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Interlimb coordination is not strictly
controlled during walking

Check for updates

Takahiro Arai 1,7, Kaiichiro Ota2,7, Tetsuro Funato3, Kazuo Tsuchiya4, Toshio Aoyagi5 & Shinya Aoi 6

In human walking, the left and right legs move alternately, half a stride out of phase with each other.
Although various parameters, such as stride frequency and length, vary with walking speed, the
antiphase relationship remains unchanged. In contrast, during walking in left-right asymmetric
situations, the relative phase shifts from the antiphase condition to compensate for the asymmetry.
Interlimb coordination is important for adaptive walking and we expect that interlimb coordination is
strictly controlled during walking. However, the control mechanism remains unclear. In the present
study, we derived a quantity thatmodels the control of interlimb coordination duringwalking using two
coupled oscillators based on the phase reduction theory and Bayesian inference method. The results
were notwhatweexpected. Specifically,we found that the relative phase is not actively controlled until
the deviation from the antiphase condition exceeds a certain threshold. In other words, the control of
interlimb coordination has a dead zone like that in the case of the steering wheel of an automobile. It is
conjectured that such forgoing of control enhances energy efficiency and maneuverability. Our
discovery of the dead zone in the control of interlimb coordination provides useful insight for
understanding gait control in humans.

During human walking, the left and right legs move alternately, half a
stride out of phase with each other1. In general, various locomotion
parameters, such as gait frequency, stride length, and duty factor, change
if the gait speed varies. However, the antiphase relationship of the leg
motion remains unchanged. This is true even if the gait pattern changes
to running. By contrast, during walking in which there is left-right
asymmetry with regard to the body or environment, such as walking with
unilateral leg loading2, walking along a curved path3, or walking on a
split-belt treadmill4, the relative phase between the legs shifts from the
antiphase condition to compensate for the asymmetry. In addition, the
phase relationship fluctuates significantly during walking of elderly
people and patients with neurological disabilities, such as those caused by
stroke or Parkinson’s disease5–9. These findings indicate that appropriate
relative phase (that is, appropriate interlimb coordination) is important
for adaptive walking. This seems to suggest that the relative phase is
strictly controlled to remain the appropriate relative phase during
walking of healthy young people, with the relative phase quickly

returning to the appropriate relative phase after being perturbed away
from it.

To understand interlimb coordination during human walking, it has
been investigated how the relative phase between the motion of the left and
right legs depends on the situations described above. However, it remains
largely unclear towhat extent it is strictly controlled in each situation. This is
mainly because there are limitations on the degree to which the control of
interlimb coordination can be quantitatively elucidated due to the com-
plexity of neural dynamics, musculo-skeletal dynamics, and interactions
with the environment during walking. Elucidating the control of interlimb
coordinationwould not only clarify the adaptive strategy in humanwalking,
but also contribute to the development of rehabilitation techniques for
persons with gait disorders and gait assistive devices, such as robotic
exoskeletons10–12.

The present study aims to quantitatively clarify the control of interlimb
coordination during human walking by taking advantage of both data sci-
ence and dynamical systems theory, employing the Bayesian inference
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method13,14 and phase reduction theory15–20. Specifically, we model the
rhythmic motion of the left and right legs by two coupled limit-cycle
oscillators and describe these dynamics using two coupled phase oscillators.
The phase coupling function between the two oscillators represents the
nature of the control of the relative phase between themotion of the legs, i.e.,
interlimb coordination. To identify this phase coupling function in human
walking, we first measured the leg motion during walking of subjects on a
treadmill with intermittent perturbations in the belt speed. Next, from the
measured time-series data,we derived the phase coupling functionusing the
Bayesian inference method.We analyze the characteristics of the control of
interlimb coordination during humanwalking on the basis of this function.

Results
Walking experiment
We measured kinematic data through observation of eight healthy men
(Subjects A–H) during walking on a treadmill whose belt speed was inter-
mittently disturbed from 1.0m/s for a short time (Fig. 1a). More precisely,
the belt speed was temporarily increased or decreased by 0.6m/s over a
periodof 0.1 s, and then returned to 1.0m/s over a period of 0.1 s.We regard
the disturbance of the belt speed from 1.0m/s as an external perturbation,
written by p(t). This perturbation resulted in the sudden collapse of the
antiphase relationship of the leg motion and allowed us to investigate how
the relative phase of the leg motion recovered after being disturbed. Each
trial lasted approximately 60 s and contained ten disturbances duringwhich
the speed was varied. These disturbances were separated by intervals of
approximately 5 s, whichwas sufficiently long to allow the return to normal
steady-state walking. We used three types of perturbation conditions for
each trial: acceleration, deceleration, andmixed conditions.Only temporary
acceleration and deceleration perturbations of the belt speed were applied
under the acceleration and deceleration conditions, respectively, while both
perturbations were applied randomly under themixed condition. From the
measured kinematic data, we calculated the elevation angle of the limb axis,
which connects the hip and toe of each leg. The angles are denoted by φL(t)
and φR(t), where the subscripts L and R indicate the left leg and right leg,
respectively.

