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Catalogue of modular relations for double zeta values 

Koji Tasaka 

1 Introduction 

School of Information Science皿 dTechnology 

Aichi Prefectural University 

1.1 Background. At the conference, based on my works, I overviewed the studies of modular rela-

tions of multiple zeta values 

1 
虚...,k心：＝区€艮 (k1,...,kd EN, kd 2'. 2). 

m k1 m kd 
O<m1＜・・・<md l d 

As us叫 atuple k = (k1,..., k心ofpositive integers is called an index and its weight and depth are 

defined by wt(k)＝柘十..・十如 anddep(k) = d, respectively. Roughly speaking, modular relations 

are (homogeneous) Q-linear relations区wt(k)=kaパ(k)= 0 of multiple zeta values of fixed weight k 

whose coefficients ak E Q are'originated'from modular forms on (a subgroup of) the full modular 

group r1 := SL2(Z). Several kinds of such relations, in particular, for double zeta values have been 

found up to now. It is our purpose to review these results and also succinctly outline potential avenues 

for future research projects. 

The existence of modular relations for double zeta values was initially noted by Zagier [42, 43]. It 

was observed that for each positive even integer k, the valuesく(l,k-1)，く(3,k-3),...,((k -3,3) 

andく(k)satisfy dime Mk（い） relationsover Q, where Mk(r1) denotes the C-vector space of modular 

forms of weight k on r1. Broadhurst and Kreimer [6] expanded upon Zagier's observation, extending it 

to higher depths, and then, Brown [8, 10] conducted further investigations, proposing more profound 

conjectural links between multiple zeta values and modular forms. These conjectures also hint at 

modular relations for higher depths, but still remain open. Some of the results in this direction 

(i.e. depth 2 3) can be found in [11, 13, 14, 18, 27, 31, 36, 38] (we do not intend to present these works 
in this note). 

A formulation of modular relations for double zeta values was first established by Gangl, Kaneko 

and Zagier [17]. It uses the space of even period polynomials, which by the theory of Eichler-Shimura 

is isomorphic to the space of modular forms on r1. The first example of their modular relations is 

simplified to the form 
5197 

28く(3,9) + 150く(5,7) + 168く(7,5) = ~((12). 
691 

(1.1) 

A key fact is that the above coefficients 28, 150, 168 are derived from the cusp form△(z) = qn立 1(1-

炉）24of weight 12 onい(later,we will describe how these coefficients are obtained). The significance 

of their result is as follows. In the purely algebraic setting (more precisely, using formal double zeta 

values), their modular relations in weight k not only capture all linear relations amongく(k)and 

く(odd;,1,odd;,3)'sof weight k, but also can be regarded as another characterization of even period 

polynomials (and modular forms of weight k). Due to these significant contributions to both multiple 

zeta values and modular forms, this study has received a substantial amount of interest and attention. 

1.2 Contents of this note. This note provides a catalog focusing on the actual computation of 

known modular relations, and it is not our purpose to give an overview of proofs (refer to the original 

paper for proofs). The contents of this note are as follows. 
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In §2, we begin with modular relations for double zeta valuesく(odd21, odd23) due to Gangle, 

Kaneko and Zagier [17] in 2006. The relation they obtained is depicted in the formal double zeta 

space, defined by double shuffle relations for double zeta values. We also mention Ma's result [30] in 

2016, where modular relations for double zeta valuesく(odd23,even22) were obtained. Every modular 

relation known so far has been formulated using period polynomials. We call such relations "period 

polynomial relations." 

In §3, a simpler formula for the above two modular relations coming from cusp forms (therefore, 

called a cuspidal relation in this note) due to Ma and the author in [31] will be given. Its natural 

lifting to double Eisenstein series obtained in [37] is also described. I believe these results are worth 

discussing in the subsequent section where generalizations of period polynomial relations for various 

kinds of double zeta values are presented. 

§4 collects all results on period polynomial relations known so far. Hirose [19] explored further 

analogues to modular relations for double zeta values, using shuffle regularized double zeta values, 

consequently yielding several novel results. Some of his results deal with period polynomials for 

congruence subgroups of level 2, while the double zeta values he uses are of level 1. There are several 

variations on the multiple zeta values of level N. Using one of them, Bachmann [3] derived a level 

2 analogue of the modular relations established by Gangl, Kaneko and Zagier. In contrast to Hirose, 

Bachmann only uses even period polynomials of level 1. For N 2 3, we will also review modular 

relations for double zeta values of level N recently developed by Kaneko-Tsumura [24] (N = 4) and 
Hirose [20] (N: general). 

It should be noted that there are several studies on the dual counterparts of modular relations, such 

as the Ihara-Takao relation, which are relatively easy (from experience) and even helpful to observe a 

correspondence with period polynomials (cf. [5, 19, 31, 36]). Due to limitations in space and time, this 

note does not delve into these results. 

1.3 Notations. Some standard notations we use are summarized below. Let N be the set of a positive 

integer. For N E  N, the principal congruence subgroup of level N is 

r(N) := { (: !) E r1 I (: !)三G~) modN} 

The following congruence subgroups of level N (i.e. a subgroup of r 1 which contains r(N)) will appear: 

r0(N) := { (: !) E r1 I (: !)三(~ :) mod N}, 

r1(N) := { (: !) E r1・（：!)三G~) modN}, 

where "*" means "unspecified." For such subgroup r c r1, we denote by Mk(r) and (resp. Sk(r)) 
the C-vector space of holomorphic modular (resp. cusp) forms of weight k on r. These are finite— 

dimensional vector spaces. For example, for k 2'. 2 even we have 

dime Mk(r1) = [ ~] -[ ~], 

and dimcS直 1)= dime島（几）ー 1.For the dimension formula, see e.g. [35] for N = 1 and [12] for 

N general. 
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2 Period polynomial relations for double zeta values 

2.1 Period polynomials. Let us recall the theory of period polynomials (cf. [17, §5]). 

For w 2'. 0 even, denote by Vw the IQ-vector space spanned by炉 yw-a(0 :S: a :S: w). For 

P(X, Y) E Vw, we write 

a b 
(Pl'Y)(X, Y) := P(aX + bY, cX + dY), い（） EPGL立），

C d 

where PGL2(Z) := GL心）／｛士J}.This action of PG L心） onVw is extended to an action of the group 

ring Z[PGL2(Z)] by linearity. As usual, we set 

s=(~ ~1),r=G D,U=TS=G —~1),E=(~ ~),6=(~1 ~) 

The space of period polynomials is then defined by 

Ww :={PE Vw I Pl(l + S) = Pl(l + U＋戸） ＝O}. 

The group PSL立）：＝い／｛土J}is generated by S and T and satisfies the relations炉＝い＝ I.

Since we have S = EO = OE and c:Uc: = U汽thespace Ww has the direct sum decomposition 

Ww=W；；；いWふ where Wば：＝｛PEWwI Pio＝士P}.

By linear algebra, for w ::>: 0 even, we have 

w+ 21 rw 
dim砂；；； ＝ [~] -[i] and dim<Q 叩＝ dim砂；；；— 1.

