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Abstract 
Microeukaryotes are critical components of sinking particles contributing to carbon export from the surface to deep oceans. However, 
the knowledge of the sinking microeukaryotic communities and their dynamics is currently limited. In this study, we applied 18S rRNA 
gene metabarcoding to investigate the microeukaryotic communities in sinking and suspended particles distinguished by marine snow 
catchers during spring in the Oyashio region. Sinking particles displayed distinct communities and lower diversity than suspended 
particles. The community compositions of the sinking particles varied with depth, suggesting that microeukaryotes were selectively 
disaggregated or decomposed during settling. Prymnesiophyceae and diatoms were effectively removed, as indicated by their decreased 
abundance in sinking particles at increasing depths. Conversely, Dinophyceae maintained a higher abundance in sinking particles 
across depths, indicating resistance to disaggregation and decomposition. Spirotrichea and heterotrophic Dinophyceae were enriched in 
sinking particles, while marine stramenopiles groups were enriched in suspended particles. The heterotrophs in the deeper layers were 
mainly transported from the surface layers by increasing their relative abundance towards deep layers, indicating that they contributed 
to the transformation processes of sinking particles. Overall, our results demonstrate the functional differences among microeukaryotes 
in the biological carbon pump. 
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Introduction 
The sinking of particulate organic carbon (POC) is a major driver 
of the oceanic biological carbon pump (BCP), a process through 
which biologically fixed carbon is transferred from the euphotic 
layer to the deep ocean [1]. Global estimates of the sinking POC 
flux out of the surface mixed layer range from 5 to 20 Gt C yr−1 [2]; 
this ultimately influences the air–sea carbon dioxide exchange 
and Earth’s climate [3]. Among the numerous types of partic-
ulate constituents of sinking POC, microeukaryotes, including 
photosynthetic and heterotrophic protists, determine the struc-
ture, sinking velocity, and chemical composition of sinking POC, 
thereby influencing the magnitude and efficiency of the BCP [4– 
6]. Therefore, examining the taxonomic composition and vari-
ability of the microeukaryotic assemblages in sinking particles is 
essential. 

Microeukaryotes in sinking particles have been conventionally 
collected using sediment traps and examined using light 
microscopy and biomarker pigment analysis [7, 8]. Silicified or cal-
cified phytoplankton, such as diatoms and coccolithophorids, are 
often abundant in sinking particles, suggesting that their mineral 
cell walls (frustules or plates) function as ballasts to enhance the 
settlement of aggregates containing these cells or their remnants 
[9]. Nonetheless, these techniques have limited taxonomic 
resolution and fail to identify protists lacking mineral cell walls, 

especially when small and non-pigmented (i.e. heterotrophs). 
Recent advances in environmental DNA-based approaches, such 
as the 18S rRNA gene metabarcoding method [10–17], offered 
comprehensive information on community composition, improv-
ing our understanding of the role of microeukaryotes in the export 
of carbon to the deep ocean. For instance, Amacher et al. (2009) 
revealed that small phytoplankton, such as prasinophytes and 
uncalcified prymnesiophytes, dominated sediment trap particles 
despite the high abundance of diatoms in the water column [10]. 
Gutierrez-Rodriguez et al. (2019) showed active consumption 
of sinking aggregates, which are dominated by radiolarians, by 
heterotrophs [12]. Durkin et al. (2022) demonstrated that the 
varying relative contribution of phytoplankton in sinking particles 
across taxa, and the degradation states also varied across oceanic 
regions [17]. Time-series sediment trap studies at abyssal depths 
documented the occurrence of various eukaryotic lineages of 
protists originating from surface layers [13, 15]. 

Despite the growing knowledge of microeukaryotic assem-
blages associated with sinking particles, some critical questions 
remain unresolved. One such question is whether certain 
microeukaryotes are preferentially associated with sinking rather 
than suspended particles and are more efficiently transferred 
from the sunlit layer to abyssal depths. The sinking POC 
flux is strongly attenuated through the mesopelagic layer
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(200–1000 m), leaving less than 10% of the exported POC available 
for consumption in the bathypelagic layer and abyssal sediments 
[18, 19]. Several biological and physical processes have been 
proposed to explain this depth-dependent POC flux attenuation, 
including microbial degradation and solubilization [20], zoo-
plankton consumption, and fragmentation due to the turbulence 
created by zooplankton swimming and feeding activities [21]. 
Although the relative importance of different mechanisms 
remains elusive, microeukaryotic cells that are more resistant to 
POC flux attenuation processes (disaggregation or decomposition) 
could contribute more substantially to carbon transfer to 
deeper layers, thereby enhancing the efficiency of the BCP. 
Conversely, easily disaggregated, or degraded microeukaryotes 
could contribute to carbon remineralization in the mesopelagic 
layer. 