Modeling the control of interlimb coordination using coupled
phase oscillators
We model the motion of the left and right legs by two coupled limit-cycle
oscillators, whose phases are ϕL and ϕR ∈ (0, 2π], and describe these
dynamics using phase equations on the basis of the phase reduction

theory15–18 as follows (Fig. 1b):

_ϕLðtÞ ¼ ωL þ ΓLRðϕR � ϕLÞ þ ZLðϕLÞIðtÞ þ ξLðtÞ; ð1Þ

_ϕRðtÞ ¼ ωR þ ΓRLðϕL � ϕRÞ þ ZRðϕRÞIðtÞ þ ξRðtÞ: ð2Þ
Here,ωL andωR are the natural frequencies, ΓLR and ΓRL are phase coupling
functions, ZL and ZR are phase sensitivity functions, I is an external per-
turbation (rescaled from p(t)), and ξL and ξR are independent Gaussian
white noise terms that represent experimental uncertainty, which satisfy
〈ξi(t)〉=0 and hξiðtÞξjðsÞi ¼ σ2i δijδðt � sÞ for (i, j) = (L, R) and (R, L), where
σi is the intensity of the Gaussian noise ξi, and δij and δ(t) are the Kronecker
and Dirac delta functions, respectively. We determined ϕi(t) (i ∈ (L, R))
from the measured time series of the kinematic angle φi(t), and also
determined I(t) from the measured time series of the external perturbation
p(t). We determined the best values for ωi, Γij, and Zi ((i, j) = (L, R), (R, L))
from the time series of ϕi(t) and I(t) using the Bayesian inference
method14,17,21,22. We did the same for σi in order to determine the extent to
whichEqs. (1) and (2) are capable ofmodeling the dynamics of the observed
human walking. We deem that a small intensity indicates that our deter-
ministicmodel properly describes thedynamics and that the influenceof the
stochastic process is small. In previous studies14,21,22, ZiI was not used in the
identificationof thephase equation, and the parameter valueswere obtained
using data measured after external perturbations were applied. However,
including ZiI in this identification allowed us to determine the parameter
values more accurately through use of data measured while external per-
turbations were being applied.

Using phase equations derived through the procedure described above,
we investigate how the relative phase between the motion of the legs, i.e.,
interlimb coordination, is controlled during human walking. Specifically, if
we ignore the phase response to the external perturbation in Eqs. (1) and (2)
and focus on the transient dynamics after the perturbation is applied, we
obtain the following equation for the relative phase ΔLR: = ϕR − ϕL:

_ΔLR ¼ ωR � ωL þ ΓRLð�ΔLRÞ � ΓLRðΔLRÞ þ ξR � ξL
:¼ f ðΔLRÞ þ ξLR:

ð3Þ

Here, we have ξLR: = ξR − ξL, which satisfies 〈ξLR(t)〉 = 0 and

hξLRðtÞξLRðsÞi ¼ σ2LRδðt � sÞ, where σLR :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2R þ σ2L

p
, and f(ΔLR)

describes the deterministic dynamics of ΔLR, i.e., the control of interlimb

Fig. 1 | Schematic diagram of the study.
aMeasurement of the leg motion, represented by
φi(t) (i ∈ (L, R)), during walking on a treadmill with
a perturbation in the belt speed, represented by p(t).
b Two coupled limit-cycle oscillators with phases
ϕi(t) (i ∈ (L, R)) whose dynamics are described by
phase equations with phase coupling functions
Γij(ϕj − ϕi), phase sensitivity functions Zi(ϕi),
external perturbation I(t), and Gaussian noise ξi
((i, j) = (L, R), (R, L)). c Integration of the measured
data and phase equations to derive the dynamics of
the relative phase ΔLR, which reflects the control of
interlimb coordination. When ΔLR = π, corre-
sponding to B, the legs move in an exactly alter-
nating manner. As ΔLR moves away from π, the
deviation from this antiphase relationship increases
(see A and C, with ΔLR = ΔA and ΔC). If the interlimb
coordination is strictly controlled to maintain the
antiphase relationship, the function f(ΔLR), which
describes the control of interlimb coordination,
should intersect the horizontal axis at π with a steep
negative slope.
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coordination. If the antiphase relationship, ΔLR = π, is tightly maintained, it
is required that f(ΔLR) be 0 and have a steep negative slope at
ΔLR = π (Fig. 1c).

Figure 2 displays the time series of φi(t), ϕi(t), ΔLR(t), and p(t)
(i∈ (L, R)) for one representative subject (Subject G). There, an increase of
ϕi(t) by 2π represents one cycle of φi(t). It is seen that ΔLR(t) is greatly
disturbed in response to the external perturbation (highlighted ingreen) and
then returns to the neighborhood of π, the antiphase value.However, it does
not converge to π but rather fluctuates about this value. This suggests that
the dynamics of the relative phase possesses Lyapunov stability about π, not
asymptotic stability. We now proceed to elucidate how f(ΔLR) reflects this
stability.

