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MOTIVATION The limited packaging capacity of the adeno-associated virus (AAV) makes it unfeasible to
accommodatemultiple gene tools within a single vector. Therefore, success in decreasing the size of genetic
tools has had a profound impact on biomedical research. However, the downsizing of designer receptors
exclusively activated by designer drugs (DREADDs), a crucial tool for modulating neural functions, remains
an unfilled opportunity. In this study, we address this gap by reducing the size of the widely utilized DREADD
subtypes, hM3Dq and hM4Di, by approximately 30%. Our miniaturized DREADDs facilitate bimodal regula-
tion of neuronal activity—enabling both excitation and inhibition—using a single AAV vector, thereby offering
a versatile and compact chemogenetic platform.
SUMMARY
Designer receptors exclusively activated by designer drugs (DREADDs) are engineered G-protein-coupled
receptors that afford reversible manipulation of neuronal activity in vivo. Here, we introduce size-reduced
DREADD derivatives miniDq and miniDi, which inherit the basic receptor properties from the Gq-coupled
excitatory receptor hM3Dq and the Gi-coupled inhibitory receptor hM4Di, respectively, while being approx-
imately 30% smaller in size. Taking advantage of the compact size of the receptors, we generated an adeno-
associated virus (AAV) vector carrying bothminiDq and the other DREADD family receptor (k-opioid receptor-
based inhibitory DREADD [KORD]) within the maximum AAV capacity (4.7 kb), allowing us to modulate
neuronal activity and animal behavior in both excitatory and inhibitory directions using a single viral vector.
We confirmed that expressing miniDq, but not miniDi, allowed activation of striatum activity in the cynomol-
gus monkey (Macaca fascicularis). The compact DREADDs may thus widen the opportunity for multiplexed
interrogation and/or intervention in neuronal regulation in mice and non-human primates.
INTRODUCTION

Multiplexed dissection of neural circuitry and behavior is crucial

to investigate complex brain functions for health and diseases.

Adeno-associated virus (AAV) is the most promising vector for

this purpose, as it enables highly efficient, nontoxic, stable

long-term transgene expression in neurons.1–3 However, the

limited capacity of AAV to package DNA (less than 4.7 kb) makes

it unfeasible to accommodate multiple gene tools (or elements

exceeding 4.7 kb) within a single vector.4–8 Therefore, the suc-

cess in decreasing the size of useful DNA tools has had a

profound impact on biomedical research utilizing AAV (see ex-
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amples such as CRISPR-Cas99 and base-editing tools10,11).

However, despite these efforts, reducing the size of designer re-

ceptors exclusively activated by designer drugs (DREADDs) is

still an unfilled opportunity for neuroscience. For example, in ex-

periments where two DREADD tools need to be introduced

simultaneously for bimodal regulation of neuronal activity, re-

searchers currently perform separate experiments in which

either an excitatory or inhibitory receptor is expressed because

current DREADD sizes cannot permit double loading on a single

AAV capsid.12 If a size-reduced DREADD derivative(s) beco-

mes available, this enables its use in conjunction with other che-

mogenetic tools in a single AAV capsid, thereby facilitating
ber 21, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. DREADDs with size-reduced ICL3s

(A) Human class A GPCRs rank ordered for ICL3 length. Top 100 receptors are shown.

(B) Schematic snake plot representation of hM3Dq, miniDq, hM4Di, and miniDi and their subcellular expression in HEK293 cells. mCherry was fused to each

receptor for visualization. Snake plots showing the ICL3 sequence of hM3Dq, miniDq, hM4Di, and miniDi are available in Figure S1.
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bidirectional interrogations (i.e., excitation and inhibition) of tar-

geted cell circuitry by ensuring the co-introduction of the two

tools into the same composite neurons. Attempts to produce

size-reduced DREADD tools, however, have not been reported

so far.

Here, we report obtaining downsized DREADD derivatives,

miniDq and miniDi, both characterized by a shortened length of

the third intracellular loop (ICL3) compared to hM3Dq and

hM4Di, respectively. We verified their basic receptor character-

istics and explored their applications, including their bimodal

regulation of neuronal activity using a single vector.
RESULTS

Shortening ICL3 does not affect plasma membrane
expression of DREADDs
Human class A G-protein-coupled receptors (GPCRs), rank or-

dered for ICL3 length, characterized that the muscarinic acetyl-

choline receptors 3 and 4 (mAChR3 andmAChR4), the ancestors

of human mAChR-based hM3Dq and hM4Di, possess the

longest and fifth longest ICL3s among 312 class A members in

GPCRdb13 (Figure 1A). mAChR3 (and its mutant hM3Dq) pos-

sesses an ICL3 of 211 amino acids, accounting for �36% of its

total length (Figure 1B); mAChR4 (and its mutant hM4Di) pos-

sesses an ICL3 of 156 amino acids, approximating �33% of

the whole protein length14 (Figure 1B). We substituted the

ICL3s of hM3Dq and hM4Di with a 5-amino-acid peptide

sequence, Q-N-T-I-S, which corresponds to the hGpr176 ICL3

sequence devoid of a proline residue at its N terminus (Figure 1B,

ICL3176; see also Figure S1).15–18 Prior to beginning functional

assays, we asked whether this ICL3 substitution might affect

subcellular expression of the receptors. Confocal microscopy

revealed that all the receptors tested, hM3Dq, hM4Di, and their
2 Cell Reports Methods 4, 100881, October 21, 2024
respective mutants, hM3Dq-ICL3176 and hM4Di-ICL3176, both

being smaller than the ancestral receptors in size due to the

reduction of the ICL3, were similarly located in the plasma mem-

brane when expressed in HEK293 cells (Figure 1B), thus sug-

gesting no deleterious effect on protein production or the cell

surface location of the receptors due to the introduction of the

ICL3176.
Conserved ligand selectivity and sensitivity of hM3Dq-
ICL3176 and hM4Di-ICL3176

