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Abstract

Background Although polygenic risk scores (PRSs) are expected to be helpful in precision
medicine, it remains unclear whether high-PRS groups are more likely to benefit from
preventive interventions for diseases. Recent methodological advancements enable us to
predict treatment effects at the individual level.
Methods We employed causal forest to explore the relationship between PRSs and
individual risk of diseases associated with certain environmental factors. Following
simulations illustrating its performance, we applied our approach to investigate the
individual risk of cardiometabolic diseases, including coronary artery diseases (CAD) and
type 2 diabetes (T2D), associated with obesity and smoking among individuals from UK
Biobank (UKB; n = 369,942) and BioBank Japan (BBJ; n = 149,421).
Results Here we find the heterogeneous association of obesity and smoking with diseases
across PRS values, complicated by the multi-dimensional combination of individual
characteristics such as age and sex. The highest positive correlations of PRSs and the
exposure-related disease risks are observed between obesity and T2D inUKB and between
smoking and CAD in BBJ (Spearman’s ρ = 0.61 and 0.32, respectively). However, most
relationships are weak or negative, suggesting that high-PRS groups will not necessarily
benefit most from environmental factor prevention.
Conclusions Our study highlights the importance of individual-level prediction of disease
risks associated with target exposure in precision medicine.

Chronic diseases impose an enormous health and economic burden. For
instance, cardiovascular diseases and diabetes cause 17.9 million and 1.5
million deaths worldwide in 2019, respectively1,2. As an essential part of the
Sustainable Development Goals by 20303, the United Nations has proposed
to reduce premature mortality from noncommunicable diseases including
cardiovascular disease and diabetes by one-third. To achieve this goal, it is
imperative to establish an individualized approach to effectively reduce the
risk of these diseases through improving health behaviors (e.g., physical
activity, smoking, etc.)4,5. Over the last decade, genome-wide association

studies (GWAS) have uncovered the contribution of genetic variants to the
development of these diseaseswith lifestyle/behavioral risk factors6,7. Recent
progress in GWAS has enabled us to summarize the individual genetic
variants into a single liability score to develop a certain disease as polygenic
risk scores (PRSs). PRSs canpredict a high-risk group for the disease and are
expected to be helpful to improve the quality of precision medicine8.

However, we still lack insight into how to maximize the advantage of
PRSs for precision preventive medicine to motivate behavioral changes9.
Should we simply concentrate behavioral interventions on individuals with
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Plain language summary

This study aimed to understand if people with
a high genetic risk for certain diseases benefit
more from preventive strategies. Using a
machine-learning-based method, we ana-
lyzed data from large groups of people in the
UK and Japan. We examined the risk of heart
and metabolic diseases in relation to obesity
and smoking. The results showed that the link
between genetic risk and disease is complex
and varies widely among individuals. Our
results suggested that those with a high
genetic risk for disease may not always ben-
efit more from the prevention of obesity and
smoking. This finding suggests that we need
toconsidermore thanrisk indecisionsonhow
to prevent diseases in individuals.
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high PRS values? To answer this question, it would be essential to obtain
knowledge on how PRSs are associated with the effects of health behavior-
related environmental risk factors on diseases. Previous studies applied
approaches that regress interaction terms between environmental risk fac-
tors and PRSs linearly to the disease risks or assess the associations between
environmental risk factors and PRSs stratified by the values of PRSs10–13.
While such parametric or stratified analyses are informative when there is
prior knowledge on the structures of associations, they are likely to miss
multi-dimensional, complex, and non-linear heterogeneous patterns in the
association that the investigators do not know in advance. Moreover,
assessing the continuous relationship between PRSs and benefit of beha-
vioral changes (i.e., without setting specific cut-off of PRSs a priori for
stratification) is challenging to such conventional approaches. Given that
shared decision-making between clinicians and patients requires informa-
tion on absolute effect measures (e.g., risk difference)14, it is imperative to
investigate whether the risk difference differs across individuals taking
account of a high-dimensional set of covariates including continuous PRSs.

Recent methodological advancement in the machine-learning-based
approach enables us to estimate heterogeneous treatment effects (HTEs)15.
HTEs refer to situationswhen the effects of the exposure on the outcome (or
the exposure–outcome associations) at the individual levels, known as
individualized treatment effects (ITEs), vary by individual characteristics.
Causal forest is one such method using random forest with double-sample
trees to identify the heterogeneity in the treatment effect on an absolute scale
(i.e., risk difference)16,17. In addition, this non-parametric approach allows us
to predict the ITEs (in randomized clinical trials16,17) or the individual dis-
ease risk associatedwith exposure (in observational studies18,19) as a function
of observable characteristics of individuals.

Here, we propose an approach to utilize the machine-learning causal
forestmodel to gain insight intowhether high-PRS groups aremore likely to
benefit from preventive interventions. The machine-learning-based
approach is advantageous in that it can disentangle continuous and non-
linear relationships between the PRS of a disease and the treatment effect of
an environmental factor, complicated by other characteristics. This study
comprises twomain components: (1) simulations and (2) the application of
our approach to real-world biobank data. In the simulations, we illustrate
the conceptual frameworkof our studyanddemonstrate themethodological
advancement of the machine-learning-based approach using simulated
data. In the application to biobanks, we investigate the continuous rela-
tionship between PRSs and the estimated risk of coronary artery diseases
(CAD) and its risk factors—type 2 diabetes (T2D), dyslipidemia (DL), and
hypertension (HTN)—associated with obesity and smoking (two major
environmental risk factors)20 using the causal forest model. We target
individuals with two different ancestries from two large-scale nation-wide
biobanks: UK Biobank (UKB) and BioBank Japan (BBJ). Revealing these
relationships would provide a novel insight into the utility of PRSs for
precision medicine to effectively prevent diseases with lifestyle/behavioral
risk factors.