Recently, a large sedimentation chamber [namely, the Marine 
Snow Catcher (MSC)] was used to differentiate microbial 
assemblages in sinking and suspended particles [14, 22–25]. Of 
note, the composition of microeukaryotic assemblages differed 
between sinking and suspended particles in the Scotia Sea [14]. In 
the upper mesopelagic layer, chain-forming diatoms dominated 
the sinking particle assemblages, whereas prymnesiophytes were 
abundant in suspended particles, implying that diatom-enriched 
particles are more efficiently transferred to the mesopelagic layer 
than prymnesiophytes-enriched ones. Although this previous 
study provided valuable insights into the functional differences 
among microeukaryotic taxa in the regulation of the BCP, the data 
were limited to the upper mesopelagic layer, inevitably hampering 
the assessment of microeukaryotic dynamics throughout the 
mesopelagic water column. 

In the current study, we employed the MSC to characterize 
the microeukaryotic community associated with sinking and sus-
pended particles and their changes during sedimentation through 
the mesopelagic water column. Sampling was conducted during 
spring blooms in the Oyashio waters off Hokkaido in the western 
North Pacific Ocean [26]. This oceanic region is known for its 
strong POC flux [27] and highly efficient BCP [28] during blooms. 
Earlier sediment trap observations suggested that diatoms in this 
area play a key role in transporting POC to deep ocean layers 
due to their large size and high sedimentation rates [28, 29]. 
However, the detailed structures of sinking particles and their 
decomposition processes during sedimentation from the surface 
to deep oceans remain relatively unexplored. 

Materials and methods 
Cruises and sampling strategy 
Sampling was conducted at four stations (Fig. 1A) during the KS-
21-4 (March 11–21, 2021) and KS-21-7 (May 3–11, 2021) cruises 
of the R/V Shinsei-Maru (JAMSTEC) in the Oyashio region off 
Hokkaido, Japan. Samples for DNA analysis were collected using 
MSCs at three depths: the subsurface chlorophyll maximum 
(hereafter SCM, 11–30 m depth), 10 m below the pycnocline (PYC, 
65–250 m), and the bottom boundary layer (BBL, 289–1489 m; 
Table 1 and Table S1). 

Suspended particles were collected from tap at the center of 
the MSC, and sinking particles were collected from the base of the 
MSC. Since the base fraction contained some suspended particles, 
after detaching the upper part of the MSC, it was allowed to 
settle for an additional 10 min, and approximately two-thirds of 
the seawater was siphoned off to further reduce the suspended 
particles (Fig. 1B). The sample seawater was then filtered using a 
0.8 μm pore-size cellulose acetate membrane (47 mm diameter, 

Millipore) under gentle vacuum (< 0.013 MPa). The filters were 
stored in 1.5-ml cryotubes pre-filled with 600 μl of buffer RLT Plus 
(Qiagen), 6 μl of 2-mercaptoethanol (Sigma-Aldrich), and 0.2 g of 
glass beads; the samples were flash-frozen in liquid N2 and stored 
at −80◦C until analysis on land. 

Note that the distinction of suspended and sinking particles is 
operational. Any particles (free-living single-cells and aggregates), 
remaining in the upper part of the MSC after 2 h settling, were 
regarded as suspended particles. Because we collected suspended 
particles from the tap located near the center of the MSC, sus-
pended particles include not only non-sinking particles but also 
those sinking speed at up to 8.0 m d−1 (for small MSC) or up to 
14.0 m d−1 (for large MSC, Fig. 1B). The sinking particles refer to 
aggregates, and fast-sinking single-cells that were recovered from 
the bottom tray of the MSC after 2 h settling. 

Measurements of environmental variables 
Vertical profiles of temperature, dissolved oxygen (DO), salinity, 
chlorophyll a (Chl a) fluorescence, photosynthetically available 
radiation (PAR), and turbidity were measured at each site using 
an SBE 911-plus CTD system (Seabird Electronics, Bellevue, WA, 
USA; Fig. S1). Seawater samples for Chl a and macronutrient 
analysis were collected using Niskin bottles attached to a CTD-
Carousel multiple-sampler system. Detailed procedures for Chl 
a and macronutrient analyses have been described by Fukuda 
et al. (2016) [30]. Briefly, samples for Chl a concentration measure-
ment were collected on GF/F filters and measured with a fluo-
rometer (10-AU, Turner Designs) using the acidification method 
[31]. The concentrations of macronutrients (Si(OH)4, NO2, NO3, 
NH4, and  PO4) were determined using a flow injection analyzer 
(AACSIII, Bran + Luebbe). The detection limits of the macronu-
trient measurements were defined as three times the deviation 
of the repeated measurements from the blank. Samples for POC 
and PON concentrations were collected from the sinking parti-
cles of MSC and analyzed using an elemental analyzer (Elemen-
tal Analyzer-IRMS; FLASH 2000, Thermo Fisher Scientific). The 
POC and PON sinking fluxes were calculated using the meth-
ods described by Giering et al. (2016) [32] and Yamada et al. 
(2024) [33]. 