The replacement of the ICL3, however, may cause an alteration

in, for example, cognate ligand sensitivity of hM3Dq and/or

hM4Di. To test this possibility, we performed a b-arrestin recruit-

ment assay19 (Figure 2A). HEK293 cells were transfected with a

DREADD-Tango of interest and treated with different concentra-

tions of the cognate ligand compound C21. In accordance with a

standard PREST-Tango method,19 a C-terminal tail of the V2

vasopressin receptor (V2 tail), the tobacco etch virus protease

(TEV)-cleavage site, and the tetracycline transactivator (tTA)

were fused in tandem with the C terminus of the receptors. The

b-arrestin2-TEV fusion protein and tTA-responsive luciferase re-

porter were used (Figure 2A). All the receptors tested showed a

concentration-dependent response to C21 (Figure 2B, left), with

similar EC50 values between hM3Dq and hM3Dq-ICL3176 and be-

tween hM4Di and hM4Di-ICL3176 (Figure 2B, right), indicating the

undisturbed ligand sensitivity of hM3Dq-ICL3176 and hM4Di-

ICL3176 (note that we rename hM3Dq-ICL3176 and hM4Di-

ICL3176 as miniDq and miniDi, respectively, in a later section).

We found little or no discernable response of the re-

ceptors toward ACh. We used up to 100 mM of ACh, a

concentration higher than the physiological peak levels of ACh

release in the brain (�2 mM)20; however, as expected, hM3Dq

and hM4Di did not respond to this treatment,21,22 and this



Figure 2. Conserved ligand response and downstream Ca2+ signaling direction by mini DREADDs

(A) Schematic of b-arrestin recruitment Tango assay.

(B) Representative traces (left) and dose-response curves (right) of Tango reporter activity for hM3Dq, miniDq, hM4Di, and miniDi in response to C21 treatment in

HEK293 cells. n = 3–5 biological replicates.

(C) Schematic of Fura-2-based ratiometric intracellular Ca2+ imaging.

(D) Representative Fura-2 ratio traces in Flp-In TREx293 cells expressing hM3Dq, miniDq, hM4Di, and miniDi. Arrowheads at 2 min represent the start of C21

treatment. Ionomycin (Iono; 3 mM) was applied post hoc for the validation of imaging and cell viability.

(E) Quantification of sustained Ca2+ levels in hM3Dq- or miniDq-expressing cells after treatment with increasing doses of C21. Raw Fura-2 traces are available in

Figure S2A. n = 3–5 biological replicates.

(F) Quantification of Ca2+ levels for hM4Di and miniDi after treatment with C21 (10 nM). n = 3.

Data were analyzed using two-way ANOVA followed by Sidak’s multiple comparisons test (B and E) or unpaired Student’s t test (F). Values are the means ± SEM.

n.s., not significant.
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independence (or unresponsiveness to ACh) was also observed

for hM3Dq-ICL3176 and hM4Di-ICL3176 (Figure 2B, right), veri-

fying the unperturbed ligand selectivity of the receptors.

Conserved downstream activity of hM3Dq-ICL3176 and
hM4Di-ICL3176

Next, we monitored downstream signaling selectivity. In the

following experiments, we used Flp-In TREx293 cells (tet-on
HEK293 cells) expressing hM3Dq, hM4Di, hM3Dq-ICL3176, or

hM4Di-ICL3176 (Figures 2 and 3). Unless otherwise mentioned,

cells were treated with doxycycline (Dox) prior to experiments.

Upon C21 treatment, cells expressing hM3Dq displayed ex-

pected intracellular calcium concentration increases in a dose-

dependent manner, as determined by Fura-2AM fluorometry

(Figures 2C–2E and S2A). A similar dose dependency was

observed for hM3Dq-ICL3176 (no significant difference between
Cell Reports Methods 4, 100881, October 21, 2024 3
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hM3Dq and hM3Dq-ICL3176 at any doses tested, Figure 2E). An

immediate increase in [Ca2+]i, caused by C21, was followed by

sustained, oscillatory fluctuations of [Ca2+]i, a phenomenon

typical for Gq-coupled signaling,23,24 in both hM3Dq and

hM3Dq-ICL3176 (Figure S2A; see, e.g., 3 nM C21), further indi-

cating preserved Ca2+ control by these receptors. Not surpris-

ingly, no detectable Ca2+ response was observed for cells ex-

pressing hM4Di, which is designed to couple to Gi (Figures 2D

and 2F).21 hM4Di-ICL3176-expressing cells did not exhibit a

Ca2+ increase, either (Figures 2D and 2F), verifying that there is

no gain-of-function Gq/Ca
2+ activity of hM4Di-ICL3176. A strong

increase in [Ca2+]i after ionomycin (Iono) treatment (Figure 2D)

confirmed cell viability for all tested cells.