Methods
Estimation of heterogeneity in the association between envir-
onmental risk factors and diseases using causal forest
For simulation and real-world biobank data, we applied the causal forest
model (grf package in R) to build the models to predict the ITE of envir-
onmental risk factors17. Formally, within the counterfactual framework, the
effect of environmental risk factors on diseases conditional on a set of
covariates (C = c) can be written as follows;

E½Yx¼1 � Yx¼0jC ¼ c� ð1Þ

where Yx denotes the potential outcome Y under the treatment (exposure)
X = x. Toobtainunbiased estimates,weneed the assumptions of conditional
exchangeability (i.e.,Yx⫫X |C = c), positivity (i.e., P(X = x |C = c) > 0 for all
x and c), consistency (i.e., Yx = Y when X = x), no model misspecification,
and no other sources of bias (e.g., misclassification, no interference, etc.).

In the causal forest approach, we constructed an ensemble of 2000
causal trees that identified subgroups with different magnitudes of the
associations by individual characteristics or covariates. In each leaf of the
trees, the covariate balance between treatment (exposed) and control
(unexposed) groups was enssured under the assumption of no unmeasured
confounders. Tominimize the riskof overfitting,we employed the following
two stepsof thedouble-sample trees approachwhenbuilding each treeusing
observable individual characteristics17: (i) randomly select the half sub-
sample without replacement from the entire dataset to build each tree, and
(ii) further split the fractional subsample into halves andused thefirst half to
construct the tree and the second half to make predictions, so-called honest
estimation16. The models were built by tenfold cross-fitting, and therefore,
estimates for each fold were calculated based on trees that were fit without
observations from that fold21. The calibration performance of the causal
forest models was evaluated through computing the best linear fit of the
target estimand using the out-of-bag prediction and the mean forest pre-
diction as the sole two regressors18. In the best linear fitmodel, the forest was
considered to capture heterogeneity when the coefficient of the out-of-bag
prediction (termed as calibration coefficient)was significantly greater than0
and close to 1. Further details on the causal forest approach can be found
elsewhere16,17.

We evaluated the correlation between PRS and ITEsor individual risks
using Spearman’s correlation coefficient. The positive correlations men-
tioned in themain textwere significant even aftermultiple testing correction
in the biobank analyses, unless otherwise specified.

Simulation
Data generation.We conductedMonte Carlo simulation for the varying
relationships between PRSs and treatment effects of environmental fac-
tors on traits to illustrate the conceptual backgrounds of this study and
methodological advantages of causal forest. We simulated n individuals
with a binary outcome trait (Y) generated from a logistic regression
model of an additive effect of PRS (PRS), a binary environmental factor
(E), and covariates (Xi) with coefficients and an interaction effect
according to different situations as

logitðYÞ ¼ logðaPRSÞ � PRSþ logðaEÞ �E þ logðaiÞ �Xi þ I þ CY ð2Þ

PRS � Nð0; 1Þ; E � Bernoulli ðpEÞ ð3Þ

where I and CY are an interaction term and intercept, respectively. CY was
determined based on the prevalence of trait, pY. PRS values were generated
from the standard normal distribution22. We simulated three different
situations: (1) a simple model (i.e., no interaction effect); (2) a model is
complicated by an interaction effect between PRS and an environmental
factor on the outcome trait: i.e., I = log(aint) · PRS · E; and (3) the effect of an
environmental factor on an outcome varies depending on a binary covariate
Xbinary as

iÞ I ¼ 0 ð4Þ

iiÞ I ¼ logðaintÞ �PRS �E ð5Þ

iiiÞ logðaEÞ ¼ logðaE0Þ þ logðaE1Þ �Xbinary;Xbinary � Bernoulli ð1=2Þ
ð6Þ

In addition,we considered the conditionwherePRShas an effecton the
assignment of an environmental factor, which would be often the case in
observational studies as

logitðEÞ ¼ logðbPRSÞ � PRSþ logðbjÞ �Xj þ CE ð7Þ

where Xj is covariates with coefficients and CE is an intercept determined
based on the prevalence of environmental factor, pE. While the simulation
results under this condition were presented in the main text, those for
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scenarios where no association between PRS and an environmental factor
were also shown in Supplementary Figs. 1 and 2. The expected treatment
effect was calculated by dividing PRS values into small bins and taking the
1000 times average of the difference in the outcome trait value predicted
from the model with an environmental factor of 1 and 0 in each PRS value.

We tested different values of each parameter as, n: {1000, 5000, 10,000,
50,000, 100,000}, pY: {0.1, 0.3}, pE: {0.1, 0.3}, aPRS: {1.25, 1.5, 2}, and aE or aE0:
{1.25, 1.5, 2, 3}. The values for pY and pE represented low and high pre-
valence, as seen in diseases with lifestyle/behavioral risk factors and corre-
sponding environmental factors. The values for aPRS were selected to
represent higher and lower accuracy of PRS, with a value of 1.5 corre-
sponding to typical accuracy, supported by mean values of 1.52 and 1.55 in
theUKBandBBJ, respectively (SupplementaryTable 1). The values for aEor
aE0 were chosen to represent different magnitudes of environmental factor
risks, compatiblewith those estimated in the realworld, such asmean values
of 2.89 for obesity and 1.35 for smoking in theUKB, and1.26 for obesity and
1.99 for smoking in the BBJ (Supplementary Table 1). aE1 was set to 0.5,
assuming situations where the effect of an environmental factor is halved
depending on a binary covariate. bPRS was set to 1.2 considering a weaker
effect of PRS on an environmental factor than on an outcome trait. The
numbers of Xi and Xj were fixed at 10 and 5, respectively, with ai and bj
set to 1.5.

Causal forest. We applied causal forest to build models that predict the
ITE of environmental factors on the outcome trait.We included PRS and
all covariates as inputs for the causal forest model. Then, heterogeneity in
the predicted ITEs was evaluated across PRS values.

Linear regression analysis stratified by PRS values. We separated the
entire data into ten groups according to PRS value. Then, we evaluated
ATEs in each stratified group based on a linear regression model.

Linear regression analysis with an interaction term. We applied a
linear regression model with an interaction term between PRS and
environmental factor to the data, assuming that treatment effects can
vary linearly according to PRS value.

