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1 Introduction

Lattice gauge theories give the foundation of strongly coupled quantum field theories (QFTs).
The Monte Carlo simulation based on its Euclidean path integral has uncovered various non-
perturbative aspects, including properties of hadrons in quantum chromodynamics (QCD),
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and those results are successfully comparable to experimental results [1]. One of the notable
achievements in the Lattice Monte Carlo study is the precise prediction of the hadron mass
spectra with only a few input parameters. Indeed, the mass spectra of the various hadrons
cannot be explained by the sum of the renormalized quark masses of the constituents, and
the contributions from interactions need to be evaluated non-perturbatively. However, it
is difficult to perform the Monte Carlo simulation when it suffers from the sign problem,
which typically appears in the non-zero chemical potential or with the topological θ term
in QCD [2]. We need to expand the scope of numerical studies of QFTs to uncover the
new physics hidden in such regions.

Quantum computing and tensor network methods based on the Hamiltonian formalism of
lattice gauge theories [3] have recently gotten attention as an alternative numerical approach.
These methods directly approximate wave functionals of low-energy states, so they are based
on a completely different criterion from that of the importance sampling. The development
of these complementary frameworks may enable us to obtain new information that is difficult
to extract from the Euclidean path integral.

With the current of the times, we have developed three distinct methods for computing
mass spectra of lattice Hamiltonian gauge theories in ref. [4]: (1) The correlation-function
scheme extracts the particle mass by measuring the spatial correlator, which is similar to the
conventional Euclidean method. (2) The one-point-function scheme utilizes the boundary
effect as a source of the composite particles, and the mass is computed from the exponential
decay of the one-point function. (3) The dispersion-relation scheme directly computes the
dispersion relation by generating the low-lying states at finite volume, where the states of
each meson with the momentum excitation can be identified via the quantum numbers. The
last scheme, in particular, is specific to the Hamiltonian formalism, unlike the other two.
In ref. [4], we applied these methods to the 2-flavor massive Shcwinger model at θ = 0
using the density-matrix renormalization group (DRMG) [5–8], and we confirmed that the
mass spectra obtained by these methods are almost consistent with each other and also
with theoretical predictions.

The Schwinger model [9] is the (1 + 1)d quantum electrodynamics, showing charge
confinement as 4d QCD. Its Euclidean formulation suffers from the sign problem at nonzero θ
angles, but many of its nonperturbative properties are analytically calculable in the massless
limit [10–22]. Numerically, the θ-dependence of the pion mass for the 2-flavor case is computed
using the reweighting technique for the conventional importance sampling method, which gives
reliable results up to θ/2π ≲ 0.25 and confirms some analytic predictions [23]. However, the
sign problem becomes severe beyond that point and we need further different approaches to
numerically study the physics at larger θ. Hence, the Schwinger model provides an interesting
testing ground for new computational methods, and indeed there have been many studies on
the model with nonzero θ by the tensor network or quantum algorithm [24–48].1

1As another Hamiltonian-based approach, there is a numerical study with the light-cone quantization [49].
The tensor network in the Lagrangian formalism also provides a way to be liberated from importance
sampling [50–54]. For a specific class of (1 + 1)d gauge theories including the Schwinger model, the dual
variable formulation [55–59] or the bosonization [60, 61] can be used to eliminate the sign problem in the
Monte Carlo methods. Among these options, we focus on the Hamiltonian formalism written by the spin
variables to fit the quantum computations and tensor networks.
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In this paper, we extend our previous study [4] to investigate the physics of the 2-flavor
Schwinger model in the θ ̸= 0 regime. At θ = 0, the mesons can be characterized by their
quantum numbers JP G, where J , P , and G are the isospin, parity, and G-parity, respectively.
There are three types of stable mesons; pion πa (JP G = 1−+), sigma meson σ (JP G = 0++),
and eta meson η (JP G = 0−−). The low-energy spectrum has been studied analytically using
the bosonization technique [62]. Furthermore, the WKB-type approximation predicts that
the sigma-meson mass has the specific ratio with the pion mass, Mσ/Mπ =

√
3, and these

are confirmed in our previous work [4]. On the other hand, at θ ̸= 0, the situation will
be changed: first, the parity and G-parity are no longer good quantum numbers at θ ̸= 0,
and the symmetries can no longer distinguish σ and η. This causes the σ-η mixing and the
decay channel η → ππ also opens. Second, the θ-dependence of the pion mass is predicted
to behave as Mπ(θ) ∼ g|(m/g) cos(θ/2)|2/3 when the fermion mass is small [62], and the
mass of the sigma meson is also predicted to satisfy the relation Mσ(θ)/Mπ(θ) =

√
3, but it

has not yet been confirmed by the first-principle calculations because of the sign problem.
Moreover, substituting θ = π into these formulas, the spectrum is expected to become massless.
Indeed, it is suggested that the massive 2-flavor Schwinger model at θ = π shows almost
conformal behavior and is described by the SU(2)1 Wess-Zumino-Witten (WZW) model with
the marginally relevant JLJR deformation [42, 62]. From these theoretical predictions, the
extension of the calculation methods from θ = 0 to θ ̸= 0 is somewhat non-trivial, even
in the Hamiltonian formalism.

We performed the DMRG calculations and obtained the mass spectra mainly by the
two types of calculation methods, namely the one-point-function scheme and the dispersion-
relation scheme with several improvements to the ones originally proposed in ref. [4]. We
found that we can precisely calculate the mass spectra of stable mesons, and the results of
these two schemes are consistent with each other even in the θ ̸= 0 regime. Furthermore,
our results indicate that the θ-dependence of the pion mass agrees with the analytic result,
| cos(θ/2)|2/3, and the sigma meson is

√
3 times heavier than the pion as predicted. We also

confirmed the nearly conformal behavior at θ = π by comparing the one-point functions of
the conformal theory on a finite interval with its analytic calculation.

This paper is organized as follows. In section 2, we revisit the continuum 2-flavor
Schwinger model and its bosonization focusing on the low-energy mass spectrum. We review
the three methods for computing the mass spectrum in section 3 and discuss the extension to
θ ̸= 0 in section 4. In section 5, we present our simulation results of the mass spectra by the
one-point and dispersion-relation schemes. In section 6, we show the one-point functions at
θ = π and compare them with the analytic results. Section 7 is devoted to the conclusion
and discussion. In appendix A, we explain the analytic calculation of the one-point function
in the WZW model on a finite interval. Appendix B shows the definition of the observables
used in the analysis. In appendix C, we summarize the results of the correlation-function
scheme for reference. In appendix D, we show the result of the one-point-function scheme
with a different setup from the main part. In appendix E, we discuss the behavior of the
one-point and correlation functions of the unstable eta meson.
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2 Review of the 2-flavor Schwinger model with the θ term

In this section, we review the basic properties of the 2-flavor Schwinger model.2 The
Lagrangian of the massive 2-flavor Schwinger model with the Minkowski metric ηµν =
diag(1,−1) is given by

L = − 1
4g2FµνF

µν + θ

4πϵµνF
µν +

2∑
f=1

[
iψ̄fγ

µ (∂µ + iAµ)ψf −mψ̄fψf

]
, (2.1)

where Fµν = ∂µAν − ∂νAµ is the field strength, g is the gauge coupling, θ is the vacuum
angle describing the background electric flux, m is the flavor-symmetric fermion mass, and
the index f labels the flavor. We note that the mass dimension is [g] = [m] = 1, and we
focus on the strongly-coupled regime, 0 < m ≪ g.

2.1 Composite particles and global symmetry at θ = 0

The Coulomb interaction in (1+1)d is the linear potential. Therefore, the massive multi-flavor
Schwinger model is an example of confining gauge theories, and its particle spectrum for
0 < m ≪ g is analogous to the meson spectrum of (3 + 1)d QCD.

Let us first summarize the physics at θ = 0. For nonzero fermion mass m > 0, the
2-flavor Schwinger model has the mass gap and the asymptotic particle states are well defined.
The global symmetry provides the quantum numbers for their classification, and the global
symmetry at θ = 0 is given by

SU(2)V

Z2
× (Z2)G. (2.2)

Here, SU(2)V /Z2 is the isospin symmetry, which acts on the fermions as a vector-like symmetry,
ψ → exp(iεaτa)ψ and ψ̄ → ψ̄ exp(−iεaτa), and we denote its generators as Ja,

Ja = 1
2

∫
dx ψ̄γ0τaψ. (2.3)

The G-parity (Z2)G is defined by the combination of the charge conjugation and the π

rotation in the isospin space,

G = CeiπJy . (2.4)

In addition to these internal symmetries, we also have the parity quantum number P .
When θ = 0, there are three types of the stable particles [62]. By analogy to QCD,

we call them pion, sigma meson, and eta meson, and they correspond to the lowest energy
states for the following composite operators:

πa|θ=0 = −iψ̄γ5τaψ (JP G = 1−+), (2.5)
σ|θ=0 = ψ̄ψ (JP G = 0++), (2.6)
η|θ=0 = −iψ̄γ5ψ (JP G = 0−−). (2.7)

2For the original reference, see ref. [62], and section 2 of our previous paper [4] would also be useful.
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Here, JP G show their isospin, parity, and G-parity quantum numbers. When there is no room
for confusion, we abbreviate the pions πa as π for simplicity. For m≪ g, the masses of the
pion and sigma meson scale as (m/g)2/3, and they have the specific ratio Mσ/Mπ =

√
3 [62].

Thus, the decay process σ → ππ is energetically forbidden, and the sigma meson is a stable
particle, unlike the case of (3 + 1)d QCD. On the other hand, the eta meson has a heavier
mass, Mη ∼ µ =

√
2
πg, compared with the pion and sigma meson, but it is stable due to

the parity and G-parity quantum numbers. In the next subsection, we discuss how the θ
term changes the physics discussed here.

2.2 The particle spectrum at θ ̸= 0

The θ term has an important effect on the low-energy physics. The structure of the internal
global symmetry is strongly affected by the value of θ, and it can be summarized as

SU(2)V

Z2
×


(Z2)G (θ = 0),
nothing (θ ̸= 0, π),
(Z2)chiral+G (θ = π).

(2.8)

The θ term violates the G-parity explicitly as it is odd under the charge conjugation, which
makes the physics at θ = 0 special. We note that θ = π is another special point: although
the G-parity itself is violated, (Z2)chiral+G ⊂ SU(2)L × (Z2)G is kept intact, where SU(2)L is
the chiral isospin transformation acting only on the left-moving fermions. In this section, we
consider the case 0 < θ < π and postpone our discussion for θ = π to the next subsection.

The Abelian bosonization gives the useful tool to analyze this system when m≪ g [62],
and the effective Lagrangian after integrating out the U(1) gauge field becomes

Leff [η, φ] = 1
2
[
(∂η)2 − µ2η2

]
+ 1

4π (∂φ)2 + 2CmρNρ

[
cos

(√
2πη − θ

2

)
cosφ

]
, (2.9)

where µ2 = 2g2/π and C = eγ/(2π), and the symbol Nρ[·] denotes the normal ordering at
the scale ρ [63]. Here η is the non-compact scalar, and φ is the 2π-periodic scalar. In this
description, the isospin SU(2)V /Z2 symmetry is not manifest in the Lagrangian, but it is
realized as the symmetry acting on solitons at the quantum level. The G-parity is given by
η → −η, and we can explicitly see that it is a good symmetry only at θ = 0. At θ = π, the
G-parity η → −η associated with φ→ φ+ π is the symmetry of this Lagrangian, and this
is (Z2)chiral+G. We note that the parity P is also violated for nonzero θ, but P ′ = P × G

is a good quantum number for any values of θ.
Since the η field has the mass µ at the tree level, we can integrate it out to obtain

the effective theory for the 2π-periodic field φ. In the leading order, this gives the sine-
Gordon theory, and we can analyze it by applying the optimized perturbation and the WKB
analysis [62]. The lightest particle state turns out to be an iso-triplet pseudoscalar, which
we identify as the pion, and its mass Mπ(θ) is predicted to behave as

Mπ(θ) ∼
∣∣∣∣m√

µ cos θ2

∣∣∣∣ 2
3
. (2.10)
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The next lightest state is an iso-singlet scalar, and we identify it as the σ meson. The WKB
analysis gives a specific mass relation between the pion and sigma-meson masses,

Mσ(θ) =
√

3Mπ(θ). (2.11)

Up to this point, the physics is the same between θ = 0 and nonzero θ except that the pion
and sigma-meson masses have the nontrivial θ dependence.

Let us move to the discussion on η. The computation of the self-energy for η field is
not so straightforward due to the potential infrared divergence [62]. We can still understand
some heuristic behaviors of the eta meson from the symmetry and the effective Lagrangian.
From the viewpoint of symmetry, the θ term violates both the parity and the G-parity, and
thus η is no longer distinguished from σ or ππ scattering states by quantum numbers. This
suggests the presence of the η-σ mixing, η ↔ σ, and also the opening of the decay channel,
η → ππ. Indeed, the interaction term of (2.9) for η gives

cos
(√

2πη − θ

2

)
cosφ =

(
cos θ2 +

√
2πη sin θ2 + · · ·

)
cosφ, (2.12)

which contains the η cosφ vertex at θ ̸= 0. Since the cosφ vertex creates the one-particle
state of σ and also the s-wave scattering states of ππ, this gives the microscopic explanation
of the η-σ mixing and the η → ππ decay.

The scalar fields η and φ in (2.9) are related to the fermion bilinear operators as

ψ̄f
1 ± γ5

2 ψf = −1
2CρNρ

[
exp

(
±i
(√

2πη − θ

2 − (−1)fφ

))]
, (2.13)

for each flavor f = 1, 2. This suggests that the meson operators, (2.5)–(2.7), should be rotated
by the axial transformation to obtain the correct one-particle states, and we find

πa = −iψ̄ exp
(
i
θ

2γ
5
)
γ5τaψ, (2.14)

σ = ψ̄ exp[i
(
θ

2 + ω(θ)
)
γ5]ψ, (2.15)

η = −iψ̄ exp[i
(
θ

2 + ω(θ)
)
γ5]γ5ψ. (2.16)

For the sigma and eta mesons, the finite m effect gives the mixing as we have seen in (2.12), and
the extra diagonalization is required, which is indicated by ω(θ). The optimized perturbation
suggests that ω(θ) is of the order of (m/g)4/3 sin(θ/2) cos1/3(θ/2) at the leading order, so
this extra rotation vanishes at θ = 0 and θ = π. For the pion, there is no mixing counterpart
due to the absence of the iso-triplet scalar particle, and thus such an extra rotation would
not exist. We will numerically confirm this point in section 5.2.1.