Figure 3a, b display the functionsZi (i∈ (L, R)) and f(ΔLR), respectively,
evaluated from the data for one representative subject (Subject G). It is seen
that bothZL andZRpossess unimodal shapeswithpeaksnearπ and are close
to zero in the range from 0 to π/2 for all perturbation conditions. Because
ΔLRfluctuateswithin anarrow region aroundπ, as shown inFig. 2, therewas
not a sufficient amount of data outside this region for the evaluation of
f(ΔLR). Therefore, we limited our evaluation of f(ΔLR) to a range of 3 stan-
dard deviations around the mean of the observed ΔLR. Although we
expected that f(ΔLR) would intersect the horizontal axis at one point near π
with a steep negative slope, in accordancewith the strict control of interlimb
coordination, as shown in Fig. 1c, the results were not what we expected for
any of the perturbation conditions. Specifically, we found that although
f(ΔLR) has a steepnegative slope sufficiently far fromπ, it is close to zero near
π. Thus, we found that f(ΔLR) has a flat region with a value close to 0 in the
neighborhood of the antiphase condition. This result indicates that the
relative phase between the legs is not actively controlled until the deviation
from the antiphase condition exceeds a certain threshold, where the anti-
phase relationship is lost as shown in Fig. 3c. We obtained similar results
from the other subjects (see Supplementary Note 1 and Supplementary
Fig. 1). These characteristic properties of f(ΔLR) remained even when we
excluded ZiI from the phase equation in the determination of f(ΔLR) (see
Supplementary Note 2 and Supplementary Fig. 2). However, the form of
f(ΔLR) obtainedwith ZiI exhibits these characteristics more clearly than that
without ZiI.

Evaluating the flat region in the control of interlimb coordination
To clarify the universality of our findings in the control of interlimb coor-
dination represented by f(ΔLR), specifically, the existence of a flat region in
which f(ΔLR) is close to 0 in the neighborhood ofΔLR = π, and steep negative
slopes outside this flat region (Fig. 3c), we compared the results for f(ΔLR)
among the subjects. For this purpose,weapproximated f(ΔLR) by apiecewise
linear function to characterize these properties within 3 standard deviations
around the mean of the observed ΔLR, as shown in Fig. 4a. There, lC is the
length of the flat region, which reflects the extent to which the deviation

from the antiphase condition is ignored, and gL and gR are the slopes in the
regions to the left and right of the flat region, respectively, which reflect how
rapidly the deviation outside the flat region attenuates. These three para-
meters, lC, gL, and gR,were determined tominimize the discrepancybetween
the original and approximated functions using the grid search method
under the condition that the two functions coincide at the left and right
endpoints of the approximated function.When there is no flat region in the
original function, lC = 0 is satisfied. Figure 4b displays the approximate
forms of f(ΔLR) for the original forms appearing in Fig. 3b. (Similar results
for all subjects appear in Supplementary Note 3 and Supplementary Fig. 3.)
Figure 4c presents the mean and standard deviation of lC among the sub-
jects. It is seen that lC is approximately 0.4 and the deviation among the
subjects is small for all perturbation conditions. We confirmed that lC is
significantly larger than 0 using one-tailed t-test (p≪ 0.01, see Supple-
mentary Note 4). Indeed, the mean value of lC is much larger than its
standard deviation, and we thus conclude that lC has a positive value.
Figure 4d presents themean and standard deviation of gL and gR among the
subjects. It is seen that both ∣gL∣ and ∣gR∣ are approximately 2.0, sufficiently
large that deviations rapidly attenuate for all perturbation conditions. We
also confirmed that ∣gL∣ and ∣gR∣ are significantly larger than 0 using one-
tailed t-test (p≪ 0.01, see Supplementary Note 4). These results confirm
that f(ΔLR) has a flat region with a value close to 0 in the vicinity of ΔLR = π
and steep negative slopes outside this region for all perturbation conditions.

Discussion
Using time-series data measured during walking under perturbations that
disturbed the antiphase relationship between themotion of the left and right
legs (Fig. 2), we constructed a function that models the control of interlimb
coordination in human walking on the basis of the phase reduction theory
and Bayesian inference method. We found that this function has a flat
region with values close to 0 in the vicinity of the antiphase condition and
steep negative slopes outside this flat region for all subjects studied (Fig. 4).
This result indicates that the relative phase between the motion of the left
and right legs is not actively controlleduntil thedeviation fromthe antiphase
condition exceeds a certain threshold. In other words, there is a dead zone
like that in the case of the steeringwheel of an automobile. This differs from
our expectation that the relative phase is strictly controlled to maintain the
antiphase condition during walking (Fig. 1c). This unexpected finding was
obtained for the first time through the quantitative evaluation of the control
of interlimb coordination as a function of the relative phase.

