a morphism
of graded E..-rings and of graded A-modules.

Remark 1.4. The oo-category of Z-graded A-modules over R can be defined as
Mod (Funy, in.) (Na(Z), Modg)®).

1.2. Localizations of graded E..-rings. For X in Sp(Z) and g € Z, we define a twisting
X(g) in Sp(Z) by X(g)y ~ X4y for ¢’ € Z.

Let A be a Z-graded E -ring and let a € my(A) be homogeneous of degree g € Z.
We regard a as a morphism a : A — A(g) of Z-graded A-modules. Since Mod4(Z) is a
presentable oco-category, there exists a localization functor

L : Mod4(Z) — Mod(Z)

with respect to the map a : A — A(g). As in the nongraded case, L(M) is equivalent to
M{a™1], where M[a™!] is a colimit of the sequence

M % M(g) S M(2g) % ---

in Moda(Z). The localization L is smashing given by L(—) ~ Ala™'] ®4 (—) and is
compatible with the symmetric monoidal structure on Mod4(Z). We can regard [ : A —
Ala™'] a morphism in CAlg(Z). We obtain an adjunction

I : NIOdA(Z) = I\/IOdA[a—l](Z) : l*,

where the left adjoint [, is a symmetric monoidal functor given by M +— Ala™'] @4 M,
and the right adjoint [* is a fully faithful lax symmetric monoidal functor.
By [3, Remark 7.3.2.13], this adjunction induces an adjunction

I : CAlg, = CAlgy,; : I,

where the right adjoint [* is fully faithful. Hence I, : CAlg,(Z) — CAlgy,—1)(Z) is a
localization functor.

If a is invertible in 7y (B), we have an equivalence
MaPCAlgA(Z)(A[G_I]a B) = Mapcayg ,z)(4; B)

since there is an equivalence [} A ~ Ala~'] in CAlg,(Z).
We define an oo-category
CAlgh" (2)
to be the full subcategory of CAlg,(Z) spanned by those objects of the form Ala~'] for
some homogeneous element a € mo(A). We define CAlgSOZ(?X)(Z) to be the full subcategory
of CRing,,4)(Z) spanned by those objects of the form m(A)[a~"] for some a € m(A).



Definition 1.5. A spectral scheme X is a projective spectral scheme if there exists a
collection {U,} such that U, covers X and there exists A € CAlg(Z) such that (U,, Ox) ~
(Spec (Al o), Opec (ja-1)y)) for each U, and for degree (more that) 1 elements o, €
mo(A(00))-

2. QUASI—COHERENT SHEAVES ON PROJECTIVE SPECTRAL SCHEMES

Definition 2.1. Let A be a connective N-graded E.-ring. We say that A is Noetherian
if my(A) is a Noetherian N-graded commutative ring and m,(A) is a finitely generated
N-graded my(A)-module for any n € Z.

Let A be a connective Noetherian N-graded E..-ring. In this section we assume that A
satisfies the following condition:

There are finitely many elements of mo(A;) which generate m9(A) as an N-graded com-
mutative ring over mo(Ap).

Let A be a connective Noetherian N-graded E..-ring. Set X = Proj (A). We take a set
{a;}i_y C mo(A;) of generators of my(A) as an N-graded commutative ring over my(Ay).
We define a Z-graded E.-ring B by B = Afa;'] x -+ x Ala,;]. Let g : A — B be the
canonical morphism of Z-graded E..-rings. We take a Cech nerve

Clg)y
of g in the opposite co-category of CAlg(Z). Then C(g)% is an augmented cosimplicial

object of CAlg(Z) such that C(g).' ~ A and C(g)? ~ B" for n > 0, where B" is given
by

n+1
—NN—
Bn:B®A"'®AB~

By using the functor (—) : CAlg(Z) — CAlg, we obtain C'(g)§ as the composite of (—)g
with the restriction C(g)* = C(g)%|a-
Note that there is a faithfully flat affine morphism f: U — X, where U = Spec(By),

and we have an equivalence U, =~ Spec(C(g)g) of simplicial objects of affine spectral
schemes. Since f: U — X is an effective epimorphism, we have an equivalence

U — X

in ﬁlquc, where the left hand side is the geometric realization of the simplicial object
U,.
We have an oo-category QCoh(X) of quasi-coherent sheaves of O y-modules on X, which
is stable presentable symmetric monoidal with unit Ox by [5, Proposition 2.2.4.2].
There is an equivalence
QCoh(X) ~ lign Modps
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of symmetric monoidal stable co-categories.