2.3 Nearly conformal behaviors at θ = π

Finally, let us consider the case of θ = π. When we set m = 0 in (2.9), we obtain the
self-dual compact boson as the low-energy effective theory, which describes the SU(2)1 WZW
model. This is a conformal field theory that has the central charge c = 1 and enjoys the
[SU(2)L × SU(2)R]/Z2 chiral symmetry. Turning on the small m > 0 at θ = π gives the

– 6 –
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symmetry-breaking perturbation that preserves [SU(2)V /Z2] × (Z2)chiral+G, and the possible
lowest-dimensional scalar operator is given by JLJR. Here, JL and JR are holomorphic and
anti-holomorphic parts of SU(2) × SU(2) chiral symmetry generators, and JLJR is the scalar
operator with the scaling dimension 2. This JLJR operator is non-integrably marginal, and
thus it can be either marginally relevant or irrelevant depending on the sign of the coupling.3

For the 2-flavor Schwinger model at θ = π, we can determine its sign by going beyond the
leading-order analysis when integrating out η, and it turns out to be on the marginally relevant
side [62]. As a result, the system acquires the exponentially small mass gap ∼ e−#g2/m2

g, and
the ground states are doubly degenerate due to the spontaneous breaking of (Z2)chiral+G [42].

In the numerical analysis, we put the system in a finite interval of size L. This introduces
the typical energy scale of O(π/L), and thus it is hard to detect a tiny mass gap unless we can
take an exponentially large system size L ≳ e#g2/m2

/g. We expect that the model at θ = π

looks almost like a gapless system in our simulation setup, and thus the SU(2)1 WZW model
gives a good approximation. Here, we summarize the analytic results of the one-point function
with this approximation. The details of the calculation are summarized in appendix A.

Let us consider the open interval, 0 ≤ x ≤ L, and assume that we put the Dirichlet
boundary condition in the bosonized description,

η(x = 0, L) = 0, φ(x = 0, L) = 0. (2.17)

This can be translated to the boundary condition for fermions by using (2.13). We then
find that

⟨σ(x)⟩ = ⟨ψiγ5ψ(x)⟩ = −
√
eγµ

πL

1√
sin(πx/L)

, (2.18)

⟨π(x)⟩ = ⟨ψ̄τ3ψ(x)⟩ = 0. (2.19)

The result ⟨π(x)⟩ = 0 follows immediately from the fact that the boundary condition is
the isospin symmetric.

We can easily generalize the result to the isospin-violating Dirichlet boundary condition
by introducing the twist angle ∆. For example, if we take

φ(x = 0, L) = −∆, (2.20)

the analytic forms of the sigma and pion one-point functions are given by

⟨σ(x)⟩ = −
√
eγµ

πL

cos ∆√
sin(πx/L)

, (2.21)

⟨π(x)⟩ =
√
eγµ

πL

sin ∆√
sin(πx/L)

. (2.22)

As another isospin-violating Dirichlet boundary condition, we may take

φ(x = 0) = −φ(x = L) = −∆, (2.23)
3For the 2d CP 1 sigma model at θ = π, the sign of the coupling is on the marginally irrelevant side and it

flows back to the SU(2)1 WZW fixed point logarithmically according to the Haldane conjecture [64, 65].
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and we here assume |∆| < π/2. Then, we obtain

⟨σ(x)⟩ = −
√
eγµ

πL

cos[∆(1 − 2x/L)]√
sin(πx/L)

, (2.24)

⟨π(x)⟩ =
√
eγµ

πL

sin[∆(1 − 2x/L)]√
sin(πx/L)

. (2.25)

The result has a nontrivial dependence on the angle ∆.

3 Basic calculation strategy and review at θ = 0

Here, we address the basics of calculation and explain our strategy to obtain the mass spectra
in the previous work at θ = 0 [4]. First, we define the Hamiltonian of the 2-flavor Schwinger
model and its lattice regularization and explain how to generate the ground state in the
DMRG method. After that, we quickly review three computational schemes for the meson
spectra, which were demonstrated in the 2-flavor Schwinger model at θ = 0 in our previous
work, and summarize each pros and cons found in the actual calculations.

3.1 Lattice Hamiltonian simulation of the 2-flavor Schwinger model with the
open boundary condition

We use the lattice Hamiltonian formalism to perform the numerical computation of the
2-flavor Schwinger model (2.1). As we use the same formalism with our previous paper [4],
we keep our explanation brief when it has an overlap.

We put the system on the open interval 0 ≤ x ≤ L, and perform the canonical quantization
in the temporal gauge. In this setup, we can solve the Gauss law constraint explicitly, and
the Hamiltonian can be completely described by fermions with non-local interactions. We
take the lattice discretization of this fermionic system using the staggered fermion [3, 66]
and obtain the quantum system with the finite-dimensional Hilbert space. Let χf,n be the
staggered fermion on the lattice sites n = 0, 1, · · · , N − 1 with the lattice spacing a (i.e.
(N − 1)a = L), and then it is translated to the continuum Dirac fermion ψf (x) at x = na as

ψf (x) ↔ 1√
2a

 χf,2[n/2]

χf,2[n/2]+1

 . (3.1)

We use this dictionary to obtain the lattice expression for various fermion bilinear operators,
and we give explicit forms for important ones in appendix B. After these manipulations, the
lattice Hamiltonian of Nf -flavor Schwinger model consists of the gauge part HJ , the fermion
kinetic term Hw, and the mass term Hm, i.e. H = HJ +Hw +Hm, and each term is given by

HJ = J
N−2∑
n=0

 Nf∑
f=1

n∑
k=0

χ†
f,kχf,k + Nf

2

((−1)n − 1
2 − n

)
+ θ

2π

2

, (3.2)

Hw = −iw
Nf∑
f=1

N−2∑
n=0

(
χ†

f,nχf,n+1 − χ†
f,n+1χf,n

)
, (3.3)

Hm = mlat

Nf∑
f=1

N−1∑
n=0

(−1)nχ†
f,nχf,n, (3.4)

– 8 –
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where J = g2a/2 and w = 1/2a. We relate the lattice fermion mass mlat and the mass
m of the continuum theory as

mlat := m− Nfg
2a

8 , (3.5)

so that we maintain the Z2 discrete chiral symmetry in the chiral limit and prevent the
additive renormalization [67].

3.2 Generation of the ground state

When performing the actual computation, we further map this fermionic system to the spin
system via the Jordan-Winger transformation, and its details are explained in section 3 and
appendix A of [4] with the same notation. After this mapping, we apply the density-matrix
renormalization group (DMRG) [5–8].

The DMRG is a variational algorithm using the matrix product state (MPS) as an
ansatz of the wave function. It can find the ground state, which minimizes the cost function,
namely the expectation value of the Hamiltonian. There is a cutoff parameter ε controlling
the truncation error of the singular-value decomposition (SVD), which determines the bond
dimension D of MPS. Smaller ε yields a better approximation, whereas it requires a larger
bond dimension and a higher computational cost. We choose the Néel state as an initial
state of the DMRG, which corresponds to a zero-particle state in terms of the Schwinger
model. We also impose the conservation of the total electric charge Q during the DMRG, so
that the resulting MPS satisfies Q = 0 as required by the Gauss law.

Let us comment on the computational cost of DMRG when applying it to the 2-flavor
Schwinger model at θ ̸= 0. The potential difficulty comes from the increase of the bond
dimension, because the gap of the system, namely the pion mass, decreases as θ approaches
π. At θ = π, the system becomes almost gapless, and the entanglement entropy is no longer
constant but increases with the lattice size N as SEE ∼ (c/3) logN with the central charge
c = 1 in the continuum limit. Correspondingly, the required bond dimension D is expected to
increase as D ∼ N c/3. Figure 1 depicts the example plot of the bond dimension D of the MPS
for the ground state as a function of N . Here, we set the theoretical parameter to m/g = 0.10
and the lattice spacing to a = 0.25, which are the same as the ones in the actual calculation
in this study. While D is saturated to a constant value in the gapped cases of 0 ≤ θ < π, it
increases with N at θ = π. By fitting D at θ = π with c1N

1/3 + c2, we obtain c1 = 288(3) and
c2 = −563(16). Note that a finite spacing effect can contribute to a discrepancy between the
data and the fitting result. In this study, we take N ≈ 300, then the necessary bond dimension
is D ≲ 1400. It is a doable calculation using a PC cluster or a single-node supercomputer.

3.3 Review of computational schemes for the meson spectra at θ = 0

In our previous work [4], we developed three distinct methods to compute the mass spectrum
in the Hamiltonian formalism. We demonstrated the methods in the 2-flavor Schwinger model
at θ = 0 using DMRG and confirmed that the results are consistent with each other. Let
us briefly summarize the features of the three methods.
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Figure 1. The bond dimension D of the MPS is plotted against the system size N for θ/2π = 0.0,
0.3, and 0.5. The lattice spacing is set to a = 0.25. The data for θ/2π = 0.5 are fitted by c1N

1/3 + c2,
where the dotted curve denotes the fitting result.

3.3.1 Correlation-function scheme

The first one, the correlation-function scheme, is to employ the technique in the Lagrangian
formalism, where we obtain the meson mass from the spatial two-point correlation function
for desired composite states. In Euclidean path integral, the meson mass can be calculated
from the imaginary-time two-point correlation function, and it is equivalent to the spatial
two-point correlation function thanks to the Lorentz invariance: when an operator O(r)
creates the one-particle state with the mass M , the asymptotic behavior of the spatial
correlator takes the Yukawa-type form,

⟨O(r)O(0)⟩ − ⟨O(r)⟩⟨O(0)⟩ ∼ 1
rα

exp(−Mr). (3.6)

Strictly speaking, the imaginary-time correlator and the spatial correlator are no longer
equivalent in the lattice regularized Hamiltonian formalism, and the equivalence is recovered
after taking the continuum limit.

While this method can apply to various models in any dimension, there is a subtlety
when using the tensor network. In eq. (3.6), there is the power-like behavior 1/rα in front of
the exponential factor, where α = (d− 1)/2 for the free scalar with the spacetime dimension
d. However, any tensor-network-based algorithms are a kind of finite-rank approximation
of the transfer matrix, and reproducing such a power-law factor requires a large bond
dimension. Thus, we need to increase the bond dimension until the correct asymptotic
behavior is observed.

Let us point out another issue when we take the open boundary condition. The functional
form (3.6) assumes the translational invariance, but the presence of boundaries violates it.
Therefore, we need to take a sufficiently large system size so that the insertion of local
operators is very far from the boundaries to make their effect negligible. When we consider
the situation of the tiny mass gap, this is difficult to achieve, and we have to take careful
extrapolations to find reliable results. In this paper, we find it difficult to obtain the mass
spectra at larger values of θ, so we put the analysis of the correlation-function scheme in
appendix C instead of the main text.
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On the other hand, the correlation function still provides the most systematic way to
analyze the mixing of states. By considering the set of local operators Oi(r), we can compute
the matrix of correlation function ⟨Oi(r)Oj(0)⟩, and we may extract the information of
excited states, state-mixing, etc. by its diagonalization. This is the unique feature of the
correlation-function scheme, which is absent in the other two methods.

3.3.2 One-point-function scheme

The second method, the one-point-function scheme, utilizes the boundary or defect as a
source for excitations from the thermodynamic ground state. Let us again assume that the
Lorentz symmetry is approximately recovered, then we may regard the spatial direction
as the imaginary-time direction. Then, the boundary gives some state, |Bdry⟩, and the
one-point function can be interpreted as

⟨O(x)⟩ = ⟨Bdry|e−HxO|Ω⟩, (3.7)

where |Ω⟩ is the ground state and we normalize the ground-state energy to be 0. As |Bdry⟩
is translational invariant, it is the zero mode of the momentum operator, and the asymptotic
behavior of the one-point function for the gapped system should behave as

⟨O(x)⟩ ∼ e−Mx, (3.8)

where M is the mass of the lightest meson with the quantum number of O. This is not the
Yukawa-type but the simple exponential decay unlike eq. (3.6), and one may understand it
with the analogy of the wall source method in lattice QCD.

We often need to choose the symmetry-violating boundary condition when we measure
the meson mass with the nontrivial quantum number. Otherwise, the one-point function
vanishes due to the symmetry, and we cannot measure the mass of the target particle. For
example, in the previous work [4], we used the edge mode of the SPT state as a source of
the triplet mesons by setting θ = 2π, because the naive open boundary condition at θ = 0
is isospin singlet and cannot be used to measure the pion mass.

Let us comment that the simple exponential form in (3.8) has nice compatibility with
the tensor network algorithms. We find that the one-point function is insensitive to the
bond dimension, which allows us to set a larger ε than that in the correlation-function
scheme. However, one cannot access the information of the off-diagonal correlators unlike the
correlation-function scheme, so this method is specialized to the lightest particle spectrum
in a given quantum number.

3.3.3 Dispersion-relation scheme

The third method, the dispersion-relation scheme, is the distinctive strategy of Hamiltonian
formalism. We generated the low-energy excited states as well as the ground state. Suppose
we already have the lower energy eigenstates |Ψℓ′⟩ for the level ℓ′ = 0, 1, · · · , ℓ− 1. Then the
ℓ-th excited state |Ψℓ⟩ can be obtained by DMRG with the Hamiltonian modified as

Hℓ = H +W
ℓ−1∑
ℓ′=0

|Ψℓ′⟩ ⟨Ψℓ′ | , (3.9)

where the parameter W > 0 is a weight to impose the orthogonality [24, 68].
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The type of the meson was identified by the quantum numbers, such as the isospin and
G-parity. After identifying the state of each meson by the quantum numbers, the mass is
obtained by the dispersion relation, E =

√
M2 +K2, for each meson by measuring the energy

(E) and momentum square (K2). This is a basic idea of this scheme.
As we work on the open boundary, the translational invariance is explicitly broken and the

momentum operator does not provide a good quantum number. As an ad hoc substitute, we
identify the momentum square of the ℓ-th state by subtracting the ground-state contribution,
∆K2

ℓ := ⟨Ψℓ|K2|Ψℓ⟩ − ⟨Ψ0|K2|Ψ0⟩, and it works well empirically.
This method is a heuristic approach and allows the detection of states other than single

mesons. This paper does not address such states, but they are considered to be scattering
states [49]. On the other hand, the efficiency of this method depends on the way of obtaining
the excited states of interest. If we are interested in the high-level state, the computational
cost of finding the target state from the others can be a bottleneck.

