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Abstract
Franchise retailers such as supermarkets and convenience stores have achieved 
greater efficiency in delivering products to their chain stores by locating distribution 
centres (DCs) within or near cities. In this study, we propose that the reduction of 
product transportation time due to the construction of intra-urban roads facilitates 
the location of distribution centres. To this end, we model the inventory manage-
ment behaviour of franchise retailers and show that distribution centres have two 
functions: (1) consolidating the inventory holding risk faced by individual chain 
stores and (2) achieving larger lot sizes when purchasing goods from outside the 
city. We then analyse the effects of facilitating logistics by improving intra-city 
roads on reorganizing the location patterns of chain stores and distribution centres in 
the city and on improving the convenience of shopping for consumers.

Shunske Segi, Kiyoshi Kobayashi and Kakuya Matsushima have contributed equally to this work.

 * Kiyoshi Kobayashi 
 kobayashi.kiyoshi.6n@kyoto-u.jp

 Shunsuke Segi 
 segi@people.kobe-u.ac.jp

 Kakuya Matsushima 
 matsushima.kakuya.7u@kyoto-u.ac.jp

1 Department of Civil Engineering, Graduate School of Engineering, Kobe University, 1, 
Rokkodai, Nada-ku, Kobe, Hyogo 6570013, Japan

2 Graduate School of Management, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto, 
Kyoto 6068501, Japan

3 Disaster Prevention Research Institute, Kyoto University, Gokasyo, Uji, Kyoto 6110011, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s00168-024-01314-w&domain=pdf
http://orcid.org/0000-0002-2196-3303


1436 S. Segi et al.

1 Introduction

The location of stores that handle food and daily necessities is directly related to 
the convenience of consumers’ lives. In recent years, consumers have been diver-
sifying their product procurement methods through various distribution channels, 
such as online shopping and home delivery. In this study, we focus on consum-
ers’ procurement of goods through stores. If no store is located near a consumer’s 
residence, the consumer is forced to go to a distant store for shopping every time 
he/she wants to buy something. If a new store were to be located in an area with 
low shopping accessibility, nearby residents would benefit from a reduction in 
shopping transportation costs (gasoline and consumer travel time). The location 
strategy of many small supermarket and convenience store chains in modern cit-
ies is to increase sales and profits by improving convenience for consumers.

To locate a large number of chain stores in a city, it is effective to locate a DC 
at each chain store, which serves as a base for distributing products. Chain stores 
hold inventories of products. Because demand for products fluctuates on a daily 
basis, holding inventory always entails the risk of unsold products. It is difficult 
for a small chain store to bear such a risk. Therefore, the franchise retailer that 
controls the chain stores locates a DC in or near the city and provides this DC 
with a warehouse function to hold a large amount of inventory. Because goods are 
frequently delivered from the DC to the chain stores, the chain stores can operate 
with only the minimum necessary inventory. In this respect, the logistics centre 
can be regarded as a base for chain stores to consolidate and assume the risk of 
holding inventory.

Many modern franchise retailers, such as supermarkets and convenience stores, 
have adopted a strategy of locating DCs within cities and distributing products to 
their chain stores. The continuous reduction of logistics costs due to the devel-
opment of intra-city road networks might contribute to this trend. If the intra-
city road network is not developed and the transportation time between the DC 
and the chain stores is long, even if the chain stores order additional products at 
short notice, they might run out of stock before the products are delivered to the 
chain stores. Therefore, it is reasonable for chain stores to increase their stock of 
merchandise to sell merchandise stably. In a situation where all chain stores have 
sufficient inventory stock, it would be efficient for chain stores to purchase goods 
directly from suppliers without going through DCs, as shown in Fig. 1. However, 
if the intra-city logistics time is sufficiently short, it will be efficient to locate a 
DC that serves as a logistics hub for the city, as shown in Fig. 2.