Note that the space W立ofeven period polynomials always contains the polynomial xw -yw and has 

the decomposition IQ)(Xw -Y門司W立，0,where W:か0={PE W;j; I P(X, 0) = O}. For example, when 

w = 10, the following polynomials are a basis of each space: 

xデ (X2_y叩EW露0, XY(X2 -Y叩(4X4-17X2戸＋ 4YりEW10・

We now relate the period polynomials with cusp forms. This is done by the Eichler-Shimura theory 

of periods of cusp forms (cf. [26]). For a cusp form f E Sk(r1), let 

乃(X,Y) := loo J(z)(X -Yzt-2dz = rr亙lk(-1)s-1じ＿ー:)A(!;s)xr-lys-1, 

where we set A(!; s) := Ji。;00f(z)z8-1dz. The values of A(!; s) at s = 1, 2,..., k -1 are called critical. 

Using the transformation formula (P_が）（X,Y)=f
戸 (ioo)
T―1(O) f(z)(X -Yz)k-2dz for IEい， oneeasily 

finds that Pf E Wk-2賓 (Cfor any f E S叫）， whichimplies that the critical values of f satisfy many 

(())-linear relations. The Eichler-Shimura theory tells us that the linear maps 

戸： S叫） → W乙匹C, f >------+ ~乃|（1 士 ,5) =: Pf(X, Y) 
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are injective. In particular, the map r― is an isomorphism due to the dimension formula: 

dimc品(r1)= dim<Q W,;_2, dime M:亭 1)= dim<Q W,;_2. 

Example 2.1. Let us illustrate the period polynomial of the discriminant function△(z) = q IT立 1(1-

q門24E S12(r1). We have seen that the set {X10 -Y10,Xデ (X2-Y叩｝ formsa basis of W品， SO

the polynomial Pt is a linear combination of them. For the explicit description, we use Manin's result 

[29] on the ratio of critical values (e.g. 噌笥忘＝—識） to get 

Pt(X,Y) =（り）A（△，3)｛嘉(XlO＿炉）＋X叩 (X2＿四｝ （2.1) 

Similarly, one can verify the identity 

P云(X,Y)＝ー(¥O)A（△；2)XY(X2-Y予(x4_竺炉沢＋ Y4). (2.2) ~x2y2 + y4) 

There are generalizations of the maps r土 formodular forms. What we need is to extend the period 

polynomials of cusp forms to the Eisenstein series, because every modular forms is a linear combination 

of the Eisenstein series and cusp forms. For one, see Zagier's extension [41, §2]. Another construction 

using 1-cocycles was given by Brown [8, §7]. 

Remark 2.2. We make a remark on a calculation of period polynomials. For w :;:> 0 even, let 

Vば：＝ ｛PE Vw I Pli5=土P}.

The defining equations of W:ばcanbe simplified to one equation in V,ば． Weonly recall the case W:は
(see [17, §5] for the details): 

W立＝｛PEv,;; I P(X, Y) -P(Y -X, Y) + P(Y -X,X) = O}. 

A straightforward computation shows that, for an even polynomial P E Vk"=-2, it lies in W:こifand 

only if the coefficients区r+s=k釘，8Xr-lys-l= p satisfy 

L ah,pCむ＝ 0 for all r, s 2'. 1 with r + s = k, 
h+p=k 
h,p::0:1 

where for positive integers r, s, p, we let 

Cむ： ＝ ％ ＋ （ ー 1 ) r (［ _ -] ） + （ -1 ) P -8 (： ーー ~ ) (2.3) 

and Dp,r is the Kronecker delta. Notably, it was pointed out in [5, Proposition 3.2] (see also [36, 

Proposition 3.4]) that the latter condition is reduced to "for all r, s 2'. 1 odd with r + s = k." To get 

a cuspidal polynomial P in w,;t-_2, i.e. an element in the image戸（ふ（い））， wefurther impose the 

relation 

区 (r-l)!(s -1)！入(r,s)ar,s = 0, 

r+s=k 
r,s2'.1:odd 

where fork 2 3, r, s 2 1 with r + s = k, we set f3(k) :=—恥， where Bk is the kth Bernoulli number, 
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and 

入(r,s):=ーや (1-（-1)8 (: ＿ -］) ＋ （-1)8 (K : 1)）-（-:t (： □ ~)(3 （j)(3 （k -j). (2.4) 

Indeed, for f E Sk（い）， thecoefficients ~r+s=k 佑，sxr-lys-I = Pf(X, Y) satisfy the above relation, 

which was first proved by Kohnen and Zagier [25, Theorem 9 (ii)] as a consequence of Haberland's 

formula for the Petersson inner product between the Eisenstein series and cusp forms. Here our 

入(k-s, s) coincides with ふ幻加―~, where入k,nis given in [25, Theorem 9]. 

2.2 Double shuffie relations. The double shuffle relation is a family of linear relations among 

multiple zeta values, resulting from two different representations of the product of two multiple zeta 

values. We will use the following simplest case, which is also known as a special case of the regularized 

double shuffle relation (cf. [21]). 

Proposition 2.3. For positive integers r, s 2'. 2, we have 

く(r,s)＋く(s,r)＋く(r+ s)＝此五:}((:= ~) +(：口］））く(h,p).

Moreover, if we setく(r,1) := 0 for r ~ 2, then the above relation also holds for r, s ~ 1, r + s ~ 3. 

Proof.We compute (（r)く(s)＝区m,.n>0m―r戸 intwo ways. Firstly, the left-hand side is obtained 

by decomposing N2 into three domains {(m,n) E N2 Im< n}, {(m,n) E N2 Im> n} and {(m,n) E 

N2 Im= n}. Secondly, using the partial fractional expansion 

mrnS = h二（砂([])n)P+ mh(~>n)P),
(2.5) 

h,p21 

and then, summing over m, n 2'. 1 on both sides, we get the right-hand side. The double shuffle relation 

for the case r 2'. 2 and s = 1 is the same as Euler's sum formulaく(r+ 1)＝区；＝2く(r+ 1 -p,p), 

which is well-known (from the theory of the regularized double shuffle relation, one may setく(r,1) to 

be―く(1,r)―く(r+ 1) for instance, but the obtained relation does not depend on the choice ofく(r,1) 
except for‘‘く(r,1) =(X)'’)．ロ

Modular relations for double zeta values become more significant when formulated in terms of the 

formal double zeta space, introduced by Gangl, Kaneko and Zagier [17]. For each k E N, the formal 

double zeta space Vk is defined to be the Q-vector space spanned by symbols Zk, Zr,s (r + s = k, r 2'. 
1, s 2'. 2) which are subject to the relations 

Zr , s + Zs , r + Zk ＝ 五（ （: = ~ ) + （： ー一］ ） ） 肱， p 

for all r, s〉 1with r + s = k. Hereafter, we use the convention that the condition "h + p = k" 

(resp. "r + s = k") includes "h, p 2> 1" (resp. "r, s 2> 1"). Since the above relations for the cases 
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rミSミ1are linearly independent, for each kミ3it follows that 

dim<QDk = [~]. 