DNA extraction and 18S rRNA gene amplification 
and sequencing 
AllPrep DNA/RNA Mini Kits (Qiagen) were used for DNA extrac-
tion. Sample vials were agitated thrice at 2500 rpm for 50 s 
using a homogenizer (μT-12, TAITEC) before proceeding with the 
manufacturer’s protocol (BBL samples at St1 and St2 in May failed 
to yield sufficient DNA for downstream analysis). For each sample, 
three PCR amplifications targeting the V4 region of the 18S rRNA 
gene were performed using the following primer pairs: forward 
E572F (5’-CYGCGGTAATTCCAGCTC-3′) and reverse E1009R (5’-
AYGGTATCTRATCRTCTTYG-3′; 436 bp), as designed previously 
[34]. The PCR mixtures were prepared in a 25-μl reaction vol-
ume containing 1 × KAPA HiFi HotStart ReadyMix, 1 μM each 
of forward and reverse primers, and 2.5 ng of template DNA. 
The PCR cycle consisted of a pre-denaturation step at 98◦C for  
30 s, followed by 30 cycles of denaturation at 98◦C for  10 s,  
annealing at 61◦C for 30 s, and extension at 72◦C for 30 s, and 
a final extension at 72◦C for 5 min. The triplicate PCR products 
were mixed after purification using Agencourt AMPure XP beads 
(Beckman Coulter). Libraries were prepared using the Nextera XT 
index kit V2 and sequenced on an Illumina MiSeq platform using 
a 300 bp paired-end sequencing.
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Figure 1. Illustration of sampling strategy. (A) the location of sampling sites visualized using ocean data view; (B) the schematic of sampling design 
with MSC. Two specifications of MSC were employed, and the detailed metrics were list in the table. The smaller MSC were deployed at SCM layer, 
while the larger one was used at both PYC and BBL. 

Analysis of sequencing data 
Raw sequencing data were preprocessed using QIIME2 (ver-
sion 2021.11) [35]. Trimming of low-quality reads and primer 
sequences, merging of paired-end reads, dereplication, chimera 
removal, and amplicon sequence variant (ASV) inference were 
performed using denoising algorithms in DADA2 with default 
parameters [36]. A naïve Bayes classifier [37] trained on the 
PR2 database [38] (v 5.0.1, comprising nine ranks: domain, 
supergroup, division, subdivision, class, order, family, genus, 
species) with the E572F/E1009R primer set was used to assign 
taxonomy to the ASV sequences. The feature table of read 
counts and taxonomy assigned to ASVs was exported; singletons 
and those unannotated to the target supergroup ASVs were 
eliminated. 

Next, we classified the ASVs into unicellular (protist) and other 
eukaryotes (Embryophyceae, Fungi, Metazoa, and Rhodophyta); 
the metazoan ASVs were recovered and independently analyzed. 
The trophic mode of protist ASVs was determined through the 

following steps (Fig. S2): (i) Non-Dinophyceae ASVs were first 
classified as mixotrophs and non-mixotrophs using the Mixo-
plankton Database [39] and data from Schneider et al. (2020) [40] 
(Table S2). (ii) The “non-mixotrophic” ASVs were then categorized 
into phototroph and heterotroph, with heterotroph further classi-
fied into phagotroph and parasite, based on the dominant ecolog-
ical function of taxa as outlined in Sommeria-Klein et al. (2021) 
[41] and potential photosynthetic taxa listed in the PR2 database 
(Table S3). (iii) Trophic mode for Dinophyceae ASVs was assigned 
based on data from Schneider et al. (2020) [40], Mixoplankton 
Databases [39], and existing literature (Table S4); (iv) all protists 
ASVs that could not be categorized based on prior steps were 
labeled as “unknown”. Considering that taxonomy-based trophic 
modes classification can be challenging due to the wide variation 
among protists and the limitations of available databases, we 
combined multiple reliable sources to ensure the most accurate 
classification. We acknowledge that future research may further 
refine these categories.
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Table 1. Environmental variables of all samples in the Oyashio waters. 

Sites Cruise Chl a 
(μg/L) 

Layera Depth 
(m) 

Temp 
(◦C) 

Sal 
(�) 

DO 
(l/L) 

NO3 b NO2 b NH4 b PO4 b SiOH4 b POC 
f luxc 

PON 
f luxc 

St2 KS-21-4 1.17 SCM 17 1.37 32.93 7.62 17.94 0.24 < 0.1d 1.50 33.39 89.69 18.36 
(2021) PYC 150 3.93 33.51 6.68 19.94 0.18 < 0.1 1.56 37.31 0 0 

BBL 1478 2.40 34.50 0.95 43.87 0.06 < 0.1 3.13 163.23 30.94 4.49 
St3 5.4 SCM 30 1.63 32.89 7.93 14.63 0.32 < 0.1 1.34 29.34 153.40 30.84 

PYC 250 2.22 33.41 5.44 28.05 0.08 < 0.1 2.17 58.71 0 0 
BBL 1050 2.80 34.41 0.70 43.85 0.09 < 0.1 3.19 155.52 29.77 3.74 

St4 11.93 SCM 11 0.47 32.57 8.28 9.60 0.18 < 0.1 1.08 23.39 228.71 49.71 
PYC 71 0.63 32.79 7.60 15.49 0.18 < 0.1 1.40 29.99 717.60 57.76 
BBL 289 1.76 33.47 6.12 19.32 0.23 < 0.1 1.62 37.47 86.96 12.74 