Recall that Sp(Z) is a symmetric monoidal stable presentable co-category, so that it is
a commutative algebra object of Prg,, where Pr§, is the co-category of stable presentable
oo-categories and colimit-preserving functors. We denote by CAlg(Prg,) the co-category
of commutative algebra objects of Prg,. By [3, Theorem 4.8.5.16], we have a functor

Mod(Z) : CAlg(Z) — CAlg(Prs,),

which assigns to D € CAlg(Z) the symmetric monoidal co-category Modp(Z) of Z-graded
D-modules.

By applying the functor Mod(_y(Z) to C(g)%. and using the equivalences Modpn(Z) ~
Modpy for n > 0, we obtain a symmetric monoidal functor

Mod,(Z) — lim Mod gs.

Definition 2.2. We define a functor

(=) : ModA(Z) — QCoh(X)
to be the composite of the functor Mod4(Z) — lima Modge with the equivalence between
lima Modpe and QCoh(X). We call M the quasi-coherent sheaf on X associated to a
Z-graded A-modules M.

By the construction, the functor (=) : Moda(Z) — QCoh(X) is symmetric monoidal.
Recall that we have defined the shifting functor (¢) : Moda(Z) — Mod4(Z) given by
M(q)y ~ M4, for M € Moda(Z) and ¢,n € Z. For q € Z, we define Ox(q) to be the

quasi-coherent sheaf A(q) on X.
Proposition 2.3. The quasi-coherent sheaf Ox(q) is locally free of rank 1 for any q € Z.

Proof. 1t suffices to show that the restriction ZG/NV is equivalent to /T|V for any affine
open set V' = Spec(m(A)[f o) of the underlying projective scheme Proj (mo(A)), where
f is an element of my(A) of degree 1. The restriction ZC]/HV corresponds to an A[f o
module A[f'],. The multiplication by f¢ induces an equivalence of A[f !]o-modules
between A[f'], and A[f ']o. Thus, there is an equivalence of quasi-coherent sheaves
between 1/4_(\q/)|v and Aly. This completes the proof. O

For a quasi-coherent sheaf .# of Ox-modules on X and ¢ € Z, we define F(q) =
F ®oX OX (q)

If 7 is the quasi-coherent sheaf associated to a Z-graded A-module M, then we have
an equivalence ‘,6/_:(,@ ~ ]\m of quasi-coherent sheaves.

The functor (—) is obtained from the augmented cosimplicial diagram Mod_)(Z) o
C(g)% : Ay — CAlg(Z) — Cat.,. Since the functor Mod(_y(Z) : CAlg(Z) — Cat., factors



through the oo-category i]’rét of stable presentable oco-categories and colimit-preserving
functors, we see that the functor (A—/) : Mod4(Z) — QCoh(X) is a morphism in Pr,.
Thus, there exists a right adjoint T',(X, —) : QCoh(X) — Moda(Z) to (:/)
The equivalence QCoh(X) — lima Modp.(Z) of co-categories implies an equivalence

Mapqcon(x) (M, F) = lim Mapyoae z) (B* @4 M, D(Us, F(+)))
of mapping spaces. Since we have an equivalence
Mapyiodge (z) (B ©a M, T'(Us, F (%)) = Mapyioq,, (z) (M, T (Us, -7 (%))
of cosimplicial spaces, there is a natural equivalence
NIapQCoh(X)(M'/ F) ~ MapModA(Z)(Mv liinF(U., F (%))

Hence we obtain I', (X, .#) =~ lima I'(U,, .7 (x)).

We show that the functor I',(X, —) is fully faithful. Recall that B = Afa;'] x -+ x
Ala; 1], where {a;}/_, C mo(A;) is the set of generators of my(A) as an N-graded commu-
tative ring over mo(Ag). We have the faithfully flat affine morphism f : U — X, where
U = Spec(By). Note that there is an equivalence T'(U, f*Ox (x)) ~ B of Z-graded E.-
rings and hence that T'(U, f*.%(x)) is a Z-graded B-module for a quasi-coherent sheaf .7
of Ox-modules on X. We have the restriction map I'.(X,.%) — T'(U, f*.% (x)), which
induces a map

BT (X, F) = T(U, f*F(x))

of Z-graded B-modules. We shall compare I'(U, f*.% (x)) with the scalar extension B ®4
I.(X,7).

