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Abstract
Background and Objectives: Estimating heterogeneous treatment effects (HTEs) in randomized controlled trials (RCTs) has received
substantial attention recently. This has led to the development of several statistical and machine learning (ML) algorithms to assess HTEs
through identifying individualized treatment effects. However, a comprehensive review of these algorithms is lacking. We thus aimed to
catalog and outline currently available statistical and ML methods for identifying HTEs via effect modeling using clinical RCT data
and summarize how they have been applied in practice.

Study Design and Setting: We performed a scoping review using prespecified search terms in MEDLINE and Embase, aiming to iden-
tify studies that assessed HTEs using advanced statistical and ML methods in RCT data published from 2010 to 2022.

Results: Among a total of 32 studies identified in the review, 17 studies applied existing algorithms to RCT data, and 15 extended
existing algorithms or proposed new algorithms. Applied algorithms included penalized regression, causal forest, Bayesian causal forest,
and other metalearner frameworks. Of these methods, causal forest was the most frequently used (7 studies) followed by Bayesian causal
forest (4 studies). Most applications were in cardiology (6 studies), followed by psychiatry (4 studies). We provide example R codes in
simulated data to illustrate how to implement these algorithms.

Conclusion: This review identified and outlined various algorithms currently used to identify HTEs and individualized treatment effects
in RCT data. Given the increasing availability of new algorithms, analysts should carefully select them after examining model performance
and considering how the models will be used in practice.
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What is new?

Key findings
� In this scoping review, we identified 32 studies

focusing on statistical and machine learning
(ML) algorithms for assessing heterogeneous treat-
ment effects (HTEs) in randomized controlled trial
(RCT) data.

� By the end of 2022, this review categorized 17
studies as application papers and 15 studies as
methodology papers.

� Although topics and algorithms varied across the
studies, cardiology was the most popular field of
application, and the causal forest was the most
frequently applied model in healthcare literature.

What this adds to what was known?
� Despite the rapid development of statistical and

ML methods to assess HTEs, evidence is limited
regarding the commonality of each method’s appli-
cation in clinical research.

� This scoping review extends existing literature by
detailing the practical application of various ML
methods for HTE assessment in RCTs, offering
guidance and example R codes in simulated data
for implementation.

� We also described the strengths and limitations of
each method, which will help researchers choose
appropriate algorithms for investigating HTEs
based on their research design and research
purposes.

What is the implication and what should change
now?
� When investigating HTEs in clinical epidemiology,

researchers should carefully select algorithms
based on the causal estimands of interest, the per-
formance of the algorithms, and the practical appli-
cation perspectives.
1. Introduction

Average treatment effect (ATE) is the primary focus of
randomized controlled trials (RCTs), because establishing
ATE is often required to obtain regulatory approval or
change clinical guidelines through informing regulatory
agencies and health-care practitioners about the expected
treatment effects of interventions in the target population.
When applying estimated ATEs to make treatment deci-
sions, we implicitly assume that these estimated effects
are applicable to all individuals in the population. This,
however, may not be a plausible assumption to make in
some cases, for example, when the magnitude and the
direction of treatment effect vary substantially according
to individual’s baseline characteristics [1]. Even when
RCTs report no evidence of a treatment effect on average,
there may still be some individuals who benefit from treat-
ment. For example, recent post hoc analyses have reported
that a certain subpopulation may have a decreased risk of
cardiovascular diseases through policy intervention [2],
lifestyle intervention [3], intensive glucose control [4],
and pharmacological therapy [5], while the original RCT
reported a null ATE. Moreover, some participants could
be harmed even when ATE indicates beneficial effects. If
we only focus on ATE, such patients will miss the opportu-
nity to receive benefit or avoid harm of the treatment. As
the concept of personalized medicine has emerged over
the years, the importance of assessing heterogeneous treat-
ment effects (HTEs) has been widely recognized [6e8]. HE
refers to the situation when the effect of treatment at indi-
vidual levels, known as conditional average treatment effect
(CATE) [9], is different across individuals or across patient
subgroups. Estimating CATE allows us to prioritize indi-
viduals with high expected benefits from the intervention
under the strong assumption that the results are unlikely
to be false positive [10,11]. This is implemented in the
‘‘high-benefit approach’’ [12] and ‘‘optimal treatment
regimes’’ [13] in the prior literature.