By definition, there is the natural surjective linear map from Dk to the Q-vector space DZk spanned 

byく(k)and all double zeta values of weight k. This map is not injective in general when k is even; 

According to Zagier's dimension conjecture [42, 43] stating that 

？ 

di皿只ブk-dim!Q vzk ~ dime品（I'1) (k：：：：： 4), (2.6) 

we might expect that the kernel of the map Vk→V Z k is related to cusp forms on r 1. 

dim~:0 ： 2 1~4 1: : 8 2f 悶1 ~2: :] 
Let us elaborate on the conjecture (2.6) when k is even. It was shown in [17, Theorem 2] that every 

Zeven:,2,even:,2 of weight k is a (Q-linear combination of Zadd:,,,odd:,3'sand Zk, where Zeven:,2,even:,2 of 

weight k means Zr,s with r, s 2". 2 even and r + s = k. Counting these generators, together with the 

restricted sum formula explained in Example 2.5 below, we see that the set { Zk-s,s I 3：：：：：： 8 ：：：：：： kー 1: 

odd} forms a basis of'Dk. Therefore, the equality (2.6) would show that the valuesく(odd21,odd23)of 

weight k satisfy dime S以い） relationsover (Q. Notably, this was first pointed out by Zagier in [42]. 

We also mention the case k odd. In this case, the equality (2.6) implies that every linear relation 

of double zeta values is obtained from Proposition 2.3. We should have provided a clearer explanation, 

but an affirmative answer to this speculation is already indicated by Zagier in [44, Theorem 2]. 

2.3 Modular relation for even weight double zeta values. In [17], the modular relation for 

double zeta values is stated as a special type of relations in the formal double zeta space'Dk. 

Theorem 2.4. Let k > 4 even. For P E w,+ ,:-_2, define ar,s E IQ) (r, s 2". 1) by 

五じ＿ー『）ar,sxr-lys-l:= P(X + Y,X). 

Then, we have ar,s = as,r (r, s: even), ak-1,1 = 0 and 

3五糾s乙＝ぶいZrs+ （こ(-1Yars)五

Here we use the convention that the summation variables r, s are :;:, 1. 

Example 2.5. The special case P = xk-2 -yk-2 in Theorem 2.4 yields the relation 

3 L Zr,k-r = L Zr,k-r・ 
l<r<k-3 
r:odd 

2<r<k-2 
r:even 

By Euler's sum formula区:=『Zr,k-r= Zk for k 2: 3, the above relation is reduced to the "restricted 



106

sum formulas" 

こl<r<k-3 
r:odd 

1 
Zr,k-r = ~zk and 

4 こ2<r<k-2 
r:even 

3 
Zr,k-r = -;Zk, 

4 
(k ~ 4: even). 

Example 2.6. Taking P = 145110 x (―品(x10_ y10) + x2戸 (X2-y予）， whichby (2.1) is 

proportional to the period polynomial P,ふofthe cusp form△(z), in Theorem 2.4 gives 

22680Z1,11 + 13006Z3,9 -29145Z5,7 -35364Z7,5 + 22680Z9,3 

42965 _. .  _ _ _ (2.7) 
= 7560Z2,10 -2114Z4,s -—Z6,6 -2114Zs,4 + 7560Z10,2 -1382Z12, 

3 

Note that (1.1) can be derived from (2.7) under the correspondence Z >--+ (. To see this, we need to use 

the harmonic product formulaく(r,s)＋く(s,r)= ((r+s)ーく(r)((s)for r,s E Z:,:2 and Euler's formula 

く(2k)=-~知(2T)2k
2(2k)! for k E Z:,:1, which does not hold in D2k, where B2k is the 2kth Bernoulli 

number. Later, we will discuss a simplification of the right-hand side of (2.7), though this simplified 

relation cannot be true in the formal double zeta space. 

Theorem 2.4 says that the valuesく(k)andく(odd:,:1,odd:,:3)'s of weight k satisfy diillQ W;;_2 relations 

over Q. Hence the inequality dimQ Dk -dimQ VZk :;:> dime品（い） isvalid for any k :;:> 4 even. This 

gives an affirmative answer to (2.6), because proving 0:::: (i.e. linear independence of multiple zeta values) 

is a hard problem at present. 

It is worth mentioning that the original statement in [17, Theorem 3] includes the opposite impli-

cation that provides another characterization of even period polynomials via regularized double shuffle 

relations of double zeta values. 

2.4 Modular relation for odd weight double zeta values. In [44, Theorem 3], for each odd 

integer k 2 5, Zagier showed that the valuesく(odd21, even22)'s of weight k satisfy [(k-5)/6] relations 

over Q. Since [(k -5)/6] = dime Sk-1(r1) + dime Sk+1（い） fork 2 5 odd, they are expected to be 

related to cusp forms in two ways. This expectation was revealed by Ma [30, Theorems 1 and 2]. 

Theorem 2.7. Let k 2 12 even. 

(i) For PE  W,;_2, let 

と（口）加xr-lys-1:= P(X + Y, y)一訂(X+Y,X). 

r+s=k 

Then we have b1,k-1 = bk-1,1 = 0 and 

(ii) For P E Wi;_2, let 

区 br,sZr,s+l三 0 mod (Q)Zk+l・

r+s=k 
r,s:odd 

と (K-3)g,sXr-1YS-1:＝ 1-x-P(X + Y,Y) 一 ¾P(X + Y,X). 
r -1 /.''0 dX'.''dY  

r+s=k-1 
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Then we have c1,k-2 = Ck-3,2 = 0 and 

区 Cr,sZr,s三 0 mod QZk-1・ 
r+s=k-1 
r:odd 

Notice that taking P = xk-2_yk-2 E W,;_2 in Theorem 2.7 (ii), we get cr,s = 0 for all r+s = k-1, 

so only the subspace w:..'.~ provides non-trivial relations. 
Example 2.8. The special case P = X平 (X2_y叩 EW岱 inTheorem 2.7 (ii) and the special case 

P=XY(X2-Y叩(4X4-17X2戸＋ 4戸） EW五inTheorem 2. 7 (i) give 

3 
14Z3,s + 10Z5,6 -21Z1,4 = -~Zn, 

3 
12Z3,10 + 14Z5,s -5Z1,6 -l8Z9,4 = -~Z13, 

、
1
,

、
1
,

8

9

 

．

．

 

2

2

 

(‘,＇`
‘ 

respectively. Herc the coefficients of Zr,s's in the above relations are normalized so that they are 

coprirne integers. 

As a consequence of Theorem 2.7, we see that double zeta valuesく(odd;:,:3,even;:,:4)of weight k and 

く(k)satisfy dime Sk+1(r1) relations (resp. dime Sい（几） relations),whose coefficients are obtained 

from odd period polynomials (resp.'derivative'of even period polynomials). Since two relations ob-

tained from Theorem 2.7 (i) and (ii) are independent, for each k 2: 5 odd, one has 

k-3 
dim郊 (k)，く(odd;:,:3,even;:,:4) of weight k〉Qこ 2 -dimcSい（r1)ー dimeSい（r1).