4 Caluclation strategy for θ ̸= 0 regime

At θ ̸= 0, the ground state can be obtained by DMRG, but the expected physics are different
from the one at θ = 0 as discussed in sections 2.2 and 2.3. For instance, there is an operator
mixing between the scalar and pseudo-scalar in the state, and some quantum numbers are no
longer exact. We have to resolve the mixing between them to obtain the mass eigenstate.
Furthermore, a nearly conformal theory emerges at θ = π where the functional form of the
one-point function must be changed as shown in section 2.3. Therefore, some methodological
improvements are needed.

From these situations, we take two types of calculation and introduce some technical
improvements at θ ̸= 0 to obtain the promising result of the mass spectrum. The first
method is an improved one-point-function scheme combining the correlation-function and
one-point-function schemes at θ = 0. In this scheme, we introduce an alternative boundary
condition to control the boundary effects. The second one is the dispersion-relation scheme,
which is the same as the one at θ = 0. However, the parity and G-parity are no longer
the quantum numbers of the mesons for θ ̸= 0, since the θ term explicitly breaks these
symmetries. Moreover, the mass spectra are getting lighter in the large θ regime, so that
the computational cost to obtain the excited states increases. Therefore, we also improved
the technique to generate excited states in the DMRG calculation.

4.1 Improved one-point-function scheme

The basic idea of this scheme is the following: first of all, we measure the two-point correlation
function for the 2 × 2 matrix of the scalar and pseudo-scalar operators and find the mixing
angle between them by diagonalizing the matrix. Then, we evaluate the one-point function
of the bulk operator with the mass eigenstates. Technically, to obtain the precise value of the
mass, we introduce some modified boundary conditions by twisting fermion masses.
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4.1.1 Determination of the mixing matrix

To resolve the operator mixing, we measure the two-point correlation function for the
2 × 2 matrix,

C±(x, y) =

 ⟨S±(x)S±(y)⟩c ⟨S±(x)PS±(y)⟩c

⟨PS±(x)S±(y)⟩c ⟨PS±(x)PS±(y)⟩c

 , (4.1)

for the iso-triplet and iso-singlet sectors, where the subscript c means the connected correlator,
⟨O1O2⟩c = ⟨O1O2⟩ − ⟨O1⟩ ⟨O2⟩. Here, we introduce the lattice version of the iso-triplet and
iso-singlet fermion bilinear operators: the τ3-components of the iso-triplet one are denoted as

S−(x) ↔ ψτ3ψ(x), PS−(x) ↔ −iψγ5τ3ψ(x), (4.2)

with x = na, and the iso-singlet ones are denoted as

S+(x) ↔ ψψ(x), PS+(x) ↔ −iψγ5ψ(x). (4.3)

The actual expression for the lattice fermion is obtained by using the dictionary (3.1)
and taking the three-lattice-point average to smear the oscillation coming from the use of
staggered fermions.

Since S±(x) and PS±(x) are Hermitian operators, C±(x, y) is a real symmetric matrix,
which can be diagonalized by an orthogonal matrix,

R(δ) =

cos δ − sin δ
sin δ cos δ

 . (4.4)

Here the argument δ corresponds to the mixing angle, and the eigenvalues of C±(x, y) are
the connected correlation functions of the meson operators. Thus, we define the operators
σ(x) and η(x) by

C+(x, y) = R(δ+)T

⟨σ(x)σ(y)⟩c 0
0 ⟨η(x)η(y)⟩c

R(δ+), (4.5)

and the operator π(x) by

C−(x, y) = R(δ−)T

 ∗ 0
0 ⟨π(x)π(y)⟩c

R(δ−). (4.6)

The explicit forms for π(x), σ(x) and η(x) are given by ∗
π(x)

 = R(δ−)

 S−(x)
PS−(x)

 ,
σ(x)
η(x)

 = R(δ+)

 S+(x)
PS+(x)

 . (4.7)

Note that δ± could depend on the distance r = |x− y| at which C±(x, y) is measured due
to the boundary effect. However, we find from actual simulation results that δ± is almost
independent of r in the bulk region, thus such a boundary effect on δ± is sufficiently small.
We also confirm that δ± is not sensitive to the cutoff parameter ε.
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0 L = a(N − 1)−aNwings L+ aNwings

mmwings

bulkwings wings

x

mwings

Figure 2. The schematic picture of the lattice setup with the wings regime. We assign the mass
parameter m for 0 ≤ x ≤ L and mwings for x < 0 and L < x.

Theoretically, we can estimate the mixing angle as follows. The finite-m interaction
term induces the presence of the η-σ mixing. Using the discussion around (2.12), we can
give the analytic form for δ+ from the bosonized effective Lagrangian. The η-σ mixing is
characterized by the mass matrix,

M(θ) = µ2

 1 A sin(θ/2)| cos(θ/2)|1/3

A sin(θ/2)| cos(θ/2)|1/3 B| cos(θ/2)|4/3

 , (4.8)

where A and B are O((m/g)4/3) quantities. The real-symmetric matrix M(θ) can be
diagonalized by the orthogonal matrix R(ω(θ)) with the argument ω(θ), which corresponds
to the extra rotation in eqs. (2.15) and (2.16). Then, δ− ≃ θ/2 and δ+ ≃ θ/2 + ω(θ) are
expected by the bosonization analysis.

4.1.2 Modifying the boundary and twisting fermion mass

Before measuring the bulk one-point function for each meson given in eq. (4.7), let us
introduce an alternative boundary condition instead of the naive open boundary. The key
idea of the one-point-function scheme is the usage of the edge mode that appears at the
boundary as the source of the meson. An alternative boundary condition makes it possible
to change the source operator more flexibly.

Now, we consider supplemental lattice sites to both ends of the 1d lattice. We refer
to the attached region as the wings regime.4 Then, we assign the heavier fermion mass in
the wings regime than that in the bulk, namely m ≪ mwings as shown in figure 2. This
setup corresponds to the Dirichlet boundary condition for the Dirac fermion and is easily
implemented by changing the mass m locally in the Hamiltonian (3.4). The boundary
between the bulk and the wings becomes the source of mesons. This is a basic idea of the
alternative boundary condition.

In the case of the iso-singlet sector, namely the sigma and eta mesons, we simply set
the large constant, mwings = m0, as the mass in the wings regime. Similarly to the edge
mode under the naive open boundary condition that results in an iso-singlet source operator
at θ = 0, the bulk one-point function of the iso-singlet operators can be obtained with the
simple setup even at θ ̸= 0.

4It comes from the term stage wings in theater, namely the hidden parts at each side of a stage.
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0 L = a(N − 1)−aNwings L+ aNwings

m
m0e

±i∆γ5
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Figure 3. The schematic picture of the lattice setup with the wings regime for the iso-triplet state
calculation at 0 ≤ θ < π. We assign m0e

+i∆γ5 (m0e
−i∆γ5) on the left side of the wings and m0e

−i∆γ5

(m0e
+i∆γ5) on the right side for the first (second) flavor.

As for the iso-triplet sector, we apply a flavor-asymmetric twist to the fermion mass in
the wings regime.5 We define the twisted mass by acting chiral rotation with the opposite
phase ±∆ for the flavor f = 1, 2. Thus, we take

mwings =

m0 e
+i∆γ5

f = 1,
m0 e

−i∆γ5
f = 2,

(4.9)

as the mass parameters in the wings. Since the twisted mass breaks the isospin symmetry,
the boundary between the wings and bulk can be a source of the triplet meson. Thus, the
one-point function of the pion becomes nonzero even in the trivially gapped phase −π ≤ θ ≤ π

by setting ∆ ̸= 0. Note that there is a choice between having the same value of ∆ on both
sides or not. Here, we take the opposite signs of ∆ on both sides of the wings as shown in
figure 3 to assign the opposite directions of the chiral rotation on each side.

Here, we address how the chiral rotation affects the lattice Hamiltonian. In fact, the
insertion of the flavor-asymmetric chiral rotation (4.9) also changes the fermion kinetic term,
eq. (3.3), of the lattice Hamiltonian. In the wings regime, it is modified as follows:

Hw = −i
∑

f

∑
n∈Nwings

(
w − (−1)nm0

2 sin ∆
)(

χ†
f,nχf,n+1 − χ†

f,n+1χf,n

)
. (4.10)

As for the mass term, eq. (3.4), it is given by

Hm =
∑

f

∑
n∈Nwings

(
m0 cos ∆ − Nfg

2a

8

)
(−1)nχ†

f,nχf,n, (4.11)

taking the O(a) correction (3.5) and the chiral rotation into account.

4.1.3 Improvement on the fitting function

The last step of the calculation is to fit the data of the one-point function and extract the
mass. In our previous work for θ = 0, we fit the data points of log | ⟨O(x)⟩ | by −Mx+ C to
obtain the meson mass M . However, the boundary state |Bdry⟩ generically contains excited
states such as two-particle states, which can give contamination. At θ ̸= 0, the mass gap

5We utilized the property of the SPT phase as the source of the triplet meson by shifting θ → θ + 2π in
our previous work. Similar analyses are shown in appendix D.
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is expected to become smaller, and thus the elimination of the excited-state contributions
becomes more important.

To incorporate such a contribution, we change the fitting ansatz. We assume that the
one-point functions behave as

⟨O(x)⟩ ∼ Ae−Mx +Be−(M+∆M)x, (4.12)

which is motivated by including the second-lowest state with a mass gap M + ∆M .6 Then
the effective mass, namely the logarithmic derivative of ⟨O(x)⟩, is given by

− d

dx
log ⟨O(x)⟩ ∼M + ∆M

1 + Ce∆Mx
. (4.13)

On the discretized lattice, we estimate the effective mass from the one-site difference of ⟨O(x)⟩,

−1
a

log ⟨O(x+ a)⟩
⟨O(x)⟩ . (4.14)

Here, we also take the three-site average of the effective mass to suppress the fluctuation
due to the discretization with the staggered fermion.

4.2 Dispersion-relation scheme

The dispersion-relation scheme examines the energy eigenstates themselves and can apply to
the case of θ ̸= 0 straightforwardly. Even though the parity and G-parity are not quantum
numbers of the mesons, we can still identify the pion and sigma meson as the lowest-energy
states with the isospin J = 1 and J = 0, respectively. On the other hand, the eta meson
becomes unstable at θ ̸= 0 as mentioned in section 2.2, and thus it should disappear from
the spectrum.

To make the dispersion relations more precise, we consider a technical improvement in
DMRG for excited states. In the DMRG with the Hamiltonian (3.9), the sigma meson is
relatively difficult to obtain compared with the pion. The singlet states tend to appear at
higher levels than the triplets since there are many momentum excitations of the pion triplets
at low levels. However, the higher states generally require more computational cost and suffer
from larger systematic errors due to the lack of orthogonalities.

We deal with this problem by modifying the Hamiltonian. The point is to generate
the singlet states separately by the singlet projection, eliminating the states with J > 0
from the low-energy spectrum. For this purpose, we include the isospin Casimir operator
J2 in the Hamiltonian as the cost term,

Hℓ = H +W
ℓ−1∑
ℓ′=0

|Ψℓ′⟩ ⟨Ψℓ′ | +WJJ2, (4.15)

where WJ > 0 is a parameter to be tuned. Since J2 is a positive-semidefinite operator, the
last term increases the energy of the states with nonzero isospin J > 0. Then the condition
J2 |Ψℓ⟩ = 0 is automatically imposed on the target state |Ψℓ⟩ when minimizing the energy.
Since only the singlet states are involved in DMRG, the computational cost is reduced, which
enables us to increase the number of sweeps to improve orthogonality.

6Although the contribution of the two-particle states can be Yukawa-type in general because of the
integration over the relative momentum, the exponential form turned out to be enough for the practical
analysis of our system.
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scheme N a L = (N − 1)a ε Nsweep

correlation function 160 0.25 39.8 10−10,−12,−14,−16 20
one-point function 320 0.25 79.9 10−10 20
dispersion relation 100 0.20 19.8 10−10 50, 80

Table 1. Summary of the parameter setup for each calculation step. L is the physical lattice volume
in the unit g = 1.

5 Simulation results

5.1 Simulation parameters

Let us explain the parameter setup in our calculation. Since the gauge coupling g has mass
dimension 1, we measure the energy scale in the unit of g by setting g = 1. In this work,
we always set the fermion mass m = 0.1, so the photon mass is µ =

√
2/π ≃ 0.8. The

lattice size N , the lattice spacing a, a control parameter ε of the truncation error in SVD,
and the number of iterations Nsweep in DMRG are summarized in table 1.7 We use the
C++ library of ITensor [69] in our calculation.

In the calculation of the correlation function, we take a middle lattice size N = 160.
In our previous simulation, the data of the correlation function strongly depend on the
truncation parameter ε, thus we take several values of ε and estimate the cutoff dependence.
In the measurement of the one-point functions, the cutoff parameter is fixed to ε = 10−10,
since we found that its cutoff dependence is negligible. Instead, we take a large lattice size
N = 320 to see the long-distance regime from the boundary.

To generate the ground and excited states for the dispersion-relation scheme, we take
a small lattice site N = 100. We set Nsweep = 50 when we use the cost Hamiltonian (3.9),
where all eigenstates of the original Hamiltonian are generated. On the other hand, we set
Nsweep = 80 when we use the cost Hamiltonian (4.15), where only singlet states are generated.
Thanks to the focus on singlet only, the number of levels to be calculated is reduced in the
latter case. Then we can increase the number of sweeps while keeping a reasonable calculation
cost.8 The other technical simulation parameters for each scheme will be given later.