Over the last decades, a range of statistical and machine
learning (ML) methods have been developed for assessing
HTE and CATE [14], and have been implemented in
open-source software packages such as R and Python
[15,16]. Compared to modern methods, traditional
approaches like ‘one-variable-at-a-time’ subgroup analysis
have several limitations. The latter considers only one var-
iable to create patient subgroups, and estimate treatment
effects therein. Although straightforward and easy to use,
the method has several limitations, such as an increased risk
of false positives when considering many variables and the
loss of statistical power of finding true effects [7]. More-
over, results from the analysis cannot be easily used to
guide personalized choice of treatment; for example, if
the analysis shows that the treatment is beneficial for males
and older patients and harmful for females and younger
patients, what about young males or older females? This
issue could be addressed by dividing patients into addi-
tional groups based on more than one covariate, but such
approach would intensify the multiple-testing problem
and raise concerns about cherry-picking. Therefore, a prin-
cipled approach is needed to determine which groups
should be considered. To date, a wide range of statistical
and ML methods have been proposed, which could be use-
ful in modeling not only linear but nonlinear relationships
and high-order interactions between covariates. However,
the variety of methods may create confusion among epide-
miologists regarding the optimal choice for practical
applications. One caveat for the assessment of HTEs is that



3K. Inoue et al. / Journal of Clinical Epidemiology 176 (2024) 111538
the high predictive performance of the model does not
necessarily correspond to accurate effect estimation.
Although some reviews have summarized the characteris-
tics of currently available methods for HTEs assessment
[17e19], the evidence as to how common these methods
are in epidemiologic research is limited.

In the Predictive Approaches to Treatment effect Hetero-
geneity (PATH) Statement, two primary methods are
described for assessing HTEs: risk modeling and effect
modeling [8]. Risk modeling employs a multivariable
approach to predict the outcome risk, followed by stratifica-
tion of individuals based on the predicted risk. Effect
modeling, alternatively, involves the development of
models that incorporate interaction terms between treat-
ment and baseline patient characteristics. While both
approaches offer unique advantages and should not be
exclusively favored, this review emphasizes effect
modeling given the rapid advancement in data-driven
methods for this approach. Specifically, we aimed to (1)
summarize currently available statistical and ML methods
for assessing HTEs via effect modeling that have been
applied to RCT data and (2) provide a summary of how
each algorithm works along with code for implementing
it in R, exemplifying it with the use of simulated data.
Our overall objective is to provide readers with guidance
on how to apply methods to assess HTEs in large clinical
RCTs.
2. Methods

This scoping review (ScR) was conducted following the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) Extension for ScRs [20] and
the protocol was registered in Open Science Framework
on April 2, 2023 [21]. The terminology we used is based
on the PATH Statement [8].

2.1. Inclusion and exclusion criteria

Inclusion criteria are as follows: 1) no language restric-
tion; 2) studies published from 2010 until 2022; 3) studies
that developed, evaluated, or applied statistical or ML algo-
rithms to predict HTE or CATE; 4) studies that applied an
existing method to RCT datasets (ie, data involving random
allocation of treatment strategies at individual levels); and
5) studies that conceptualized or modeled treatment strate-
gies based on predicted CATE. In this review, we defined
that CATE refers to the CATE, which is the treatment effect
conditional on an individual’s characteristics. More
formally, within the counterfactual framework, CATE can
be written as
E½Yt51 � Yt50 j Z 5 z�
where Yt denotes potential outcome Y under treatment T 5 t,
and Z denotes a set of baseline characteristics.
Exclusion criteria are as follows: 1) conference ab-
stract; 2) studies that only used summary data from RCTs;
3) studies that used datasets from cluster-randomized trials,
cross-over trials, single-arm trials, or observational studies;
4) studies that only used simple regression-based methods
(eg, linear or logistic regression without penalization) even
with effect modeling approach such as the metalearner
framework; 5) studies that conducted standard subgroup
analysis (ie, stratified analysis by a single or some variables
such as age, sex, and race); 6) studies that developed risk
modeling and stratified patients solely based on prognostic
models (ie, assess HTEs based on the predicted risk of
outcome); and 7) studies that conceptualized treatment
prioritization without specifying HTEs or CATE.
2.2. Search strategy

The search was conducted on two databases: MEDLINE
and Embase via OVID. The search terms were determined
through the meetings among all authors (Supplementary
Tables 1 and 2). The search was performed on March 8,
2023 (MEDLINE), and on April 28, 2023 (Embase).
2.3. Selection of study and data extraction

After all duplicates were removed in the identified
studies, six independent reviewers (KI, MA, KO, AO, YT,
and TF) screened titles and abstracts. Full texts of the
candidate studies were retrieved and underwent full-text
screening. We also retrieved citations suggested by the
authors of this review. The full-text screening was per-
formed by the two reviewers (KI and MA). Disagreements
between reviewers were resolved through consensus-driven
discussion. After selecting studies, we categorized them
into application studies (which aimed to assess HTEs by
applying statistical and ML methods to RCT datasets)
and methodological studies (which aimed to propose new
methods and used RCT data as an example illustration).