三
11 13 15 17 19 21 23 25 27 

4 5 6 7 8 9 10 11 12 

101111121  

010111112  

Using the motivic set-up, Li and Liu [28] proved that Theorem 2.7 provides all (Q)-linear relations 

among Zk and Z。dd:,3,even:,2'sof weight kミ5odd. 

Problem 2.9. Can we characterize odd period polynomials by regularized double shuffie relations? For 

example, do the relation in Dk+l of the form区r+s=k加名，s+l三 0mod (Q)Zk+l with b1,k-l = bk-1,1 
r,s:odd 

characterize all odd period polynomial of degree k -2? 

3 Cuspidal relations for double zeta values 

3.1 Cuspidal part of modular relations. Recall that the coefficient of the single zeta value in the 

relation of both Theorem 2.4 and Theorem 2.7 under the correspondence Z→(is computable from 

their results (see the discussion in Example 2.6). A simple formula for the coefficient was given in 

[31] when the corresponding period polynomial is cuspidal. Surprisingly, this is done by just replacing 

double zeta valuesく(r,s) with Yamamoto's ½-interpolated double zeta values (½ (r, s)：＝く(r,s) + 

杯(r+s)(see [39]). 
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Theorem 3.1. For a cusp form f ES以い）， definenumbers ar,s, br,s, Cr,s by 

区
k-2 

r-1 
at,sxr-1戸：＝ Pt(X+ Y,X), 

ミ＝：~;ー］見Xr-1Ys-1 =P]（X+Y,Y)-t町(X+ Y, X), 

r十苔＿1（口）出xr-lys-1:= -fxPt(X + Y, y)一土巧(X+ Y,X) 

Then we have at,s = a{r (r, s: even), aL1,1 = 0, b{,k-l = bL1,1 = 0, c{,k_2 = cL3,2 = 0 and 

区 a!,s(½ (r, s) = 0, 区叱（い，s+ 1) = 0, 区 c!,5(½ (r, s) = 0. 
r+s=k 
r,s:odd 

r+s=k 
r,s:odd 

r+s=k-1 
r:odd 

Kohnen and Zagier [25] showed that there is a basis of the space of cusp forms such that their 

critical values (at the same parity) are rational numbers. Hence the above relations can be over IQ. 

Example 3.2. Taking /＝△（z) in Theorem 3.1 and then multiplying by certain constants, we get the 

identities 

0 =22680く½(1, 11) + 13006<½ (3, 9) -29145くら(5,7) -35364<合(7,5) + 22680く ½(9,3), (3.1) 

0 =14び(3,8)+ 10ぴ(5,6) -21(½ (7, 4), 

0 =12(½ (3, 10) + 14ぴ(5,8)-5<合(7,6)-18ぴ(9,4), 

where the last two identities are equivalent to (2.8) and (2.9) (and hold in the formal double zeta space, 

replacing (with Z), but the first identity needs an extra work to get (2.7) (and does not hold in V12). 
As another example, using the unique cusp form f = q + 216q2 -3348砂＋・・・ E S15(r1), we can get 

0 =1081080山1,15) + 842358叶(3,13) -275295(½ (5, 11) -1400182<½ (7, 9) 

-1360395(½ (9, 7) -351252(½ (11, 5) + 1081080(½ (13, 3), 

0 =22(½ (3, 12) + 30く桑(5,10) + 7(½ (7, 8) -20(½ (9, 6) -33(½ (11, 4), 

0 =156(½ (3, 14) + 242く½(5, 12) + 153(½ (7, 10) -56(½ (9, 8) -215(½ (11, 6) -234く!;(13, 4). 

Remark 3.3. Our proof of the first identity in Theorem 3.1 relies heavily on the theory of motivic 

multiple zeta values developed by Brown [7] (see [31] for the details). As a byproduct of our proof, 

we found the coincidence between a rational solution to the double shuffle equation of depth 2 due 

to Gangl, Kaneko and Zagier [17] and the coefficients入(r,s) defined in (2.4) in the extra relation of 

critical values of a cusp form due to Kohnen and Zagier [25]. More precisely, for r, s 2'. 1, r + s = k 

even, let 
f3(k) 

f3(r,s) := f3(r)f3(s) -—入(r, s). 
2 

Then f3 coincides with the Bernoulli realization of Vk given in [17], which is one of solutions to the 

double shuffle equation of depth 2. Namely, f3(r, s) + f3(s, r) + f3(k)＝区h+p=k(（仁｝） ＋ （仁｝）） f3(h,p)

holds for any r, s ~ 1, r + s = k ~ 3. Note that other solutions to the double shuffle equation of depth 

2 were found by Brown [9] and by Ma and the author [31]. These solutions are unique up to solutions 
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to the linearized double shuffie equation modulo product of depth 2. 

3.2 Double Eisenstein series interpretation. The concept of multiple Eisenstein series was first 

introduced by Gangl, Kaneko and Zagier [17]. It is a holomorphic function on the upper half-plane 

having the Fourier expansion whose constant term is a multiple zeta value. Since the space spanned by 

multiple Eisenstein series contains the space of modular forms on r1 (cf. [17, Theorem 5]), expressing 
modular forms in terms of linear combinations of multiple Eisenstein series and then comparing the 

q-expansions, we get linear relations of multiple zeta values. This machinery gives a naive exposition 

why modular forms yield linear relations of multiple zeta values. The purpose of this section is to 

understand Theorem 2.4 (or rather, Theorem 3.1) from this viewpoint. 

For k1,..., kd-1 E Z:,:2 and知 EZ:,:3 (for convergence) and z in the complex upper half-plane, the 

multiple Eisenstein series G知．．，kd(z) is defined by 

G柘，…，ka(z):= L 
入~l... A ~d' 

0--<ふぺ…ぺ心 1 
入，EZz+Z

where a lattice point入＝ Cz+ m E Zz + Z on the complex plain is said to be positive (denoted by 

〇ぺ入） ifeither C > 0 or C = 0 and m > 0 holds. Then, for化z+ m1,iらz+ m2 E Zz + Z, we define 

the order C1z + m1 -< C匹十 m2if O -< (£2 -C1)z + (m2 -m1). The case r = 1 and k1 2: 4 even is 

the classical Eisenstein series Gk, (z), which is modular. By definition, the multiple Eisenstein series 

satisfies the harmonic product formula (e.g., Gr(z)G8(z) = Gr,s(z)+Gs,r(z)+Gr+s(z) for r,s E Z;:,3). 

Let us illustrate the Fourier expansion. Using the Lipschitz formula 

(-2m)K L( z+m)-k= ~ L砂 1炉 (k2: 2) 
(k -1)! 

mEZ''n>O  

with q := e2"iz, one can compute the Fourier expansion ofら (z)for k 2: 3 as follows. 