Theoretical studies on the location of commercial facilities have been accu-
mulated in the field of urban economics since the pioneering studies of Hotelling 
(1929), Christaller (1933) and Losch (1940). In Hotelling’s theoretical model, 
the number of stores is given exogenously; thus, analysing the number of stores 
located in a space is not possible. The central place theory of Christaller (1933) 
and Losch (1940) proposes a normative theory for the number of commercial 
cities that should exist in a space. The central place theory assumes a situation 
in which economies of scale operate in the supply of goods to consumers and 
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clarifies that the cost of society as a whole can be minimized by locating com-
mercial cities responsible for the supply of goods at regular intervals in space. 
The efficient spatial distance between commercial cities is determined by the 
trade-off between economies of scale and consumer shopping costs: the more the 
former prevails, the wider the efficient distance. The ideas of central place theory 
are carried over to the “new economic geography” model, which analyses urban 
and industrial agglomeration (Fujita et al. 1999). New economic geography mod-
els economies of scale that work in increasing the diversity of goods and explains 
the spatial agglomeration of economic activities by the trade-off between econo-
mies of scale and the cost of transporting goods. However, new economic geogra-
phy deals with macro agglomeration phenomena such as cities and industries and 
does not analyse the micro-location of commercial facilities.

Theoretical studies on the phenomenon of commercial agglomeration include 
those of Eaton and Lipsey (1982) and Wolinsky (1983). In the former study, a sit-
uation is assumed in which consumers can save money by purchasing two differ-
ent products at a single chain store. In this case, two types of stores are distributed 
in the space: stores that sell two types of products and stores that sell only one 
type of product. In the latter study, consumers lack sufficient information about 

Fig. 1  When adopting direct 
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the characteristics of the products sold in each store and visit multiple stores to 
compare the characteristics of the products before deciding which product to pur-
chase. In this case, consumers are shown to first go to distant commercial clusters 
rather than to stores that exist alone in a neighbourhood. As a result, the induce-
ment to locate in commercial clusters works for stores. In these studies, too, the 
economies of scale that act on stores are expressed in the form of fixed costs.

In the context with intercity network, the close and frequent intercity connec-
tions can create the external productivity benefits analogous to that of agglomeration 
economies. Klaesson and Johansson (2010) suggest the complementarities between 
agglomerations and networks in providing benefits that arise from standard mar-
ket processes, but which are external to individual participants. In the spatial con-
text, networks play a role in facilitating exchange both within and between regional 
agglomerations. Higher network density makes the contact easier and more frequent 
or routinized, which in turn enhances network intensity by increasing the frequency 
of interaction (Johansson and Quigley 2004). Andersson and Johansson (2012) pro-
pose a mode where fixed costs give rise to economies of scope. With many vari-
ety triplets, a firm can exploit economies of scope by employing the same export 
link for several different codes or by selling an already developed product to many 
destinations.

Theoretical studies on the location of commercial facilities commonly analyse the 
location of stores in terms of the relationship between consumers’ shopping costs 
and the economies of scale at work in stores. However, no theoretical study has 
analysed the location of commercial facilities by focusing on the road network and 
logistics used to purchase goods. However, numerous studies have been conducted 
in the fields of traffic engineering and operations research (OR) on the relation-
ship between urban road networks and logistics. A representative research area is 
the vehicle routing problem (VRP), which optimizes the number of trucks and truck 
routes for intra-city distribution services (Eksioglu et al. 2009). Although this model 
has no direct relationship with the location of DCs, it can evaluate the influence of 
the shape of the intra-city road network on truck traffic flow and distribution costs.

Another representative field for analysing the relationship between urban road 
networks and logistics is the facility location model, which optimizes the location 
of logistics centres and other facilities on the basis of geographical conditions such 
as where consumers live (Melo et  al. 2009). This model analyses the relationship 
between the road network and the location of facilities within a city and shares the 
same problem with the present study. However, this model supports the design of 
a supply chain that minimizes costs under a given demand and cannot analyse the 
behaviour and benefits on the consumer side. In addition, for the function of DCs, 
emphasis has been placed on their function as relay points from large trucks that 
handle mass transportation to small trucks that handle small-lot deliveries.

