I-1. PROJECT RESEARCHES

Project 4

PR4

Production of medical RI by reactor irradiation

T. Yamamura, Y. Nakamoto¹, H. Kimura², Y. Shimizu³, K. Washiyama⁴

KURNS, Kyoto University

¹Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University ²Research Center for Experimental Modeling of Human Disease, Kanazawa University ³Division of Clinical Radiology Service, Kyoto University Hospital ⁴Advanced Clinical Research Center, Fukushima Medical University

INTRODUCTION: Remarkable results have been achieved in the treatment of metastatic cancer with β -ray emitting radionuclides such as ¹⁷⁷Lu, which can be easily produced in nuclear reactors. In recent theranostics, the incidentally emitted gamma rays can also be used for diagnosis. Extraction chromatography is widely used technique for chemical separation of Ytterbium (Yb) and medically relevant Lutetium-177 (¹⁷⁷Lu); however, chemical similarity between Lu and Yb require a larger column size and more eluent for gram-scale Yb target separation.

Kimura et al. has studied theranostics as a new medical technology that combines therapeutics and di- agnostics. The key to the realization of theranostics is a drug known as theranostic probes. In this study, we will utilize the theory of creation of unit-coupling molecular probes to develop drugs that can ultimately be applied clinically. First, a basic study of the production of ¹⁷⁷Lu in the KUR was conducted. Next, we developed radiotheranostics probes targeting EphA2, which is expressed in cancer. Erythropoietin-producing hepatocellular receptor A2 (EphA2) is overexpressed in cancer cells and causes abnormal cell proliferation. Therefore, it has attracted attention as a target for radiotheranostics probes.

RESULTS AND DISCUSSIONS:

Recovery of ¹⁷⁷*Lu by LN2 extraction chromatograph:* In this study, a CZT detector measuring the gamma-ray spectrum was installed in the eluent part of the chromatography, allowing in-line, in-situ observation of the separation situation. Irradiation of ¹⁷⁶Yb enriched isotopes has two well-separated peaks and the production of ¹⁷⁷Lu, which is far larger than the target-derived radio-active impurity, is observed. The separation ratio shows that the separation of ¹⁷⁷Lu from ^{169/175}Yb using natural Yb improved significantly from approximately 1.2 in the ratio of elution times to approximately 1.6 when using the ¹⁷⁶Yb enriched isotope. This indicates that the use of ¹⁷⁶Yb enriched isotope targets improves chromatographic overload conditions. This result is expected to be used for the precise separation and recovery of ¹⁷⁷Lu fractions in the process of highly radioactive ¹⁷⁷Lu separation while reducing the exposure of workers to large amounts of separation in a hot cell.

Development of radiotheranostics probes: In this study, the EphA2-57-1 monoclonal antibody (EphA2-57-1) was labeled with [¹¹¹In]In and evaluated as an imaging tracer for single-photon emission computed tomography (SPECT) of EphA2.

Development of radiotheranostics probes: EphA2-57-1 was conjugated with p-SCN-BnDTPA and then labeled with [¹¹¹In]In. [¹¹¹In]In-DTPA-EphA2-57-1 was evaluated in cell-binding, biodistribution, and SPECT studies. In the biodistribution study, a high uptake of [¹¹¹In]In-DTPA-EphA2-57-1 was observed in tumor tissue ($8.8 \pm 2.2\%$ injected dose/g at 96 h). The accumulation of [¹¹¹In]In-DTPA-EphA2-57-1 in tumors was also confirmed using SPECT. Therefore, [¹¹¹In]In-DTPA-EphA2-57-1 has potential as a radiotheranostics probe for EphA2.

REFERENCES:

[1] A. Dash et al., Nucl Med Mol Imaging., 49 (2015) 85-107.

PR4-1

Development of tumor-targeted radiotheranostics probes and its clinical application

H. Kimura¹, T. Yamamura², K. Shirasaki³

¹Research Center for Experimental Modeling of Human Disease, Kanazawa University ²Institute for Integrated Radiation and Nuclear Science, Kyoto University ³Institute for Materials Research, Tohoku University

INTRODUCTION: Theranostics is a new medical technology that combines therapeutics and diagnostics. The key to the realization of theranostics is a drug known as theranostic probes. The characteristic of the radiotheranostics probes we are developing is that we consider a single molecule as an aggregate of target recognition units, linker units, and chelating units, and design molecular probes based on the concept of "unit-coupling molecular probes," in which independently developed units are freely combined. This drug design theory is not only effective for designing molecular probes with relatively large molecules such as antibodies and other proteins and bioactive peptides as the nucleus, but also can also be applied to organic small molecular compounds. In this study, we will utilize the theory of creation of unit-coupling molecular probes to develop drugs that can ultimately be applied clinically. First, a basic study of the production of ¹⁷⁷Lu in the KUR was conducted. Next, we developed radiotheranostics probes targeting EphA2, which is expressed in cancer cells and causes abnormal cell proliferation. Therefore, it has attracted attention as a target for radiotheranostics probes.

EXPERIMENTS: ¹⁷⁷*Lu Production*: To obtain ¹⁷⁷Lu, Lu₂O₃ and Yb₂O₃ were irradiated at 1 MW for 24 hours and 5 MW for 6 hours.

Development of radiotheranostics probes: In this study, the EphA2-57-1 monoclonal antibody (EphA2-57-1) was labeled with [¹¹¹In]In and evaluated as an imaging tracer for single-photon emission computed tomography (SPECT) of EphA2.