伍 (z)＝区一mk ＋区 (Cz + m)k 
[＝0 l>O 
m>O mEZ 

＝く(k)+ 
(-21ri)k 
(K-1）！とい(n)q八

n>O 

whereびk-1(n)＝区dindk-l is the divisor function. Similarly, in [17], they computed the Fourier 

expansion of double Eisenstein series Gr,s(z) for r 2': 2, s 2': 3: 

Gr,s(z)＝く(r,s) + ((r)g8(z) + 9r,s(z) 

＋と（（ー1)r(P-1 + （-1)p-s P-1 

h+p=r+s 
r -1) （s-1))く(p)肌 (z), (3.2) 

p:2min{r,s} 

where for positive integers k1,..., kd, we define the holomorphic function 9k,,...,kd (z) on the upper 

half-plane by 

(-21ri)柘＋・・・十kd
9kぃ，kd(z):= ~ー1）！ 区 碕1-1.．.nが―lq伍＋・十£四d,

0<£1<…＜ね
れ,,..,,nd>O
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It should be noted here that the above formula (3.2) is deeply related to even period polyno— 

mials, pointed out by Kaneko in [22]. Indeed, recalling (2.3), we get Gr,s(z)＝く(r,s) + gr,s(z) + 

区h+p=r+s⑫,s((p)勁 (z).More significantly, the Fourier expansion h z). More significantly, the Fourier expansion has an intimate connection with 

the Goncharov coproduct on the space of formal iterated integrals (see [4]). 

The concept of a'regularization'cam be applied to multiple Eisenstein series. The above formulas 

for the Fourier expansion converge rapidly and give holomorphic functions of z for all k1,..., kd 2 2, 
to which the definition of G柘，…，kd(z) can be slightly extended (we can ensure that they still satisfy 

the harmonic product formula). Moreover, there are extensions of G柘，…，kd(z) to all positive integers 

k1,...，如 whilepreserving certain families of relations: the shuffle product formulas [4] and the har-

monic product formulas [2]. In this section, we use the one given by Gangl, Kaneko and Zagier [17, 

§7], which satisfies regularized double shuffie relations for all r, s 2 1 with r + s 2 3. 
For r, s 2 1, set 

奇，s(z):= 21ri(8s,2g;(z)一ふ，1g;_1(z) +ふ，1(g;_1(z)+ 9s(z)))＋ふ，1ふ，1g2(z),

where g；；に） ：＝ユ合翌"..:':.:_Z:e,n>O/!,砧杓 (k~ 0), and define 

1 
G~'予 (z) ：＝〈（r, S) ＋ ＜（r)9s(z) ＋ gr,s(z) ＋ -er,s(z) 

2 

＋と ((-1)r(：□[) + （-1)p s(：口］））く(p)肌 (z)
h+p=r+s 

withく(r,1):= -((r+l)ーく(1,r)for r :C:: 2 andく(1):= 0. Then, for any r, s :C:: 1 with r+s = k :C:: 3, we 

have G謬(z)+ G界（z)+伍(z)＝冗h+p=k(（ご）＋ （仁i))心 (z).Moreover, from (3.2), it follows 

that G謬(z)= Gr,s(z) for r, s :C:: 2. Using this, we let 

for r, s :;:> 1 with r + s :;:> 3. 

1 1 
G知(q):= G万(q)+ ~Gr+s(q) 

2 

To understand the cuspidal relations, we observe two facts: The set { G和(z)I r+s = k,r,s: odd} 
forms a basis of the <C-vector space spanned by伍 (z)and G梵f(z)of weight k: Every cusp form can 

be uniquely written as a <C-linear combination of this basis. Giving an explicit formula for such a 

combination, we can recover the cuspidal relations for く~(odd, odd)'s. 

Theorem 3.4. [37, Theorem 1] For a normalized Hecke eigenform f E Sk(r1), let a?,8 be as in 

Theorem 3.1. Then we have 

(2吋）K
区叱cfr,s(z)= ~A(!; l)f(z). 

4(k -2)! 
r+s=k 

r,s~l:odd 

Example 3.5. After multiplication by a constant (recall that the ratio A（△； s)/A（△； s') of critical values 

is rational ifs= s'mod 2), we get 

(2而）12

680 
△(z) = 22680G釦(z)-35364G和(z)-29145Gg,7(z) 

+ 13006G知(z)+ 22680G恥(z),

(3.3) 
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whose constant term yields the cuspidal relation (3.1). As another example, let f = q + 216q2 -
3348砂十•.． be the unique normalized Hecke eigenform in 815（几）． Thenwe have 

(27ri)16 

322560 
f (z) = 1081080G『,15(z)+ 842358噂，dz)-275295G恥 (z)-1400182Gむ(z)

-1360395G和(z)-351252G『1,5(z)+ 1081080Gl3,3(z). 

The proof of Theorem 3.4 is done by combining Theorem 2.4, Kohnen-Zagier's extra relations of 

critical values [25] and Popa's decomposition formulas [33] for Hecke eigenforms in terms of two product 

of the Eisenstein series. The reason why Theorem 3.4 holds only for cuspidal Hecke eigenforms is that 

Popa's formula is so. In contrast, for odd weight, since Ma's relation (Theorem 2.7) holds in the formal 

double zeta space, we can obtain 

こ砧G},S+1(z)＝0，と出c!,s(z)= 0, 
r+s=k 
r,s:odd 

r+s=k-1 
r:odd 

where, for a cusp form f of weight k, the above coefficients bf,s and cf,s are given in Theorem 3.1. 

4 Generalizations of period polynomial relations for double 

zeta values 

4.1 Period polynomial relations for shuffle regularized double zeta values. For a, b, c E Z砂

Hirose [19] studied the shuffle regularized double zeta value 

J(a;b,c) := Idch(O叫l,Ob,1,0り

= (-1)° ¥予oae; i)（了）く(b+ i + l, c + j + l), (4.1) 

where we mean oa =~'...,~and Ictch(a1,..., ak) is an iterated integral of /¥J=1五（ち） withwo(t) = 
ヽ

dt/t, w1(t) = dt/(1-t), along the straight line path dch from the tangential basepoints 01 to l'. Note 

that J(O; r -1, s -1) = ((r, s). 

A key observation is that the modular relation (1.1) is in this setting written as follows: 

28J(O; 2, 8) + 150J(O; 4, 6) + 168J(O; 6, 4) = 
5197 

691 
く(12).

Analogous to this, Q-linear relations, for example, among J(even; 0, even)'s, among J(odd; 1, odd)'s, 

among J(even; even, O)'s and so on, are studied. Some of them are given as follows. 

Theorem 4.1. [19, Theorem 18; (1.5), (1.6), (1.7), (1.9)] For w::::, 2 even, we have 

(i)L Pa,b炉 ybE w,;;-,rA⇒ L a!b! Pa,bJ(a; b, 0) = 0, 
a+b=w a+b=w 

(ii)L Pa,b炉 YbEW；；； ⇒ 区 alb!Pa,bJ(a; b, 0)三 0,
a+b=w a+b=w 
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(iii)L Pa,b炉 YbEW；；； =C? L a!b! qa,bJ(a; 0, b)三 0,

a+b=w a+b=w 
a,b:even 

(iv) L Pa,b炉 YbE Wむー ⇒ L a!b! qa,bJ(a; l, b) = 0. 
a+b=w a+b=w 

a,b:odd 

Here the convention we used is as follows. The summation variables a, b are integers:;:, 0. The number 

qa,b on the right are defined by冗a+b=wqa,bXデ：＝ P(X+ Y,X) for PE  Vw. Th e congruence is 

modulo the single zeta valueく(k). The space w,;;―,r A is the (()!-vector space of odd period polynomials 

corresponding to modular forms of weight w+2 on the congruence subgroup r A = r(2) uur(2)LJU2r(2) 

of level 2: 

w,;;-,rA :={PE v;;;;|Pl(l + u＋ぴ） ＝Pl(s+su +s戸） ＝O}. 