The following basic information was extracted from the
included studies after full-text screening and summarized in
tables:

� Authors, year of publication (if the study was pub-
lished online first, the corresponding year was
regarded as the year of publication)

� Name, medical area, and sample size of RCT.
� Treatments randomized and outcome examined in
RCT.

� Targeted measure of CATE (eg, risk difference, risk
ratio, etc.)

� Analysis method used to assess HTEs (eg, decision
tree, regularization, targeted learning, etc.)

For application papers, we additionally extracted the
information on (i) whether ATE was significant or not in
the original RCT and (ii) whether HTEs were identified
or not. We also assessed whether each application paper
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assessed the calibration and discrimination performance of
the model on the treatment effect scale and took some
approaches to avoid overfitting.
3. Results

After removing duplicates, a total of 3969 citations were
identified in MEDLINE and Embase. After screening titles
and abstracts, 3864 citations were excluded as they did not
meet eligibility criteria. After seven citations hand-searched
by the authors were added, the remaining 112 citations
were reviewed in full text, 79 of which were excluded.
The main reasons for exclusion were 1) did not use RCT
datasets (N 5 29); 2) did not predict CATE (N 5 13);
and 3) used an outcome prediction approach which was
clarified during the full-text review (N 5 9). Among the
33 citations included in this review, one citation was
retracted in September 2023 [22], therefore, we reviewed
the remaining 32 articles. The PRISMA flow diagram is
shown in Figure 1.

3.1. Study characteristics

A total of 32 studies were included in the review. Of
these, 17 (53%) focused on the application of existing algo-
rithms to RCT datasets [3,23e38], and 15 (47%) focused
on developing methods for HTE assessment [10,39e52].
Hereafter, we summarize the characteristics of studies sepa-
rately by study type (ie, application paper or methodology
paper).

3.1.1. Application papers
The characteristics of studies that used statistical and

ML methods for an applied project (N 5 17) are shown
Figure 1. Study flow chart Footnote: HTE, heterogeneous treatment effect; C
trial; ITR, individualized treatment rule.
in Table 1. The most frequently used algorithms were
causal forest (N 5 7) and Bayesian Additive Regression
Trees (BART) (N 5 4). Additional algorithms included
XGBoost, penalized regression, SuperLearner, support vec-
tor machines, and random forest in metalearner frame-
works. The causal forest was applied multiple times to
specific RCT datasets such as the Systolic Blood Pressure
Intervention Trial [53] or the Action to Control Cardiovas-
cular Risk in Diabetes study [54], and, as result, a total of
six studies were in cardiovascular medicine. The remaining
studies were in a variety of medical fields: geriatrics, inten-
sive care, neurology, nutrition, psychiatry, respiratory med-
icine, and sociology. Regarding targeted measures of
CATE, risk difference was specified in six studies, odds
ratio in two studies, and risk ratio in one study. Other mea-
sures included hazard ratio (N 5 3), difference in survival
time (N 5 2), and difference in the score of a continuous
outcome (N 5 6). The calibration performance of the
model was assessed in only four studies, while discrimina-
tion performance was not formally assessed in any studies.
Most studies (15 in total) employed cross-validation or
similar approaches to avoid overfitting.
3.1.2. Methodology papers
The characteristics of studies that developed new

methods for CATE (N 5 15) are shown in Table 2. In most
of the included methodological studies, the authors proposed
the extension of a pre-existing method and compared the
performance of multiple algorithms in simulations, using
mean squared error of predicted CATE or population
average outcome under the derived individualized treatment
rule as performance measures. For example, Spanbauer et al
proposed the extension of BART (mixedBART) to incorpo-
rate random effects and clustering of outcomes, and
ATE, conditional average treatment effect; RCT, randomized controlled



Table 1. Characteristics of studies that applied ML algorithms in RCTs

Author Year Field Trial (sample size) Treatment Outcome

Causal

estimanda Method/Base-learner

Significant ATE

reported in the

original RCT?

HTE

identified?