5.2 Improved one-point-function scheme for 0 ≤ θ < π

Now, we present the results of the improved one-point-function scheme. Note that we obtain
the mass spectra of the pion and sigma meson in the range of 0 ≤ θ < π. As for the
eta meson, it becomes unstable in a large θ regime. Thus, we put the analyses of the eta
meson in appedix E instead of the main text. As we show, at θ = π, the data for the
one-point function for both pion and sigma meson do not fit the ansatz (4.13) since the
system becomes almost gapless and CFT-like there. We have a detailed discussion about
this point in section 6 independently.

7The explicit value of a for the correlation-function and one-point-function schemes is given by solving
a × (160 − 1) = 0.2 × (200 − 1).

8As we go to the higher level, the bond dimension tends to increase. Thus, the total computational cost is
not linear on the number of the target states but higher.

– 17 –



J
H
E
P
0
9
(
2
0
2
4
)
1
5
5

0.0 0.1 0.2 0.3 0.4 0.5
/2

0.00

0.05

0.10

0.15

0.20

0.25

±
/2

 (triplet)
+ (singlet)
/2

fit by /2 + ( )

Figure 4. The mixing angles δ− for the triplet and δ+ for the singlet sector are plotted against θ/2π.
The dashed line denotes θ/2 for comparison with δ−. The result of fitting δ+ by θ/2 + ω(θ) is plotted
as the solid curve.

5.2.1 Determination of the mixing angle

First, we resolve the mixing of the operator using the two-point correlation function. As
explained in sections 2.3 and 4.1.1, the axial rotation by δ− = θ/2 is expected for the pion
while the extra rotation, ω(θ) = O((m/g)4/3 sin(θ/2)(cos(θ/2))1/3), is required for the sigma
and eta mesons, hence, δ+ = θ/2 + ω(θ).

We plot the numerical results of the mixing angles δ± as a function of θ/2π in figure 4. To
obtain this, we use the correlation matrix C±(x, y) for x = (L− r)/2 and y = (L+ r)/2 with
the distance r = 15 in our simulation. The angle δ− for the iso-triplet sector is shown with
the empty blue circles and mostly agrees with the line of θ/2 as expected. We suspect that
the small deviation comes from the contributions of the excited state such as the two-pion
states. The angle δ+ for the iso-singlet sector is shown with the empty orange squares, which
have a clear deviation from θ/2. We fit the numerical result by θ/2 + ω(θ) using eq. (4.8)
with parameters A and B and obtain the best-fit values A = −0.23(2) and B = 0.76(4). The
fitting curve is shown as the solid curve in the figure. The success of this fitting strongly
indicates the consistency with analytic predictions on the η-σ mixing at finite m.

5.2.2 Sigma meson masses

Now, let us show the measurement results of the one-point function for the sigma meson and
extract the mass. In the following analyses, we set the number of lattice sites in the wings to
Nwings = 20. The total number of the site for the staggered fermion is then N+2Nwings = 360.
We set the fermion mass in the wings to mwings = m0 = 10, which is a hundred times larger
than the mass m = 0.1 in the bulk. We generate the ground states of the whole system
including the wings by DMRG for 0 ≤ θ/2π ≤ 0.5 with the interval ∆(θ/2π) = 0.1. Since
attaching the wings does not change the bound dimension of MPS so much, the increase
in the computational cost is negligible.

The results for the one-point function ⟨σ(x)⟩ of the sigma meson operator (4.7) for the
ground states are shown in the left panel of figure 5. From these data of the one-point
function, we compute the effective mass and fit the data using the improved fitting function
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Figure 5. (Left) The one-point function log | ⟨σ(x) − σ(L/2)⟩ | of the sigma meson is plotted against
the distance x from the boundary. The value at x = L/2 is subtracted from ⟨σ(x)⟩ to eliminate
the constant shift in the bulk. The shaded region indicates the wings. (Right) The effective mass
calculated from the one-point function in the left panel is plotted against x. The results of fitting
by (4.13) are shown as well. The fitting range is between the vertical dashed lines.

θ/2π Mσ ∆M C

0.0 0.74814(9) 0.344(3) 0.173(3)
0.1 0.7209(3) 0.227(5) 0.47(1)
0.2 0.6429(2) 0.188(2) 0.563(3)
0.3 0.5188(2) 0.167(1) 0.453(2)
0.4 0.3471(4) 0.192(2) 0.259(2)

Table 2. The fitting results of the effective mass computed from the one-point function ⟨σ(x)⟩ of the
sigma meson. The errors of these values come from the fitting error.

eq. (4.13) in the range 5 ≤ x ≤ 20 with parameters M , ∆M , and C. The results are shown
in the right panel of figure 5, and the fitting results of the parameters are summarized in
table 2. Note that in the plot and table, we show the data except for θ = π since the fit
ansatz, eq. (4.13), does not work at this θ where it closes to the (nearly) conformal theory.
We can see that the effective mass is not completely flat but slightly curved in the bulk. It
indicates that the correction term from the excited state is not negligible.9

5.2.3 Pion masses

Next, let us focus on the iso-triplet meson, namely the pion. We generate the ground state with
the twisted fermion mass assigned to the wings region by DMRG for θ/2π = 0.0, 0.1, · · · , 0.5.
As for the wings regime, we set the twist angle ∆ = 0.1, the mass m0 = 10, and the size
Nwings = 20 in figure 3.

We measure the one-point function ⟨π(x)⟩ of the pion (4.7), where the rotation matrix
R− is determined by the result in section 5.2.1. The results of the one-point function and

9In our previous work [4], we observed small differences between the results obtained by the three methods
at θ = 0. A part of the differences can be explained by neglecting the contribution from the excited state in
the fitting of the one-point function.
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Figure 6. (Left) The one-point function log | ⟨π(x)⟩ | of the pion is plotted against the distance x
from the boundary. The shaded region indicates the wings. (Right) The effective mass calculated
from the one-point function in the left panel is plotted against x. The results of fitting by (4.13) are
shown as well. The fitting range is between the vertical dashed lines.

θ/2π Mπ ∆M C

0.0 0.431205(8) 0.562(2) 0.145(3)
0.1 0.418442(8) 0.541(2) 0.139(2)
0.2 0.37955(1) 0.498(2) 0.137(2)
0.3 0.31242(3) 0.441(2) 0.135(2)
0.4 0.2106(1) 0.366(3) 0.135(3)

Table 3. The fitting results of the effective mass computed from the one-point function ⟨π(x)⟩ of the
pion. The errors of these values come from the fitting error.

the corresponding effective mass are shown in figure 6. We obtain the nonzero one-point
function thanks to the twisted mass assigned in the wings regime. To obtain the effective
mass by fitting with the ansatz eq. (4.13), we utilize the data in the range 5 ≤ x ≤ 20 as
shown in the right panel of figure 6. The best-fit values of the parameters are summarized
in table 3. Note that the fitting ansatz (4.13) does not work at θ = π again and we will
discuss its CFT-like behavior in section 6.

5.2.4 Summary of the one-point-function scheme

Let us summarize the results of the one-point-function scheme. The θ-dependent masses of
the pion and sigma meson are shown in figure 7. The mass of the eta meson at θ = 0 is also
plotted for reference. The gray dashed curve denotes Mπ(0)| cos(θ/2)|2/3, where the overall
coefficient Mπ(0) is determined by the numerical result at θ = 0. The θ-dependence of the
pion mass is consistent with the analytic calculation by the bosonized model in eq. (2.10).
Indeed, we can see that the pion mass decreases as θ increases, approaching the almost gapless
phase at θ = π. Furthermore, the gray dash-dot curve denotes

√
3Mπ(0)| cos(θ/2)|2/3. The

result of the sigma-meson mass is also consistent with the result of the WKB approximation
in eq. (2.11). Our result indicates that this relation holds not only around θ = 0 but also
in the large θ region.
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Figure 8. (Top) The energy gap ∆Eℓ = Eℓ − E0 is plotted against the level ℓ of the excited state.
(Bottom) The square of total momentum ∆K2

ℓ =
〈
K2〉

ℓ
−
〈
K2〉

0 is plotted against ℓ after subtracting
the result of the ground state. The left, center, and right columns correspond to θ/2π = 0.0, 0.2, and
0.4, respectively. Some higher states are omitted due to insufficient convergence.

5.3 Dispersion-relation scheme

Now, let us discuss the second calculation scheme, namely the dispersion-relation scheme. We
first generate the eigenstates up to the level ℓ = 30 using the cost Hamiltonian (3.9), where
we set W = 10 in our calculations. For each state of the level ℓ, we measure the energy gap
∆Eℓ = Eℓ − E0 and the momentum square ∆K2

ℓ =
〈
K2〉

ℓ −
〈
K2〉

0, where the result
〈
K2〉

0
of the ground state is subtracted from

〈
K2〉

ℓ to remove the nonzero offset.
The results of ∆Eℓ and ∆K2

ℓ for θ/2π = 0.0, 0.2, 0.4 are shown in figure 8. We first
identify the series of triplets with the monotonically increasing momentum ∆K2

ℓ starting from
the lowest triplet ℓ = 1, 2, 3 as the pions. Indeed, they have the isospin quantum numbers,
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Figure 9. These results are obtained by DMRG with the singlet projection (4.15). (Top) The energy
gap ∆Eℓ = Eℓ −E0 is plotted against the level ℓ of the excited state. (Bottom) The square of total
momentum ∆K2

ℓ =
〈
K2〉

ℓ
−
〈
K2〉

0 is plotted against ℓ after subtracting the result of the ground
state. The left, center, and right columns correspond to θ/2π = 0.0, 0.2, and 0.4, respectively.

J = 1 and Jz = 0,±1, which indicates that they are consistent with the quantum numbers
of the pions. On the other hand, there is another series of J = 1 triplets at higher energy
levels, which is expected to be the scattering states investigated in ref. [49]. Furthermore,
interestingly, we also find quintet states, namely 5-fold degenerated states for θ/2π ≥ 0.3,
for instance, ℓ = 23, · · · , 27 in the right panel of figure 8. We found that they have J2 = 6
and Jz = 0,±1,±2. Thus, they are the two-pion states with J = 2, which comes from the
combination of the two pions with J = 1.

Next, we generate only the singlet excited states up to the level ℓ = 10 by DMRG with
the Hamiltonian (4.15). The parameters are set to W = 10 and WJ = 1 so that DMRG
could have a good convergence. Here we perform more sweeps, Nsweep = 80, to improve
the precision as shown in table 1.

The results of the energy gap ∆Eℓ and the momentum square ∆K2
ℓ for θ/2π = 0.0, 0.2, 0.4

are shown in figure 9. We first confirm that the states obtained by the Hamiltonian (4.15)
have the isospin quantum numbers consistent with J2 = 0 and Jz = 0. Furthermore, ∆Eℓ

and ∆K2
ℓ in figure 9 are almost consistent with those in figure 8, while some data show small

discrepancy. The discrepancy appears in the states, which have almost degenerate energies
with other states in figure 8. We expect that the results obtained by the singlet projection are
more reliable since they can preserve the orthogonal condition without accidental degeneracy.
Therefore, to obtain the dispersion relation of the sigma and eta mesons, we use the results
of the singlet projection in the following.

Now, let us focus on the results of the singlet projection in figure 9. We first identify
the lowest series of singlet states with the monotonically increasing momentum as the sigma
meson. At θ = 0, we can confirm that the corresponding state has the positive G-parity,
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Figure 10. The energy gap ∆Eℓ is plotted against the square of total momentum ∆K2
ℓ for

θ/2π = 0.0, 0.1, · · · , 0.5. The states identified as the same meson are denoted by the same symbol.
We fit the data points for each meson by ∆E =

√
b2∆K2 +M2, and the results are shown by the

broken curves. The markers with error bars at the left endpoints denote the extrapolated value and
its error from the fitting.

namely ⟨G⟩ > 0. We also find the singlet states with ⟨G⟩ < 0, namely the eta meson, at θ = 0.
For θ ̸= 0, the eta meson is no longer a stable particle, and thus the corresponding states might
be replaced by some scattering state. We find a series of eta-meson-like states at θ/2π = 0.1
but not for θ/2π ≥ 0.2. By gradually increasing θ in the range 0.1 ≤ θ/2π ≤ 0.2, we observe
that a state with ⟨G⟩ < 0 in the spectrum suddenly changes into a state with ⟨G⟩ > 0.

Finally, we investigate the dispersion relations using the results of the pion and sigma
meson. We plot the energy gap ∆Eℓ against the momentum square ∆K2

ℓ for each meson in
figure 10. The states identified as the same meson are plotted by the same symbol. Then we
fit these data points by ∆E =

√
b2∆K2 +M2 with fitting parameters M and b. The fitting

result of M can be regarded as the mass of the corresponding meson as an extrapolation to
∆K2 → 0. The parameter b is included taking account of possible lattice artifacts on the
momentum. As for the pion at θ = π, we fit the data points by ∆E =

√
b2∆K2 assuming

M = 0 because the fitting including the parameter M is unstable due to the square root
of a small number.10

The θ-dependent masses of the pion, sigma, and eta meson are summarized in figure 11.
Now, we obtain the masses for the pion and sigma meson at θ = π, which are almost zero
as expected. Again, the gray dashed curve denotes the calculation in the bosonized model,
Mπ(0)| cos(θ/2)|2/3, where the overall coefficient Mπ(0) is determined by the numerical result
at θ = 0. The gray dash-dot curve denotes

√
3Mπ(0)| cos(θ/2)|2/3. Both the pion and

sigma-meson masses almost agree with the analytic predictions.
Let us make some comments on the fate of the eta meson. We find some states similar

to the eta meson, but the energies of such states become much higher for θ/2π ≥ 0.2 than
10The error of M is roughly O(1/M) considering the error propagation.
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Figure 11. The masses of the pion, sigma, and eta meson obtained by the dispersion-relation scheme
are plotted against θ/2π.

that for θ/2π ≤ 0.1. In fact, the data points of ∆Eℓ and ∆K2
ℓ of these states are no longer

on a smooth line of the dispersion relation. Thus, it looks like the eta meson has disappeared
from the spectrum, which is consistent with that the eta meson is no longer stable and decays
into the pions or mixes with the sigma meson. It also causes the relatively large error of
the sigma-meson mass at θ/2π = 0.2. Indeed, the spectrum is changed drastically around
θ/2π = 0.2. It suggests that the sigma meson is strongly contaminated by mixing with the
eta meson and they might be in the process of being exchanged and mixed.