Lemma 2.4 (cf. [8]). Let F be a quasi-coherent sheaf of Ox-module on X. There is a
natural equivalence

BoaTu(X,.7) = T(U, f*F(x))
of Z-graded B-modules.
Proof. We have U =V x --- x V,,, where V; = Spec(A[a; ']y) for 1 <i < r. This implies
a decomposition
LU, f* 7 (%)) > T(V1, Z () x -+« x T(V,, F (%)),

where ['(V;, % (x)) is a Z-graded Ala; ']-module for 1 < i < r. Since ['(V;, (%)) is a
Z-graded Ala; ']-module, the restriction map I'.(X,.#) — [(U, f*#(x)) induces a map
I.(X, %)[a; '] = T.(V;, F) of Z-graded Ala; ']-modules. It suffices to show that this map
is an equivalence for any ¢ with 1 <4 <.
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Let P be the partially ordered set of all nonempty finite subsets of {1,...,r}. We set
Vi = Ny V; for I € P. By [5, Proposition 1.1.4.4], we have an equivalence

P
I(X,7) ~ %16%1"(1/1,9(*))

of Z-graded A-modules. Note that the right hand side is a finite limit indexed by P. Since
filtered colimits commute with finite limits, we obtain an equivalence

DX, ) a7 '] = Lim(T(Vy, Z (+))[a; '])

IeP v

of Z-graded Ala; ']-modules. By definition, we have an equivalence
L(Ve, Z (0))la; ] 2 T (Viugsy, F (%)

for any I € P. We consider a functor 6 : P — Mod 4,1 (Z) which assigns to I € P the
Z-graded Ala; '-module T'(Vyugy, Z (). Let P; be the subset of P consisting of finite
subsets of {1,...,7} which contain 4. Since the functor 4 is a right Kan extension of the
restriction to P;, we have an equivalence

. e T
}1€mp L(Viogy, Z (%)) ~ lim T'(V;, Z (x)).

JEP;

By [5, Proposition 1.1.4.4], we have an equivalence

% ~ i T
DV, P () = lim D(Vy, #(4).
Thus, we have an equivalence I'(V;,.Z (%)) ~ T'.(X, #)[a; '] of Z-graded A[a; ']-modules.
O

Especially, we can see that he functor T',(X, —) : QCoh(X) — Mod(Z) is fully faithful.

We have the adjunction (/3 : Mod4(Z) = QCoh(X) : I (X, —) of oco-categories. Since
the left adjoint (—) is a symmetric monoidal functor, the right adjoint I',(X, —) is a lax
symmetric monoidal functor. In particular, I'.(X,Ox) is a Z-graded E-ring and there
is a map

A—T,(X,0x)

of Z-graded E.-rings. For a quasi-coherent sheaf .# of Oyx-modules on X, T'\(X,.%#)
is a Z-graded T',(X, Ox)-module. We note that the Z-graded A-module structure on
[.(X,Z) is obtained from the Z-graded T',(X, Ox)-module structure through the map
A = T,(X,0x) of Z-graded E. -rings.



3. THE PROPERTIES OF QUASI—COHERENT SHEAVES ON SPECTRAL PROJECTIVE
SCHEMES

The definition of projective schemes by using quasi-coherent sheaves may be valuable
in the non-commutative geometry. For example, for a field k and finitely generated
commutative graded k-algebra which is generated by degree 1 elements, Artin and Zhan
shows that there is an categorical equivalence between the category of certain coherent
sheaves on projective scheme of A and the category of finite graded right A-modules.
Verevkin also studied injective objects and Ext-groups in the category of finite graded

A-modules.

Lemma 3.1. For M € Mod(Z), we have M ~ 0 if and only if (M) is Zariski locally
bounded above for any n € Z.

Proof. We take a set {a;}i_, C mo(A;) of generators of mo(A) as an N-graded commu-
tative ring over mo(Ap). Then there is an affine open covering {V;}/_; of X, where
V; = Spec (Afa; ']y). We have M ~ 0 if and only if ]Téf\v ~ 0 fori=1,...,r. Under
the equivalence QCoh(V;) ~ Mod 4,1, the restriction M|y, corresponds to an Ala; "o-
module M][a; ']y. Hence M ~ 0 if and only if Mla;')o =~ 0 for i = 1,...,r. This is
equivalent to the condition that 7, (M)[a;']o = 0 forany n € Z and i =1,...,r. O

Definition 3.2. We say that a Z-graded A-module M is locally bounded above in ho-
motopy groups if the Z-graded my(A)-module 7, (M) is locally bounded above for each
n € Z. We define Mod';™(Z) to be the full subcategory of Mod4(Z) spanned by those
objects that are locally bounded above in homotopy groups.