We next searched for a stimulatory or inhibitory activity on

cAMP signaling. In agreement with selective Gq coupling, cells

expressing hM3Dq or hM3Dq-ICL3176 did not show increased

cAMP accumulation after stimulation by C21, which contrasts

with 50-N-ethylcarboxamido-adenosine (NECA), an agonist for

the endogenous adenosine 2B receptor present in the cells,

evoking pronounced cAMP accumulation (Figures 3A–3C; aden-

osine 2B receptor couples toGs
25). In experiments examining the

inhibitory response of cAMP for Gi-linked hM4Di (and its mutant

hM4Di-ICL3176), cells received forskolin (Fsk), a cAMP enhancer,

before C21 application (Figures 3A, 3D, and 3E). cAMP levels

were decreased immediately after the C21 treatment in cells

expressing hM4Di (Figures 3D and 3E). cAMP levels in

hM4Di-ICL3176-expressing cells were also decreased after the

treatment in a C21 concentration-dependent manner that was

statistically indistinguishable from that observed in the original

hM4Di-expressing cells (Figures 3D and 3E), which provides

support for the intact Gi signaling mediated by hM4Di-ICL3176.

Additionally, we studied G12/G13-mediated luciferase reporter

gene expression utilizing the serum response factor response

element (SRF-RE) as reported.26,27 To ensure the specificity,

we performed this assay using Gas/Gaolf-deficient TREx293

cells (GNAS�/�;GNAL�/�) in the presence of pertussis toxin

(PTX) for the inhibition of Gi and FR900359 (FR) for the inhibition

of Gq (Figure 3F). As expected, we observed ligand-dependent
Figure 3. Comparable modulation of cAMP and ERK signaling by origi

(A) Schematic representation of GloSensor reporter assay for evaluation of Gs- or

forskolin (Fsk).

(B�E) Representative C21-induced changes in cAMP GloSensor reporter activity

and miniDi (D and E). n = 6 biological replicates. Arrows, C21 or NECA applicatio

(F) Schematic representation of SRF-RE reporter assay for evaluating G12/13-ba

pretreated with PTX and FR.

(G and H) Representative SRF-RE reporter activity traces (G) and their statistical

(I) Schematic design for evaluation of receptor basal activity. Gpr176 was used

induced cAMP accumulation was evaluated using Flp-In TREx293 doxycycline

before experiments.

(J) Representative cAMP GloSensor activity traces in Dox-treated (+) and untre

accumulation was only observed for Gpr176 Dox (+) cells.

(K) Quantification of area under the curve (AUC) in (J). n = 5–8 biological replicat

(L) Immunoblotting and densitometric analysis showing a significant and compa

hM3Dq, miniDq, hM4Di, and miniDi. n = 3–7 biological replicates.

(M) Immunoblots and densitometric analysis showing an agonist-independent ba

cells. Cells were either treated or untreated with Dox without C21. C21-treated

replicates.

Data were analyzed using two-way ANOVA followed by Sidak’s multiple compa

comparisons test (H). Values are the mean ± SEM. ****p < 0.0001, ***p < 0.001, *
upregulation of the G12/G13-coupled thrombin (Thr) receptor

PAR1 (protease-activated receptor 1). Under these conditions,

there was no detectable upregulation of the reporter in our cells

after C21 treatment, indicating that hM3Dq-ICL3176 and hM4Di-

ICL3176 were both comparable to hM3Dq and hM4Di, with no

appreciable gain of function to G12/13 activity (Figures 3G

and 3H).

The ICL3176 sequence was obtained from Gpr176, a constitu-

tively active GPCR possessing cAMP inhibitory activity15; thus,

we checked the possible basal activity of the receptors. To do

this, we leveraged the tet-inducible-receptor-expressing cells,

and Fsk-induced cAMP accumulation was compared between

Dox-treated and untreated cells without C21 treatment (Fig-

ure 3I). Dox did not substantially affect the cAMP accumulation

profiles in any of the tested cells except for Gpr176-expressing

cells, which produced significant attenuation of cAMP accumu-

lation following Dox treatment (p < 0.01 vs. untreated, Figures 3J

and 3K). In parallel, we also checked [Ca2+]i levels and found that

Dox induction of hM3Dq or hM3Dq-ICL3176 had no appreciable

effect on basal [Ca2+]i monitored via Fura-2 (Figure S2B).

Based on these observations thus far (Figures 1, 2, and 3), we

accordingly renamed hM3Dq-ICL3176 and hM4Di-ICL3176 as

miniDq and miniDi, respectively, as they retain G protein selec-

tivity and ligand specificity after being reduced in size.

Comparison between original DREADDs and miniDi/
miniDq in ERK phosphorylation
In addition to G-protein-dependent signaling, DREADDs also

activate the extracellular signal-regulated kinase (ERK) 1/2

pathway independently of receptor coupling to G proteins.28,29

C21-induced ERK phosphorylation was comparable between

miniDq and hM3Dq and between miniDi and hM4Di (Figure 3L).

However, we noticed a slight difference in basal ERK phosphor-

ylation between hM4Di-expressing cells and miniDi-expressing

cells (Figure 3L, see lanes for C21-untreated cell samples).