Cohorts
UK Biobank. The UKB comprises health-related information ~500,000
individuals aged between 40 and 69 recruited from across the United
Kingdom from 2006 to 201023. The process of patient registration, the
GWAS data, and the quality control (QC) process are described
elsewhere23. Briefly, we used the genomic data based on genotyping either
by the Applied Biosystems UK BiLEVE Axiom Array or by the Applied
Biosystems UK Biobank Axiom Array and imputation using a combi-
nation of the Haplotype Reference Consortium, UK10K and 1000 Gen-
omes Phase 3 reference panels by IMPUTE4 software24.We included only
individuals of British ancestry according to self-identification and criteria
based on principal components (PCs)24. We excluded individuals of
ambiguous sex (sex chromosome aneuploidy and inconsistency between
self-reported and genetic sex), and outliers of heterozygosity or call rate
of high-quality markers. We also excluded ≤2nd related samples
(randomly selected samples to be remained) based on King’s kinship
index > 0.088425.

Thedefinitionof cases and controls ofT2Dwasbasedon ICD-10 codes
and aprevious studyondiagnosis algorithms for diabetes inUKB26, defining
individuals having a record of diagnosis of an ICD-10 code of E11 or
probable T2D or possible T2D in the algorithms as cases and T2D unlikely
in the algorithms as controls; we excluded individuals having a recode of
diagnosis of ICD-10 codes of E10, E12, or E13 or probable type 1 diabetes,
possible type 1 diabetes, or possible gestational diabetes in the algorithms.
DLwas defined as having a record with a primary or secondary diagnosis of
ICD-10 codes of E78 or a medication history of cholesterol-lowering drugs.
HTNwas defined as having a record with a primary or secondary diagnosis
of ICD-10 codes of I10–15, self-reported diagnosis of HTN, or amedication

history of antihypertensive drugs. Incorporating medication histories into
the definition of diseases can preventmissing hospital records and potential
bias caused by the masking effect of drugs, although it involves a trade-off
between this and the misclassification of non-diseased individuals as cases.
CAD was defined based on a previous GWAS of CAD individuals with
diabetes from UKB27, defining cases as individuals having a record of
diagnosis of ICD-10 codes of I20–25, ICD-9 codes of 410–413, surgical
intervention codes of K40–46, K49, K50, or K75, or self-reported diagnosis
of angina pectoris or myocardial infarction. Obesity was defined as BMI >
30. Smoking and drinking historieswere based on theUKBdata-field codes
of 20116 and 20117, respectively. For smoking history, current and previous
smoking were combined into ever-smoker in the current study.

Although our main analysis targeted all cases that occurred
before and during the observational period to maximize the sample
sizes (i.e., case-control analysis as a part of cohort study), we addi-
tionally conducted a sensitivity analysis for individual risks evaluated
in the UKB, exclusively including incidental cases. To achieve this, we
defined cases diagnosed during and after the first round of assess-
ment (i.e., 2006–2010) as baseline and incidental cases, respectively.
Subsequently, baseline cases were excluded from the analysis. Inci-
dental cases were determined solely based on the ICD diagnosis and a
medication history to ensure a clear timeline. For the analysis using
cardiovascular risk diseases as exposures, we excluded individuals
who were recorded for these diseases (i.e., exposures) during the
study period from unexposed groups to minimize the potential bias
due to underdiagnosis at baseline. We randomly down-sampled the
controls to have the same percentage of diseases as in the primary
analysis.

BioBank Japan. The BBJ is a multi-institutional hospital-based registry
that comprises DNA, serum, and clinical information of ~200,000
individuals of Japanese ancestry recorded from 2003 to 200728,29. The
process of patient registration, the GWAS data, and the QC process are
described in previous studies28,30,31. Briefly, the genomic data were based
on genotyping with the Illumina HumanOmniExpressExome BeadChip
or a combination of the Illumina HumanOmniExpress and HumanEx-
ome BeadChips and imputation with 1000 Genomes Project Phase 3
version 5 genotype and Japanese whole-genome sequencing data31,32. In
the current study, individuals identified as non-Japanese either through
self-reporting or as PC outliers from the East-Asian cluster were
excluded33. We also excluded ≤2nd related samples (randomly selected
samples to be remained) based on King’s kinship index > 0.088425. We
used the cases of T2D, DL, HTN, and CAD, and smoking and drinking
histories defined by the project29. The definition of ever- or never-smoker
used in the current study was the same as that used in a previous GWAS
on smoking status in BBJ34. In our main analyses, we used the same
definition of obesity in the BBJ cohort as we did in the UKB cohort (i.e.,
BMI > 30). We also conducted the additional analyses using a lower cut-
off point (i.e., BMI > 25) according to the definition of the Japan Society
for the Study of Obesity, considering the specific distribution of BMI in
the Japanese Asian population35. Individuals with any missing records
were excluded. Given the high prevalence of diseases due to the unique
recruitment approach in the BBJ (i.e., they enrolled participants with a
diagnosis of at least 1 of 47 diseases)28,29, we randomly down-sampled the
control to have the same percentage of diseases with the UKB so that the
estimated exposure-related individual risk for each disease was com-
parable between the BBJ and UKB cohorts.

Calculation of PRSs
PRSswere calculated using a Bayesian PRSmethod, PRC-CS (automode)36,
which has been shown to be superior to a conventional clumping and
thresholding (C+T) method in robust benchmarking by aggregating the
small risk effects from numerous variants with a continuous shrinkage36. A
fully Bayesian approach of PRS-CS-auto does not require a validation
dataset for tuning parameters; thus, we could use as much data as possible
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for the subsequent analysis. For calculation of PRSs, we only included SNPs
with minor allele frequency > 0.01, average call rate > 0.98,
Hardy–Weinberg equilibrium test P > 1.0 × 10−6, and INFO score > 0.8 in
UKB and r2 imputation score > 0.5 in BBJ. We excluded palindromic and
multi-allelic SNPs. We did not include sex chromosomes because of the
controversy in using them for the calculation of PRSs22.

We preferentially used external ancestry-matched GWAS summary
statistics that did not include each cohort. For phenotypes of which such
externalGWASsummary statisticswerenot publicly available,we constructed
PRSs using a tenfold LOGO approach37. First, samples of each cohort were
randomly split into ten groups. Then, we performedGWAS in each group by
Plink38,meta-analyzed theGWASresults of nine groups in an inverse variance
weighted method using Metal software39, and constructed PRSs for the
remaining one using the result of the meta-analyzed GWAS. In a logistic
model for GWAS in BBJ, we included age, sex, the top 10 PCs from the
genotype data as covariates. The PRSs were normalized between the LOGO
groups.