The supply chain network equilibrium (SCNE) model developed by Nagumey 
et al. (2002) is a model that analyses the relationship between logistics costs and 
supply chains from a macro perspective. This model assumes a supply chain con-
sisting of a manufacturer, a retailer and a consumer market and seeks equilibrium 
among the volume of commodity transactions, commodity prices and network 
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structure in the supply chain under the assumption that each actor maximizes its 
profit and utility.

The present study analyses the location strategies of franchise retailers for in-
city DCs from the perspective of inventory management. To increase customer 
satisfaction, chain stores need to ensure that products are not out of stock when 
consumers visit their stores. However, because the demand for products fluctuates 
daily and higher-than-average demand can occur, chain stores must hold inven-
tory in case demand increases. This inventory is called safety stock. Safety stock 
is a heavy burden for chain stores that deal in products whose value is quickly 
depleted because they must dispose of unsold products. Examples of products 
with fast product value depletion include food products, seasonal clothing, fast 
fashion and electronic devices that tend to fall out of production. Efficient inven-
tory management is an important management strategy issue for retailers that 
handle such products. For example, food and beverages are the main products of 
supermarkets and convenience stores. The above discussion also applies to these 
familiar chain stores.

In the present study, we model retailers’ decision-making regarding the location 
of a DC in a city. For this purpose, we apply inventory management models used in 
the field of OR. The most widely known basic inventory management models are 
the economic order quantity (EOQ) model and the safety stock model (Chopra and 
Meindl 2012). In the transportation research field, inventory management models 
have been applied in studies that evaluate the quality (speed and reliability) of logis-
tics lead time, such as the studies of Baumol and Vinod (1970) and Blauwens et al. 
(2006); de Jong and Ben-Akiva (2007) have applied inventory management models 
to cargo route selection.

One important contribution of the safety stock model is that it reveals that the 
total amount of safety stock required can be reduced by sharing safety stock among 
multiple chains (Chopra and Meindl 2012). For example, excess safety stock from a 
chain with fewer-than-normal customers can be replenished to a chain with more-
than-normal customers. This replenishment would equalize the overall inventory 
holding risk and reduce the total amount of safety stock. Another way to share safety 
stock among multiple chain stores is to consolidate the inventory holding risk of 
chain stores located downstream by placing a DC upstream of the supply chain. 
However, this method requires a transportation environment that allows chain stores 
to replenish products from the DC as and when needed, as mentioned earlier. That 
is, a short transportation time between the DC and chain stores is a requirement for 
forming a supply chain with the DC at its core.

The novelty of the present study is that it analyses the relationship between trans-
portation time on the road and the location of logistics centres in a city from the 
perspective of consolidating inventory holding risk upstream in the supply chain. 
This analysis is only possible with inventory management models in OR, which 
explicitly expresses the relation between inventory management and lead times of 
products. Although there are numerous studies on inventory management models 
in the literature of OR, they do not use the models to analyse how the reduction 
in transportation time on the road affects the location of logistics centres as well 
as the coordination of inventory management between upstream and downstream of 
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the supply chain. We perform such analysis by formulating an economic model that 
incorporates an inventory management model.

As discussed above, the availability of intra-city roads and the cost of intra-city 
logistics can influence franchise retailers’ strategies for locating intra-city DCs. The 
location of DCs is then expected to increase the number of chain store locations by 
reducing the inventory holding costs of chain stores, as well as by increasing the 
number of shopping trips made by consumers to the nearest chain. On the basis of 
this argument, we formulate a theoretical model in which a franchise retailer that 
controls multiple chain stores in a city decides the location of a DC in the city from 
the viewpoint of inventory holding risk. We then analyse the effects of facilitating 
logistics by improving intra-city roads on reorganizing the location patterns of intra-
city DCs and chain stores and on improving the shopping convenience for consum-
ers. The remaining of the study is structured as follows: In the following section, we 
formulate the model. In Sect. 3, we analyse the model using comparative statics and 
discuss the policy implications.