More specifically, hM4Di appeared to have a slightly higher

constitutive activity for ERK phosphorylation than miniDi. To

verify this difference, we compared basal ERK phosphorylation
nal and mini DREADDs

Gi-mediated cAMP signaling. To monitor Gi activity, cells were pretreated with

and their statistical quantification for hM3Dq and miniDq (B and C) and hM4Di

n.

sed signaling. PAR1 was used as a positive control. Gs/olf-deficient cells were

quantification (H). n = 3 biological replicates. Thr, thrombin.

as a positive control. Agonist-independent, basal inhibitory activity for Fsk-

(Dox)-inducible receptor-expressing cells; cells received Dox or vehicle 18 h

ated (�) cells. Arrows indicate the start of Fsk treatment. Attenuated cAMP

es.

rable increase in ERK phosphorylation after C21 treatment in cells expressing

sal expression of phospho-ERK in hM4Di-induced cells but not miniDi-induced

cell lysate samples were loaded in parallel as a control. n = 5–6 biological

risons test (C, E, and K–M) or one-way ANOVA followed by Tukey’s multiple

*p < 0.01, *p < 0.05, and n.s., not significant.
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in cells with and without receptor expression (Dox(+) vs. Dox(�)).

A significant increase in basal ERK phosphorylation was

observed when hM4Di was expressed but not when miniDi

was expressed (p < 0.05, only for hM4Di-Dox(+) vs. Dox(�); Fig-

ure 3M), indicating reduced constitutive activity at ERK signaling

for miniDi.

Application of miniDq andminiDi to neuronal modulation
in vivo

To test the applicability of miniDq and miniDi in vivo, we injected

AAV expressing miniDq or miniDi in the dorsal part of the dorso-

medial hypothalamus (DMD), a brain region involved in control-

ling body temperature and activity-induced thermogenesis.30

As shown in Figures S3A and S3B, activation of the neurons in

the DMD in miniDq-infected mice resulted in a significant

increase in body temperature and behavioral activity while inhib-

iting them in miniDi-infected mice, in contrast, lowered body

temperature and locomotor activity. In these experiments, we

confirmed that both miniDq and miniDi were able to be activated

by C21 as well as CNO, the two major drugs22,31,32 for DREADD

activation in vivo. Drugs were applied to mice in the middle of

resting phase (zeitgeber time [ZT]07, Figure S3A) or in the begin-

ning of active phase (ZT12, Figure S3B) when body temperature

and locomotor activity were lowest or highest, respectively

(ZT00 denotes lights on and ZT12 lights off). Vehicle treatment

between drug applications did not induce corresponding phe-

nomena (Figures S3A and S3B). We further verified that the

magnitude of the drug-induced changes in body temperature

and locomotor activity was increased in a dose-dependent

manner (Figure S3C).

Having observed the applicability of mini DREADD in vivo, we

finally sought to exploit the potential benefit that could be offered

from the size-reduced derivative of DREADDs. The limited capa-

city of AAV to accommodate foreign DNA (<4.7 kb)33 motivated

us to apply mini DREADDs to develop a virus carrying multiple

tools simultaneously, a task sometimes required for neurosci-

ences. As an example, we generated an AAV carrying both

miniDq and the k-opioid receptor-based inhibitory DREADD

(KORD)34 with a length of 4.7 kb, the limit of the AAV’s capacity

(Figure 4A), which cannot be accomplished with the combination

of hM3Dq and KORD, which total �5.3 kb. The self-cleaving 2A

sequence was inserted between miniDq and KORD to achieve

bicistronic gene expression. These two receptors respond to

mutually independent chemical agonists, C21 forminiDq and sal-

vinorin B (SalB) for KORD,34 thus enabling multiplexed chemo-

genetic study. Primary neuronal cells were infected with the viral

vector AAV-hSyn-miniDq-P2A-KORD. Immunofluorescence co-

nfirmed the co-expression of miniDq and KORD in the same cells

(Figure 4B). In vitro Ca2+ imaging further demonstrated that neu-

rons that were able to be activated by miniDq were also consis-

tently inhibited by KORD (Figure 4B), indicating functional co-

expression of the two receptors in the same cells. Therefore,

our system developed here enabled us to bidirectionally modu-

late target cell activity with single vector infection. To use this

system in vivo, we applied it to the DMD (Figure 4C). Administra-

tion of C21, but not vehicle, at ZT07 led to a significant increase

in body temperature and locomotor activity (p < 0.01 for body

temperature; p < 0.05 for locomotor activity, vehicle vs. C21, Fig-
6 Cell Reports Methods 4, 100881, October 21, 2024
ure 4C). Importantly, in the same mice, SalB administered at

ZT12, but not control vehicle treatment, caused a significant

decrease in body temperature and locomotor activity (p < 0.01

for both parameters, vehicle vs. SalB, Figure 4C), demonstrating

the bidirectional modulation of DMD function in vivowith our sys-

tem. Precise viral infection and the resulting co-expression of

miniDq and KORD in the DMD were finally verified by post hoc

immunohistochemistry (IHC) (Figure 4C).