InUKB,weused external ancestry-matchedGWASsummary statistics
forT2D7 andCAD6, andused theLOGOapproach forDLandHTN. InBBJ,
external ancestry-matched GWAS summary statistics that do not include
BBJ individuals are not publicly available for any diseases; we constructed
PRSs using the LOGO approach.

Estimation of heterogeneity in the association between envir-
onmental risk factors and diseases in the biobank data
For each dataset from UKB and BBJ, we applied the causal forest
model to build the models to predict the individual risk of diseases
(CAD, T2D, DL, and HTN) associated with environmental risk
factors (obesity and smoking)17. To note, we used the term exposure-
related individual risk to differentiate it from ITE since the data
available in the biobank were not interventional, but observational. In
the causal forest approach, we included the following observable
individual characteristics to the models: age, sex, PRS of the outcome
disease, the top 10 PCs, and alcohol-drinking status. We also inclu-
ded the assessment center and genotyping array in UKB and the
LOGO group in BBJ. In addition, we included obesity and ever-
smoker as the characteristics in models in which exposure was not
obesity and smoking, respectively. Because the causal model is
designed to assess the heterogeneity in the association between a
specific exposure and a specific outcome, we constructed individual
models for each exposure of interest and outcome of interest. This
approach means that the effects of multiple exposures were not
evaluated simultaneously.

The same approach was applied to build the models to predict the
individual risk ofCADassociatedwith cardiovascular risk factors (T2D,DL,
and HTN). Given the possible interaction between these risk factors for
cardiovascular events40, we included all of them simultaneously in each
model (i.e., model for T2D–CAD association, model for DL–CAD asso-
ciation, andmodel forHTN–CADassociation).Wealso examinedpotential
bias caused by not including them as covariates.

Ethics approval and consent to participate
We utilized only previously published publicly available biobank data;
therefore, participant consent specific to this study was not required. This
study was approved by the Ethical Committee of the Osaka University
Graduate School of Medicine.

Statistics and reproducibility
Statistical analysis was conducted using R 3.6.1. A two-sided P value < 0.05
was considered statistically significant. The biobank GWAS genotype data
were obtained as described in the “Data availability” section.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Overview of this study
While outcome risk due to exposure is conventionally estimated for the
entire study sample, recentmachine-learning-basedmethods, such as causal
forest, capture HTEs by predicting ITEs or individual disease risk related to
exposure (Fig. 1a). First, we demonstrate this point with the illustration of
the conceptual framework of estimating HTE across PRSs using simulated
data representingPRS–ITE relationships under various conditions (Fig. 1b).
We highlight potential limitations of conventionalmethods, which could be
addressed by the machine-learning-based method. Second, we apply
the causal forest method to biobanks to investigate the continuous rela-
tionship between PRSs and the estimated risk of cardiometabolic diseases
associated with obesity and smoking (Fig. 1b).

Simulations for the conceptual clarification of evaluating het-
erogeneity via causal forest
We conducted Monte Carlo simulations for the varying relationships
between PRSs and treatment effects of environmental factors on traits. We
tested three different scenarios: (1) a simple model in which a binary out-
come trait was determined by a logistic regression model of independent
combinations of PRS values and an environmental factor, (2) a model
complicated with an interactive effect between PRS and an environmental
factor on the outcome trait, and (3) a binary outcome trait derived from
either of twomodels with different effects of an environmental factor on the
outcome depending on a binary covariate (e.g., sex). In simulations, we
applied the causal forest approach to predict ITEs of an environmental
factor, and then evaluated the correlation between PRS and ITEs. In addi-
tion, we investigated two conventional methods for evaluating average
treatment effects (ATEs) that vary by a covariate (i.e., PRS in this case): (1) a
linear regression model to estimate the risk difference in stratified groups
according to PRS values and (2) a linear regression model with a linear
interaction term between PRS and the target environmental factor. The
simulations with a sample size of 100,000, disease prevalence of 0.1, envir-
onmental factor prevalence of 0.3, and specific values for other parameters
are shown in the main text. While the results under the weak association
betweenPRSand the environmental factorwerepresentedhere, thoseunder
no such association were shown in Supplementary Fig. 1.

In a simple model, the simulations revealed that there was a positive
correlation between the expected treatment effect and PRS (Fig. 2a).
However, the correlation was weak, which indicates that individuals with
high PRS did not necessarily show a large magnitude of the treatment effect
of environmental risk factors on diseases. Within a counterfactual frame-
work, it is suggested that there would be a considerable number of indivi-
duals who are not at high genetic risk for the diseases, but more likely to
benefit from interventions to prevent the environmental factor41.

When there is an interaction effect betweenPRS and an environmental
factor on the outcome trait, the PRS–ITE correlations varied and could even
be negative depending on the interaction term values (Fig. 2b), which
indicates the need to evaluate such relationship in each case. All methods
successfully captured these relationships; however, ATEs evaluated using a
linear interaction model deviated from the expected treatment effects.

When an outcome trait was derived from one of two different models
depending on a covariate, the distributions of expected treatment effects
across PRS varied by the covariate (Fig. 2c). This scenario is more likely in
the real world, and the number of such covariates could be even more
enormous. The causal forest successfully captured this distributional dif-
ference. On the other hand, stratified analysis by PRS failed to detect such
differences. To note, stratification by the covariate could also capture the
differences; however, it is unknown in advance which covariates should be
used for stratification and the number of stratifications would be too
enormous to be applied to real-world data. In addition, non-linear inter-
actions in each stratified group would not be captured by linear models.