We have the adjunction (=) : Mod4(Z) = QCoh(X) : TW(X, —) of stable presentable
oo-categories, where the left adjoint (/—V) is symmetric monoidal and the right adjoint
I.(—) is lax symmetric monoidal and fully faithful. By Lemma 3.1, we have M ~ 0 if
and only if 7, (M) is locally bounded above for any n € Z.

Hence we obtain the following proposition.
Proposition 3.3. The functor (A—j : Mod4(Z) — QCoh(X) induces an equivalence
Mod4(Z)/Mod'y™(Z) — QCoh(X)

of stable symmetric monoidal presentable oco-categories. Here, W be the class of all mor-
phisms in Mod 4(Z) whose cofiber lies in Mod's™(Z) and the left hand side is the localiza-
tion with respect to the class W.
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3.1. The equivalence of Serre theorem. In this subsection, we give a short survey of
a generalization of Serre theorem as in [8]. Tt is given by restricting the equivalence in
Proposition 3.3 to "finitely generated part”. We prepare some notation for ”finiteness”.

Definition 3.4. Let A be a connective N-graded E..-ring.

(i) Let R be a connective Noetherian E-ring. Recall that an R-module M is almost
perfect if 7, (M) is a finitely generated mo(R)-module for any n € Z and if 7,(M) =0
for n < 0 [3, Proposition 7.2.4.17].

(ii) We let Mod%™(Z) be the smallest stable subcategory of Mod(Z) which contains
A(q) for all ¢ € Z and is closed under retracts. We say that a Z-graded A-module
M is perfect if it belongs to the full subcategory Mod%™ (Z).

(iti) The quasi-coherent sheaf M is almost perfect if a Z-graded A-module M is almost
finitely generated.

(iv) We say that a Z-graded A-module M is almost finitely generated if the following
conditions are satisfied: for each n € Z, the Z-graded my(A)-module 7, (M) is finitely
generated, and, for n < 0, m,(M) = 0. We define an oco-category Modzfg(Z) to be
the full subcategory of Mod4(Z) spanned by almost finitely generated Z-graded
A-modules.

(v) Let M be an almost finitely generated Z-graded A-module. We say that M is almost
torsion if the Z-graded m(A)-module 7, (M) is bounded above for each n € Z. We
define an co-category Mod%*(Z) to be the full subcategory of Mod™®(Z) spanned
by almost torsion Z-graded A-modules.

We give a characterization of M in Modifg(Z) satisfying M ~ 0 in terms of the Z-graded
7o(A)-modules 7,(M) for n € Z. By Lemma 3.1, we have M ~ 0 if and only if M is
almost torsion.

If we restrict the symmetric monoidal functor ﬁ : Moda(Z) — QCoh(X) to the
full oo-subcategory Mod*#(Z), it factors through QCoh(Proj (4))*f. By the above
argument, it also induces a symmetric monoidal exact functor

(:5 : NIOd‘jg(Z)/l\qodi‘tor(Z) N QCOh(X)aperf.

The Serre theorem describes the co-category QCoh(X)*f of almost perfect quasi-
coherent sheaves on X in terms of Z-graded A-modules. It requires that the above sym-
metric monoidal exact functor gives an equivalence of symmetric monoidal co-categories.
To see this, especially, we need the essentially surjectivity of this functor.

The key proposition is the following, which is proved by calculating the spectral se-
quence.

Proposition 3.5 ([8]). If .# € QCoh(X) is almost perfect, then we have



e the Z-graded my(A)-module 7,(T«(X,.F)) is strongly quasi-finitely generated for
each n € Z, and
o m,(I'(X,.7)) =0 forn<O0.

]
The oo-category QCoh(X)*e ! of almost perfect quasi-coherent sheaves on X can be
related with the co-category Mod:fg(Z) of almost finitely generated Z-graded A-modules.
Let f € m(A) be homogeneous of positive degree and let U = Spec (A[f™!]y) be an
affine open subscheme of X. The restriction M|y corresponds to the A[f~!]o-module
M{[f~Yo. We see that M[f~!]y is almost perfect since M is almost finitely generated.
Conversly, by Proposition 3.5, we obtain
e If # € QCoh(X) is almost perfect, then 7,.% is a coherent sheaf of Ox-modules
on X for any n € Z.
o 7 € QCoh(X) is almost perfect, then 7,F = 0 for n < 0.

By proceeding local argument, we have the following.

Theorem 3.6 ([8]). The functor (—v) : Moda(Z) — QCoh(X) induces an equivalence
Mod®&(Z)/Mod®°"(Z) —» QCoh(X)e!
of small stable symmetric monoidal oo-categories.
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