Potential application to non-human primates
To begin to address the question of applicability of our miniDq/Di

to monkey, AAV viruses encoding either miniDq, miniDi, hM3Dq,

or hM4Di were stereotaxically injected in parallel to four compa-

rable regions in the striatum of the cynomolgus monkey (see Fig-

ure 5A). Nearly equal expression of the receptors was verified via

[11C]DCZ positron emission tomography (PET) imaging, a

method used to see in vivo/in situ binding of DCZ (deschloro-

clozapine), a widely used actuator for hM3/hM4 DREADDs in

monkeys35–39 (Figure 5B). Increased [18F]-fluoro-deoxy-glucose

([18F]FDG) uptake, reflecting neuronal activation, was observed

in the region expressing hM3Dq but not hM4Di after intravenous

administration of DCZ relative to vehicle control (Figure 5C),

which was recapitulated by the miniDq-mediated, but not min-

iDi-mediated, increased accumulation of [18F]FDG observed af-

ter the administration of DCZ (Figure 5C). Finally, we confirmed

that DCZ acts as an actuator for miniDi and miniDq using the

Tango assay, Fura-2 Ca2+ imaging, GloSensor cAMP assay,

and ERK phosphorylation assay (see Figure S4).

DISCUSSION

In this study, we obtained size-reduced DREADD derivatives,

miniDq and miniDi, which inherit the basic receptor characteris-

tics of hM3Dq and hM4Di while being smaller in size by �30%.

We then exemplified the potential size merit(s) by showing the

generation of AAV carrying miniDq and KORD simultaneously

within the length of the maximum AAV capacity. This ensured

the co-expression of the two independent tools in the same cells,

a condition not readily attained by double infection of separate

AAVs. The 2A sequence between miniDq and KORD also

ensured almost equivalent expression of the two receptors

across cell types and mice tested, a feature that would also

help to increase the reproducibility of data by reducing the po-

tential variation from multi-tool infection. We found equivalent

co-expression of miniDq and KORD in the same neuronal popu-

lation of DMD after infection, and reflecting this, all mice sub-

jected to the AAV-miniDq-P2A-KORD virus exhibit consistent

but opposing activity responses after treatment of C21 and

SalB in the same test mice. The use of the size-reduced

DREADD derivatives, therefore, has the potential to expand

means in current brain sciences, where multimodality is req-

uired. In Figure S5, a cartoon discussing the possible advantage

of delivering DREADDs with a single viral vector is available.

The availability of monkeys for basic research is limited due to

ethical and legal constraints. In addition, monkeys exhibit

considerable individual variability in both behavior and genetics.

These features make it challenging to consistently experiment

with multiple AAV vectors in different individuals compared to



Figure 4. AAV-based DREADD system for bidirectional control of neuronal activity

(A) Schematic of the bidirectional DREADD system. AAV encodes both miniDq (neuronal activity enhancer) and KORD (repressor) within the limit of AAV packing

capacity.

(B) Validation of the bidirectional DREADD system in vitro. Top, double-labeled confocal immunofluorescence of miniDq-mCherry and HA-KORD in mouse

primary neuronal cultures. Lower traces, representative Fura-2 ratio in AAV-infected (mCherry-positive) and not-infected cells. CNO, 100 nM; SalB, 50 mM.

(C) C21-induced upregulation and SalB-induced down-regulation of core body temperature and behavioral activity in mice virally expressingminiDq and KORD in

DMD. A brain section verifies equivalent expression of miniDq (magenta) and KORD (cyan) within the same neuronal population in DMD (white, merged color).

Data were analyzed using paired t test. Values are the mean ± SEM (n = 4 8-week-old male mice). ****p < 0.0001, **p < 0.01, and *p < 0.05.
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studies using inbred mice. Our mini DREADD system may

address (or at least mitigate) these issues by allowing the co-

introduction and equivalent co-expression of excitatory and

inhibitory DREADDs in the monkeys’ brain. However, utilizing a

single capsid simultaneously encoding miniDq and KORD, we

were able to demonstrate consistent and bidirectional regulation

of locomotor activity and body temperature in mice. This type of

dual or sequential regulation can be achieved by using two sepa-

rate viruses, albeit with a potentially variable infection efficiency

between the two (Figure S5).40–42 In addition, a single capsid

method would contribute to reducing the virus titers available
for use compared to double infection. This may help improve an-

imal health by reducing unnecessary immune response in indi-

vidual test animals.

In addition, our bidirectional AAV tool may instigate medical

application consideration.43 In recent years, a number of

DREADD-based therapeutic approaches have been suggested

for Parkinson disease,44 Alzheimer disease,45 depression,46

and epilepsy.38 Because the efficiency of AAV delivery varies

among individuals, it is important to individualize the dosage of

DREADD agonist. However, if only one excitatory or inhibitory

DREADD is expressed, then there is no fail-safe option to rescue
Cell Reports Methods 4, 100881, October 21, 2024 7



Figure 5. PET imaging of expression and function of mini DREADDs in monkeys

(A) Schematic illustration of striatal injection sites for hM3Dq, miniDq, hM4Di, and miniDi.

(B) PET imaging of increased [11C]DCZ binding after DREADD viral injection. A coronal image shows a significant increase in binding of [11C]DCZ (purple; dif-

ference in binding potential, DBPND of >0.7) at the striatal injection sites, indicating successful expression of the receptors tested.