St1 KS-21-7 1.51 SCM 30 2.19 33.02 7.80 9.30 0.16 1.05 1.03 2.95 385.34 64.79 
(2021) PYC 65 4.54 33.09 7.20 23.73 0.40 1.47 2.03 41.12 274.79 53.54 

St2 1.36 SCM 14 8.11 33.40 6.80 2.60 0.09 < 0.1 0.33 4.55 152.74 32.01 
PYC 65 5.52 33.49 6.31 12.03 0.19 0.56 1.04 17.95 103.29 22.10 

St4 7.94 SCM 25 3.30 32.25 8.01 3.34 0.20 0.62 0.62 2.15 755.68 129.66 
PYC 90 1.93 33.18 6.69 20.48 0.27 0.63 1.77 36.57 208.48 39.90 
BBL 305 2.83 33.18 5.37 27.38 0.22 < 0.1 2.11 54.42 352.65 63.65 

aSCM, Subsurface chlorophyll maximum; PYC, Pycnocline; BBL, Bottom boundary layer bMacronutrient unit, μmol/L cPON and POC flux, mg/m2/d dlower than 
the detection limit (0.1 μmol/L) 

ASV-based diversity analyses 
Statistical analyses were performed using R v.4.4.1 and Python 
v.3.9.13. Samples were rarefied to account for differences in 
library size, and rarefaction curves were used to investigate the 
degree of sample saturation by calling the “rrarefy” function in the 
vegan v.2.6.4 package [42]. Non-metric multidimensional scaling 
(NMDS) analysis of the dissimilarity in the microeukaryotic 
communities and the relationship between the suspended 
microeukaryote composition and environmental variables (NH4 

was omitted because 11 out of 16 samples had concentrations 
below the detection limit; Table 1) were performed based on 
the Bray–Curtis dissimilarities with the rarefied abundance table 
(with the “envfit” function in vegan). Permutational multivariate 
analysis of variance (PERMANOVA) was used to assess the 
statistically significant dissimilarities. Alpha diversity indices 
(Pielou’s evenness and richness) of phototrophs and heterotrophs 
in each sample were evaluated by rarefying read numbers. 
Differences in alpha diversity between these two particle fractions 
were assessed using the Wilcoxon signed-rank exact test to 
determine statistical significance. 

We assumed that sinking protists in the deep layer may 
have originated from direct sinking events from the SCM layer 
and/or colonization by free-living protists during sedimentation. 
To estimate the relative contributions of these sources to the 
sinking protists in the deep sea, we used the SourceTracker (v 
2.0.1, http://github.com/biota/sourcetracker2) algorithm. This 
algorithm employs the Bayesian classification model and Gibbs 
sampling to predict the proportion of microbial communities 
from a given set of “source” communities that contribute to 
“sink” communities [43]. Using the protist ASV abundance table, 
sinking protists at SCM and suspended protists at PYC and BBL 
were considered as potential “sources”, while sinking protists at 
BBL acted as “sinks”. To provide a robust starting point for each 
“source” and minimize the risk of overfitting, SourceTracker was 
executed with default settings; the configuration of the algorithm 
is detailed in Knights et al. (2011) [43]. 

Taxon-based differential abundance analysis 
Differential analysis of protist genera between sinking and sus-
pended particles was performed using DEseq2 v.1.38.3 [44]. Protist 

genera with an average relative abundance of less than 0.01% and 
those belonging to ambiguous classes (unassigned, Gyrista_X, Cil-
iophora_X, Cercozoa_X) and classes with low relative abundance 
(less than 0.2% on average) were excluded from further analysis. 
Protist genera with log2 fold change >1.5 or < −1.5 and an adjusted 
p-value <0.01 determined using the Benjamini–Hochberg (BH) 
method was regarded as “significant”. 

Results 
Sequencing statistics and environmental 
conditions 
A total of 3 913 663 18S rRNA gene (V4 region) paired-end reads 
were obtained from 32 suspended and sinking particles. After 
quality trimming, merging, and the removal of chimera and 
singleton, 2416 ASVs were generated. Among these, 171 ASVs 
(an average of 14.3% of total reads) were taxonomically assigned 
to metazoan, 22 ASVs (an average of 0.2%) to Fungi. Independent 
analysis of metazoan ASVs showed that most metazoan reads 
were annotated to copepods (79.0% ± 26.0%), including the 
genera Oithona, Metridia, and  Eucalanus (Fig. S3). Metazoan and 
other non-protists ASVs were excluded. The remaining 2204 
protist ASVs were subjected to downstream analyses, and 
their relative frequencies were normalized by rarefying the 
smallest number of sequences per sample (33 794 paired-end 
reads; Fig. S4). 

The protist ASVs were systematically classified into four 
functional categories: phototrophs (412 ASVs), phagotrophs (812 
ASVs), parasites (517 ASVs), and mixotrophs (54 ASVs). The 
remaining 406 ASVs that could not be assigned to any functional 
category were labeled as “unknown” (Fig. S5a–c, Tables S1 and S5), 
and 341 of these were affiliated with Dinophyceae (Fig. S5c). On 
average, phototrophs, phagotrophs, and “unknown” comprised 
most reads (33.5%, 33.1%, and 26.5% of relative frequencies, 
respectively), while parasites and mixotrophs represented smaller 
proportions (4.7% and 2.1%, respectively; Fig. S5b). 