6 One-point function at θ = π

The massive 2-flavor Schwinger model at θ = π has the tiny mass gap Mπ ∼ e−#g2/m2
g [42],

and we expect almost conformal behavior. We here compare the behaviors of the one-point
function with its analytic computation on a finite interval with the SU(2)1 WZW conformal
theory as shown in section 2.3.

For the sigma meson operator, the analytic result of the one-point function ⟨σ(x)⟩ is
given by eq. (2.18). The corresponding numerical result obtained by DMRG at θ = π is shown
in the left panel of figure 12. In this calculation, we use the lattice equipped with the wings
regime, in which the large fermion mass mwings = m0 = 10 is assigned as in section 5.2.2.

We fit the data points of ⟨σ(x)⟩ by A/
√

sin(πx/L) + B with the parameters A and
B. Then we obtain the best-fit values A = −0.079922(8) and B = −0.014741(9). The
corresponding fitting curve is plotted in the left panel of figure 12. We find that the numerical
result agrees with (2.18) in the bulk region. The deviation around the boundary can be
interpreted as the contribution of the eta meson and the artifact of the staggered fermion.11

We would like to note that the nonzero value of the constant part B is quite suggestive as it
can be regarded as the expectation value for the chiral condensate detecting the (Z2)G+chiral
symmetry breaking, while we need more systematic studies to make it conclusive.

11The local operators of the Dirac fermion consist of the multi-point operators of the staggered fermion
such as χ†

nχn+1. Thus, the boundary condition for the Dirac fermion is not straightforwardly translated into
that for the staggered fermion. In particular, it violates the discrete chiral symmetry explicitly as it is realized
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Figure 12. The one-point functions at θ = π of the sigma meson ⟨σ(x)⟩ (left) and the pion ⟨π(x)⟩
(right) are plotted against the distance x from the boundary. We use the lattice equipped with the
wings regime, setting N = 320 in the bulk and Nwings = 20 in the wings. The fermion mass in the wings
is mwings = m0 for the sigma meson and mwings = m0e

±i∆γ5 for the pion with m0 = 10. In the latter
case, the twist parameters are ∆ = +0.1 and −0.1 on the left and right sides of the wings, respectively.
The fitting curves of A/

√
sin(πx/L) +B for the sigma meson and A sin [∆(1 − 2x/L)] /

√
sin(πx/L)

for the pion are shown as well, where the fitting range is between the vertical dashed lines.

For the pion, we consider the lattice with the wings and take the large fermion mass
with the flavor-asymmetric chiral rotation mwings = m0e

±i∆γ5 in the wings regime as shown
in figure 3. Here, we take m0 = 10 and ∆ = 0.1. The directions of the twist are opposite,
so that we obtain eq. (2.25) which has a nontrivial ∆ dependence.

The numerical result of the pion one-point functions ⟨π(x)⟩ is displayed in the right
panel of figure 12. We fit the data points by A sin [∆(1 − 2x/L)] /

√
sin(πx/L) and obtain

A = 0.0663(1). As can be seen from the figure, the numerical results mostly agree with the
analytic result, eq. (2.25) in the bulk region. To confirm the nontrivial ∆ dependence, we
also check that the one-point function behaves as eq. (2.25) for other choices of the twist
parameter, ∆ = 0.2, 0.3. Therefore, it is numerically confirmed that the pion and sigma
meson in the 2-flavor Schwinger model at θ = π are well described by SU(2) level-1 WZW
CFT on a finite interval.

7 Conclusion and discussion

Extending our previous study [4], we investigate the physics of the massive 2-flavor Schwinger
model at nonzero θ by employing the DMRG to its lattice Hamiltonian formalism. In ref. [4],
we have proposed three methods to obtain the meson spectra at θ = 0. At nonzero values of
θ, the mass gap of the system is expected to become smaller and some quantum numbers
that distinguish mesons are no longer exact, so that we give their several improvements in
section 4 to find the precise results in such cases.

Now, we summarize the θ-dependent masses of the pion and sigma meson in figure 13,
which are obtained by the improved one-point-function and dispersion-relation schemes. The
eta-meson mass at θ = 0 is also plotted for reference. As we can see in the plot, the results of
the two schemes are consistent with each other. We also compare the numerical results with

as the one-unit lattice translation.
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Figure 13. The θ-dependent meson masses obtained by the one-point-function and dispersion-relation
schemes are compared. The gray dashed curve denotes the analytic calculation in the bosonized
model, Mπ(θ) = Mπ(0)| cos(θ/2)|2/3, where the overall coefficient Mπ(0) is determined by averaging
the results of the two schemes at θ = 0. The gray dash-dot curve denotes the predicted sigma-meson
mass,

√
3Mπ(0)| cos(θ/2)|2/3.

the analytic calculation in the bosonized model shown in section 2.2. The analytic result of
the pion mass (2.10) is depicted by the gray dashed curve in figure 13, normalized by the
numerical data at θ = 0. We find that the numerical result agrees with the analytic prediction.
Furthermore, the sigma-meson mass satisfies the relation, Mσ/Mπ =

√
3, even for large θ as

shown by the gray dash-dot curve. This result indicates that the semiclassical analysis by
the WKB-type approximation gives almost the correct answer for the wide range of θ. It is
still interesting to clarify the mechanism of this agreement and the range of applicability.

At θ = π, it is expected that the 2-flavor Schwinger model becomes almost CFT-like
due to the exponentially small mass gap. In this case, it is not feasible to obtain the meson
masses from the one-point functions unless we can manage the exponentially large system size.
Instead, we compare the one-point functions themselves with the calculation in the WZW
model on a finite interval. As shown in section 6, the numerical results agree with the analytic
calculation in the bulk, which provides numerical evidence that the 2-flavor Schwinger model
at θ = π is well approximated by the SU(2)1 WZW model. In addition to the WZW behavior,
we find the additional constant contribution to the one-point function. This may give the hint
of the spontaneous breaking of the (Z2)G+chiral symmetry, which requires more systematic
comparisons of various volumes and also the continuum limit to be conclusive.

The eta meson is no longer the stable particle for θ ̸= 0 since the G-parity is broken.
Indeed, the behaviors of the one-point and correlation functions of the eta meson are
quantitatively different from the other mesons. We consider it consistent with the theoretical
expectations for the η → ππ decay and the η-σ mixing.

Overall, our results are consistent with the analytic predictions for the massive 2-flavor
Schwinger model at small mass with nonzero θ. We would like to emphasize that our
calculation covers the region with the large θ, which could not be accessed by the reweighting
technique in the conventional Monte Carlo method [23]. This becomes possible thanks to the
efficiency of the DMRG for the lattice Hamiltonian formalism. It would be interesting and
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important to extend the applicability of the Hamiltonian-based approach to other systems,
that suffer from the sign problem in the Monte Carlo methods, such as the finite-density
systems in higher dimensions.
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A Compact boson on the finite interval

In this appendix, we analytically study the behaviors of various one-point functions of the
2-flavor Schwinger model at θ = π on the open interval. The low-energy properties of the 2-
flavor Schwinger model at θ = π are well described by the SU(2) level-1 Wess-Zumino-Witten
(WZW) model with the marginally relevant JJ̄ deformation. When the size of the interval is
not so large, the JJ̄ deformation is negligible and we should be able to use the SU(2)1 WZW
CFT as an effective description. This is equivalent to the compact boson at the self-dual
radius, which is a free theory, so we can compute various correlation functions analytically.

Within the approximations discussed above, the effective action becomes

Leff = 1
4π (∂µφ)2, (A.1)

with φ(x) ∼ φ(x) + 2π. The mapping of operators between the Schwinger model and the
effective theory is given by

ψψ ↔ − cos θ2 cosφ, −ψiγ5ψ ↔ sin θ2 cosφ, (A.2)

ψτ3ψ ↔ − sin θ2 sinφ, −ψiγ5τ3ψ ↔ − cos θ2 sinφ. (A.3)

For the open interval, we need to specify the boundary condition, and we here use the
Dirichlet boundary condition, φ(x1 = 0, x2) = φ(x1 = L, x2) = 0. Let us then compute

⟨e±iφ(x∗)⟩ = 1
Z

∫
Dφ exp

(
−
∫ 1

4π (∂φ)2d2x± iφ(x∗)
)
. (A.4)

As we have the symmetry φ → −φ including the boundary condition, we have ⟨eiφ(x∗)⟩ =
⟨e−iφ(x∗)⟩ so let us focus on the + sign. The classical equation of motion is

1
2π∂

2φ(x) + iδ(x− x∗) = 0, (A.5)
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and we denote its solution as φcl. Shifting φ in (A.4) as φcl + φ, we obtain

⟨eiφ(x∗)⟩ = 1
Z

∫
Dφ exp

(
−
∫ 1

4π (∂φ+ ∂φcl)2d2x+ i(φ(x∗) + φcl(x∗))
)

= e−
∫

1
4π

(∂φcl)2+iφcl(x∗)

= eiφcl(x∗)/2. (A.6)

Thus, the problem reduces to find the classical solution φcl satisfying the boundary condition,
and we can use the mirror-image method by extending the domain of φcl (see figure 14):

1
2π∂

2φcl = −i
∞∑

n=−∞
[δ(x− (x∗ + 2nL)) − δ(x− (−x̄∗ + 2nL))]

= − i

2π∂
2∑

n

log |x− x∗ + 2nL|
|x+ x̄∗ + 2nL| , (A.7)

where we use the complex coordinate. Thus,

φcl(x) = −i
∑

n

log |x− x∗ + 2nL|
|x+ x̄∗ + 2nL| = −i log

∣∣∣∣∣sin
(

π
2L(x− x∗)

)
sin
(

π
2L(x+ x̄∗)

) ∣∣∣∣∣ . (A.8)

Substituting this result formally, we find

⟨eiφ(x∗)⟩ = eiφcl(x∗)/2 =
(

sin πϵ
2L

sin
(

π
2L(x∗ + x̄∗)

))1/2

, (A.9)

where we introduce the parameter ϵ for the point-splitting regularization. With the normal
ordering procedure at the scale ρ, we end up with multiplying the factor exp(1

2K0(ρϵ)) ≃
√

2
eγρϵ

as ϵ → 0, and we get

⟨Nρ[eiφ(x∗)]⟩ =
√

π

eγρL

1√
sin
(

π
2L(x∗ + x̄∗)

) . (A.10)

Setting x∗ to be real (i.e. the location of the source is set at x2 = 0), we have

⟨Nρ[cosφ(x∗)]⟩ =
√

π

eγρL

1√
sin(πx∗/L)

, ⟨Nρ[sinφ(x∗)]⟩ = 0. (A.11)
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Therefore, for example, the expectation value of ψiγ5ψ behaves as follows with the Dirich-
let boundary condition, when assuming the SU(2)1 WZW CFT as the effective description
at θ = π:

⟨ψiγ5ψ(x∗)⟩ = −2C√µρ⟨Nρ[cos(φ(x∗))]⟩

= −
√
eγµ

πL

1√
sin(πx∗/L)

. (A.12)

On the other hand, we get ⟨ψτ3ψ⟩ = 0 in this flavor-symmetric Dirichlet boundary condition.

B Definition of the observables

In this appendix, we show the explicit forms of the observables used to obtain the mass
spectrum. Let us start with the lattice version of the scalar and pseudo-scalar operators,
Sf,n and PSf,n, for the flavor f at the site n. Their explicit forms are given by rewriting the
local operators ψ̄ψ and −iψ̄γ5ψ in terms of the staggered fermions (3.1). If we choose the
same basis of the (1 + 1)d gamma matrices as in section 3.1, we obtain

Sf,n := 1
4a(−1)n(−χ†

f,n−1χf,n−1 + 2χ†
f,nχf,n − χ†

f,n+1χf,n+1), (B.1)

PSf,n := i

4a(−1)n(χ†
f,n−1χf,n − χ†

f,nχf,n−1 − χ†
f,nχf,n+1 + χ†

f,n+1χf,n), (B.2)

for the lattice sites n = 1, 2, · · · , N − 2. Here we take the average of the three neighboring
sites to remove the oscillation from the staggered phase.

Next, we define some global observables to measure the isospin quantum numbers Jz,
J2, and the total momentum K. These operators are used in the dispersion-relation scheme.
Unlike the local operators defined above, these global operators act on the whole lattice. Let
us consider the isospin operators (2.3). Using the staggered fermion, the lattice version of
Jz in terms of the staggered fermions is given by

Jz = 1
2

N−1∑
n=0

(
χ†

1,nχ1,n − χ†
2,nχ2,n

)
. (B.3)

It is convenient to define the lattice version of J± = Jx ± iJy by

J+ =
N−1∑
n=0

χ†
1,nχ2,n, (B.4)

J− =
N−1∑
n=0

χ†
2,nχ1,n. (B.5)

Then the isospin Casimir operator J2 can be defined as the combination of the operators
above by

J2 = 1
2(J+J− + J−J+) + J2

z . (B.6)

We can evaluate the expectation values of these operators systematically using the so-called
matrix product operator.
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Finally, we define the total momentum operator, which can be used to identify the
momentum excitation [24]. The continuum description of the gauge invariant momentum
operator is given by

K =
Nf∑
f=1

∫
dxψ†

f (i∂x −A1)ψf , (B.7)

which commutes with the Hamiltonian of the continuum theory under the periodic boundary
condition using the Gauss-law constraint. In our case with the open boundary condition,
K does not commute with the Hamiltonian, so it is no longer the exact quantum number.
However, the momentum operator is still useful as an approximation to obtain the dispersion
relation. After the gauge fixing Un = 1, the lattice version of the momentum operator
is defined by

K = i

4a

Nf∑
f=1

N−2∑
n=1

(χ†
f,n−1χf,n+1 − χ†

f,n+1χf,n−1). (B.8)

This operator does not exactly commute with the terms Hw (3.3) and HJ (3.2) of the lattice
Hamiltonian due to the open boundary and the finite lattice spacing effect.