An important point to note here is that Hirose's original results provide the opposite implication 

（{c=), replacing Idch with the motivic iterated integrals I叫 Namely,for example, in the motivic setting, 

the relations obtained from Theorem 4.1 (i) generate all (()!-linear relations among J(odd:::1; odd:::1, O)'s 

of weight k moduloぶ(k).One missing thing in his results is the explicit formula for the coefficient 

of ((k). In view of this situation, we provide these coefficients in the following examples (which can 

be computed by combining known linear relations of multiple zeta values). 

Example 4.2. Let us illustrate a few examples ofrelations in Theorem 4.1 (i). Bases of W'.；；ー2,rAfork= 

6, 8, 10 are given by W:― 4,rA =QXY(X2＿戸）， W―6,rA = 0, w;― =QXY(X6-2X4戸＋2炉 y4_yり．
8,rA 

Non-trivial corresponding relations are 

J(l; 3, 0) -J(3; 1, 0)＝告(6),

29 
7 J(l; 7, 0) -2J(3; 5, 0) + 2J(5; 3, 0) -7 J(7; 1, 0) =―く(10).

2 

Moreover, substituting (4.1) into the above relations, we obtain 

1 1 
-（（6) ＝く(2,4)+ 2く(3,3)+2く(4,2), 
6 

29 
ー ((10)=7く(2,8)+ 14く(3,7) + 19く(4,6)+ 20く(5,5) + 17く(6,4)+ 14く(7,3) + 14く(8,2). 
2 

Example 4.3. Using (4.1), we can recast Theorem 4.1 (ii) as follows. For PE W,t_2, let ar,s be as in 

Theorem 2.4. Then we have 

L ar,sく（r,s)三 Omod(Q)く(k).
r+s=k 

For example, we have 

6248 
く(12)= 14く(3,9)+42く(4,8)+ 75く(5,7) + 95く(6,6)+84く(7,5)+42く(8,4), 

691 
185656 

3617 
く(16)= 66く(3,13) + 198く(4,12) + 375く(5,11) + 555く(6,10) + 686く(7,9)

+728く(8,8) + 675((9, 7) + 555〈(10,6) + 396((11, 5) + 198く(12,4). 
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Example 4.4. Taking P = X2戸 (X2-y2)3 E W贔inTheorem 4.1 (iii), we get 

14J(2; 0, 8) + 75J(4; 0, 6) + 84J(6; 0, 4) = 
59246 

691 
く(12).

Also, the special c邸 eP=XY(X2-Y叩(4X4-17X2戸＋4YりEW五inTheorem 4.1 (iv) gives 

48J(l; 1, 9) + 119J(3; 1, 7) + 10J(5; 1, 5) -144J(7; 1, 3) = 640く(13).

Problem 4.5. Find explicit formulas for the coefficients ofく(k)in Theorem 4.1. 

Problem 4.6. A冗 therecorresponding relations to Theorem 4.1 in the formal double zeta space? 

4.2 Period polynomial relations for double zeta values of level 2. For positive integers r ~ 

1, s ~ 2, Bachmann [3] studied the double zeta value 

如，s)：＝区 1 

(m+n)rns' 
O<m<n 

the special case of Apostol-Vu double zeta values or Witten zeta functions for,so(5). Note that the 

value ((r, s) is written in terms of double zeta values of level 2. For example, one has ((r, s) = 

2s-l(Li(\~l) ＋く(r, s))―く(r,s)ーく(r+ s) (see [3, (4.6)]), where we set 

m1_m2 

叫凜） ：＝区 zlkl z2松'

0く加<m2mi叫

Using a q-analogue of ((r, s) which can be viewed as a holomorphic function on the complex 

upper half-plane, Bachmann showed a similar result to Theorem 3.4, i.e., explicit formulas for Hecke 

eigenforms onい[3,Theorem 1.1] (in contrast to Theorem 3.4, his formula does not give an expression 

in terms of a basis). As a corollary, one can obtain IQl-linear relations of ((r, s)'s from even period 

polynomials. 

Theorem 4.7. For P E W  {_2, let ar,s be as in Theorem 2.4. Then we have 

区 ar,s((r, s) = 0 mod改 (k).
r+s=k 

Note that the resulting formula in Theorem 4.7 is similar to, but essentially different from Example 

4.3 (Theorem 4.1 (ii)). 

Example 4.8. Taking P = xk-2 -yk-2, we get 

こ((r,S)＝ 2k1-1く(k).
r+s=k 
s>2 

The corresponding relations to X平 (X2_y叩 EW駅 andXデ (X2_y叩(2X4-X平＋2YりE
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W立0are 

1639 

28.691 
58703 

212.3617 

く(12)= 14((3, 9) + 42((4, 8) + 75((5, 7) + 95く(6,6)+84く(7,5)+42く(8,4), 

く(16)= 66((3, 13) + 198((4, 12) + 375((5, 11) + 555((6, 10) + 686((7, 9) 

+ 728((8, 8) + 675く(9,7) + 555((10, 6) + 396((11, 5) + 198((12, 4). 

For the explicit formulas for the coefficients ofく(k)in the above relations, see [3]. 

(4.2) 

If P E W亡~'then we have a1,k-I = a2,k-2 = ak-3,3 = ak-2,2 = ak-1,I = 0. Therefore, Theorem 
+,a 4.7 for the case P E w,:-_,_~ gives a Q-linear relation amongく(k)and ((r,s) (r ~ 3,s ~ 4) of weight 

k. On the other hand, we can observe that every Q-linear relation among them does not come from 

Theorem 4.7, so the situation is different from the casesく(odd::,1,odd::,a) andく(odd::,3,even::,4). Here 

is the list of the numerical dimension of the Q-vector space spanned by ((k) and ((r, s) (r ~ 3, s ~ 4) 
of weight k. 

i o：三：]：：rs| ］ ［゜ 1：1:4 り~：
4.3 Conjectural period polynomial relations for double T-values. For positive integers k1,..., kふ

Kaneko and Tsumura [24] introduced the multiple T'-value T'(k1,...，如） definedby 

訊，．．．，如）：＝ 2d L 
0＜加く・・・＜叫

mj三jmod 2 
j=l,2,...,d 

叫—d

(-1) 2 

k1.．． Kd. m 1 m d 

Similarly to multiple zeta values, the multiple T-value has an iterated integral expression with the 

integrands 2dt/(1十柱） anddt/t (cf. [24, Proposition 2.1]). Thus, the Q-vector space spanned by 

all multiple T-values forms a (Qi-algebra with the product given by the shuffie product. The integral 

representation also leads to an expression in terms of multiple zeta values of level 4. For example, we 

have 

T(r, s) =-Li(;:~)+ Li(―;,';i) + Li(;い)-Li(1;~i).