Edward 2022 Cardiovascular 1. ACCORD

(N 5 10,251)

2. VADT (N 5 1,791)

Intensive glycemic control MACE RD Causal forest 1. No

2. No

Yes

Falet 2022 Neurology 1. OPERA I (N 5 821)

2. OPERA II (N 5 835)

3. BRAVO (N 5 1,331)

4. ORATORIO (N 5 661)

5. OLYMPUS (N 5 331)

6. ARPEGGIO (N 5 318)

Anti-CD20 antibody Disability progression Survival time,

HR

Deep learning 1. Yes

2. Yes

3. No

4. Yes

5. No

6. No

Yes

Kianmehr 2022 Cardiovascular 1. ACCORD

(N 5 10,251)

2. ACCORD-BP

(N 5 4,733)

1. Intensive glycemic

control

2. Intensive BP control

Incident heart failure RD, RR Causal forest 1. No

2. No

1. Yes

2. Yes

Oikonomou 2022 Cardiovascular 1. SPRINT (N 5 9,361)

2. ACCORD-BP

(N 5 4,733)

Intensive BP control MACE HR XGBoost (along with the Gower

method to define

phenotypical neighborhood)

1. Yes

2. No

Yes

Sadique 2022 Intensive care The 65 Trial (N 5 2,463) Permissive hypotension

strategy

90-day mortality RD Causal forest No No

Hu 2021 Respiratory The National Lung

Screening Trial

(N 5 53,454)

Screening with low-dose CT

vs CXR

1. Lung cancer mortality

2. Overall survival

The ratio of

survival time

Accelerated failure time model

with BART

Yes Yes

Jiang 2021 Nutrition IDEA trial (N 5 343) Exercise/diet 1. PCS

2. Weight loss

3. WOMAC scores

4. Compressive force

5. Plasma IL-6 level

RD 1. Penalized regression

2. Kernel ridge regression

3. Random forests

4. Reinforcement learning trees

5. List-based dynamic

treatment regime

6. Residual weighted learning

7. BART

Yes Yes

Kessler 2021 Psychiatry SUN☺D (N 5 1,549) 1. Sertraline only

2. Mirtazapine only

3. Sertraline þ Mirtazapine

Depression remission at

week 9

Difference in

outcomes

SuperLearner Yes Yes

Raghavan 2021 Cardiovascular 1. ACCORD

(N 5 10,251)

2. VADT (N 5 1,791)

Intensive glycemic control All-cause mortality RD Causal forest 1. No

2. No

Yes

Sinha 2021 Intensive care 1. ALVEOLI (N 5 549)

2. FACTT (N 5 1000)

3. SAILS (N 5 745)

1. PEEP management

2. Fluid management

3. Rosuvastatin

90-day mortality OR Unsupervised learning:

1) K-means clustering

2. Partitioning around medoids

3. Hierarchical clustering

4. Spectral clustering

5. Latent class analysis

Supervised learning:

1. Model-based recursive

partitioning

2. Causal forest

3. X-learner with Random

Forest

4. X-learner with BART

1. No

2. No

3. No

Yes

Furukawa 2020 Psychiatry SUN☺D (N 5 1,549) 1. Sertraline only

2. Mirtazapine only

3. Sertraline þ Mirtazapine

Depression remission at

week 9

Difference in

outcomes

1. Penalized regression

(LASSO, ridge)

2. SVM

3. Neural network

Yes Yes

Shepherd-Banigan 2020 Geriatrics HI-FIVES (N 5 241) Caregiver education

intervention

1. Number of days the

veteran was not at

home due to medical

reason

2.Caregiver depressive

symptoms at

12 month

Difference in

outcomes

1. Model-based recursive

partitioning

2. mCART

3. Random forest

Yes Yes

Solnick 2020 Sociology Original RCT (N 5 3,277) A clinical vignette was

presented to the

participant with a

picture of the

emergency department

physician.

A composite of

participant’s

confidence and

satisfaction with the

physician

Difference in

outcomes

BART No No

Foster 2019 Psychiatry TADS trial (N 5 439) 1. Placebo

2. Cognitive-behavioral

therapy (CBT)

3. Fluoxetine (FLX)

4. CBT and FLX

CDRS-R Difference in

outcomes

Model-based

random forest

Yes Yes

(Continued )
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Table 1. Continued

Author Year Field Trial (sample size) Treatment Outcome

Causal

estimanda Method/Base-learner

Significant ATE

reported in the

original RCT?

HTE

identified?