In the following, we used the best linear fit of the target estimand using
the out-of-bag prediction to quantitatively evaluate the capability of causal
forest to capture HTE complicated by different covariates as recommended
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in the general use of this algorithm (see “Methods” section)21. Its values
significantly greater than 0 and close to 1 indicate that themodel adequately
captures heterogeneity (if any). We called it as the calibration coefficient
here for simplicity. To gain insights for the practical applications of causal
forest, we benchmarked its capability to capture HTE complicated by
covariates with different values of each parameter (Supplementary
Figs. 2 and 3). The causal forest performed better with larger sample sizes,
suggesting that it would be more suitable for application to biobank-scale
data. The model was not well calibrated when the number of cases and
environmental factor assignments was insufficient, particularly requiring
more than 50,000 samples with a prevalence of the outcome trait and
environmental factor of 0.1. Additionally, it did not perform well when the
treatment effect (i.e., degree of an environmental factor on the trait) itself
was too low or high. To note, we need to carefully interpret model

performance from these results because the degree of HTE itself also varies
by different values of parameters.

An overview of the analysis for the biobank data
Here, we analyzed the relationships between environmental factors and
outcome traits utilizing two nation-wide biobanks: UKB (n = 369,942) and
BBJ (n = 149,421) (Fig. 1b). Since we used these real-world observational
data within counterfactual framework, we herein applied the term of
exposure-related individual risk instead of ITE to avoid strong causal
statement for our estimand. For outcome diseases, we targeted CAD and
its risk factor diseases, including T2D, DL, and HTN, because they are
representative diseases with lifestyle/behavioral risk factors for which
sufficient sample sizes were available in both biobanks. Regarding
environmental factors, we targeted obesity (i.e., body max index

Fig. 1 |Anoverviewof the study. aConventionally, outcome risk due to an exposure
is estimated for the entire study sample (i.e., at population level) although different
individuals can have different treatment responses. Causal forest is a machine-
learning method that enables us to capture heterogeneous treatment effects (HTEs)
by predicting these individualized treatment effects (ITEs) or individual disease risk
related to exposure, that can vary by individual characteristics. The estimated ITE
represents the association between the environmental risk factors and the diseases in
observational studies. Causal forest model uses random forests to partition the
dataset into subpopulations with different magnitude of the risks according to
observable characteristics. To minimize the bias, it also applies honest estimation in
which the algorithm evaluates the results using out-of-sample. b. Our study consists
of two main components: (1) simulations and (2) application of our approach to
biobanks. In the simulations, we illustrated the conceptual framework of our study
and demonstrated the methodological advancement of our approach using

simulated data representing relationships between an exposure and an outcome
disease under three different scenarios. In the application of our approach to bio-
banks, we separately analyzed European and East-Asian populations fromUKB and
BBJ, respectively. PRSs for individual diseases with lifestyle/behavioral risk factors
(CAD, T2D, DL, and HTN) were calculated using publicly available GWAS sum-
mary statistics or a LOGO approach. Then, we estimated individual risk of diseases
associated with environmental risk factors (obesity and smoking) using a causal
forestmodel.We evaluated its heterogeneity across PRSs of the outcome diseases. To
note, the red area in the scatter plot indicates individuals who are at low genetic risk,
but at high disease risk associated with exposure (i.e., those who are suggested to be
more likely to benefit from behavioral interventions to prevent the effect of the
exposure). UKB UK Biobank, BBJ BioBank Japan, CAD coronary artery disease,
T2D type 2 diabetes, DL dyslipidemia, HTN hypertension, PRS polygenic risk score.
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(BMI) > 30 or not) and smoking status (i.e., ever-smoker or not) because
they are two major factors for these diseases20. We did not target alcohol
due to its highly variable and non-linear health burden depending on the
amount of intake42, which complicates defining the exposure of interest
and estimating its effect. The demographic characteristics of individuals
are summarized in Supplementary Tables 2 and 3. PRSs of the diseases
were calculated using publicly available GWAS summary statistics or a
leave-one-group-out (LOGO) approach37. The PRSs demonstrated pre-
dictive ability in distinguishing cases from controls (Supplementary
Fig. 4). The summary of the PRSs and LOGO GWAS are presented in
Supplementary Tables 4 and 5, respectively. Then, we estimated indivi-
dual risk of the diseases associated with the environmental risk factors
using a causal forest model and evaluated its heterogeneity across the PRS
values of the diseases and other characteristics.

The association between environmental risk factors and dis-
eases varied by the PRSs
As shown in Fig. 3a, b, the individual risks of the diseases associated with
obesity and smoking varied by the PRSs. The individual risk had positive
correlation with PRSs, particularly for the relationship between obesity and
T2D in the UKB (Spearman’s ρ = 0.61). This may suggest that individuals
with high PRSs of T2Daremore likely to benefit frombehaviors that reduce
the risk of obesity (e.g., physical activity and diet) than those with low PRSs
in this cohort. In particular, individuals with PRSs > 90th percentile were
estimated tohave 2.3 times stronger risk ofT2Dassociatedwith obesity than
those with PRSs < 10th percentile (+17.7 percentage point [95% CI,
17.0–18.5] vs+7.60 percentage point [95% CI, 7.10–8.00]). However, such
correlation was relatively weak in the BBJ cohort (Spearman’s ρ = 0.16); in
contrast, the strongest positive correlation was observed at the relationship
between smoking and CAD (Spearman’s ρ = 0.32). Thus, the correlation
pattern between PRSs and disease risks associated with exposures varied
across disease, environmental risk, and cohort. Notably, the correlations
were weak or even negative for some environment–disease relationships
(e.g., the relationships of smoking with DL andHTN and the relationship
of obesity with HTN in the BBJ cohort). This indicates that individuals
with high PRS did not necessarily show the large magnitude of the
association between environmental risk factors and diseases; i.e., there
would be a considerable number of individuals who are not at high

genetic risk, but more likely to benefit from behavioral interventions41.
For the BBJ cohort, we also reanalyzed the data using the population-
specific definition of obesity (i.e., BMI > 25)35 to have adequate number of
individuals in the exposed group so that we could capture the risk of
obesity-related diseases in the Japanese population. Although the cor-
relations between PRSs and individual risk of the diseases associated with
the environmental risk factors became slightly stronger, they still
remained weak, particularly for DL and HTN (Supplementary Fig. 5).
In most of the environment–disease relationships, the models were well
calibrated, with the calibration coefficients being nominally significant in
8 and 7 out of 8 relationships in the UKB and BBJ, respectively (P < 0.05).
These significances were mostly preserved even after multiple test cor-
rections, with 8 and 5 out of 8 relationships remaining significant in the
UKB and BBJ, respectively (P < 0.05/8 = 0.00625, a Bonferroni-corrected
P value threshold). However, the relationship between smoking and T2D
in the BBJ cohort was poorly calibrated, probably due to the low asso-
ciation between smoking and T2D (P = 0.12; Fig. 3a, b).