(C) PET imaging of [18F]FDG uptake in the caudate nucleus following DCZ administration. The image shows an increase in [18F]FDG uptake (R30% of DSUVR,

standardized uptake value relative to whole brain levels, compared with vehicle administration) specifically in regions of the caudate nucleus where miniDq and

hM3Dq were expressed.
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inappropriately increased or down-regulated neuronal activity

that could happen incidentally after drug application. In our

system, both excitatory and inhibitory DREADDs are present in

identical neurons at an equivalent fixed ratio, allowing sequential

up- and down-regulation of neuronal activity, which may offer an

opportunity to cancel excess activity by controlling the counter-

acting receptor activity. In addition, although the DREADD

approach has not been previously considered as a potential

treatment option for bipolar disorder, our tool might contribute

to its revision since it can provide bidirectional neuronal control,

a modality required for treating depressive and manic phases of

this biphasic dysfunction.47,48 Although purely hypothetical, our

tool may end up offering homeostatic bidirectional control of

neuronal activity in brain treatment.

The miniDq and miniDi plasmids that we made in this study

have been deposited at the RIKEN BioResource Research

Center (https://web.brc.riken.jp/) and the non-profit plasmid re-

pository Addgene (http://www.addgene.org); all plasmids are

publicly accessible. In the present study, we provided a series

of experimental evidence showing that the basic receptor prop-

erties of miniDq and miniDi are conservative to those of the

respective template receptors, hM3Dq and hM4Di, in terms of

cell surface expression, ligand specificity and sensitivity,

G-protein coupling subtype specificity, b-arrestin recruitment,

and downstream ERK1/2 phosphorylation, while the agonist-in-

dependent basal activity observed at the ERK1/2 phosphoryla-

tion was slightly diminished in miniDi compared to that of the

origin receptor hM4Di. These lines of information would help pro-
8 Cell Reports Methods 4, 100881, October 21, 2024
mote the use of miniDi/miniDq plasmids. Many of the previously

reported modified receptors had high basal signaling in vivo that

obscures ligand-induced phenotypes.49,50 Thus, reduced basal

activity, observed for miniDi, is rather favorable for overex-

pressed chemogenetic tools. As a resource for researchers,

the 30% size-reduced DREADD derivatives, with defined recep-

tor characteristics, will expand the repertoire of receptors for

conducting chemogenetic study.

Limitations of the study
In the current study, in vivo application of mini DREADDs was

demonstrated using the mouse DMD and primate striatum as

target sites. The applicability of mini DREADDs to other brain re-

gions and their broader regulatory implications remain to be

determined in future studies.
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pharm.kyoto-u.ac.jp).

Materials availability

The miniDq and miniDi plasmids have been deposited to RIKEN BioResource

Research Center (RBD no. 20117 for pAAV-hSyn-miniDq-P2A-mCherry, no.

20118 for pAAV-hSyn-miniDi-P2A-mCherry, and no. 20119 for pAAV-hSyn-

miniDq-mCherry-P2A-HA-KORD, https://web.brc.riken.jp/) and the non-profit

plasmid repository Addgene (plasmids #204357 for pAAV-hSyn-miniDq-P2A-

mCherry, #204358 for pAAV-hSyn-miniDi-P2A-mCherry, and #204359 for
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pAAV-hSyn-miniDq-mCherry-P2A-HA-KORD, http://www.addgene.org). All

other reagents generated in this study are available from the lead contact

with a completed materials transfer agreement.

Data and code availability

d Unprocessed original western blot (WB) and IHC data have been depos-

ited at Mendeley Data and are publicly available at https://doi.org/10.

17632/dj2x4748pc.1. All data reported in this paper will be shared by

the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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Software and algorithms
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Python 3.9 python N/A
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
The C57BL/6J male mice 5–8 weeks old were purchased from Japan SLC (Shizuoka, Japan). We used only male mice in this study

because the estrous cycle in females affects circadian rhythms of locomotor activity and body temperature. One macaque monkey
e1 Cell Reports Methods 4, 100881, October 21, 2024
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was used in the experiments (cynomolgus monkey; male, 3.9 kg, aged 3 years at the start of the experiments). All procedures for

animal experiments were conducted in compliance with the Ethical Regulations of Kyoto University and the Guide for the Care

and Use of Nonhuman Primates in Neuroscience Research (The Japan Neuroscience Society; https://www.jnss.org/en/animal_

primates), were performed under protocols approved by the Animal Care and Experimentation Committee of Kyoto University

and the Animal Ethics Committee of the National Institutes for Quantum Science and Technology, and were in accordance with

the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

Primary neuronal culture
Primary neuronal cultures were prepared from the cortex of day 14mouse embryos (E14). Cells were seeded on poly-D-lysine-coated

coverslips and maintained in Neurobasal plus medium (Gibco) containing B27 plus supplement (Gibco) and penicillin/streptomycin/

glutamine mixed solution. For immunostaining, cells were fixed, permeabilized, and blocked with 5% bovine serum albumin in PBS

containing 0.1% Triton X-100, as described.16 The cells were immunolabeled with anti-mCherry (Invitrogen, M11217) and visualized

with Alexa 594-conjugated anti-rat IgG (Invitrogen, A-21209) and Alexa 647-conjugated anti-HA IgG (Cell Signaling, #3444). Images

were captured using an Olympus FV10i-DOC confocal microscope.