Scarpa 2019 Cardiovascular SPRINT (N 5 9,361) Intensive BP control CV event HR Causal forest Yes Yes

Furukawa 2018 Psychiatry 1. Trial by Keller et al

(N 5 681)

2. REVAMP Trial

(N 5 296)

3. Trial by Schramm et al

(N 5 59)

1. Cognitive-behavioral

analysis system of

psychotherapy

2. Antidepressants

3. Combination

1. Depression severity

2. Dropout for any reason

Difference in

outcomes, OR

Penalized regression 1. Yes

2. No

3. No

Yes

Baum 2017 Cardiovascular Look Ahead (N 5 5,145) Weight loss intervention CV event RD Causal forest No Yes

BART, Bayesian additive regression trees; BP, blood pressure; CDRS-R, Children’s Depression Rating Scale-Revised; CT, computed tomogra-
phy; CV event, cardiovascular event; CXR, chest X-rays; HR, hazard ratio; IL-6, interleukin-6; LASSO, least absolute shrinkage and selection oper-
ator; MACE, major adverse cardiovascular event; mCART, multivariate classification and regression tree; ML, machine learning; MMSE, mini-
mental state examination; PCS, physical component score; PEEP, positive end-expiratory pressure; RD, risk difference; RR, risk ratio; SVM, support
vector machine; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index; XGBoost, eXtreme Gradient Boosting.

a ‘‘Difference in outcomes’’ means that the authors investigated the difference in continuous outcomes (specified in ‘‘outcome’’ column) be-
tween treatment and control groups.
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compared the performance of mixedBART and BART using
root mean square error of the outcome as a metric in simu-
lations [46]. In another example, Conzuelo Rodriguez et al
compared the magnitude of bias of predicted CATE when
using doubly robust learners compared to generalized linear
models or flexible parametric models with spline functions
[41]. In most of the 14 included studies, simulation data
was first used to compare the performance of the newly pro-
posed algorithm with pre-existing algorithms, and then an
RCT dataset was used to show how the new algorithm could
be applied to the real data. A total of 18 RCT datasets were
used in 15 studies, and these datasets were from various
fields including cardiology, endocrinology, and psychiatry.

3.2. Overview of methods for HTEs assessment

In Tables 3 and 4, we provided a summary of the iden-
tified methods for assessing HTE, outlining the way models
work, and highlighting their respective strengths and limi-
tations. In the Supplementary Method, we described two
algorithms that are most commonly used in the studies
identified: penalized regression and causal forest. Addition-
ally, we discussed the Bayesian causal forest algorithm to
highlight that, despite being a tree-based method for esti-
mating CATE, it is not the Bayesian counterpart of the
causal forest algorithm. We then introduced the general
metalearner framework. Subsequently, we explained how
to evaluate the calibration of these algorithms.

3.3. Implementation

To demonstrate how each algorithm works to identify
HTEs, we provide R code in simulated data. In this imple-
mentation, we simulated a hypothetical RCT with 10,000
participants to investigate the effect of intensive blood pres-
sure management on cardiovascular outcomes. Each individ-
ual has been attributed a potential outcome, either from the
intervention (Y1) or the placebo (Y0); that is, Y1 equals to
the observed Y and Y0 are not observed for the intervention
group whereas Y0 equals to the observed Y and Y1 are not
observed for the placebo group. Outcomes were labeled as
0 in the absence of events and one when events occurred.
The treatment effect was calculated by contrasting these
potential outcomes, where t 5 Y1 e Y0. Our data incorpo-
rated four baseline covariates, including age (continuous),
systolic blood pressure (continuous), estimated glomerular
filtration rate (eGFR; continuous), and statin use (binary).
We simulated two scenarios of HTEs by setting different
treatment effects based on eGFR values and statin use: (i)
linear interaction between eGFR and treatment and (ii)
nonlinear interaction between eGFR and treatment (ie,
eGFR interacted with treatment only between 45 and
90 mL/min/1.73 m2, and no interaction for eGFR !45
and � 90 mL/min/1.73 m2). Our code implements penalized
regression, causal forest, Bayesian causal forest, and metal-
earners. The code is available online (https://github.com/
Koinoue/HTE_review), and can be used for future imple-
mentation of the algorithms.
4. Discussion

In this ScR, we searched for published studies that
applied existing or developed new methods for assessing
HTEs in RCT data. Although topics and algorithms varied
across studies, cardiology was the most popular field of
application, and the causal forest was the most frequently
applied model in health-care literature. We then outlined
the identified algorithms, elucidating their architecture
and highlighting their advantages and limitations. For
example, penalized regression efficiently selects features
and is less computationally intense while causal forest
and Bayesian causal forest are less prone to misspecifica-
tion of the nonlinear complex interaction. Regarding the
metalearner framework, S-learner and T-learner are simple
approaches while X-learner, DR-learner, and R-learner are
particularly effective in scenarios where the sample size of

https://github.com/Koinoue/HTE_review
https://github.com/Koinoue/HTE_review


Table 2. Characteristics of studies that developed ML methods for the HTE assessment

Author Year Field

Trial used e.g. illustration

(sample size) Treatment Outcome Causal estimand Methodological contribution

Doubleday 2022 Diabetes DURABLE trial

(N 5 1,498)