C Results of the correlation-function scheme

In the Euclidean lattice gauge theory, the mass spectrum is obtained from the correlation
function in the imaginary time direction. In our previous work focusing on θ = 0, we consider
an analogous approach in the Hamiltonian formalism, examining the equal-time spatial
correlation function. In this appendix, we extend this approach, the correlation-function
scheme, to the case of θ ̸= 0 and show the results for the stable mesons, namely the pion and
sigma meson. The correlation function of the unstable eta meson is discussed in appendix E.2.
As we mentioned in section 4.1.1, the two-point connected correlation functions,

Cπ(r) = ⟨π(x)π(y)⟩c , (C.1)
Cσ(r) = ⟨σ(x)σ(y)⟩c , (C.2)

with the distance r = |x−y| are obtained as the eigenvalues of the correlation matrix (4.1). To
reproduce the correct asymptotic behavior of the correlation functions, the cutoff parameter
ε has to be small enough in DMRG, resulting in a large bond dimension of the MPS.

We generated the MPS of the ground state for 0 ≤ θ ≤ π with ε = 10−10, 10−12,
10−14, and 10−16. The number of lattice sites is set to N = 160 in this scheme. Then
the correlation functions of the pion and sigma meson are computed by changing x and
y symmetrically as x = (L − r)/2 and y = (L + r)/2 for 0 ≤ r ≤ L/2. The results with
ε = 10−16 are shown in figure 15 in log scale. The change of the gradient reflects the change
of the mass depending on θ.

To determine the mass of each meson, we use the so-called effective mass, namely the
logarithmic derivative of the correlation function CO(r),

MO,eff(r) = − d

dr
logCO(r). (C.3)
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Figure 15. The correlation function of the pion log | ⟨π(x)π(y)⟩c | (left) and the sigma meson
log | ⟨σ(x)σ(y)⟩c | (right) are plotted against the distance r = |x− y|. The cutoff parameter in DMRG
is ε = 10−16.

On the lattice, we define the effective mass by the three-point average,

MO,eff(r) := 1
4M̃O,eff(r − 2a) + 1

2M̃O,eff(r) + 1
4M̃O,eff(r + 2a), (C.4)

where M̃O,eff(r) is a discretized logarithmic derivative of the correlation function,

M̃O,eff(r) = − 1
2a log CO(r + 2a)

CO(r) . (C.5)

Here the factor 2a comes from the step size of changing r.
Since we consider the spatial correlation function, the leading asymptotic behavior for

r → ∞ is not purely the exponential decay, but the Yukawa-type form,

CO(r) ∼ 1
rα

exp(−Mr). (C.6)

For example, we have α = 1/2 in the case of the (1+1)d free massive boson. The corresponding
effective mass for the Yukawa-type correlator is given by

MO,eff(r) ∼ α

r
+M, (C.7)

where an O(1/r) contribution exists on top of the actual meson mass M . With this in mind,
let us see our numerical results. The effective masses computed from the correlation function
of the pion and sigma meson are plotted against 1/r in the top and bottom rows of figure 16,
respectively. As ε is decreased, namely the bond dimension is increased, the effective mass
approaches ∝ 1/r asymptotically. This behavior is observed for θ ̸= 0 as well as for θ = 0,
although the results are affected by the boundary when r approaches the system size L.

Assuming the asymptotic behavior of Yukawa type (C.7), we estimate the meson mass
by the linear extrapolation 1/r → 0 of the effective mass (C.4), which is performed by fitting
the data points by α/r+M . Here the MPS generated with ε = 10−16 is used to suppress the
effect of truncating the bound dimension as much as possible. To evaluate the systematic
errors from the uncertainty of the fitting range, we try fitting many times by changing the
fitting range inside a given maximum region, and we obtain a histogram of the fitting results.
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Figure 16. The effective masses Mπ,eff(r) of the pion (top) and Mσ,eff(r) of the sigma meson (bottom)
are plotted against 1/r for various values of ε. The left, center, and right columns are the results at
θ/2π = 0.0, 0.2, and 0.4, respectively. The data points for ε = 10−16 are fitted by α/r + M . The
fitting range is between the vertical dashed lines. The fitting result is depicted by the shaded band
with the systematic error.

θ/2π Mπ α

0.0 0.431(1) 0.476(9)
0.1 0.416(1) 0.49(1)
0.2 0.376(3) 0.51(2)
0.3 0.306(4) 0.55(4)
0.4 0.201(4) 0.62(4)
0.5 0.031(4) 0.88(4)

Table 4. The fitting results of the effective mass Mπ,eff(r) of the pion by α/r +M . The errors of
these values come from the systematic error from the uncertainty of the fitting range.

The best-fitting result and its error are estimated from the position and width of the peak.
We set the maximum fitting region 0.075 ≤ 1/r ≤ 0.15. The fitting results for the pion and
sigma meson are summarized in table 4 and 5, respectively. The fitting curves are depicted
by the purple shadows in figure 16.

The fitting of the effective mass at θ = π results in Mπ ∼ 0, which indicates the
correlation function of the pion is almost power-law Cπ(r) ∼ 1/rα. This result is reasonable
since the system becomes CFT-like there. On the other hand, we have a relatively large
mass of the sigma meson at θ = π compared with the pion due to the boundary effect
(finite size effect). Indeed, the region where the 1/r behavior can be observed is less clear
for the sigma meson. The θ-dependent meson masses are summarized in figure 17. The
result is almost consistent with that of the one-point-function scheme in figure 7 and the
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θ/2π Mσ α

0.0 0.722(6) 0.83(5)
0.1 0.699(4) 0.79(4)
0.2 0.624(4) 0.78(4)
0.3 0.503(3) 0.81(3)
0.4 0.334(5) 0.85(4)
0.5 0.134(6) 0.64(5)

Table 5. The fitting results of the effective mass Mσ,eff(r) of the sigma meson by α/r + M . The
errors of these values come from the systematic error from the uncertainty of the fitting range.
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|cos( /2)|2/3
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Figure 17. The masses of the pion and sigma meson obtained by the correlation-function scheme are
plotted against θ/2π. The eta-meson mass at θ = 0 is also plotted for reference. The gray dashed
curve denotes the analytic calculation by the bosonized model, Mπ(0)| cos(θ/2)|2/3, where the overall
coefficient Mπ(0) is determined by the numerical result at θ = 0. The gray dash-dot curve denotes√

3Mπ(0)| cos(θ/2)|2/3.

dispersion-relation scheme in figure 11. The θ-dependence of the pion mass agrees with
the calculation in the bosonized model in (2.10), and the sigma-meson mass is close to the
result of the WKB approximation in (2.11).

D One-point-function scheme with the original setup

In section 5.2, we show the results of the improved one-point-function scheme on the lattice
equipped with the wings. In this appendix, we show the results of the one-point-function
scheme with the naive open boundary condition used in our previous work [4]. Then we
check the consistency of these results. Here the way of analysis is the same as section 5.2,
and the difference is only the boundary condition.

The naive open boundary can be a source of the singlet meson. We measure the one-point
function ⟨σ(x)⟩ of the sigma meson (4.7) for the ground state, where we use the result in
section 5.2.1 to determine R+. The result of ⟨σ(x)⟩ is shown in the left panel of figure 18,
which decays almost exponentially in the bulk region. As we did in section 5.2.2, we compute
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Figure 18. (Left) The one-point function log | ⟨σ(x) − σ(L/2)⟩ | of the sigma meson is plotted against
the distance x from the boundary for ε = 10−10. The value at x = L/2 is subtracted from ⟨σ(x)⟩ to
eliminate the constant shift in the bulk. (Right) The effective mass calculated from the one-point
function in the left panel is plotted against x. The results of fitting by (4.13) are shown as well. The
fitting range is between the vertical dashed lines.

θ/2π Mσ ∆M C

0.0 0.74840(9) 0.317(2) 1.194(7)
0.1 0.7205(1) 0.186(1) 1.645(8)
0.2 0.6414(3) 0.154(2) 1.45(2)
0.3 0.5156(8) 0.142(3) 0.94(4)
0.4 0.3453(8) 0.178(3) 0.65(2)

Table 6. The fitting results of the effective mass computed from the one-point function ⟨σ(x)⟩ of the
sigma meson. The errors of these values come from the fitting error.

the effective mass (4.14) and fit it by (4.13) in the range 5 ≤ x ≤ 20. The result is shown in
the right panel of figure 18, and the fitting parameters are summarized in table 6.

In section 5.2, we applied the flavor-asymmetric chiral rotation to obtain the nonzero
one-point function of the pion. Here, we instead use the edge mode of the SPT state induced
by shifting θ → θ + 2π as a source of the pion, as we did in our previous work [4]. We
generate the ground states for 2π ≤ θ ≤ 3π and measure the one-point function ⟨π(x)⟩ of the
pion (4.7). The result is shown in the left panel of figure 19, which has similar behavior to the
results with the twisted mass in figure 6. However, we find ⟨π(x)⟩ ≈ 0 at θ = 3π unexpectedly.
The reason would be that the SPT state with the boundary charge gets higher energy than
the trivial state due to the finite size effect around the critical point θ = 3π. Although we
cannot compare the result at θ = 3π with the analytic calculation as in section 6, we can
still obtain the pion mass for 2π ≤ θ < 3π. We compute the effective mass (4.14) and fit
the results by (4.13) in the range 10 ≤ x ≤ 25. The results are plotted in the right panel
of figure 19, and the fitting parameters are summarized in table 7.

Let us summarize the results of the one-point-function scheme with the naive open
boundary. The θ-dependent masses of the pion and sigma meson are shown in figure 20. The
results are consistent with those obtained on the lattice equipped with the wings in figure 7.
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Figure 19. (Left) The one-point function log | ⟨π(x)⟩ | of the pion is plotted against the distance x
from the boundary for ε = 10−10. (Right) The effective mass calculated from the one-point function
in the left panel is plotted against x. The results of fitting by (4.13) are shown as well. The fitting
range is between the vertical dashed lines.

θ/2π Mπ ∆M C

1.0 0.431167(3) 0.4178(6) -0.631(3)
1.1 0.418404(2) 0.3981(5) -0.772(3)
1.2 0.379502(5) 0.3501(8) -0.960(6)
1.3 0.31225(1) 0.272(1) -1.187(9)
1.4 0.2092(1) 0.167(2) -1.36(1)

Table 7. The fitting results of the effective mass computed from the one-point function ⟨π(x)⟩ of the
pion. The errors of these values come from the fitting error.

So, they also agree with the analytic results by the bosonization. In the one-point-function
scheme, we have many choices of the source of the mesons. In this work, we tried four cases:
the wings with the large fermion mass, the isospin-breaking chiral rotation, the naive open
boundary, and the edge mode of the SPT state. If we can find an appropriate source for the
target particle, the one-point-function scheme should widely apply to other cases.

E Fate of the eta meson

At θ = 0, the eta meson is a stable particle protected by the G-parity. However, the G-parity
is explicitly broken for θ ̸= 0. Then the eta meson is no longer stable but decays into the
pions or mixes with the sigma meson. In terms of the bosonized model, the eta meson
has the interaction (2.12) with the other mesons of the coupling ∼ sin(θ/2), as discussed
in section 2.2. Indeed, the eigenstates of the Hamiltonian corresponding to the eta meson
can be found at θ = 0, but such states disappear as we increase θ in the dispersion-relation
scheme. We observed that the eta-meson-like state and the sigma meson are mixed in the
spectrum depending on θ. In this appendix, we show the one-point and two-point correlation
functions of the eta meson and discuss how they behave when the eta meson is unstable.
We also show the values of the effective mass Mη as a reference when we naively apply the
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Figure 20. The masses of the pion and sigma meson obtained by the one-point-function scheme with
the naive open boundary are plotted against θ/2π. The eta-meson mass at θ = 0 is also plotted for
reference. The gray dashed curve denotes the calculation by the bosonized model, Mπ(0)| cos(θ/2)|2/3,
where the overall coefficient Mπ(0) is determined by the numerical result at θ = 0. The gray dash-dot
curve denotes

√
3Mπ(0)| cos(θ/2)|2/3.

estimation method discussed in the main text, and they should not be taken seriously as
it is well-established only for stable particles.

E.1 One-point function of the eta meson

First, we look into the one-point function. The boundary condition violating the G-parity
can be a source of the eta meson. Here we adopt the lattice setup with the wings region
assigned a large fermion mass mwings = m0 = 10 as in section 5.2. We measure the one-point
function ⟨η(x)⟩ of the eta meson (4.7) for the ground states, using the result in section 5.2.1
to determine the matrix R+. The results of ⟨η(x)⟩ are shown in the left panel of figure 21.
Unlike the pion and sigma meson, the behavior of ⟨η(x)⟩ is no longer a simple exponential
decay ∼ e−Mx for θ ̸= 0, and it is not even monotonically decreasing resulting in the cusp
of the plot. The drastic change of the behavior depending on θ should be caused by the
decay or mixing. Note that the eta-meson mass Mη ∼ 0.9 is larger than twice the pion mass
Mπ ≲ 0.43, and thus the decay is allowed in the current setup.

As long as the effect of decay is small, we can still measure the mass of the unstable
eta meson by examining the one-point function. Let us look into the effective mass. The
effective mass computed from ⟨η(x)⟩ is shown in the right panel of figure 21. As θ increases,
the plateau region of the effective mass shrinks. We fit the effective mass in the short range,
3 ≤ x ≤ 8, by (4.13) for θ/2π = 0.0, 0.1, 0.2. The fitting results are plotted in the right panel
of figure 21, and the fitting parameters are summarized in table 8. The θ-dependence of the
eta-meson mass at short distances is relatively small compared with the masses of the pion
and sigma meson. At long distances, x ≳ 25, the effective mass takes lower values of about
0.3 to 0.5 for θ/2π = 0.3 and 0.4. This behavior should be explained by the lighter states
which the eta meson decays into. It is interesting to check whether a similar behavior is
observed in analytic calculations assuming the effective model of the decaying eta meson.
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Figure 21. (Left) The one-point function log | ⟨η(x) − η(L/2)⟩ | of the eta meson is plotted against
the distance x from the boundary for ε = 10−10. The value at x = L/2 is subtracted from ⟨η(x)⟩ to
eliminate the constant shift in the bulk. The shaded region indicates the wings. (Right) The effective
mass calculated from the one-point function in the left panel is plotted against x. The results of fitting
by (4.13) are shown as well. The fitting range is between the vertical dashed lines.