The correlation patterns between PRSs and exposure-related
individual disease risks were complicated by individual char-
acteristics such as age and sex
We further evaluated whether the observed pattern among the entire study
sample could vary by individuals’ characteristics such as age and sex.When
stratified by age, the individual risk of the diseases associated with envir-
onmental risk factors amongolder individualswashigher in theUKBcohort
but lower in the BBJ cohort, particularly for the relationship between obesity
and T2D (Supplementary Fig. 6). The correlation patterns between PRSs
and disease risks associated with exposure were similar across ages in most
cases (Supplementary Fig. 7). However, the correlation between the PRSs of
HTN and the individual risks of HTN associated with obesity significantly
varied by age in the UKB cohort (Spearman’s ρ =−0.30 and 0.47 among
individuals aged ≥65 years and <65 years, respectively). There were also
significant differences in the disease risks associated with exposures by sex
(Supplementary Fig. 8); e.g.,maleswere estimated to have 1.4 times stronger
risk of T2D associated with obesity than females in the UKB cohort (+14.3
percentage point [95% CI, 13.9–14.6] vs +10.5 percentage point [95% CI,
10.3–10.7]). The correlations between PRSs and disease risks associated
with obesity and smoking showed similar patterns regardless of sex

Fig. 2 | The machine-learning approach can capture the heterogeneity in treat-
ment effects of environmental risk factors on diseases across PRS values in
simulation data. a–c Each panel represents a partial dependence plot of PRS on
treatment effects of environmental risk factors on outcome traits under different
simulation scenarios. The red lines represent the expected treatment effects from
models used to generate the simulated data. The green (a, b) and yellow/cyan (c) dots
represent the ITEs predicted by a causal forest model. In (c), the red lines are

separated and dots are differently colored based on the binary covariate determining
whichmodels with different effects of the environmental factors generate them. The
blue lines represent ATEs evaluated using a linear model with an interaction term
between PRS values and environmental risk factors. The purple dots represent the
ATEs evaluated with a linear model within groups stratified by PRS values. PRS
polygenic risk score, ITE individualized treatment effect, ATE average treatment
effect.
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(SupplementaryFig. 9).The sexdifferences in the correlationswere less clear
in the BBJ cohort (Supplementary Figs. 8 and 9).

Our ultimate goal is to identify groups for which behavioral changes to
prevent environmental factors are more and less effective, which can be
critical for in future personalized medicine. To this end, we compared
the characteristics between individuals with high and low disease risks

associated with environmental factors (>90th percentile and <10th per-
centile; Fig. 3c; Supplementary Tables 6 and 7). For example, in the UKB
cohort, individuals with high disease risks associated with obesity and
smokingweremore likely to beolder,male, andhavehigherPRS values than
those with low disease risks associated with obesity and smoking. Although
similar patterns were found except age in the BBJ cohort, individuals with
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high disease risks associated with obesity were more likely to be younger
than those with low disease risks associated with obesity.

Sensitivity analysis for individual risks evaluated in the UKB
We additionally conducted a sensitivity analysis for individual risks eval-
uated in the UKB, exclusively including incidental cases. As shown in
Supplementary Fig. 10, the calibration of causal forest was preserved
(P < 0.05), despite a decrease in sample sizes. The overall correlation pat-
terns betweenPRS and individual riskswere consistentwith those including
all cases, as represented by the strong positive correlation in the relationship
between obesity and T2D (Spearman’s ρ = 0.58).

Heterogeneous association of cardiovascular risk diseases with
CAD across PRSs
T2D, DL, and HTN are major diseases that increase the risk of cardio-
vascular diseases; thus, we evaluated the individual risk of CAD asso-
ciated with these cardiovascular risk diseases as exposures. While the
highest positive correlation was found for the relationship between DL
and CAD (Spearman’s ρ = 0.29 and 0.28 in the UKB and BBJ cohort,
respectively), such correlation was not obvious for the relationship
between T2D and CAD (|Spearman’s ρ| < 0.1 in both cohorts; Fig. 4a, b).
In both cohorts, we found that individuals with high CAD risk associated
with DL were more likely to be older, male, and smokers and had higher
PRS values than those with low CAD risk associated with DL (Fig. 4c;
Supplementary Tables 6 and 7).

In some cases, we found the difference in the distribution of one car-
diovascular risk disease-related risk according to another, which would
indicate the presence of interaction among these cardiovascular risk
diseases40. For instance,whenwe stratifiedbyDL status, individualswithDL
were estimated to have 0.22 times lower risk of T2D-related CAD risk than
those without DL in the UKB cohort (+1.38 percentage point [95% CI,
0.061–2.14] vs +6.25 percentage point [95% CI, 5.79–6.71]; P value for
interaction between T2D and DL <0.001). In contrast, individuals with DL
were estimated to have 3.3 times higher risk of HTN-related CAD risk than
those without DL in the UKB cohort (+17.7 percentage point [95% CI,
17.0–18.4] vs +5.43 percentage point [95% CI, 5.26–5.61]; P value for
interaction betweenHTN andDL <0.001). In addition, individuals withDL
had a higher correlation between the CADPRS andHTN-related CAD risk
than those without DL (Spearman’s ρ = 0.39 vs 0.13). In the BBJ cohort,
respective cardiovascular risk disease-related risks themselves were weaker
and their interactive effects on the CAD risk and PRS were less obvious.

We performed the sensitivity analysis in the UKB for these relation-
ships, exclusively including incidental cases. Specifically, the highest positive
relationship between PRS and CAD risk due to DL was replicated (Spear-
man’s ρ = 0.20; Supplementary Fig. 11). The relationship for T2D could not
be evaluated due to poor calibration (P > 0.05).