High Chl a concentrations were detected at St3 (5.4 μg/L) and 
St4 (11.9 μg/L) in March and at St4 (7.9 μg/L) in May. Relatively 
higher POC fluxes (153.4–755.7 mg C m−2 d−1) and PON fluxes 
(30.9–129.7 mg N m−2 d−1) were observed in these sites than in
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Figure 2. Overview of protistan class composition in Oyashio waters. Only classes with relative abundance greater than 1% in a single sample were 
retained. For the main classes (Mediophyceae and Dinophyceae), more detailed taxonomic composition is shown at the genus level; only the genera 
with relative abundance greater than 1% in a single sample are shown. The x-axis indicates different sampling depths. Here and throughout the paper, 
SCM stands for subsurface chlorophyll maximum layer, PYC for Pycnocline layer, and BBL for bottom boundary layer. Different triangle shapes 
represent different particle fractions. 

the other sites (89.7–385.3 mg C m −2 d−1 and 18.4–64.8 mg N m−2 

d−1; Table 1). 

Microeukaryotic community composition 
Mediophyceae (a class of diatoms) dominated the microeukaryote 
community at St3 and St4 in March, representing over half of 
the protist 18S reads (52.0% ± 11.6%) in both sinking and sus-
pended particles at SCM (Fig. 2). Due to the high Chl a concen-
tration (> 5 μg/L) and the prevalence of diatoms, these sam-
ples were classified as “diatom-abundant”. Notably, the chain-
forming diatoms Porosira and Odontella were the most prominent 
genera, even at depths exceeding 1000 m (Fig. 2). Dinophyceae 
were more abundant in other samples (37.2% ± 11.8%) compared 
to diatom-abundant samples (20.1% ± 9.6%); these samples are 
hereafter referred to as “Dinophyceae-abundant” samples. NMDS 
analysis revealed a significant difference in community com-
position between Dinophyceae-abundant and diatom-abundant 
samples (PERMANOVA, P < 0.001; Fig. S6a and Table S6). By May, 
Dinophyceae had become the dominant group in the sinking 
microeukaryotic communities, coinciding with peaks in POC/PON 
fluxes  (Fig. 2, Fig. S6b–c, and  Table 1). Additionally, prymnesio-
phytes, particularly Phaeocystis, were more abundant in suspended 
particles at SCM compared to their presence in sinking particles, 
where their abundance decreased with depth (Fig. 2). 

Microeukaryotic communities differ between 
suspended and sinking fractions 
The NMDS showed a significant separation in the ASV composi-
tion of the microeukaryotic community between sinking and sus-
pended particles (PERMANOVA, P < 0.05; Fig. 3A and Table S6). The 
microeukaryotic community had a significantly lower richness 
(Wilcoxon test, P < 0.001) in sinking particles (Fig. S6d). Specifi-
cally, the richness of phototrophs was lower in sinking particles 
than that in suspended particles (Wilcoxon test, P < 0.001; Fig. 3B, 
and Fig. S6e). Heterotrophs exhibited significantly lower Pielou’s 
evenness (Wilcoxon test, P < 0.001) and richness (Wilcoxon test, 
P < 0.001) in sinking particles than that in suspended particles 

(Fig. 3C and Fig. S6f). The proportions of ASVs unique to the 
sinking particles (7.3% ± 3.1% for phototrophs and 20.3% ± 8.0% 
for heterotrophs) were lower than those unique to the suspended 
particles and shared in both particles (Fig. S7). 

Distribution pattern and vertical variation of 
phototrophs in sinking and suspended particle 
Differential abundance analyses revealed varying patterns in the 
relative abundance of phototrophic genera between sinking and 
suspended particles (Fig. 4A, Fig. S8a, and  Table S7). Only Coccol-
ithus (a genus of haptophyte) was significantly enriched in sinking 
particles (BH adjusted p-value <0.01; Fig. 4A). Most genera belong-
ing to Prymnesiophyceae (9 out of 10 genera), Pelagophyceae 
(three out of three genera), and Mamiellophyceae (four out of 
four genera) were enriched in suspended particles, with seven 
genera showing statistically significant differences (BH adjusted 
p-value <0.01; Fig. 4A). No significant difference was observed in 
the phototrophic Dinophyceae genera between the two particle 
types, while some mixotrophic genera and genera with “unknown” 
trophic modes were more prevalent in sinking particles, with 
two genera showing statistical significances (BH adjusted p-value 
<0.01; Fig. S8b–c). 

The composition of key phototrophic classes changed with 
depth in sinking particles, with the relative abundance of total 
phototrophs decreasing, especially in diatom-abundant samples 
(from 61.6% ± 11.2% at SCM to 31.2% ± 15.1% at BBL; Fig. S5d). The 
relative abundance of the dominant genera Porosira and Odontella 
displayed remarkable decreases in sinking particles while remain-
ing consistently high in suspended particles along with increasing 
depth (Fig. 4B–C). 