2  Model

2.1  Assumptions

This study proposes a simple theoretical model to improve the prospects of the 
discussion. Consider a circumscribed city as shown in Fig. 3. At the centre of the 
city is a logistics gateway district (e.g. a highway interchange and a port district). 
The logistics gateway district is connected to the circumference of the city by a 
number of logistics roads (dashed lines in the figure) extending in a radial pattern. 
Traffic congestion is not assumed to occur. The circumference is an urban area 

Fig. 3  Assumed urban structure
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inhabited by consumers with an equal population density of e. The total length of 
the circumference is denoted by R.

Within a city there is a monopolistic firm that operates a chain of stores that 
sell everyday goods. The firm can locate its chain stores at any location on the 
circumference of the city. The firm determines the number of chain stores n and 
the selling price p of the commodity so as to maximize its profit. Because the 
population density around the circumference is homogeneous, the firm will locate 
chain stores with equal spacing R/n. Figure 3 shows the case when n = 2 . Con-
sumers travel in a circle to the nearest chain store, incurring shopping transporta-
tion costs proportional to the distance between their home and the chain store. 
The trade area served by one chain store is ±R∕(2n) centred on the location of the 
chain store.

Also included in the decision-making process of the firm is whether to locate a 
DC in a logistics gateway district. If the DC is not located within such a district, 
individual chain stores purchase goods directly from outside the city. If a DC is 
located within such a district, the DC purchases goods from outside the city and 
holds inventory and the chain stores purchase goods from the DC. In either case, 
when the chain stores purchase goods, the goods are transported from suppliers 
located outside the city to each chain store via a logistics gateway district and then 
via a dedicated logistics road.

2.2  Consumer shopping behaviour and consumer surplus

2.2.1  Demand for shopping

The emergence of consumer shopping demand is random, with demand for each 
product occurring independently according to a Poisson process. Each time a 
demand arises, the consumer goes to a nearby chain store to purchase one of the 
commodities because the commodity deteriorates in value quickly or requires space 
for storage. The arrival rate � of the Poisson process is considered to depend on the 
price of the commodity and the cost of shopping, and this relationship is represented 
by a linear demand function:

where �(l) is the number of visits to a chain store per unit time for consumers living 
a distance l to the nearest chain store (hereafter referred to as the arrival rate), �̄� is 
the upper bound on one consumer’s demand for the product, a is an exogenous posi-
tive constant that represents the sensitivity of the demand for the product to the price 
and cost of shopping, p is the selling price of the commodity set by the firm and � 
is a constant that represents the consumer’s round-trip shopping transportation cost 
per unit distance. The term p + �l denotes the total cost required for a consumer to 
purchase one commodity. Depending on this total cost, consumers purchase goods 
less frequently. This Poisson process expresses the risk of fluctuations in the demand 
for the commodity.

(1)𝜆(l) = �̄� − a(p + 𝜏l)



1442 S. Segi et al.

2.2.2  Consumer surplus

We define consumer surplus using the demand function in Eq. (1). First, the consumer 
surplus cs(l) of one consumer living at a point l away from the nearest chain store is

Thus, the total consumer surplus CS for the entire city is

The integral of Eq. (3) represents the total consumer surplus of consumers living 
within the right half of the trade area served by a chain of stores. Multiplying this 
integral by two yields the total consumer surplus within the trade area served by one 
chain. Multiplying this value by the number of chain stores n gives the total con-
sumer surplus for the entire city.