Such a forgoing of control implies free for energy cost for the control.
This conjectures that the dead zone in the control of interlimb coordination
could contribute to energy efficiency during walking. In addition, the for-
going of control induced the relative phase between the legs to be neither
exponentially stable nor unstable, but neutral around the antiphase condi-
tion (Fig. 3c). Such a neutral stability could enhance maneuverability to

Fig. 2 |Measured and reconstructed time series for
one representative subject (Subject G) under
mixed conditions. The leg motion, represented by
φi(t) (i ∈ (L, R)), measured during walking was
transformed to the oscillator phases ϕi(t) (i∈ (L, R)),
from which we obtain the relative phase ΔLR. The
disturbance of the treadmill belt speed from 1.0 m/s
is represented as p(t). The green regions indicate the
times at which temporary acceleration or decelera-
tion is applied to the treadmill belt speed.
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change the walking behavior. For example, walking along a curved path
requires left-right asymmetry in thewalking behavior and a phase shift from
the antiphase condition3, which conjectures that the lack of control allows a
change in the walking direction. However, large deviations from the anti-
phase condition could result in a deterioration of gait performance. For this
reason, it is conjectured that when the deviation exceeds a certain threshold,
control is activated to reduce this deviation. Although the slopes of f(ΔLR)
outside theflat region vary among the subjects (Fig. 4d), the length of theflat
region, which determines the threshold beyond which the control is exer-
cised, does not (Fig. 4c). This result suggests that the threshold is a universal
characteristic inherent in the normal walking of healthy young people.

The present result was obtained by determining the specific shape of
the function controlling the interlimb coordination. The method employed
here relies to a large extent on recent developments in the identification of
the phase equation using big data14. In previous studies23,24, interlimb
coordination has also been investigated through use of the phase equation.
However, in those works, a simple form (for example a sine function) was
assumed for the coupling function in order to determine the function
controlling the interlimb coordination. In that case, there appeared no
region in which control is not exercised.

The forgoing of control in specific situations in which we expect strict
control also appears during quiet standing in humans. Because the upright
standing posture is inherently unstable, like an inverted pendulum, it is
natural to conjecture that posture is strictly controlled, in order to maintain
quiet standing, as we also conjectured that the relative phase of legmotion is
strictly controlled in order to maintain the antiphase condition during
walking. However, it has been suggested that posture is not actively con-
trolled until deviation from the quiet, upright state exceeds a state-
dependent threshold25–28. It is thus conjectured that interlimb coordination
duringwalking andquiet standinghave a commonmotor control strategy in
humans.

The leg motion consists of the motion of the thigh, shank, and foot.
However, the leg motion is nearly constrained to a two-dimensional space

determined by the length and orientation of the limb axis, which connects
the hip and toe29. The two-dimensional constraint appears in different
speeds30, in other gaits31,32, and in other species33. In addition, some research
has reported that there are neural systems that independently represent the
length and orientation of the limb axis in cats34,35, suggesting different
controls for the length and orientation of the limb axis. We focused on the
control of interlimb coordination only about the relationship between the
orientations of the left and right legs, and used the measured time series of
the limb axis orientation. As shown in SupplementaryNote 5, we confirmed
that similar results are obtained from multi-dimensional time series of the
legs when we focused on the limb axis orientation. We would like to
investigate the control of interlimb coordination about not only the limb
axis orientation but also the limb axis length in the future.

As mentioned in the previous paragraph, some studies have suggested
that the leg motion can be explained in two-dimensional space. However, it
is not completely constrained in two-dimensional space and thepart outside
of the two-dimensional space could affect the phase. Thus, usingmultipoint
measurementsmay improve the accuracy of phase calculation compared to
the method adopted in the present study, enabling us to reveal phase
adjustments in detail. There exist some proposed methods to efficiently
identify the phase using multipoint measurements20,36. Using such a
method, we conducted a preliminary investigation into the control of
interlimb coordination and obtained qualitatively similar results, although
the flat region was wider than the result shown in this paper. Determining
which method is appropriate for investigating the control of leg motion is
highly dependent on the control mechanism of human gait and thus
remains a topic for future study.However, our key finding—the existence of
a dead zone in the interlimb coordination—remains consistent and robust
across the methods we examined. This reinforces the validity and sig-
nificance of our results regardless of the specific method used.

Because each leg is controlled by the corresponding side of the spinal
cord, which has the ability to generate rhythm independently37–39, each leg
can operate independently. This independence is manifested in the leg

Fig. 3 | Results for the control of interlimb coordination for one representative
subject (Subject G). a Phase sensitivity functions Zi(ϕi) (i ∈ (L, R)) for acceleration
(Acc), deceleration (Dec), and mixed (Mix) conditions. b Control of interlimb
coordination, represented by f(ΔLR). The vertical dotted lines indicate 3 standard
deviations from the mean of the observed ΔLR. In the region outside the vertical
dotted line, the estimated function f(ΔLR) is displayed in pale color. The function
f(ΔLR) is shifted in order to place the mean of the observed values of ΔLR at π to
improve visualization. The histogram displays the noise intensity, σLR. (An expan-
ded histogram, with values 30 times larger than the actual values, is also given.) The