Sinking pattern of heterotrophs 
The SourceTracker analysis indicated that most sinking het-
erotrophs at BBL likely originated from sinking particles at SCM 
(74.0% ± 22.2%; Fig. 5A). This value is comparable to that observed 
for phototrophs (75.0% ± 12.0%, Fig. S9). In contrast, relatively

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae136/7875056 by Kyoto U
niversity user on 21 N

ovem
ber 2024

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae136#supplementary-data


6 | Yang et al.

Figure 3. Comparison of microeukaryotic communities detected in different particle fractions. (A) NMDS based on bray–Curtis dissimilarities. Letters 
indicate depth: S=SCM, P=PYC, B=BBL. (B-C) Evenness and richness indices of phototrophs (B) and heterotrophs (C) groups pooled by particle fractions. 
Stars indicate significant differences in indices between these two particle fractions, with ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 (Wilcoxon test). 

Figure 4. The distribution and variation of phototrophic genera in sinking and suspended particles. (A) Volcano plot showing different abundance of 
phototrophs between these two particles. The log2 fold change is plotted against -log (BH adjusted p-value), mainly at the genus level. Each dot 
represents a genus, color-coded based on their class information. Significantly distinct genera between these two particles were defined based on the | 
log2 fold change | > 1.5 and BH adjusted p-value <0.01. The log2 fold change >0 represents genera enriched in sinking particles, while log2 fold change 
<0 indicates genera enriched in suspended particles. (B, C) the vertical succession of sinking particle-associated (B) and suspended particle-associated 
(C) phototrophic genera. Only genera with relative abundance larger than 5% in a single sample are shown. The Dinophyceae genera assigned to 
“unknown” trophic mode were included, and stations without a BBL sample (St1 and St2 in may) were excluded from the analysis. 

low proportions of heterotrophs were traced to suspended 
heterotrophs at PYC and BBL (3.5% ± 3.3% and 12.0% ± 17.0%, 
respectively). In addition, potential sources of small fractions 
of sinking heterotrophs were not identified by the algorithm 
(12.3% ± 4.0%). Consistently, large proportions of heterotroph 
ASVs were shared between SCM and PYC (49.0%) PYC and BBL 
(50.1%) ( Fig. S10). 

Heterotrophic genera showed distinct distribution patterns 
between the two particle types (Fig. 5B and Table S7). Notably, 

most Spirotrichea (a class of ciliates) genera were predominant in 
sinking particles (20 out of 24 genera), with seven of these showing 
statistically significant enrichment (BH adjusted p-value <0.01; 
Fig. 5B). Most heterotrophic Dinophyceae genera were relatively 
enriched in sinking particles (four out of five genera), with one 
genus being significantly enriched. In contrast, MAST lineages 
(MAST-1, MAST-2, MAST-7, and MAST-8), which encompass 
heterotrophic nanoflagellates, were primarily detected in sus-
pended particles.
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Figure 5. Sinking dynamics of heterotrophs. (A) Proportion estimates of the source for sinking heterotrophs at BBL using the Bayesian source tracking 
algorithm. Four sources include: Sinking heterotrophs at SCM, suspended heterotrophs at PYC, suspended heterotrophs at BBL, unknown. (B) Volcano 
plot depicting the different abundance of heterotrophs between sinking and suspended particles. The log2 fold change is plotted against -log (BH 
adjusted p-value), mostly at the genus level. Each dot represents a genus, color-coded based on their class information. Significantly distinct genera 
between these two particles were defined based on | log2 fold change | > 1.5 and BH adjusted p-value <0.01. The log2 fold change >0 indicates genera 
enriched in sinking particles, while log2 fold change <0 indicates genera enriched in suspended particles. (C) Vertical succession of sinking 
particle-associated heterotrophic genera. Only genera with relative abundance larger than 5% in a single sample are shown. Stations without a BBL 
sample (St1 and St2 in may) were excluded from the analysis. 

As the relative abundance of sinking phototrophs decreased, 
the relative abundance of heterotrophs increased with depth 
( Fig. S5d). The results showed a distinct vertical succession of 
sinking heterotrophs during sedimentation (Fig. 5C). Notably, the 
Spirotrichea genera, such as Strombidinopsis, were more prevalent 
in the deep ocean, as did heterotrophic Dinophyceae genera such 
as Gyrodinium. However, the genera Litholophus and Hematodinium 
were primarily observed at PYC and were rarely detected at BBL. 

Discussion 
The combined use of MSC and DNA metabarcoding enabled us to 
characterize the microeukaryotic communities that contribute to 
the biological carbon sequestration processes during spring in the 
Oyashio waters. However, we acknowledge that metabarcoding 
results do not necessarily reflect the abundance of plankton cells, 
as variance in 18S gene copy number between species might have 
obscured the relationship between amplicon sequence counts 
and cell abundance. Nevertheless, previous studies have shown a 
strong correlation between the number of 18S gene copies and cel-
lular biomass or biovolume in certain protists [45, 46]. Therefore, 
amplicon sequencing is considered to provide extensive and com-
prehensive taxonomic information about a microbial community 
as well as ecologically relevant indices of community composi-
tion. Additionally, the statistical results of differential abundance 
analysis should be carefully interpreted since the observed counts 
of ASVs are necessarily represented as compositional data but not 
absolute abundances. 