θ/2π Mη ∆M C

0.0 0.9022(1) 0.787(7) 0.029(1)
0.1 0.90319(5) 0.814(3) 0.0239(5)
0.2 0.89501(8) 0.731(3) 0.0348(8)

Table 8. The fitting results of the effective mass at short distances computed from the one-point
function ⟨η(x)⟩ of the eta meson. The errors of these values come from the fitting error.

E.2 Correlation function of the eta meson

Next, let us focus on the spatial correlation function. The connected correlation function
of the eta meson,

Cη(r) = ⟨η(x)η(y)⟩c , (E.1)

is obtained as the eigenvalue of the correlation matrix (4.1) together with the sigma meson.
The results are shown in figure 22. In this plot, the behavior of the correlation function
for θ/2π ≳ 0.4 is qualitatively different from the other cases for the small θ. The gradient
of log ⟨η(x)η(y)⟩c suddenly changes at long distances r ≳ 10 whereas it is less sensitive to
θ at short distances r ≲ 10.

Correspondingly, the behavior of the effective mass changes depending on the distance
r. The effective mass computed from the correlation function of the eta meson is shown in
figure 23 for θ/2π = 0.0, 0.2, 0.4. For the large θ such as θ/2π = 0.4 in the right panel of
figure 23, we find that Mη,eff(r) behaves as α/r +M at both short and long distances but
with different α and M , which should result from the decay and mixing. At short distances,
the correlation function has information on the unstable eta meson before decaying. At long
distances, the correlation function behaves like the lighter mesons, namely the pion after
decaying or the mixed sigma meson. From this point of view, we focus on the short-distance
region to obtain the mass of the unstable eta meson when θ is large. We fit the effective
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Figure 22. The correlation function of the eta meson log | ⟨η(x)η(y)⟩c | is plotted against the distance
r = |x− y|. The cutoff parameter in DMRG is ε = 10−16.
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Figure 23. The effective masses Mη,eff(r) of the eta meson at θ/2π = 0.0 (left), 0.2 (center), and 0.4
(right) are plotted against 1/r for various values of ε. The data points for ε = 10−16 are fitted by
α/r +M . The fitting range is between the vertical dashed lines. The fitting result is depicted by the
shaded band with the systematic error. For θ/2π = 0.4 we try two choices of the fitting range. The
result at the short distance is used to obtain the mass of the unstable eta meson.

mass Mη,eff(r) by α/r +M for ε = 10−16. Here we evaluate the systematic errors from the
uncertainty of the fitting range by changing the range inside a maximum fitting region, as in
appendix C. The maximum region is 0.075 ≤ 1/r ≤ 0.15 for θ/2π = 0.0, · · · , 0.3. To see the
short-distance behavior, the maximum region is changed to 0.125 ≤ 1/r ≤ 0.25 for θ/2π = 0.4
and 0.15 ≤ 1/r ≤ 0.35 for θ/2π = 0.5. The fitting results are depicted by the purple shadows
in figure 23, and the results of the fitting parameter are summarized in table 9. The mass
of the unstable eta meson is less sensitive to θ than the other mesons.

Next, we investigate the effective mass at long distances, where the contributions of the
light mesons are expected to be significant. To estimate the mass of the meson after decaying,
we fit the effective mass Mη,eff(r) by α/r +M for θ/2π = 0.4 and 0.5 with different fitting
ranges than before. For θ/2π = 0.4, we set the maximum fitting region 0.05 ≤ 1/r ≤ 0.08
and obtain the results M = 0.34(3) and α = 5.7(5). The fitting result is depicted by the dark
yellow shadow in the right panel of figure 23. The obtained mass M = 0.34(3) is consistent
with the sigma-meson mass at θ/2π = 0.4, for example, Mσ = 0.334(5) by the correlation-
function scheme in table 5. For θ/2π = 0.5, we set the maximum region 0.06 ≤ 1/r ≤ 0.125
and obtain M = −0.02(2) and α = 6.1(3). In this case, the mass is consistent with zero,
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θ/2π Mη α

0.0 0.899(3) 0.51(3)
0.1 0.894(2) 0.56(2)
0.2 0.872(4) 0.68(4)
0.3 0.815(4) 0.94(3)
0.4 0.720(3) 1.30(2)
0.5 0.57(3) 1.9(1)

Table 9. The fitting results of the effective mass Mη,eff(r) computed from the correlation function of
the eta meson. The errors of these values come from the systematic error of fitting range.

which agrees with the CFT-like behavior of the pion and sigma meson at θ = π. It is again
interesting to compare these results with analytic calculation assuming an effective model.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys.
J. C 82 (2022) 869 [arXiv:2111.09849] [INSPIRE].

[2] K. Nagata, Finite-density lattice QCD and sign problem: Current status and open problems,
Prog. Part. Nucl. Phys. 127 (2022) 103991 [arXiv:2108.12423] [INSPIRE].

[3] J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys.
Rev. D 11 (1975) 395 [INSPIRE].

[4] E. Itou, A. Matsumoto and Y. Tanizaki, Calculating composite-particle spectra in Hamiltonian
formalism and demonstration in 2-flavor QED1+1d, JHEP 11 (2023) 231 [arXiv:2307.16655]
[INSPIRE].

[5] S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69
(1992) 2863 [INSPIRE].

[6] S.R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48
(1993) 10345 [INSPIRE].

[7] U. Schollwock, The density-matrix renormalization group, Rev. Mod. Phys. 77 (2005) 259
[cond-mat/0409292] [INSPIRE].

[8] U. Schollwoeck, The density-matrix renormalization group in the age of matrix product states,
Annals Phys. 326 (2011) 96 [arXiv:1008.3477] [INSPIRE].

[9] J.S. Schwinger, Gauge Invariance and Mass. 2, Phys. Rev. 128 (1962) 2425 [INSPIRE].

[10] J.H. Lowenstein and J.A. Swieca, Quantum electrodynamics in two-dimensions, Annals Phys. 68
(1971) 172 [INSPIRE].

[11] A. Casher, J.B. Kogut and L. Susskind, Vacuum polarization and the absence of free quarks,
Phys. Rev. D 10 (1974) 732 [INSPIRE].

– 39 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.48550/arXiv.2111.09849
https://inspirehep.net/literature/1971260
https://doi.org/10.1016/j.ppnp.2022.103991
https://doi.org/10.48550/arXiv.2108.12423
https://inspirehep.net/literature/2169282
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://inspirehep.net/literature/1336
https://doi.org/10.1007/JHEP11(2023)231
https://doi.org/10.48550/arXiv.2307.16655
https://inspirehep.net/literature/2683570
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://inspirehep.net/literature/352225
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://inspirehep.net/literature/371076
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.48550/arXiv.cond-mat/0409292
https://inspirehep.net/literature/707101
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.48550/arXiv.1008.3477
https://inspirehep.net/literature/2725332
https://doi.org/10.1103/PhysRev.128.2425
https://inspirehep.net/literature/14009
https://doi.org/10.1016/0003-4916(71)90246-6
https://doi.org/10.1016/0003-4916(71)90246-6
https://inspirehep.net/literature/67620
https://doi.org/10.1103/PhysRevD.10.732
https://inspirehep.net/literature/94772


J
H
E
P
0
9
(
2
0
2
4
)
1
5
5

[12] S.R. Coleman, R. Jackiw and L. Susskind, Charge Shielding and Quark Confinement in the
Massive Schwinger Model, Annals Phys. 93 (1975) 267 [INSPIRE].

[13] N.S. Manton, The Schwinger Model and Its Axial Anomaly, Annals Phys. 159 (1985) 220
[INSPIRE].

[14] J.E. Hetrick and Y. Hosotani, QED on a circle, Phys. Rev. D 38 (1988) 2621 [INSPIRE].

[15] C. Jayewardena, Schwinger model on S(2), Helv. Phys. Acta 61 (1988) 636 [INSPIRE].

[16] I. Sachs and A. Wipf, Finite temperature Schwinger model, Helv. Phys. Acta 65 (1992) 652
[arXiv:1005.1822] [INSPIRE].

[17] C. Adam, Instantons and vacuum expectation values in the Schwinger model, Z. Phys. C 63
(1994) 169 [INSPIRE].

[18] J.E. Hetrick, Y. Hosotani and S. Iso, The Massive multi-flavor Schwinger model, Phys. Lett. B
350 (1995) 92 [hep-th/9502113] [INSPIRE].

[19] R. Narayanan, QED at a finite chemical potential, Phys. Rev. D 86 (2012) 087701
[arXiv:1206.1489] [INSPIRE].

[20] R. Narayanan, Two flavor massless Schwinger model on a torus at a finite chemical potential,
Phys. Rev. D 86 (2012) 125008 [arXiv:1210.3072] [INSPIRE].

[21] R. Lohmayer and R. Narayanan, Phase structure of two-dimensional QED at zero temperature
with flavor-dependent chemical potentials and the role of multidimensional theta functions, Phys.
Rev. D 88 (2013) 105030 [arXiv:1307.4969] [INSPIRE].

[22] Y. Tanizaki and M. Tachibana, Multi-flavor massless QED2 at finite densities via Lefschetz
thimbles, JHEP 02 (2017) 081 [arXiv:1612.06529] [INSPIRE].

[23] H. Fukaya and T. Onogi, Lattice study of the massive Schwinger model with theta term under
Luscher’s ’admissibility’ condition, Phys. Rev. D 68 (2003) 074503 [hep-lat/0305004]
[INSPIRE].

[24] M.C. Bañuls, K. Cichy, K. Jansen and J.I. Cirac, The mass spectrum of the Schwinger model
with Matrix Product States, JHEP 11 (2013) 158 [arXiv:1305.3765] [INSPIRE].

[25] M.C. Bañuls et al., Thermal evolution of the Schwinger model with Matrix Product Operators,
Phys. Rev. D 92 (2015) 034519 [arXiv:1505.00279] [INSPIRE].

[26] M.C. Bañuls, K. Cichy, K. Jansen and H. Saito, Chiral condensate in the Schwinger model with
Matrix Product Operators, Phys. Rev. D 93 (2016) 094512 [arXiv:1603.05002] [INSPIRE].

[27] B. Buyens et al., Confinement and string breaking for QED2 in the Hamiltonian picture, Phys.
Rev. X 6 (2016) 041040 [arXiv:1509.00246] [INSPIRE].

[28] B. Buyens, F. Verstraete and K. Van Acoleyen, Hamiltonian simulation of the Schwinger model
at finite temperature, Phys. Rev. D 94 (2016) 085018 [arXiv:1606.03385] [INSPIRE].

[29] B. Buyens et al., Real-time simulation of the Schwinger effect with Matrix Product States, Phys.
Rev. D 96 (2017) 114501 [arXiv:1612.00739] [INSPIRE].

[30] B. Buyens et al., Finite-representation approximation of lattice gauge theories at the continuum
limit with tensor networks, Phys. Rev. D 95 (2017) 094509 [arXiv:1702.08838] [INSPIRE].

[31] L. Funcke, K. Jansen and S. Kühn, Topological vacuum structure of the Schwinger model with
matrix product states, Phys. Rev. D 101 (2020) 054507 [arXiv:1908.00551] [INSPIRE].

[32] B. Chakraborty et al., Classically emulated digital quantum simulation of the Schwinger model
with a topological term via adiabatic state preparation, Phys. Rev. D 105 (2022) 094503
[arXiv:2001.00485] [INSPIRE].

– 40 –

https://doi.org/10.1016/0003-4916(75)90212-2
https://inspirehep.net/literature/99097
https://doi.org/10.1016/0003-4916(85)90199-X
https://inspirehep.net/literature/215698
https://doi.org/10.1103/PhysRevD.38.2621
https://inspirehep.net/literature/262223
https://inspirehep.net/literature/268729
https://doi.org/10.48550/arXiv.1005.1822
https://inspirehep.net/literature/30408
https://doi.org/10.1007/BF01577557
https://doi.org/10.1007/BF01577557
https://inspirehep.net/literature/361615
https://doi.org/10.1016/0370-2693(95)00310-H
https://doi.org/10.1016/0370-2693(95)00310-H
https://doi.org/10.48550/arXiv.hep-th/9502113
https://inspirehep.net/literature/392912
https://doi.org/10.1103/PhysRevD.86.087701
https://doi.org/10.48550/arXiv.1206.1489
https://inspirehep.net/literature/1117554
https://doi.org/10.1103/PhysRevD.86.125008
https://doi.org/10.48550/arXiv.1210.3072
https://inspirehep.net/literature/1190356
https://doi.org/10.1103/PhysRevD.88.105030
https://doi.org/10.1103/PhysRevD.88.105030
https://doi.org/10.48550/arXiv.1307.4969
https://inspirehep.net/literature/1243428
https://doi.org/10.1007/JHEP02(2017)081
https://doi.org/10.48550/arXiv.1612.06529
https://inspirehep.net/literature/1505181
https://doi.org/10.1103/PhysRevD.68.074503
https://doi.org/10.48550/arXiv.hep-lat/0305004
https://inspirehep.net/literature/618180
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.48550/arXiv.1305.3765
https://inspirehep.net/literature/1233709
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.48550/arXiv.1505.00279
https://inspirehep.net/literature/1366032
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.48550/arXiv.1603.05002
https://inspirehep.net/literature/1428669
https://doi.org/10.1103/PhysRevX.6.041040
https://doi.org/10.1103/PhysRevX.6.041040
https://doi.org/10.48550/arXiv.1509.00246
https://inspirehep.net/literature/1391331
https://doi.org/10.1103/PhysRevD.94.085018
https://doi.org/10.48550/arXiv.1606.03385
https://inspirehep.net/literature/1468644
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.48550/arXiv.1612.00739
https://inspirehep.net/literature/1501486
https://doi.org/10.1103/PhysRevD.95.094509
https://doi.org/10.48550/arXiv.1702.08838
https://inspirehep.net/literature/1515375
https://doi.org/10.1103/PhysRevD.101.054507
https://doi.org/10.48550/arXiv.1908.00551
https://inspirehep.net/literature/1747759
https://doi.org/10.1103/PhysRevD.105.094503
https://doi.org/10.48550/arXiv.2001.00485
https://inspirehep.net/literature/1773807


J
H
E
P
0
9
(
2
0
2
4
)
1
5
5

[33] D.E. Kharzeev and Y. Kikuchi, Real-time chiral dynamics from a digital quantum simulation,
Phys. Rev. Res. 2 (2020) 023342 [arXiv:2001.00698] [INSPIRE].