mean and standard deviation of the derived noise intensity for all results are 0.0106π
and 0.0021π, respectively. These values are too small to cause deviation of ΔLR from
the flat region of f(ΔLR). c A schematic diagram for the interpretation of f(ΔLR). The
flat region near ΔLR = π at B (neutral stability) and the steep negative slope in the
regions away from π reflect the fact that the relative phase between the legs is not
actively controlled until the deviation from π exceeds a threshold (ΔA − π at A and
ΔC − π at C), where motion of the legs deviates significantly from the antiphase
relationship.
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movements on a split-belt treadmill with the two belts running at different
speeds, in which case the legs exhibit asymmetrical left-right stepping4,40–42.
Even though each side of the spinal cord can produce rhythmic movement
in each leg separately, the motions of left and right legs are generally
coordinated during walking. For example, a reciprocal relationship is
maintained between the legs such that only one leg enters the swing phase at
a time43. Commissural interneurons contribute to interlimb coordination by
mediating interactions between the rhythm-generating locomotor circuits
located on each side of the spinal cord44–47.We plan to investigate the neural
mechanism governing the dead zone in the control of interlimb coordina-
tion in future research. In particular, it would be useful to use the phase
reduction method15–18 for a detailed model of the neural system including
the musculoskeletal system to derive the two-coupled-oscillator model to
evaluate the control of interlimb coordination. The comparison of the
results between this theoretical approach and our data-driven approachwill
provide useful insight into the neural mechanism.

Although the present study focused only on the normal walking of
healthy young people, our method has great potential for broader applica-
tion. For example, because our method can determine the phase coupling
functions ΓLR and ΓRL independently, it is applicable to the investigation of
the control of interlimb coordination during walking with left-right asym-
metry, for example in the case of a curved path3 or a split-belt treadmill4, or
in the case of hemiplegic stroke patients9. In addition, the relative phase
between themotionof the left and right legsduringwalking in elderlypeople
and patients with Parkinson’s disease fluctuates significantly5–8. It has been
suggested that, unlike young, healthy people, elderly people and patients
with Parkinson’s disease do exercise strict control in quiet standing24. We
plan to investigate how the forgoing of control in interlimb coordination

during walking changes in elderly people and patients with Parkinson’s
disease.We believe that our method will contribute to the understanding of
not only motor control strategies employed by young, healthy humans, but
also motor disorder mechanisms in elderly people and patients with neu-
rological disabilities. Finally, we point out that our method derives results
using datameasuredwhen the relative phase between the legs recovers after
being disturbed by intermittent perturbations of short duration. Although
we confirmed that reasonable results were obtained from relatively small
amount of measured data in young, healthy humans (see Supplementary
Note 6), more data would be necessary in elderly people and patients with
neurological disabilities. At present, our approach has the limitation that it
does not allow us to increase the number of perturbations within a period
and force subjects towalk for a long time. In the near future,wewill improve
our method to reduce the burden on subjects and develop applications for
the diagnosis and treatment of gait irregularities.

Methods
Measurement
To extract the phase coupling functions that govern the control of interlimb
coordination as modeled by the phase equation, we use kinematic data
measured during walking of eight subjects. However, we frequently
encountered difficulty in extracting these functions in the case of steady-
state walking under normal conditions, because in such situations, the left
and right legs are highly synchronized in the antiphase relationship, and for
this reason, the measured data provide little information regarding the
interaction between the legs. To overcome this difficulty, we varied the belt
speed of the treadmill on which the subjects walked in order to disrupt the
antiphase relationship between the legs. In response to such perturbations,

Fig. 4 | Characteristics of the control of interlimb coordination, represented by
f(ΔLR). a Approximation of f(ΔLR) by a piecewise linear function within 3 standard
deviations (3SD) (vertical dotted lines) from the mean of the observed ΔLR. The
quantity lC is the length of the flat region in which we have f(ΔLR) = 0, and gL and gR
are the slopes in the left and right outside regions, respectively. The three parameters
lC, gL, and gRwere determined by the left and right endpoints of the flat region (white
circles) such that the discrepancy between the original and approximated functions
is minimized within the region between the two vertical dotted lines under the

condition that the approximated function and the original function coincide at the
left and right endpoints of the approximated function (black circles). bResult for the
approximation of f(ΔLR) in Fig. 3b under acceleration (Acc), deceleration (Dec), and
mixed (Mix) conditions. cMean and standard deviation of lC among the subjects,
where “All” indicates the statistical result from all perturbation conditions. The dots
along the bars represent data points (n = 8 for Acc andDec, n = 6 forMix, and n = 22
for “All”). d Mean and standard deviation of gL and gR among the subjects.
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the control of interlimb coordination was exercised, and this allowed us to
extract thephase coupling functions fromthemeasureddata. This studywas
approved by the Ethics Committee of Doshisha University. Written
informed consent was obtained from all subjects after the procedures had
been fully explained. All ethical regulations relevant to human research
participants were followed. A part of the measured data was used in
refs. 48,49 for purposes different from that of the present study.