Before going to a modular relation for double T'-values found by Kaneko and Tsumura, let us 

observe the numerical dimension of the (())-vector space spanned by all double T'-values of weight k. Set 

元：＝〈T(k-s, s) I 1 ::; s::; k -l〉・
Q 

i o:1:5二ご゚rSI [ ］ ］ ： ［ 五： 日1i ]ら ~9: ［ 紐
From this and further data, for k 2 2, we may expect that 

dimQ'Dい {k-1-[~] 
k-1 

k: even, 

k: odd. 
(4.3) 
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Note that the term k -l is the number of generators of the space V元， andthat for k 2'. 2 even, we 

have 

[~] =dimS叫 (4))-dimS叩 (2)).

This implies that the values T(r,s) of weight k will satisfy dimSk(r0(4)) -dim品(r0(2))relations 

over Q. 

To describe such relations, for each even integer w 2". 2 and 1 :c; j :c; w/2, define the polynomial 

図，j(X,Y) EV,ばby

4W-2j+1 1 
ぶ (X,Y) := ~ Bw,w+2-2j (Y/ 4, X) -~ Bw,2j (X, Y) 

w + 2 -2 ]2 j  

(w + 2)B2jBw+2-2j (1 -2-2j xw 1 -2-w-2+2j yw 

_ 2j(W+2-2j)Bw+2 (1-2-W-2丁― l-2-W-2詞），
where we set 

叫 (X,Y)：＝と『）xn-Jyw-n+j.

0<j<n J 
J:even 

Note thatぶ (X,Y) is obtained from戸 (Rro(4),w,2j-1)(1 :S: j :S: w/2) which appear in the context 

of "rational periods of cusp forms on fo(N)" studied bど麟uharaand Yang [15, Theorem 1.1]. Let 

Wふdenotethe Q-vector subspace of V,;; spanned by Sw,j(X, Y) (1 :S: j :S: w/2). For w 2". 2 even, it 

was shown in [16, Corollary 1.9] that 

w 
dim<QWふ＝dimeSw+2(I'o(4)) = ~ -1. 

2 

Conjecture 4.9. [24, Conjecture 2.12, 1)] Let k 2". 6 even. For P E W,;_2,4, let Q(X, Y) = P(X + 

Y, -2X + 2Y) and set Q+ = ½Ql(l + 8) Ev,;五． Thenwe have that 

dimぷQ+IP E wt-2,4沿こ dimc品(r。(4))-dime S叫‘o(2)).

Moreover, define dr,s E Q by 

Then we have that 

こ (K-2)dr,sxr-lys-1:= Q+(x + Y,X). 
r -1 

r+s=k 

区 dr互(r,s)r o. 
r+s=k 

Conjecture 2.12 in [24] includes other kinds of modular relations of level 2, but we only focus on 

the above case. 

Example 4.10. For the case 

1 1 和 (X,Y) = -~X4 十一炉Y2 _ ＿ 1 

2.  2 32 
Y4EW贔

we have Q+(x, Y) = X4 -lOX平 ＋Y4.This leads to th ・e conjectural relation of the form 

24T(l, 5) + 12f(2, 4) + 2T(3, 3) -3T(4, 2) -3T(5, 1) = o. 
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Remark 4.11. To prove the upper bound of the dimension conjecture (4.3), Brown's method using the 

theory of motivic multiple zeta _values (cf. [7]) would be applicable. L四ussketch an outline without 

going into details. Denote by和 (r,s) the motivic version of double T-values. An advantage of the 

use of the motivic version is the fact that for ~ =区a柘，k2和 (k1,k2), the Q-linear combination~ is a 

constant multiple of the single zeta value (m(k) (or rather, the kth power of the motivic 2rri) if and 

only if K(~) = 0, where K(x) ：＝△(x)-1 幻— x ⑭ 1 is the reduced Goncharov coproduct△.Here the 

Goncharov coproduct can be computed explicitly using formal iterated integrals; for our case, we have 

X（戸（k1,k2))= T囁1)R濡(k叫

+ l1+l互十k2{ （一 1)柘ば―_~)Ta(li) &Jば(l叫＋ （ーl)h-k2ば―_］）戸(Ii)＠戸(Z2)},

where雰 and戸 aremotivic lifts of the values紐(k)＝討孔2k-l_ l)く(k)and T(k) = 2(1-2-k)((k). 

Here ~y T(land和 wedenote戸 and戸 modulothe motivic 2が， respectively.We h~ve T(l(2!) = 0 

and f(l（2r -1) = 0 for any r ~ 1. Since the terms T(l(h) R燐(12)(Ii : odd) and f(l（h) R f町ら）

(Ii : even) are linearly independent over Q, every left annihilator (ak,,k2) of the (k-1) x (k + k/2-4) 
matrix ck := [q : C<] gives rise to the relation ~%，辰戸(k1,k2) 三 0, where the entries of the 

matrices ck and er are obtained from the coefficients of T(l（h) R燐(12)and f(l（h) R f町l叫in

区（仔(k1，朽））， respectively.More precisely, Ck is the (k -1) x (k -3) matrix given by 

C£ := (oi.ぃ＋ （ー1)K1バ―-］））閃均：：：：只雰'

and C< is the (k -1) x (k/2 -1) matrix defined by 

c〖:＝（（-l)li-k2 仇―_~)） 柘十k2=k,K之1
Ii +l2=k,l;2:2:even 

where the rows and columns are indexed by (k1, k2) and (li, b). For example, we have 

-1 -1 -1 -1 -1 

-l -l -l 2 2 3 4 5 

C• (-~1 1), c~ = 

2 2 3 

゜゚
-3 -6 -10 

゜゚
-3 , c~ = 

゜゚
2 4 10 

゜゚
2 

゜゚ ゜゚
-5 

゜゚ ゜ ゜゚ ゜゚
2 

゜゚ ゜゚ ゜and 

゜゚ ゜゜゚ ゜゚
1 

Cい([)， C;’= ゜
1 

゜゚
-5 

゜
-3 'Cf= 

゜
1 10 

1 3 

゜
-3 -10 

-1 -1 1 3 5 
-1 -1 -1 

For k ~ 4 even, we observed the dimension of the IQ-vector space ker Ck of left annihilators of the 
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matrix Ck and it is expected to be 

dim<QkerCk二[? I k-2 
~] + 1 = dimSk(r0(4)) -dimS亭 o(2))+ 1. 

Note that, according to (4.3), the above expectation would also imply ((k) EV元， butthis is already 

known from the weighted sum formula 

旦少一］一呼(j+ 1, k -1 -j) + T(k -1, 1) = (k -l)T(k). 

See the end of §2.5 in [24]. With tedious calculation, it might be possible to prove that for dr,s in 

Conjecture 4.9, its vector (dr,s) becomes a left annihilator of Ck. 

Problem 4.12. Prove (4.3). 