We observed a clear separation of eukaryotic community 
composition between suspended and sinking particles (Fig. 3A). 
The lower community richness in sinking particles (Fig. S6d) 
was attributable to selective aggregation and sinking processes. 
Namely, a subset of the microeukaryotic taxa in suspended 
particles was incorporated into the aggregates, contributing to 
the sinking processes. Additionally, the selectivity for aggregation 
and sinking could be influenced by the physical and physiological 
properties of the phototrophs (size, shape, stickiness, and 
secretion of exopolymers), which can affect aggregate formation 
and sedimentation [47]. 

Prymnesiophytes, mamiellophytes, and pelagophytes, mostly 
belonging to pico- and nanoplankton (0.2–20 μm), were enriched 
in suspended particles (Fig. 2 and 4). Their small cell size likely led 
to a lower sinking velocity of individual cells [48, 49], making them 
more prone to being collected as suspended particles. Although 
these picophytoplankton groups were involved in sinking particles 
in the surface layer, they were rarely detected in the sinking parti-
cles in the deep layer, implying a higher tendency toward disaggre-
gation or decomposition during the sinking process. This finding 
aligns with previous observations showing that prymnesiophyte-
enriched particles exported from the euphotic zone are likely to 
disintegrate into suspended particles in the upper mesopelagic 
layer [14]. 

Diatoms are suggested to play a pivotal role in POC sed-
imentation in Oyashio waters [28, 29]. In this study, centric 
diatom genera such as Porosira and Odontella, belonging to 
microphytoplankton (20–200 μm) [50], were most prevalent in the
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diatom-blooming sites near coastal areas (Fig. 1 and 2). Diatoms 
are typically considered important contributors to BCP in various 
ecosystems, as they have relatively large cells, and their heavy 
silica shells serve as ballast for marine snow and fecal pellets 
[51, 52]. Previous observations of Oyashio water during spring 
showed that Porosira was the most dominant genus during the 
bloom period, contributing to 25% of the diatom carbon biomass 
[53]. In our study, Porosira was enriched in sinking particles at 
BBL (16.8 ± 10.5%; Fig. 2), indicating that the dominant diatom 
would be the significant contributor to vertical carbon export. 
However, the relative abundance of Porosira in sinking particles 
decreased sharply with depth, especially from PYC (250 m, 
21.7%) to BBL (1050 m, 9.4%) at St3 in March (Fig. 2 and 4B). 
In contrast, the relative abundance of Porosira in suspended 
particles remained high at both PYC and BBL (Fig. 4C). This 
indicates that while dominant diatoms sink to deeper layers, they 
experience high attenuation within the sinking communities. 
These findings are in agreement with the results of previous field 
studies, which reported lower transfer efficiencies in the diatom-
blooming sites than in the non-blooming sites [54–56]. Sinking 
aggregates composed of diatoms in blooming sites typically 
exhibit lower sinking velocity than that in non-blooming sites 
due to their lower density associated with higher porosity. Of note, 
the lower sinking speed increases their susceptibility to grazing 
by copepods and heterotrophic protists [5, 54]. Furthermore, the 
transparent exopolymer particles (TEPs) produced by diatoms 
[57], which facilitate aggregation, can reduce the sinking velocities 
of aggregates owing to their low density [58]. However, at St4 
in May, the decline in Porosira from PYC (71 m, 28.3%) to BBL 
(289 m, 23.7%) was less pronounced, potentially attributable to 
the shallower depth of the BBL at this station. This shallower 
depth may have constrained the duration available for substantial 
compositional alterations to occur within the sinking particle 
communities during settling. 

Dinophyceae were more abundant in sinking particles and 
showed stable relative abundance with depth (Fig. 4B and 5C). 
Dinophyceae are generally more carbon-dense than diatoms, as 
evidenced by their carbon-to-cell volume ratio [59]; compared 
to diatoms, their sinking can sequester more carbon per volume 
of particles. Dinophyceae can sank rapidly even as individual 
cells (∼27.5 m d−1) [60], and they can form the massive 
carbon-rich and thick-walled resting cysts during Dinophyceae 
blooms [61]. These characteristics renders them more resistant 
to degradation, contributing to the intense sedimentation of 
organic matter. Moreover, among plankton, dinoflagellates 
are adapted to various environments, including pelagic and 
benthic habitats, with a wide range of trophic strategies and 
prevalence of mixotrophy [62, 63]. However, due to the limitations 
of the current mixotrophic database, many dinoflagellates in 
our study were assigned an “unknown” trophic mode. Cohen 
et al. (2021) [64] demonstrated that dinoflagellates have the 
capacity to alter metabolic functionality, which is characterized 
by nutrient recycling and phagotrophy, in the mesopelagic zone 
with no associated change in community assemblage. The 
high trophic diversity and adaptability of the dinoflagellates 
indicate that Dinophyceae genera with “unknown” trophic mode 
identified in this study are more likely to adapt to the deep-sea 
habitat by changing their trophic strategies to heterotrophic, 
reducing the susceptibility to degradation. Thus, Dinophyceae 
can act as important contributors to BCP in Oyashio waters, 
as indicated by previous studies across various regions [17, 
65, 66]. This is also supported by the result of vector fitting 

analysis, which showed a positive correlation between Dino-
phyceae abundance and POC/PON fluxes (Fig. S6b–c). 