The subjects walked on a treadmill (ITR3017, BERTEC corporation)
with a belt speed of 1.0 m/s. We used a motion capture system (MAC3D
Digital RealTime System; NAC Image Technology, Inc.) to measure the
kinematic data with a sampling frequency of 500Hz. Reflective markers
were attached to the subjects’ skin at several easily identifiable positions on
both the left and right sides: the head, the top of the acromion, the greater
trochanter, the lateral condyle of the knee, the lateral malleolus, the head of
the second metatarsal, and the heel. We used the markers at the greater
trochanter of the hip and the head of the second metatarsal of the foot to
calculate the orientations of the limb axis φL(t) and φR(t) in Fig. 1a. We
measured the belt speed of the treadmill using a rotary encoder with a
sampling frequency of 500Hz.

We applied short duration intermittent perturbations to the walking
behavior by suddenly changing the belt speed. We used two types of per-
turbations: temporary acceleration and temporary deceleration. The tem-
porary acceleration and deceleration perturbations increased and decreased
the belt speed, respectively, by 0.6m/s over a period of 0.1 s. The belt speed
then returned to the original speed of 1.0m/s in the following 0.1 s. The
perturbations began approximately 10 s after the start of the measurement
process and were applied approximately every 5 s thereafter. Each trial
included ten perturbations and lasted approximately 60 s. We used three
types of perturbation conditions for each trial: acceleration, deceleration, and
mixed conditions. Under the first two conditions, only temporary accelera-
tion and deceleration perturbations, respectively, were applied, while under
the mixed condition, both types of perturbations were applied randomly.

All subjects (Subjects A–H) were healthy men (n = 8; age 21–23 years;
weight 50.2–79.5 kg; height 161–182 cm). Although we recruited partici-
pants regardless of gender, no women joined, which would be a drawback.
Subjects A and B performed 25 trials under both acceleration and decel-
eration conditions (with the exception that Subject A performed 24 trials
under the deceleration condition). The other six subjects (Subjects C–H)
performed 15 trials under each of the perturbation conditions. Each trial
consisted of between 805 and 1257walking cycles in the case of acceleration
conditions, between 781 and 1248 walking cycles in the case of deceleration
conditions, and between 787 and 852 walking cycles in the case of mixed
conditions.

Data processing
In preparation for fitting the various quantities appearing in the phase
equation with the measured time-series data, we first transformed the time
series of the kinematic angle φi(t) to those of the oscillator phase, ϕi(t). (We
use the subscript i∈ (L, R), which indicates the left or right leg, instead of L
and R in the subsequent sections.) In addition, we transformed the time
series of the external perturbation p(t) to those for the rescaled external
perturbation I(t).

Oscillator phase. First, we obtained the time series for the protophase
θi(t) from the time series for the kinematic angle φi(t) using the Hilbert
transform50 of φi(t), φH

i ðtÞ, as

AiðtÞ exp iθiðtÞ
� � ¼ φiðtÞ þ iφH

i ðtÞ; ð4Þ

where Ai(t) is the amplitude. The phase of an uncoupled limit-cycle
oscillator is generally defined in phase reduction theory as always
increasing at a constant natural frequency ( _ϕ ¼ ω for phase ϕ and
natural frequency ω)15–18. However, the protophase θi(t) in Eq. (4) does
not exhibit such a linear time evolution and is not suitable for the phase
equation. To statistically rectify this problem, we transformed θi(t) to

ϕi(t) as described in refs. 19,51 such that it tends to evolve linearly in time
with the natural frequency through the definition

ϕiðθiÞ ¼ 2π
Z θi

0
giðθ0Þdθ0; ð5Þ

where gi(θi) is the probability density function of θi(t) calculated from the
time-series data for all trials of the walking experiments for each subject and
each perturbation condition. We used ϕi(t) as the oscillator phase.

External perturbation. To make the phase sensitivity function Zi a
dimensionless quantity, we introduced I(t) through the definition
IðtÞ ¼ 2πpðtÞ=ð�v�TÞ, where �v is the average treadmill belt speed, �T is the
average gait cycle duration, and �v�T is the average stride length for one
gait cycle.

Outlier exclusion. Unexpected events during walking, such as stum-
bling, yields outliers in the derivative of the time series of the oscillator
phase. This reduces the accuracy of the fitting. To address this problem,
we evaluated the derivative of the oscillator phase at time tτ, vτi , as follows:

vτi ¼
ϕiðtτþ1Þ � ϕiðtτÞ

tτþ1 � tτ
: ð6Þ

We performed the Smirnov-Grubbs test on the sets of vτL and vτR to
determine the times at which outliers occur (p < 0.05) from the time-series
data of all trials. In this procedure, we excluded time series during which
external perturbations were applied (green regions in Fig. 2) from
consideration. If an outlier appeared at some time tτ, the data for ϕi(tτ)
and I(tτ) were excluded from the original data set. Outliers were often
detected during touch-down events, when the belt speed exhibited small,
sudden variations (Fig. 2).