Flp-In TREx293-DREADD cell lines
Flp-In TREx293-DREADD (tet-on)/GloSensor (constitutive) cells were generated by stable transfection of Flp-In TREx 293 cells

(Thermo Fisher Scientific) with amodified pcDNA5/FRT vector encoding DREADDandGloSensor-22F (Promega) under different pro-

moters: while DREADDwas cloned into a proprietary pcDNA5/FRT cloning site for tet-on induction,GloSensorwas cloned separately

into a different position of the vector (at a unique PciI site) in conjunction with a tet-insensitive CMV promoter. Gas/olf-deficient Flp-In

TREx293 cells were generated using CRISPR/Cas9 genome editing technology. The sgRNA-encoding sequences targeting the

GNAS (Gas) andGNAL (Gaolf) were 50-CTACAACATGGTCAT CCGGG-30 and 50-GTA ATG TTTGCCGTCACCGG-30, respectively,
both cloned in the pSpCas9 (BB)-2A-Puro vector. Cells were cultured at 37�C under 5% CO2 in DMEMmedium (Nacalai) containing

10% fetal bovine serum and required antibiotics according to the manufacture’s protocol as described previously.16 To induce

DREADD expression, doxycycline (Dox, Clontech) was added to the medium to a final concentration of 1 mg/mL.

METHOD DETAILS

Visualizing plasma membrane expression of DREADDs
WeconstructedmCherry fusion expression vectors forminiDq,miniDi, hM3Dq and hM4Di. The receptors wereC-terminally fusedwith

mCherry. HEK293 cells were transfected with the DREADD-mCherry vectors using Viofectin Transfection Reagent (Viogene). We

visualized subcellular location of mCherry-derived fluorescence in cells plated on poly-D-lysine-coated glass-bottom dish. Confocal

images were obtained using an Olympus FV10i-DOC microscope (Olympus).

Tango arrestin recruitment assay
DREADDswere cloned into the PREST-Tango expression vector (Addgene #66227). The PREST-Tango b-arrestin recruitment assay

was performed as described19 except adopting transient transfection of a DREADD-Tango of interest and TRE-Luc2CP-CMV-b-ar-

restin2-TEV expression vector to HEK293 cells. For the co-transfection of b-arrestin2-TEV and TRE-Luc2CP, the Luc2CP sequence

(Promega) under TRE3G promotor (Takara) was cloned into a unique MfeI site of pcDNA3.1-bArrestin2-TEV vector (Addgene

#107245). Cells were treated with different concentrations of compound 21 (C21) or deschloroclozapine (DCZ) in the presence of

1 mM luciferin (Promega). Luminescence was measured using a dish-type luminometer (Kronos-Dio, ATTO) maintained at 35�C.
Recording was performed for 2min for each dish at 30-min intervals. The obtained values were normalized to themaximum response

of C21 or DCZ set at 100% and the concentration-response curves were fitted in GraphPad Prism 8.

Fura-2 Ca2+ imaging
Cells were preincubated with 5 mMFura-2 a.m.-containing Krebs-Ringer solution for 30 min before experiment. Fluorescence images

(excitation at 340 or 380 nm and emission at 510 nm) were captured every 5 s at room temperature as described.51 The ratio of F340

to F380 was used as a relative indicator for intracellular Ca2+ concentration. The mean values at 4–5 min post C21 or DCZ treatment

were determined for >80 cells in each experiment. For detecting Ca2+ in mouse primary neuronal cells, we treated cells with CNQX to

reduce confounding signals from excitatory glutamatergic transmission (Sigma, 5 mM).

GloSensor-cAMP assay
Flp-In TREx293-DREADD (tet-on)/GloSensor (constitutive) cells were seeded in a collagen I-coated 96-well plate (Corning) at a den-

sity of 5.43104 cells per well with a carbon dioxide-independent DMEM (Sigma, D2902) containing 10% bovine serum, 0.035%

NaHCO3, 10 mM HEPES (pH 7.2), 3.5 g/L D-glucose, 1% Antibiotic-Antimycotic Mixed solution (Nacalai), and 1 mM luciferin (Prom-

ega). After 6 h at 37�C, the cells received Dox or vehicle and underwent additional incubation at 37�C for >15 h. Prior to luminescence

detection, the cell culture plate was acclimatized to 27�C for 1 h. Luminescence was then recorded on an FDSS/mCELL plate reader
Cell Reports Methods 4, 100881, October 21, 2024 e2
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(Hamamatsu Photonics) at 27�C every 5 s. Data were integrated over 1-min intervals, and the values were normalized to the average

of C21 (�), DCZ (�) or Dox (�) cells. To monitor Gi activity, forskolin (Fsk, 10 mM, Nacalai) was applied.

SRF-RE reporter assay
We generated 53SRF-RE-Luc2CP expression vector by inserting five SRF-responsive elements (50-ATG TCC ATA TTA GGA CAT

CT-30) into KpnI-HindIII sites of pGL4.25 reporter plasmid. The Gas/olf-deficient Flp-In TREx293 cells were transiently transfected

with the pcDNA3 vector containing either hM3Dq, hM4Di, miniDq, or miniDi together with the pGL4.25-53SRF-RE-Luc2CP vector

and were cultured for 24 h. Then, the cells were treated with pertussis toxin (PTX, 100 ng/mL, BioAcademia) and FR900359 (FR,

0.5 mM, Cayman) for 3 h prior to stimulation with C21 (100 nM) or DCZ (1 nM). As a control, pcDNA3 vector encoding PAR1was trans-

fected and its response to thrombin (Thr, 3 U, EMDMillipore) was monitored in parallel. Luminescence was measured at 37�C using

Kronos-Dio, as described previously.52 Recordings were performed for 2 min at 30-min intervals. The obtained values were normal-

ized to the average of C21 (�), DCZ (�) or Thr (�) cells.