Twice-daily

insulin vs

once-daily

basal insulin

Change in HbA1c

from baseline

to week 24

Difference in

outcomes

Proposed risk-controlled

individual treatment rule

(rcITR) estimation using

decision tree/random

forest

Montoya 2022 Psychiatry Correctional Intervention

for People with Mental

Illness "Intervetions"

trial (N 5 441)

CBT Recidivism RD Provided optimal dynamic

treatment rule

framework using

SuperLearner

Conzuelo

Rodriguez

2021 Pregnancy EAGeR Trial (N 5 1,228) Low-dose aspirin Live birth RD Compared performance

between generalized

linear models and DR-

learner (using

SuperLearner)

Du 2021 Cardiovascular SOLVD-T (N 5 2,569) Enalapril Time to

hospitalization/

death

Difference in

survival time

Proposed constrained Lasso

approach

Fazzari 2021 Neurology AADDOPT-2 (N 5 569) Acupuncture 12-week chronic

pain

RD Proposed virtual twin

method

Guo 2021 Nutrition 1. Almond consumption

trial (N 5 68)

2. Avocado consumption

trial (N 5 108)

Almond/avocado

consumption

Composition of GI

microbiota and

host

characteristics

RD Proposed Multiple Outcome

Treatment Effect Forests

(MOTEF)

Li 2021 Sociology Jobs dataset (N 5 2,915) Employment

program

Trainee earnings RD Proposed causal optimal

transport model

Spanbauer 2021 Diabetes

Infection

1. TBSI trial (N 5 255)

2. ACTG175 Study

(N 5 1,762)

1. Knowledge/

motivation

intervention

2. Didanosine/

azidothymidine

treatment

1. HbA1c change

from baseline

2. Relative change

of CD4 T-cell

count

RD Extended BART by

incorporating random

effects and clustering

for repeated measures

(mixedBART)

Chen 2020 Psychiatry STAR*D (N 5 2,555) SSRIs Depressive

symptoms

(HAM-D sum

score, QIDS,

WSAS, and

CGI)

Difference in

outcomes

Proposed integrated

learning framework

using multi-layer neural

network

Henderson 2018 Cardiovascular 1. SOLVD-T (N 5 2,569)

2. SOLVD-P (N 5 4,228)

ACE inhibitor Time until death/

hospitalization

Difference in

expected log-

survival

Proposed Bayesian

accelerated failure time

models

Seibold 2018 Neurology PRO-ACT (N 5 3,306) Riluzole Survival time and

the ALSFRS at

6 months

Difference in

survival time

Proposed personalized

models using model-

based random forest in

time-to-event data

Zhu 2017 Neurology CATIE-AD (N 5 213) Atypical

antipsychotics

Minimal

improvement

on the CGI

scale at

12 weeks

OR Proposed weighted random

forests

Lipkovich 2016 Infection

Hematology

Two RCT-datasets, name

not specified (N 5 470,

N 5 599)

1. Novel

treatment for

sepsis

2. Experimental

therapy for

hematological

malignancy

1. All-cause

survival at

28 days

2. Overall survival

RD, HR Illustrated subgroup

identification based on

1) Differential effect

search (SIDES)

2) Virtual twins’

method (VT)

3) Outcome-weighted

learning (OWL)

Shen 2016 Cardiovascular AVID (N 5 1,016) Defibrillator Two-year Mortality RD Proposed Bayesian tree

based latent variable

model

Weiss 2015 Gastrointestinal Primary biliary cirrhosis

dataset (N 5 288)

D-penicillamine Three-year

survival

RD Compared performance

between logistic

regression models and

AdaBoost

ALSFRS, ALS functional rating scale; BART, Bayesian additive regression trees; CBT, cognitive behavioral therapy; CGI, clinical global impres-
sion scale; DR-learner, doubly robust learner; HAM-D, Hamilton depression rating scale; HR, hazard ratio; ML, machine learning; QIDS, quick in-
ventory of depressive symptomatology; OR, odds ratio; RD, risk difference; RR, risk ratio; SSRI, selective serotonin reuptake inhibitors; WSAS, work
and social functioning.
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Table 3. Summary concept of commonly used algorithms to assess heterogeneous treatment effect

Algorithm Method paper Brief description Strengths Limitations

Penalized
regression
(LASSO,
ridge,
elastic net)

Imai and
Ratkovic.
2013 [55]

LASSO is a penalized regression model that
shrinks regression coefficients, aiming to
maximize predictive performance in new
samples. It also performs variable
selection, by completely removing some
predictors from the model. Ridge is similar
to LASSO but does not perform variable
selection. Elastic net combines LASSO and
ridge. Treatment-covariate interactions can
be included in all penalized regression
models, to model CATE.