Lastly, while the results shown above are based on the models
including risk diseases other than the target ones as covariates in the
models, we performed an additional analysis not including them to
demonstrate their potential impact on the results. The individual risks
assessed in the models without these covariates exhibited higher mag-
nitudes although the overall correlation patterns with PRS remained
largely unchanged (Supplementary Fig. 12).

Discussion
Here, by utilizing the causal forest model and cross-population biobank
resources, we demonstrated that the associations between environmental
risk factors and diseases could vary by their PRSs, following the simulations
showing the conceptual backgrounds of our study and the methodological
advantages of themachine-learning-based approach. Particularly, we found
that the higher PRSs of T2D were correlated with the stronger association
between obesity and T2D in the UKB. However, such positive correlation
was less clear for some of the other associations. These findings suggest that
individualswith highPRSswill not necessarily benefitmost frombehavioral
changes to prevent the effects of such environmental factors despite the
usefulness of PRSs to predict individuals at high risk of diseases41. Given the
heterogeneity in the disease risks associated with environmental factors
across characteristics, identifying individuals with high benefit from beha-
vioral changes as well as high genetic risk of diseases would help decision-
makers to build the most efficient and effective precision preventive med-
icine approach to reduce global burden of diseases43,44. Because our study
was basedon the observational databases, the triangulationof evidence from
other cohorts and severalmethodological approaches is required to establish
the robustness of our findings and apply these concepts (i.e., targeting
individuals with high benefit from behavioral changes) in clinical practice.

Although medicine often prioritizes individuals at high risk under
an implicit assumption that such high-risk individuals receive high
benefit from treatment, previous studies have suggested the risk of dis-
ease does not consistently correlate with the benefit of treatment44,45. Our
study corroborates these findings, extending them to the genetic domain
by demonstrating that individuals with elevated PRS may not derive the
greatest benefit from environmental risk mitigation. Although the
underlying mechanisms are not clear, the complex interplay of genetic
factors, socioeconomic status, and disease history in this PRS-benefit
discordance warrants deeper investigation, especially in the era of per-
sonalized medicine, where genetic insights guide treatment prioritization
and resource allocation.

Previous studies well estimated the risk of environmental risk factors
on CAD and cardiovascular risk factors in groups stratified by the values of
PRSs10–12. For instance, a previous report showed that individuals with a
higher genetic risk of CAD were more likely to benefit from lowering LDL
cholesterol46, which is in line with our finding showing the positive corre-
lation with PRS and CAD risk associated with DL. On the other hand, the
current study provided several noteworthy progresses, facilitated by the
methodological advantages of our approach. First, our approach could
capture the heterogeneity in the association between environmental risk
factors and diseases across continuous values of PRS without prior
assumptions. Bymodeling togetherwith other individual characteristics, we
identified the heterogeneous patterns complicated by their multi-
dimensional combinations. Of interest, the correlation between the HTN
PRSs and obesity-related risks of HTN was reversed in older and younger
individuals in the UKB cohort. Second, we obtained information that is
practically useful when implementing targeted behavioral interventions by
directly modeling exposure-related disease risk. As a result, some indivi-
duals even with low PRSs showed high disease risks associated with obesity
and smoking, highlighting the importance of detecting such individuals to
maximize the effectiveness of behavioral interventions. Considering that

Fig. 3 | Partial dependence plots of PRSs on the association between environ-
mental risk factors and diseases in individuals from two biobanks. Each panel
represents a partial dependence plot of PRS on the association between obesity or
smoking and T2D, DL, HTN, or CAD in individuals from UKB (a) and BBJ (b). In
each panel, the individual risks of disease associated with an environmental risk
factor (the vertical axis) are shown along with the PRS values of a disease (the
horizontal axis). The color of each dot represents the density of individuals within
that dot according to the color bar at the bottom. We showed (i) calibration coef-
ficients and their P values at the upper left and (ii) Spearman’s correlation coeffi-
cients between PRSs and disease risks associated with exposure at the upper right.
cComparison of characteristics (the vertical axis) between groups with high and low

disease risks associated with each environmental risk factor (the horizontal axis) in
the UKB and BBJ cohorts. In each panel, color of the squares represents the stan-
dardized mean differences in characteristics between the two groups. The size of
squares corresponds to the P values of a two-tailed t-test for continuous char-
acteristics and a Chi-square test for categorical characteristics between two groups.
The size and color scales are provided on the right of the figure. The P values in all the
panels were calculated from n = 369,942 samples in UKB. For BBJ, the P values were
calculated from down-sampled data based on n = 149,421 independent samples to
match the disease prevalence in the UKB. UKB UK Biobank, BBJ BioBank Japan,
PRS polygenic risk score, CAD coronary artery disease, T2D type 2 diabetes, DL
dyslipidemia, HTN hypertension, Obes obesity, SM smoking.
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Fig. 4 | Partial dependence plots of PRSs on the association between cardiovas-
cular risk diseases and CAD in individuals from two biobanks. Each panel
represents a partial dependence plot of PRS on the association between T2D, DL, or
HTN and CAD in individuals from UKB (a) and BBJ (b). In each panel, the CAD
risks associated with each cardiovascular risk factor (the vertical axis) are shown
along with the PRS values for CAD (the horizontal axis). The color of each dot
represents the density of individuals within that dot according to the color bar at the
bottom. We showed (i) calibration coefficients and their P values at the upper left,
and (ii) Spearman’s correlation coefficients between PRSs and disease risks asso-
ciated with exposure and their P values at the upper right. c Comparison of char-
acteristics (the vertical axis) between groups with high and low CAD risk associated

with each cardiovascular risk factor (the horizontal axis) in the UKB and BBJ
cohorts. In each panel, the color of squares represents the standardized mean dif-
ferences in characteristics between the two groups. The size of squares corresponds
to the P values of a two-tailed t-test for continuous characteristics and a Chi-square
test for categorical characteristics between two groups. The size and color scales are
provided on the right of the figure. The P values in all the panels were calculated from
n = 369,942 samples in UKB. For BBJ, the P values were calculated from down-
sampled data based on n = 149,421 independent samples to match the disease
prevalence in the UKB. UKB UK Biobank, BBJ BioBank Japan, PRS polygenic risk
score, CAD coronary artery disease, T2D type 2 diabetes, DL dyslipidemia, HTN
hypertension.

https://doi.org/10.1038/s43856-024-00596-7 Article

Communications Medicine |           (2024) 4:181 9

www.nature.com/commsmed


healthburdenof environmental risk factors coulddynamically varybyother
individual characteristics (e.g., age and sex), it is essential to identify high-
treatment groups defined by such various characteristics. It is important to
note that such implications should be carefully interpreted as they are based
on the assumption that interventions work as expected for their target
environmental factors in the population of interest.