In contrast to phototrophs, heterotrophs in sinking particles 
in the deep ocean can come from multiple sources, including 
origin from the surface layers along with the formation of sinking 
aggregates or continuous colonization from free-living organ-
isms during sinking. Therefore, identifying the potential origins 
of sinking heterotrophs in the deep ocean may be of primary 
importance for understanding their function in the carbon export 
process. The source tracking analysis results showed that the 
heterotrophs associated with sinking particles in the deep layers 
are mainly derived from the surface with sinking aggregates 
(Fig. 5A). Additionally, the source tracking analysis is unable to 
differentiate between in situ colonization and the repackaging 
of disaggregated sinking particles in the deep layer. This con-
straint may explain the prediction that ∼21% of phototrophs in 
the BBL originate from deep-layer colonization (Fig. S9), which 
may result from the repackaging or disaggregation of surface-
sourced sinking phototrophs. Thus, the contribution of the SCM 
source for heterotrophs may be underestimated. In short, these 
results collectively suggest that sinking particles play a role in 
the transfer of heterotrophic microeukaryotes from the surface 
to the deep ocean layers, as previously reported for heterotrophic 
bacteria [67, 68]. Notably, ∼12% of sinking heterotrophs at the 
BBL were classified as “unknown” source, likely due to several 
factors. First, the BBL samples, were influenced by the benthic 
communities as these were collected at 10 m above the seafloor 
where we detected high turbidity (Fig. S1). Second, horizontal 
water movement may have introduced heterotrophs from other 
areas, considering the high heterogeneity of deep-sea eukary-
otic communities [69]. Lastly, the disaggregation of sinking parti-
cles promoted vertical connectivity between different depths [67], 
complicating SourceTracker’s ability to identify specific sources, 
resulting in the “unknown” classification. 

The composition of heterotrophs significantly differed between 
sinking and suspended particles, with a lower richness and 
evenness in sinking particles than in suspended particles 
(Fig. 3C, 5B, and  Fig. S6d). These results suggest that specific 
protist groups were enriched in sinking particles. The most 
prominent heterotroph groups enriched in sinking particles 
included Spirotrichea and heterotrophic Dinophyceae (Fig. 5B–C). 
These protists are active consumers of phototrophs, including 
chain-forming diatoms [70, 71], suggesting that they contribute 
to the decomposition and transformation of diatom-enriched 
aggregates in Oyashio waters. 

The MAST groups of heterotrophs were more abundant in the 
suspended than in the sinking particles. In addition, they were 
more abundant in the surface layers than in deeper layers, which 
is consistent with previous observations [72]. The MAST groups 
include consumers of heterotrophic bacteria and picoeukaryotes 
in the water column [73, 74] and parasites of diatoms in sediments 
(e.g. MAST-6) [75]. Considering their low abundance in sinking 
particles, it is less likely that the MAST groups in suspended 
particles collected from the deeper layers of the Oyashio region 
were transported from the upper layer. MAST groups prefer a 
free-living, suspended lifestyle and consume picoeukaryotes and 
bacteria. The distinct occurrences of heterotrophs in sinking and 
suspended particles reflect the differences in lifestyle and feeding 
habits [76]. 

Our study is the first to document the differences in 
microeukaryotic communities between suspended and sinking 
particles at a molecular taxonomic resolution in the Oyashio
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region. We highlighted an unexpectedly significant contribution 
of heterotrophic lineages such as Spirotrichea and heterotrophic 
Dinophyceae to the transformation processes of sinking particles, 
presumably by consuming phototrophic cells. The depth-
dependent attenuation of the relative abundance of phototrophs 
was more prominent in diatom-abundant conditions than in 
Dinophyceae-abundant ones, implying that diatoms are more 
rapidly consumed by heterotrophs. This result indicates that 
the magnitude of sinking POC flux attenuation is influenced 
by dominant plankton (diatoms vs. Dinophyceae) and their 
consumers, which comprise the microbial consortia of sinking 
particles. This raises new questions about the impact of prey– 
predator interactions of microeukaryotes, which are potentially 
highly selective [77], on regulating POC flux attenuation with 
depth. In conclusion, our results contribute to understanding 
the relationship between microeukaryotic assemblages and 
their vertical export. However, as our dataset only includes 18S 
rRNA gene metabarcoding, other proxies of microeukaryotic 
abundance and activity such as microscopic cell counts, 18S rRNA 
metabarcoding, and metatranscriptomic data would be required 
to provide a more comprehensive understanding of biological 
processes of sinking aggregates. 
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