-Feature selection
-Simplicity

-Cannot account for
interaction by
covariates if not
prespecified

-Difficulty of
detecting
interactions
across a high-
dimensional set of
covariates.

Causal tree/
causal
foresta

Wager and
Athey.
2018 [56]

Causal forest, a forest-based algorithm, splits
samples to maximize the variance in
treatment effect estimates across leaves
(defined by individual characteristics),
employing the R-learner framework to
minimize loss function. It adopts an
’honest’ estimation approach by using
different subsamples for growing trees and
estimating CATE, ensuring independence
between tree structure and effect
estimation.

-Nonparametric (less
prone to
misspecification
of the nonlinear
complex
interaction)

-Embedded
estimation of
uncertainty

-Computational
intensity

Bayesian
additive
regression
trees/
Bayesian
causal
foresta

Hahn et al
2020 [57]

Bayesian causal forest applies two Bayesian
additive regression trees functions to
evaluate the HTEs. This algorithm
calculates the sum of base trees to predict
outcomes, and updates the trees to
minimize the residual iteratively (MCMC).
The framework avoids overfitting and
reduces ‘‘regularization-induced
confounding’’ (which occurs particularly in
observational studies).

-Nonparametric (less
prone to
misspecification
of the nonlinear
complex
interaction)

-Embedded
estimation of
uncertainty

-Computational
intensity

CATE, conditional average treatment effect; LASSO, least absolute shrinkage and selection operator; ML, machine learning; MCMC, Markov
chain Monte Carlo.

a Strengths and limitations of R-learner can also be applied in these methods while Bayesian Causal Forest takes some approaches to consider
nonoverlap regions of covariates.
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the treatment group is much larger than the other or the
covariate distribution is imbalanced which often occurs in
observational studies. We provided R code using simulated
data; the code can be used to implement the various algo-
rithms, exemplify their use, and facilitate the uptake of
these methods in future epidemiological research.

Traditionally, the focus of RCT designs has been on the
estimation of ATE in the target population. In some clinical
specialties, such as cardiology, multiple studies applied
ML-based methods to RCT datasets, indicating the
increased interest in HTEs assessment using ML-based
methods. Such HTEs assessment via CATE estimation also
allows us to create treatment strategies that prioritize indi-
viduals who are expected to receive benefit from the treat-
ment (‘‘high-benefit approach’’) rather than treating
individuals at high risk of developing the outcome
(‘‘high-risk approach’’) [12,63]. Thus, when designing
future RCTs, researchers may prespecify the HTEs assess-
ment methods in the protocol, and include a sufficient set of
known or suspected effect modifiers in the study to enrich
HTEs assessment. Meanwhile, assessing HTEs via effect
modeling typically requires large samples. Given that inter-
action effects equal to ATE require a sample size four times
larger [64], ability to assess HTEs would be limited if we
use a single RCT with a small sample, as observed in
several studies in our review. In such scenarios, individual
participant data metaanalysis could be a viable option to
overcome this limitation if data are available [65,66].

There are three important points to note. First, some
algorithms assess HTEs on an absolute scale (eg, risk dif-
ference, change in score, etc.), but not on a relative scale
(eg, risk ratio, odds ratio, hazard ratio). Although assessing
HTEs on an absolute scale may be more relevant from a
public health perspectivedpartially because the estimated
effects need to be weighed against the harms and costs of
the treatment [67,68]dassessing HTEs on a relative scale
is also important, particularly when distinguishing between
prognostic factors and effect measure modifiers. Indeed, the
PATH statement recommends reporting treatment effects in
both absolute and relative scale [8]. When researchers want



Table 4. Metalearner framework to assess heterogeneous treatment effect

Algorithm Method paper Brief description Strengths Limitations

S-learner Hill et al
2011 [58]

It predicts outcome under treatment
and control using base learners
that model the interaction between
treatment and covariates.

-Simple
-Perform better than T-learner when

the treatment effect is simple or
even zero

-It is not directly optimized to
estimate the treatment effect

-Risks exclusion of treatment
variable from the model when
using methods with variable
selection as base learners.

-Unstable when treatment and
control groups are imbalanced.

T-learner Athey and
Imbens.
2016 [59]

It predicts outcomes separately
under treatment and control using
base learners, and then
subsequently calculates the
difference in their expected
outcome values.