Fitting the phase equations
Using the time series of the oscillator phase ϕi(t) and external perturbation
I(t), we fit the parameters in the phase equations (Eqs. (1) and (2)) for each
subject and perturbation condition. (We obtained 22 sets of results, corre-
sponding to two perturbation conditions for two subjects and three per-
turbation conditions for six subjects.) Specifically, we obtained values for the
natural frequency ωi, the phase coupling function Γij, and the phase sensi-
tivity function Zi on the basis of the Bayesian inference method14,17,21,22.

Phase coupling function. Because the phase coupling function Γij(ψ) is
2π-periodic based on the phase reduction theory15–18, it can be repre-
sented by a Fourier series as

ΓijðψÞ ¼ að0Þij þ
XMij

m¼1

aðmÞ
ij cosmψ þ bðmÞ

ij sinmψ
� �

; ð7Þ

where aðmÞ
ij (m = 0, 1,…,Mij) and b

ðmÞ
ij (m = 1, 2,…,Mij) are coefficients that

determine the shape of the phase coupling function, and Mij is the max-
imum order of the Fourier series. When Mij = 0, only the constant term
remains, and we have ΓijðψÞ ¼ að0Þij . An appropriate value is necessary for
Mij, and it is determined through a model selection, as explained below. To
avoid redundancy of the two constant terms ωi and a

ð0Þ
ij in Eqs. (1), (2), and

(7), we define ω̂i :¼ ωi þ að0Þij and Γ̂ijðψÞ :¼ ΓijðψÞ � að0Þij .

Phase sensitivity function. Because the phase sensitivity function Zi(ψ)
is also 2π-periodic based on the phase reduction theory15–18, it can be
represented by a Fourier series as

ZiðψÞ ¼ cð0Þi þ
X5
m¼1

cðmÞ
i cosmψ þ dðmÞ

i sinmψ
� �

; ð8Þ
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where cðmÞ
ij (m = 0, 1, …, 5) and dðmÞ

ij (m = 1, 2, …, 5) are coefficients that
determine the shape of the phase sensitivity function. Because the phase
sensitivity function is often composed of lower-order terms, we used a
maximum order of 5. We confirmed that the phase sensitivity functions
obtained with this restriction were almost identical to those obtained using
higher maximum orders up to 10.

Bayesian inferencemethod. Substituting Eqs. (7) and (8) into the phase
equations (1) and (2), we obtain

_ϕiðtÞ ¼ ω̂i þ
XMij

m¼1

aðmÞ
ij cosmΔij þ bðmÞ

ij sinmΔij

� �

þ cð0Þi þ
X5
m¼1

cðmÞ
i cosmϕi þ dðmÞ

i sinmϕi

� � !
IðtÞ þ ξiðtÞ;

ð9Þ

where Δij = ϕj− ϕi ((i, j) = (L, R), (R, L)). Then, using the time series of the
oscillator phase fϕiðtτÞgi;τ and those of the external perturbation fIðtτÞgτ
(τ = 0, 1, …, T), where T is the sample number for each subject
and perturbation condition, we obtain the unknown parameters

ω̂i, faðmÞ
ij ; bðmÞ

ij g
i;j;m

, fcðmÞ
i ; dðmÞ

i gi;m, and D̂i (:¼ σ2i
Δt), where Δt is the sampling

interval. For simplicity, we define the following:

wi :¼ ω̂i; a
T
ij ; c

T
i

h iT
;

aij :¼ að1Þij ; b
ð1Þ
ij ; a

ð2Þ
ij ; b

ð2Þ
ij ; . . . a

ðMijÞ
ij ; b

ðMijÞ
ij

h iT
;

ci :¼ cð0Þi ; cð1Þi ; dð1Þi ; cð2Þi ; dð2Þi ; . . . cð5Þi ; dð5Þi

h iT
:

Here, wi, whose dimension is Ni (: = 12 + 2Mij), represents all of the
unknown parameters of one phase equation, except for D̂i, and aij and ci
represent the unknown parameters of the phase coupling function, Γ̂ij, and
phase sensitivity function, Zi, respectively.

Following the Bayesian estimationmethod13,14, we define the likelihood
function using a Gaussian distributionN as follows:

P fϕiðtτÞgi;τ wi; D̂i; fIðtτÞgτ
��� �

¼
YT�1

τ¼0

N vτi ω̂i þ ZiðϕiðtτÞÞIðtτÞ þ Γ̂ijðΔijðtτÞÞ; D̂i

���� �
:

ð10Þ

This function represents the probability to reproduce the time series
fϕiðtτÞgi;τ when the parameters wi and D̂i and the time series fIðtτÞgτ are
given. We adopt a Gaussian-inverse-gamma distribution IG for the
conjugate prior distribution as follows:

Pprior wi; D̂i

� � ¼ N wi χ
old
i ; D̂iΣ

old
i

��� �IG D̂i α
old
i ; βoldi

��� �
: ð11Þ

Here, the hyperparameters χold and Σold determine the mean and
covariance matrices, respectively, of the Gaussian distribution N , and
the other hyperparameters, αold and βold, determine the shape and
scale, respectively, of the Gaussian-inverse-gamma distribution IG,
which is given by