Immunoblotting
For sample preparation, cells were directly lysed into Laemmli buffer containing 1x cOmplete Protease Inhibitor Cocktail (Roche) after

treatment with C21(final concentration, 1 mM) or DCZ (100 nM) or Dox (1 mg/mL) in culture. Immunoblotting was performed as

described53 using commercially available antibodies against a-tubulin (Sigma, T6199, 1:1,000), p44/42 MAPK (Cell signaling,

#9102, 1:1,000), or phospho-p44/42 MAPK (Cell signaling, #9101, 1:1,000).

Viral preparation and infection
AAV-DREADD was produced using a triple-transfection, helper-free method as described.54 Purified AAV, whose titer was >1.03

1013 genome copies per milliliter, was then injected into animals. Under anesthesia, mice received bilateral stereotaxic injections

of AAV, 0.5 mL per site, into the DMD (at �1.25-mm posterior, ±0.3-mm lateral, �5.0-mm ventral, relative to the bregma). Behavioral

studies were performed 3–4weeks after the injection. To infect mouse primary neuronal cells, cells were incubated in AAV-containing

culture medium for >14 days to achieve sufficient gene expression.

For viral injections into monkey brain, anesthesia was induced using intramuscular (i.m.) injection of ketamine (5–10 mg/kg) and

xylazine (0.2–0.5 mg/kg), and maintained with isoflurane (1%–3%, to effect). AAV vectors (2 mL per site) were pressure-injected

into the striatum using a 10-mLmicrosyringe (Model 1701RN, Hamilton) with a 30-gauge injection needle placed in a fused silica capil-

lary (450 mm OD), which minimizes backflow by creating a 500-mm space surrounding the needle tip.55 The injection rate was set at

0.2 mL/min. Stereotaxic coordinates of the injected sites were determined from overlaid magnetic resonance (MR) and computed

tomography (CT) images created by PMOD image analysis software (PMOD Technologies, Zurich, Switzerland).39

Locomotor activity and body temperature recording
Weused adult male C57BL/6Jmice (8–12weeks old) housed individually in light-tight, ventilated closets under indicated lighting con-

ditions with ad libitum access to food and water. Locomotor activity was recorded via passive infrared sensors (PIRs, FA-05F5B;

Omron) with 1-min resolution and analyzed with CLOCKLAB software (Actimetrics). Body temperature was recorded using precali-

brated temperature data loggers (Thermochron iButtons, DS1921H, Maxim) implanted into the peritoneal cavity of mice as

described.56 Where indicated, mice received clozapine-N-oxide (CNO, 3 mg/kg, i.p.), C21 (1 mg/kg, i.p.), DCZ (100 mg/kg, i.p.), or

salvinorin B (SalB, 5 mg/kg, s.c.). Successful expression of the virus was confirmed by immunohistochemistry after the recordings.

For the calculation, body temperature at 1.5 h after drug application and mean locomotor activity values at 0.5–3 h after drug appli-

cation were used to see the effects of drugs. Expression of miniDq and KORD in the DMD was confirmed by post hoc immuno-his-

tochemistry by using rat anti-mCherry IgG (Invitrogen, M11217), Alexa 594-conjugated anti-rat IgG (Invitrogen, A-21209) and Alexa

647-conjugated anti-HA IgG (Cell Signaling, #3444).

PET imaging
PET imaging was performed using the procedures described previously.35 Briefly, the monkey was sedated with ketamine hydro-

chloride (5 mg/kg, i.m.) and xylazine hydrochloride (0.5 mg/kg, i.m.), and the anesthetized condition was maintained with isoflurane

(1–2%, inhalation) during the PET imaging. PET scans were performed with a microPET Focus220 scanner (Siemens Medical Solu-

tions). Following transmission scans, emission scans were acquired for 90 min after intravenous bolus injection of [11C]DCZ (323.7–

358.2 MBq) or [18F]FDG (196.5–226.0 MBq). Pretreatment with DCZ (5 mg/kg) or vehicle (1–2%DMSO in 0.1-mL saline, without DCZ)

was carried out 1 min before the [18F]FDG injection. The PET imaging data were reconstructed with filtered back-projection with

attenuation correction. Voxel values were converted to standardized uptake values (SUVs) that were normalized by injected radio-

activity and body weight using PMOD (PMOD Technologies). Volumes of interest (VOIs) were manually drawn on the center of the

injection site and the cerebellum using PMOD, by referring to MR images of individual monkeys. To estimate the specific binding

of [11C]DCZ, the regional binding potential relative to non-displaceable radioligand (BPND) was calculated with an original multilinear

reference tissue model using the cerebellum as a reference region.57 For FDG-PET analysis, dynamic SUV images were motion-cor-

rected and then averaged between 30 and 60 min after the radioligand injection. The SUV ratio (SUVR) of voxel value was calculated

as a percentage of the averaged value of the whole brain for comparison between the scans.
e3 Cell Reports Methods 4, 100881, October 21, 2024
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QUANTIFICATION AND STATISTICAL ANALYSIS

Western blot band intensities were quantified using ImageJ software. Statistical analyses and plots were generated with GraphPad

Prism 8 and Python 3.9, using the statistical tests indicated in the figure legends.
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