RESULTS: ¹⁷⁷Lu Production: This year, we attempted to produce ¹⁷⁷Lu by an indirect method. Optimization of separation and purification conditions for post-irradiation samples is underway.

Development radiotheranostics of probes: EphA2-57-1 was conjugated with p-SCN-BnDTPA $[^{111}$ In]In. labeled and then with [¹¹¹In]In-DTPA-EphA2-57-1 was in evaluated cell-binding, biodistribution, and SPECT studies. In biodistribution study, a high uptake the of [¹¹¹In]In-DTPA-EphA2-57-1 was observed in tumor tissue $(8.8 \pm 2.2\%$ injected dose/g at 96 h). The ac-

Two different routes for reactor production of ¹⁷⁷Lu

cumulation of [¹¹¹In]In-DTPA-EphA2-57-1 in tumors was also confirmed using SPECT. Therefore, [¹¹¹In]In-DTPA-EphA2-57-1 has potential as a radiotheranostics probe for EphA2.

REFERENCES:

[1] A. Dash et al., Nucl Med Mol Imaging., 48 (2015) 85-107.

PR4-2

The development of the online monitoring system for column separation of ¹⁷⁷Lu from enriched ¹⁷⁶Yb irradiated target

K. Washiyama¹, R. Okumura², K. Shirasaki³, K. Ogawa⁴, T. Yamamura²

¹Advanced Clinical Research Center, Fukushima Medical University ²Institute for Integrated Radiation and Nuclear Science, Kyoto University ³Institute for Materials Research, Tohoku University ⁴Institute for Frontier Science Initiative, Kanazawa University

INTRODUCTION: Extraction chromatography is widely used technique for chemical separation of Ytterbium (Yb) and medically relevant Lutetium-177 (¹⁷⁷Lu); however, chemical similarity between Lu and Yb require a larger column size and more eluent for gram-scale Yb target separation. Therefore, it is essential to fully understand the process of separating Yb and Lu in the column and to extract only the required ¹⁷⁷Lu fraction to improve the efficiency of the chemical separation operation. CZT detectors are small and can be powered by USB, making them suitable for online remote measurements. In the previous study, we preliminary evaluated the online measurement of a column separation using a CZT detector with ^{169, 175}Yb and ¹⁷⁷Lu tracers produced by irradiating the ^{nat}Yb target; however, the 238keV γ -ray of ¹⁷⁷Lu could not be identified because it was covered by the Compton component derived from the high-energy γ -ray of ^{169, 175}Yb. Therefore, in this study, enriched ¹⁷⁶Yb, which is used for commercial production of ¹⁷⁷Lu, was used for online monitoring evaluation.

EXPERIMENTAL: The CZT detector used for the measurements was a RadAngel manufactured by Kromek. A Ge detector (ORTEC) was used to confirm the elution profile. Enriched ¹⁷⁶Yb₂O₃ powder was purchased from Isoflex and has a 99.14% enrichment of ¹⁷⁶Yb. A ¹⁷⁶Yb₂O₃ sample (¹⁷⁶Yb, 1.0 mg) was irradiated for 6 hours at a power of 5 MW at the Kyoto University research reactor KURR. Irradiated ¹⁷⁶Yb₂O₃ was dissolved and adjusted to 4M HNO₃. Then, the solution was added into a jacketed 11 mm ϕ x 240 mm glass column (Kiriyama Chemical) con-

taining extraction LN2-Resin (Eichrom) and about 500 mL of 1.5 M HNO₃ was added to separate the Yb target and ¹⁷⁷Lu. The tube containing the eluted solution from the column was brought into contact with the CZT detector for online measurement. The eluent was collected as each fraction containing 250 drops, which were subjected to γ -ray spectroscopy using a Ge detector and compared with the elution curve obtained with the CZT detector monitoring.

RESULTS: A Ge detector measurement confirmed only the production of high radioactivity ¹⁷⁷Lu, and low radioactivity ¹⁷⁵Yb in the irradiated sample after 5 days irradiation (Figure 1). Figure 2 shows the elution curves obtained with a Ge detector (Left), and a CZT detector (Right), which set the ROI to the channel between the 396 keV of ¹⁷⁵Yb and 208 keV of ¹⁷⁷Lu photoelectric peaks. The elution curves of ¹⁷⁵Yb and ¹⁷⁷Lu obtained with the CZT and Ge detectors showed the same trend. In addition, online measurements using a CZT detector confirmed that the column length used in the experiment was sufficient to separate ¹⁷⁵Yb and ¹⁷⁷Lu.

Fig. 2. Elution profile of extraction chromatography with an 11 mm $\phi \times 240$ mmL column packed with LN2 resin measured with a Ge detector (Left) and a CZT detector (Right)

CONCLUSION: In this study, online monitoring of γ radiation was performed using a CZT detector for column separation of an enriched ¹⁷⁶Yb target and ¹⁷⁷Lu. The use of enriched isotope made it possible to distinguish between the low-energy high radioactivity γ -rays from ¹⁷⁷Lu and the high-energy low radioactivity γ -rays from ¹⁷⁵Yb. This result is expected to be used for the precise separation and recovery of ¹⁷⁷Lu fractions in the process of highly radioactive ¹⁷⁷Lu separation while reducing the exposure of workers to large amounts of radioactivity in a hot cell.