[34] M. Honda et al., Classically emulated digital quantum simulation for screening and confinement
in the Schwinger model with a topological term, Phys. Rev. D 105 (2022) 014504
[arXiv:2105.03276] [INSPIRE].

[35] S. Thompson and G. Siopsis, Quantum computation of phase transition in the massive Schwinger
model, Quantum Sci. Technol. 7 (2022) 035001 [arXiv:2110.13046] [INSPIRE].

[36] M. Honda, E. Itou, Y. Kikuchi and Y. Tanizaki, Negative string tension of a higher-charge
Schwinger model via digital quantum simulation, PTEP 2022 (2022) 033B01
[arXiv:2110.14105] [INSPIRE].

[37] M. Honda, E. Itou and Y. Tanizaki, DMRG study of the higher-charge Schwinger model and its
’t Hooft anomaly, JHEP 11 (2022) 141 [arXiv:2210.04237] [INSPIRE].

[38] L. Nagano, A. Bapat and C.W. Bauer, Quench dynamics of the Schwinger model via variational
quantum algorithms, Phys. Rev. D 108 (2023) 034501 [arXiv:2302.10933] [INSPIRE].

[39] L. Funcke, K. Jansen and S. Kühn, Exploring the CP-violating Dashen phase in the Schwinger
model with tensor networks, Phys. Rev. D 108 (2023) 014504 [arXiv:2303.03799] [INSPIRE].

[40] T. Angelides, L. Funcke, K. Jansen and S. Kühn, Computing the mass shift of Wilson and
staggered fermions in the lattice Schwinger model with matrix product states, Phys. Rev. D 108
(2023) 014516 [arXiv:2303.11016] [INSPIRE].

[41] K. Ikeda, D.E. Kharzeev, R. Meyer and S. Shi, Detecting the critical point through entanglement
in the Schwinger model, Phys. Rev. D 108 (2023) L091501 [arXiv:2305.00996] [INSPIRE].

[42] R. Dempsey et al., Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature,
Phys. Rev. Lett. 132 (2024) 031603 [arXiv:2305.04437] [INSPIRE].

[43] J.W. Pedersen, E. Itou, R.-Y. Sun and S. Yunoki, Quantum Simulation of Finite Temperature
Schwinger Model via Quantum Imaginary Time Evolution, PoS LATTICE2023 (2024) 220
[arXiv:2311.11616] [INSPIRE].

[44] P. Schmoll et al., Hamiltonian truncation tensor networks for quantum field theories,
arXiv:2312.12506 [INSPIRE].

[45] T. Angelides et al., First-Order Phase Transition of the Schwinger Model with a Quantum
Computer, arXiv:2312.12831 [INSPIRE].

[46] D. Ghim and M. Honda, Digital Quantum Simulation for Spectroscopy of Schwinger Model, PoS
LATTICE2023 (2024) 213 [arXiv:2404.14788] [INSPIRE].

[47] P.P. Popov et al., Non-perturbative signatures of fractons in the twisted multi-flavor Schwinger
Model, arXiv:2405.00745 [INSPIRE].

[48] O. Kaikov, T. Saporiti, V. Sazonov and M. Tamaazousti, Phase Diagram of the Schwinger Model
by Adiabatic Preparation of States on a Quantum Simulator, arXiv:2407.09224 [INSPIRE].

[49] K. Harada, T. Sugihara, M.-A. Taniguchi and M. Yahiro, The massive Schwinger model with
SU(2)-f on the light cone, Phys. Rev. D 49 (1994) 4226 [hep-th/9309128] [INSPIRE].

[50] Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor
lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [arXiv:1403.0642] [INSPIRE].

[51] Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a topological
term at θ = π using the Grassmann tensor renormalization group, Phys. Rev. D 90 (2014)
074503 [arXiv:1408.0897] [INSPIRE].

– 41 –

https://doi.org/10.1103/PhysRevResearch.2.023342
https://doi.org/10.48550/arXiv.2001.00698
https://inspirehep.net/literature/1773983
https://doi.org/10.1103/PhysRevD.105.014504
https://doi.org/10.48550/arXiv.2105.03276
https://inspirehep.net/literature/1862471
https://doi.org/10.1088/2058-9565/ac5f5a
https://doi.org/10.48550/arXiv.2110.13046
https://inspirehep.net/literature/1951680
https://doi.org/10.1093/ptep/ptac007
https://doi.org/10.48550/arXiv.2110.14105
https://inspirehep.net/literature/1953400
https://doi.org/10.1007/JHEP11(2022)141
https://doi.org/10.48550/arXiv.2210.04237
https://inspirehep.net/literature/2163166
https://doi.org/10.1103/PhysRevD.108.034501
https://doi.org/10.48550/arXiv.2302.10933
https://inspirehep.net/literature/2635440
https://doi.org/10.1103/PhysRevD.108.014504
https://doi.org/10.48550/arXiv.2303.03799
https://inspirehep.net/literature/2638996
https://doi.org/10.1103/PhysRevD.108.014516
https://doi.org/10.1103/PhysRevD.108.014516
https://doi.org/10.48550/arXiv.2303.11016
https://inspirehep.net/literature/2644172
https://doi.org/10.1103/PhysRevD.108.L091501
https://doi.org/10.48550/arXiv.2305.00996
https://inspirehep.net/literature/2655942
https://doi.org/10.1103/PhysRevLett.132.031603
https://doi.org/10.48550/arXiv.2305.04437
https://inspirehep.net/literature/2657600
https://doi.org/10.22323/1.453.0220
https://doi.org/10.48550/arXiv.2311.11616
https://inspirehep.net/literature/2724214
https://doi.org/10.48550/arXiv.2312.12506
https://inspirehep.net/literature/2739298
https://doi.org/10.48550/arXiv.2312.12831
https://inspirehep.net/literature/2739158
https://doi.org/10.22323/1.453.0213
https://doi.org/10.22323/1.453.0213
https://doi.org/10.48550/arXiv.2404.14788
https://inspirehep.net/literature/2779997
https://doi.org/10.48550/arXiv.2405.00745
https://inspirehep.net/literature/2782836
https://doi.org/10.48550/arXiv.2407.09224
https://inspirehep.net/literature/2807258
https://doi.org/10.1103/PhysRevD.49.4226
https://doi.org/10.48550/arXiv.hep-th/9309128
https://inspirehep.net/literature/358849
https://doi.org/10.1103/PhysRevD.90.014508
https://doi.org/10.48550/arXiv.1403.0642
https://inspirehep.net/literature/1283614
https://doi.org/10.1103/PhysRevD.90.074503
https://doi.org/10.1103/PhysRevD.90.074503
https://doi.org/10.48550/arXiv.1408.0897
https://inspirehep.net/literature/1309885


J
H
E
P
0
9
(
2
0
2
4
)
1
5
5

[52] N. Butt et al., Tensor network formulation of the massless Schwinger model with staggered
fermions, Phys. Rev. D 101 (2020) 094509 [arXiv:1911.01285] [INSPIRE].

[53] A. Yosprakob, J. Nishimura and K. Okunishi, A new technique to incorporate multiple fermion
flavors in tensor renormalization group method for lattice gauge theories, JHEP 11 (2023) 187
[arXiv:2309.01422] [INSPIRE].

[54] F.I. Az-zahra, S. Takeda and T. Yamazaki, Spectroscopy with the tensor renormalization group
method, Phys. Rev. D 110 (2024) 034514 [arXiv:2404.15666] [INSPIRE].

[55] C. Gattringer, T. Kloiber and V. Sazonov, Solving the sign problems of the massless lattice
Schwinger model with a dual formulation, Nucl. Phys. B 897 (2015) 732 [arXiv:1502.05479]
[INSPIRE].

[56] C. Gattringer, T. Kloiber and M. Müller-Preussker, Dual simulation of the two-dimensional
lattice U(1) gauge-Higgs model with a topological term, Phys. Rev. D 92 (2015) 114508
[arXiv:1508.00681] [INSPIRE].

[57] C. Gattringer, D. Göschl and T. Sulejmanpasic, Dual simulation of the 2d U(1) gauge Higgs
model at topological angle θ = π : Critical endpoint behavior, Nucl. Phys. B 935 (2018) 344
[arXiv:1807.07793] [INSPIRE].

[58] T. Sulejmanpasic and C. Gattringer, Abelian gauge theories on the lattice: θ-Terms and compact
gauge theory with(out) monopoles, Nucl. Phys. B 943 (2019) 114616 [arXiv:1901.02637]
[INSPIRE].

[59] T. Sulejmanpasic, D. Göschl and C. Gattringer, First-Principles Simulations of 1+1D Quantum
Field Theories at θ = π and Spin Chains, Phys. Rev. Lett. 125 (2020) 201602
[arXiv:2007.06323] [INSPIRE].

[60] H. Ohata, Monte Carlo study of Schwinger model without the sign problem, JHEP 12 (2023) 007
[arXiv:2303.05481] [INSPIRE].

[61] H. Ohata, Phase diagram near the quantum critical point in Schwinger model at θ = π: analogy
with quantum Ising chain, PTEP 2024 (2024) 013B02 [arXiv:2311.04738] [INSPIRE].

[62] S.R. Coleman, More About the Massive Schwinger Model, Annals Phys. 101 (1976) 239
[INSPIRE].

[63] S.R. Coleman, The Quantum Sine-Gordon Equation as the Massive Thirring Model, Phys. Rev.
D 11 (1975) 2088 [INSPIRE].

[64] F.D.M. Haldane, Nonlinear field theory of large spin Heisenberg antiferromagnets.
Semiclassically quantized solitons of the one-dimensional easy Axis Neel state, Phys. Rev. Lett.
50 (1983) 1153 [INSPIRE].

[65] I. Affleck and F.D.M. Haldane, Critical Theory of Quantum Spin Chains, Phys. Rev. B 36 (1987)
5291 [INSPIRE].

[66] L. Susskind, Lattice Fermions, Phys. Rev. D 16 (1977) 3031 [INSPIRE].

[67] R. Dempsey, I.R. Klebanov, S.S. Pufu and B. Zan, Discrete chiral symmetry and mass shift in
the lattice Hamiltonian approach to the Schwinger model, Phys. Rev. Res. 4 (2022) 043133
[arXiv:2206.05308] [INSPIRE].

[68] M.L. Wall and L.D. Carr, Out-of-equilibrium dynamics with matrix product states, New J. Phys.
14 (2012) 125015.

[69] M. Fishman, S.R. White and E.M. Stoudenmire, The ITensor Software Library for Tensor
Network Calculations, SciPost Phys. Codeb. 2022 (2022) 4 [arXiv:2007.14822] [INSPIRE].

– 42 –

https://doi.org/10.1103/PhysRevD.101.094509
https://doi.org/10.48550/arXiv.1911.01285
https://inspirehep.net/literature/1762814
https://doi.org/10.1007/JHEP11(2023)187
https://doi.org/10.48550/arXiv.2309.01422
https://inspirehep.net/literature/2693462
https://doi.org/10.1103/PhysRevD.110.034514
https://doi.org/10.48550/arXiv.2404.15666
https://inspirehep.net/literature/2780698
https://doi.org/10.1016/j.nuclphysb.2015.06.017
https://doi.org/10.48550/arXiv.1502.05479
https://inspirehep.net/literature/1345357
https://doi.org/10.1103/PhysRevD.92.114508
https://doi.org/10.48550/arXiv.1508.00681
https://inspirehep.net/literature/1386477
https://doi.org/10.1016/j.nuclphysb.2018.08.017
https://doi.org/10.48550/arXiv.1807.07793
https://inspirehep.net/literature/1683292
https://doi.org/10.1016/j.nuclphysb.2019.114616
https://doi.org/10.48550/arXiv.1901.02637
https://inspirehep.net/literature/1712820
https://doi.org/10.1103/PhysRevLett.125.201602
https://doi.org/10.48550/arXiv.2007.06323
https://inspirehep.net/literature/1806536
https://doi.org/10.1007/JHEP12(2023)007
https://doi.org/10.48550/arXiv.2303.05481
https://inspirehep.net/literature/2640012
https://doi.org/10.1093/ptep/ptad151
https://doi.org/10.48550/arXiv.2311.04738
https://inspirehep.net/literature/2720135
https://doi.org/10.1016/0003-4916(76)90280-3
https://inspirehep.net/literature/108549
https://doi.org/10.1103/PhysRevD.11.2088
https://doi.org/10.1103/PhysRevD.11.2088
https://inspirehep.net/literature/1873
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.50.1153
https://inspirehep.net/literature/188655
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevB.36.5291
https://inspirehep.net/literature/245524
https://doi.org/10.1103/PhysRevD.16.3031
https://inspirehep.net/literature/108481
https://doi.org/10.1103/PhysRevResearch.4.043133
https://doi.org/10.48550/arXiv.2206.05308
https://inspirehep.net/literature/2094752
https://doi.org/10.1088/1367-2630/14/12/125015
https://doi.org/10.1088/1367-2630/14/12/125015
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.48550/arXiv.2007.14822
https://inspirehep.net/literature/1810605

	Introduction
	Review of the 2-flavor Schwinger model with the theta term
	Composite particles and global symmetry at theta=0
	The particle spectrum at nonzero theta
	Nearly conformal behaviors at theta=pi

	Basic calculation strategy and review at theta=0
	Lattice Hamiltonian simulation of the 2-flavor Schwinger model with the open boundary condition
	Generation of the ground state
	Review of computational schemes for the meson spectra at theta=0

	Caluclation strategy for nonzero theta regime
	Improved one-point-function scheme
	Dispersion-relation scheme

	Simulation results
	Simulation parameters
	Improved one-point-function scheme for 0<=theta<pi
	Dispersion-relation scheme

	One-point function at theta=pi
	Conclusion and discussion
	Compact boson on the finite interval
	Definition of the observables
	Results of the correlation-function scheme
	One-point-function scheme with the original setup
	Fate of the eta meson
	One-point function of the eta meson
	Correlation function of the eta meson