-Simple
-Explicit modeling in treatment and

control groups, separately
- Perform better than S-learner when

the treatment effect is strongly
heterogeneous

-It is not directly optimized to
estimate the treatment effects

-Unstable when treatment and
control groups are imbalanced.

X-learner,
DR-learner

K€unzel et al
2019,

Kennedy.
2023
[60,61]

It estimates treatment effects on
treated patients and on untreated
patients using the difference
between observed outcomes and
estimated counterfactuals for each
group. It incorporates propensity
score weights to address scenarios
with imbalances in covariate
distribution (which often occur in
observational studies). DR-learner
is a similar form of X-learner using
a doubly robust estimator instead
of propensity score weights.

-Directly estimates heterogenous
treatment effects.

-Particularly effective in scenarios
with imbalanced designs (which
often occur in observational
studies).

-Complex
-Unstable in the presence of extreme

propensity scores.
-Vulnerable to model

misspecification of the propensity
scores.

R-learner Nie and
Wager.
2021 [62]

It calculates propensity scores of the
exposure and marginal outcomes,
calculates the residuals of
treatment and outcome, and then
minimizes the loss function
defined by these residuals. R-
Learner requires ML that
incorporate some form of
regularization for minimizing the
loss function.

-Uses different subsamples to
estimate the nuisance parameters
and to predict CATE by
constructing a direct loss function
on it.

-Complex
-Unstable in the presence of extreme

propensity scores.
-Vulnerable to model

misspecification of the propensity
scores.

CATE, conditional average treatment effect; ML, machine learning.
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to assess heterogeneity on a relative scale, they may want to
use approaches involving the calculation of potential out-
comes under treatment and control to obtain such estimands
for each individual. Second, once these models are built, it
is crucial to check model performance. One thing that com-
plicates this assessment is that a model may be good at pre-
dicting absolute outcomes but may nevertheless fail in
predicting treatment benefit [69,70]. Thus, assessing model
calibration and discrimination, as in simple prediction
models, is not enough. Moreover, while S-learner and
T-learner predict outcomes among treated and untreated,
some models such as causal forest and Bayesian causal for-
est directly predict CATE which further complicates this
assessment. Recently, a range of methods and measures
was developed specifically for assessing performance of
models for predicting CATE [71e74]. It is also crucial that
such an evaluation avoids issues related to overfitting. One
way to do this is via using resampling methods (eg, boot-
strapping) or data splitting methods such as k-fold
cross-validation [73]. While we need more comprehensive
discussion on how to evaluate the comparative performance
of each method, a standard checklist would be helpful for
authors to report these analyses in future applications.
Lastly, our review only covers effect modeling approach
to assess HTEs. In general, the effect modeling approach
is prone to several pitfalls such as overfitting, low statistical
power, and multiplicity owing to using multiple treatment
interactions [75]. Furthermore, it sometimes lacks sufficient
prior knowledge of critical effect modifiers. When these
issues cannot be avoided despite employing some statistical
approaches such as penalization, consideration of the risk
modeling approachdanother useful approach for analyzing
HTEs in RCT datadis recommended.

Our study has several limitations. First, our review
focused on the applications to RCTs and did not consider
observational studies. Focusing on randomized datasets
helped simplify and clarify the differences among the exist-
ing approaches. Given the recent development of approaches
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to identify HTEs in observational studies [76,77], future
work is needed targeting observational studies in addition
to RCTs. Second, our review has covered the literature up
to January 2023 only, while the number of publications in
ML-based assessments of HTEs in health-care literature
has been increasing steadily and some methods (eg,
model-based forests) have been newly developed and
extended after 2023. However, such is inevitable for any
review of a hot and rapidly developing topic, and we believe
we were able to cover essential methods. Third, several
studies were excluded from this review because they focused
on the identification of subgroups rather than CATE estima-
tion. One example is the paper that applied interaction trees
to identify qualitative interactions (a type of interaction
where, one treatment is better than the other for some
subgroups of patients, whereas the reverse is true for other
subgroups) in the study population [78]. Such methods are
more suitable when the primary objective is to identify
specific subgroups with large (or small) treatment effects,
rather than CATE. Lastly, our study did not aim to compare
model performance across algorithms. While the causal for-
est algorithm was most frequently applied, our results do not
necessarily suggest that the algorithm performs better than
the others. Further simulation studies and prospective studies
are required to externally validate each algorithm’s perfor-
mance (including the performance of algorithm-based prior-
itization of treatment) and assess their comparative strengths
and limitations.

Due to the increasing availability of statistical and ML
methods for assessing treatment effects at the individual
level, epidemiologists should carefully select algorithms
based on the causal estimands of interest, the performance
of the algorithms, and the practical application perspectives.
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