Our finding of the positive correlation between PRSs and T2D risks
associated with obesity in the UKB cohort is in line with a previous study
showing the additive interaction of a healthy lifestyle (defined by diet,
physical activity, smoking, alcohol intake, and BMI) and genetic risk
score of T2D among European-ancestry adults12. A more recent study
using the same cohort of US adults showed the consistent association
between healthier diets and T2D regardless of genetic risk score, indi-
cating that other lifestyle factors including physical activity and obesity
might contribute to their original findings of interaction13. In addition,
the risk and its correlation with the PRSs were small in the BBJ cohort,
which might partially reflect the lower rate of obesity in East-Asian
T2D patients47.

The correlation patterns for the relationship between other environ-
mental risk factors and diseases were not consistent between the UKB and
BBJ cohorts. First, we note that these differences might stem from the
different schemes employed by the biobanks. Specifically, due to the
hospital-based design of BBJ, wherein controls were selected from indivi-
duals with diseases other than the targets, the estimation of individual risks
might be distorted compared to the general population-based design of
UKB. Second, these results might represent the heterogeneity in the
exposure–outcome associations depending on populations, which suggests
the need for estimating the exposure-related individual risks according to
target populations48. A possible explanation for the inconsistencies is that
the proportion of genetic background associated with the effects of envir-
onmental risk factors within the overall PRS might vary across these
populations. The PRS is an aggregate risk scale, and it is difficult to directly
obtain biological insight. Therefore, the disentanglement of PRSs based on
biological categories, such as pathways,maybe an effective approach to infer
the causes of differences and obtain biologically meaningful insight into the
interaction between genetic and environmental risk factors. Nearly 90% of
the disease-associated variants are within non-coding regions49, where in
silico and in vitro functional annotations are massively in progress. Thus,
such an annotation-based variant prioritization approach may be useful in
the future.

In order to capture heterogeneity in exposure–outcome asso-
ciations, it is fundamental to target cohorts with large sample sizes
and various characteristics of individuals48,50. We addressed this point
by utilizing the publicly available large-scale biobanks with individual
genotype data. On the other hand, we could not rule out the possi-
bility of reverse causation since clear time points of individual
characteristics and medical conditions were often unavailable in the
biobank data. To address this issue, we conducted additional analyses
exclusively including incidental cases from the available UKB data,
which yielded similar correlation patterns. Deciding whether to
include all cases or focus solely on incidental cases involves balancing
sample size sufficiency for calibration and evaluating heterogeneity
against achieving stringent causation evaluation. Furthermore, in the
current study, we focused on CAD, T2D, DL, and HTN, which had
large sample sizes and known environmental risk factors. Although
we attempted to evaluate the individual risks of other diseases—such
as colorectal and lung cancer—associated with environmental factors,
we could not well capture heterogeneous associations across PRSs
due to their low heritability and relatively small sample sizes in the
biobanks. We have several additional limitations and future advances
to note. First, because causal forest is not a statistical tool to address
the systematic biases occurring in observational studies, our results
might have suffered from bias due to unmeasured confounding. As
we examined the potential effects of including confounding covari-
ates or not into the models, this could affect the magnitude or

relationships to PRS of exposure-related risks. Second, our findings of
the heterogeneity by age should be carefully interpreted because age
was measured at the study enrollment and might not be related to
exposure and outcome status. Third, exposures were self-reported,
and thus these variables might have been misclassified51. Fourth, we
treated the exposures as binary; however, their internal distributions
(e.g., severity of obesity, pack-years of smoking, etc.) may vary
according to different characteristics. On the other hand, we note
that interpreting and generalizing the effects of changes in environ-
mental factors by treating them as continuous variables could be
intrinsically challenging, as these effects may vary depending on their
baseline values (e.g., 5 kg/m2 increase in BMI would have different
impacts on health for people with BMI of 15 kg/m2 compared to
those with BMI of 30 kg/m2). Fifth, the LOGO approach could cause
potential biases, such as overfitting to the target cohorts, compared to
employing GWAS sum stats from external cohorts and heterogeneity
in PRS compositions across different folds. Sixth, given the hospital-
based design of BBJ, evaluating general population-based biobanks
for the Japanese population is necessary to robustly obtain shared
and distinct insights into exposure-related risks across PRSs between
populations. Lastly, given the different patterns of the heterogeneous
association between environmental factors and diseases across the
cohorts in our study, our results may not be generalizable to other
populations, emphasizing the need to individually evaluate them
depending on specific purposes.

Conclusion
To the best of our knowledge, this study first introduced the concepts of
predicting exposure-related risks at the individual level and evaluating the
potential heterogeneity in the individual risks across PRSs using the
machine-learning-based approach.While PRSs can be useful in identifying
high-risk groups for diseases, they may not necessarily provide direct
information in selecting individuals who are more effective for preventive
behavioral interventions. Predictingnot only high-risk groups but also those
who are more likely to benefit from treatment may maximize the perfor-
mance of precisionmedicine using genetic data that should be the subject of
future research.

Data availability
GWAS data of the BBJ are available at the NBDC Human Database
(Research ID: hum0014). Access to theUKBiobank data can be obtained by
applying through the UK Biobank Access Management System, as detailed
at https://www.ukbiobank.ac.uk/. We obtained the UKB GWAS data via
application number 47821. The source data for Figs. 3c and 4c are available
in Supplementary Tables 6 and 7.

Code availability
R scripts to perform the HTE analysis used in this study are shared in a
GitHub repository (https://github.com/tatsuhikonaito/PRS_HTE)52.
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