IG xjα; β� � ¼ βα

ΓðαÞ x
�α�1 exp � β

x

� 	
;

where Γ(⋅) is the gamma function. In particular, the first element of χoldi
controls ω̂i, and the other elements control aij and ci. In this study, the

hyperparameters in the prior distribution were set as

χoldi
� �

k :¼
hvτi iτ k ¼ 1

0 k≠ 1



;

Σold
i :¼ 0:1Ei;

αoldi ¼ βoldi ¼ 2;

where Ei is the Ni × Ni identity matrix. According to Bayes’ theorem, we
obtain the posterior distribution of wi and D̂i from the product of the
likelihood function and prior distribution:

Ppost wi; D̂i fϕiðtτÞgi;τ ; fIðtτÞgτ
���� �

/ P fϕiðtτÞgi;τ wi; D̂i; fIðtτÞgτ
��� �

× Pprior wi; D̂i

� �
:

ð12Þ

Update rule for hyperparameters. Because of the conjugacy of the prior
distribution (Eq. (11)) to the likelihood function (Eq. (10)), the posterior
distribution (Eq. (12)) is obtained as a Gaussian-inverse-gamma dis-
tribution IG as follows:

Ppostðwi; D̂iÞ ¼ N wi χ
new
i ; D̂iΣ

new
i

��� �IG D̂i α
new
i ; βnewi

��� �
:

Therefore, it is characterized by the hyperparameters χnewi , Σnew
i , αnewi , and

βnewi in the same way as the prior distribution (Eq. (11)).
The update rule for the hyperparameters is derived in a simple way in

accordance with the Bayesian update rules. First, we define the matrix
Fi 2 RT ×Ni and the vector vi 2 RT as follows:

Fi :¼
1 g0i

� �T
h0ij
� �T

..

. ..
. ..

.

1 gT�1
i

� �T
hT�1
ij

� �T

2
66664

3
77775;

vi :¼ v0i ; v
1
i ; . . . ; v

T�1
i

� �T
;

where the vectors gτi and hτij are given by

gτi ¼ IðtτÞ 1; cosϕiðtτÞ; sinϕiðtτÞ; cos 2ϕiðtτÞ; sin 2ϕiðtτÞ; . . . ; cos 5ϕiðtτÞ; sin 5ϕiðtτÞ
� �T

;

hτij ¼ cosΔijðtτÞ; sinΔijðtτÞ; cos 2ΔijðtτÞ; sin 2ΔijðtτÞ; . . . ; cosMijΔijðtτÞ; sinMijΔijðtτÞ
h iT

:

Then, the hyperparameters in the posterior distribution are calculated as
follows:

χnewi ¼Σnew
i FT

i vi þ ðΣold
i Þ�1

χoldi

� �
;

Σnew
i ¼ Σold

i

� ��1 þ FT
i Fi

� ��1
;

αnewi ¼ αoldi þ T
2
;

βnewi ¼ βoldi þ 1
2

vTi vi þ χoldi
� �T

Σold
i

� ��1
χoldi � χnewi

� �T
Σnew
i

� ��1
χnewi

� �
:

Finally, the unknown parameters wi and D̂i of the phase equation (Eq. (9))
are determined from the mean of the posterior distribution.

Model selection. For the phase coupling function (Eq. (7)), we need to
choose the model complexity, i.e., an optimal maximum orderMij of the
Fourier series. For example, ifMij is too small, therewill not be sufficiently
many terms to correctly represent the function, whereas ifMij is too large,
there will unnecessarily be higher-order harmonic terms involved in
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representing the function, and this will lead to overfitting. Following
standard Bayesian methods13, we determined an optimal value for Mij

under the assumption that this value maximizes the model evidence
PME for 0≤Mij≤20 as follows:

Mij ¼ argmax
0≤M0

γν ≤ 20
PME fϕiðtτÞgi;τ M0

γν

���� �
; ð13Þ

PME fϕiðtτÞgi;τ ∣M0
γν

� �
¼

P fϕiðtτÞgi;τ wi; D̂i; fIðtτÞgτ
��� �

Pprior wi; D̂i

� �
Ppost wi; D̂i fϕiðtτÞgi;τ ; fIðtτÞgτ

���� � :

ð14Þ

The values of ΔLR are distributed within a narrow region near π, and the
descriptionprovidedby the phase coupling function is limited to this region.
The lack of data outside this region results in the overfitting. Using this
method, the optimal value forMij was determined in each case to be in the
range 11–20.

Statistics and reproducibility
We used one-tailed t-test to confirm the flat region around the antiphase
relationship and the steep negative slopes outside the flat region in the
control of interlimb coordination by rejecting that the means of the flat
region and the slopes were zero, respectively (n = 22; p ≪ 0.01). The data
points for the t-test were obtained by approximating the estimated function
of the control of interlimb coordination with a piecewise linear function for
each subject and perturbation condition.

Data availability
Source data for graphs presented in the main figures can be found in Sup-
plementary Data. Other data that support the findings of this study are
available from the authors upon reasonable request.

Code availability
A sample program (Python code) used in this study is available from the
authors upon reasonable request.
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