Problem 4.13. Mimicking the story of cuspidal relations, we consider double Eisenstein series 

=2-2 

尻 (z):= 22 L (-1) 2 

(4い＋叫）r(4/!,坪＋匹）s.
0-<4£1z+m、1-<4らz+m2
m,==i mod 2, £,,m,EZ 

Its constant term !!f the Fourier expansion coincides with和，s). We might exp!ct that there are 

regularizations of Hr,s(z) for r, s 2: 1 such that the linear combination ~r+s=k心Hr,s(z), where dr,s 

is defined in Conjecture 4,9, is a cusp form on r0(4). If so, chamcterize the subspace spanned by 

such cusp forms. Note that we may apply some results of Yuan and Zhao [40} to the regularization of 

凡，s(z)(see also /23} for N = 2). 

4.4 Period polynomial relations for colored double zeta values. For N E N, let μN be the set 

of all Nth roots of unity. For a1,..., ad E Z/NZ and k1,..., kd EN with (kd, ad)=I= （1, 1), we define 

the colored multiple zeta valueく（悶：：：：：悶） relativeto μN by 

2~, 
where we let T/N = eN. 

d a,m 3 3 

心：悶）：＝ L II血，
O<m,<… く叩 j=l '"j m. 3 

Recently, for each N E N, Hirose [20] obtained modular relations for colored double zeta values 

relative to μN. His result is about a correspondence between relations in the formal "colored" double 

zeta space and period polynomials for a congruence subgroup due to Pa§ol and Popa [32], which 

generalizes Theorem 2.4. 

Firstly, let us define the formal colored double zeta space. For N 2'. 1 and k 2'. 2, let A(N) = 
{(a,b) E (Z/NZ)2 I (a,b,N) = 1} and define the Q-vector space 

四 N:=〈Zg,z砂，PばIr+s = k, r, s 2'. 1, c E Z/NZ, (a, b) E A(N)〉Q

spanned by symbols Zk, Z砂，P叶satisfyingthe regul紅 izeddouble shuffle relations 

Pば＝ Zげ＋zt::+z戸＝区
h+p=k 

（（［＿ー］）盆―;a,a+ e =］）勾―;b,b)
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for (a,b) E A(N) and r,sミ1with r + s = k. The above relations are well-defined, because, for 

(a, b) E A(N), the pairs (b -a, a) and (a -b, b) are also in A(N). In a similar manner to Proposition 

2.3, we can show that colored double zeta values satisfy the same relations above (cf. [1, 34]). Hence, 

there is the natural surjection Dk,N→DZk,N, where DZk,N is the IQ-vector space spanned by all 

colored multiple zeta values relative to μN of weight k and depth :::; 2. For latter purpose, denote by 

巧囚 thesubspace of Dぃrgenerated by zk + (-l)k z,;c (c E Z/NZ) and 

p:,~b •- （-lY Pr-:-sa,b + (-1)" P:,~-b + (-ty+s Pr7,-b (r + s = k, (a, b) E A(N)). 

Note that the image of the space Pk悩underthe map Z→ <becomes IQ(2冠）K．

Next, recall period polynomials for r1(N) due to Pa§ol and Popa [32]. For simplicity, we only 

treat the case w 2'. 0 even. For a polynomial-valued function F :い（N)¥SL心） →Vw, define the 

right action of I E SL立） by(FI..J(C) := F(C戸）Irfor each representative C for the right cosets 

几(N)¥SL立）． Extendingthis action to the group ring Z[SL立）］， forw 2'. 0 even and NE  N, we let 

Ww,N := {F: r1(N)¥SL2(Z)→Vw I Fli+s = Fli+u+u2 = 0 and F(-C) = F(C), VG}. 

Denote by Ca,b the corresponding class to (a, b) E A(N) via the bijection い (N)\SL2(Z) → A(N)，い (N)(~ ；；)→

(a, b). Under this notation, every function F E Ww,N is identified with the polynomial vector 
IA(N)I 

(F(C叫）（a,b)EA(N)E V,1 such that 

O=F(C叫＋ F(Ca,bs-1)1S= F(C叫＋F(Ca,bu-1)IU+ F(Ca,bu-2)IU2 

and F(C-a,-b) = F(Cゅ） forall (a,b) E A(N). We set 

w!,N ={FE Ww,N I F(Ca,-b)l8 =士F(Ca,b)for each (a, b) E A(N)}. 

It follows that Wば，1is canonically isomorphic to W:ば． Fromthe Eichler-Shimura theory, one can 

construct injections戸： Bw+2(r1(N)）→ Wご，N＠Q C. 

We now state modular relations for colored double zeta values relative to μN due to Hirose. 

Theorem 4.14. Let k 2'. 4 even. For F E Wt_2,N and (a, b) E A(N), define e~;t E IQ by 

五□）心xr-lys-l:= F(Ca,-a+b)(X -Y,X) 

and set 

哄’t,ev=；（心＋（ー1)賃:t), e灼戸＝胴，，tー(-l)T吟，t）．
Then we have 

e~;!>,ev = (-lr e;:;~,b,ev = (-1)8 e~;;b,ev = e~:~,ev, e~;t,od = (-1r+1e;::~,b,od = (-1)8+1e~;;b,od 

and 

3 区哄't,odzば＝ー区哄't,evz芯 ー と 哄'tz:且EP閉V・

r+s=k 
(a,b)EA(N) 

r+s=k 
(a,b)EA(N) 

r+s=k 
(a,b)EA(N) 

Hirose's statement in [20, Theorem 3] is much stronger than the above, including the case k odd. 

Example 4.15. Let us illustrate the case N = 2. Since A(2) = { (0, 1), (1, 0), (1, 1)}, letting Fa,b = 



119

F(Ca,b), we identify FE Ww,2 with (Fi。,1,F1,o, F1,1) EV~ such that 

F。,1+ Fi,o IS = 0, F叫(1+ S) = 0, Fi。,1+Fi,1IU +Fi,olU2 =0. 

For example, we see that F =（砂，一y見呼—炉） EW贔 (which lies in the coboundary part) and this 

gives 

3 (z~:i + zf:J + z~:~ 

=Zg-zJ +z盟＋Z訂＋Z砂＋Z謡＋亭＋虞→素(8) (under Z---+(). 

Taking F = (15企— 30x4y2 + 15呼砂ー15x4y2+ 30x2炉ー 15y見45x4炉ー 45x2炉） EW贔， weget 

3(15Z『,}+ 13zN + 4zf:l + 3z認＋ 15Z闘— Z砂ー 4zJ:l)
1395 

= 2Z~ -2ZJ + 15Z閏J+ gzf:l + gzl:f + 1szJ:g -3zl:l →―く(8) (under Z >-→く）．
256 

Problem 4.16. As a corollary of Theorem 4.14, for each FE  Wば＿2,Nwe obtain the relation of the 

form 

ど哄't,od炉ば）＝ CF・ (2が）尺
r+s=k 

(a,b)EA(N) 

where茫 denotesthe shuffie regularized colored multiple zeta values. Similarly to Theorem 3.1, is 

there a simple formula for the constant CF when F is cuspidal'? 

Problem 4.17. Is Conjecture 4.9 derived from Theorem 4.14? 
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