2.2.3  Nature of consumer surplus

This section discusses the properties of consumer surplus CS. As an assumption, we 
assume that all consumers living in a city have positive demand. This condition is 
equivalent to a positive demand for consumers living at the boundary of the trade area 
of neighbouring chain stores. Therefore,

is satisfied. Although the number of chain stores n can only be a strictly integer 
value, in the present study, for simplicity, it is treated as a real value. Under the 
assumptions shown in Eq. (4), the impact of the product price p and the number of 
chain stores n on consumer surplus is evaluated as 
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 The consumer surplus can be evaluated on the basis of p; it is found to monotoni-
cally decrease with respect to the price of the good p and to monotonically increase 
with respect to the number of chain stores n. As the number of chain stores n 
increases, consumer surplus increases because consumers in the city save money on 
transportation for shopping.

2.3  Inventory control for chain stores

2.3.1  Inventory change in the chain store

The chain stores manage their inventory according to the classical inventory man-
agement model, the EOQ model and the safety stock model (Chopra and Meindl 
2012). The transition process of the number of products in stock in a chain store is 
explained using Fig. 4. Each time a consumer visits a store and purchases a product, 
the number of products in stock in the chain store decreases. When the inventory 
number falls below a certain threshold (reorder point, ROP), the product is ordered 
upstream (from a supplier outside the region if there is no DC, or from a DC if there 
is). The variable Q represents the quantity (lot size) ordered at this time. When the 
ordered goods arrive at the chain store, the inventory number is restored by Q. The 
above process is repeated.

There is a time lag between when a chain store places an order for a product and 
when the product arrives at the chain store. This time lag is called lead time. Lead 
time includes the time required to dispatch goods, dispatch trucks, load trucks and 
run trucks on the road. To avoid running out of stock during this lead time, chain 
stores need to order goods well in advance. As a result, there are many cases where 
goods remain in stock in the chain store when the goods are delivered. The expected 
number of inventory items remaining in the chain store at the time of delivery is 
called safety stock and is represented by the variable ss. The EOQ model determines 
the lot size Q, and the safety stock model determines the safety stock ss.

Stock

Time

Safety stock

Lead time 

Order

Delivered

Order quantity

Fig. 4  Inventory change in the chain store (when demand is constant)
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For convenience of explanation, Fig. 4 shows a graph where orders are assumed to 
be placed at regular intervals; however, this scenario is a special case in which demand 
has been accidentally kept constant. In the general case of fluctuating demand, as this 
study assumes in the following analysis, the ordering interval will fluctuate irregu-
larly. This method of ordering is called the fixed-quantity ordering method and is often 
applied to products with low unit prices and products with small demand fluctuations. 
Other ordering methods include the periodic ordering method, in which the ordering 
interval is fixed and the lot size is changed each time. The periodic ordering method 
is often applied to expensive products and products with large demand fluctuations. 
In the present study, we adopt the EOQ model and the safety stock model, which are 
analytically tractable and can express the qualitative relationship between safety stock 
and lead time. These models enable us to conduct a theoretically prospective analysis.

In real stores, it is common for each item to have a different ordering system because 
each product item has different characteristics in terms of demand and inventory hold-
ing costs. To improve the theoretical perspective, this study adopts the formulation 
that a chain store handles only one type of item and adopts a fixed-quantity ordering 
method. However, even if we model a store that handles multiple items and manages 
the ordering method for each item, the qualitative relationship between safety stock and 
lead time remains the same and the results of the qualitative analysis in the present 
study are considered to be equally valid.

2.3.2  EOQ model

The EOQ model is used to determine the lot size Q, where D is the expected hourly 
demand for the product in the trade area served by one chain store, S is the fixed cost 
per order (logistics costs for shipping, loading, transportation, unloading, etc.) and h is 
the inventory holding cost of one product per unit time. The inventory holding cost h 
consists of the capital cost of inventory investment (interest rate) and warehousing costs 
that occupy space in the chain stores (Chopra and Meindl 2012). In addition, for food 
products, for which the value of the product is rapidly depleted, the product needs to 
be discounted or disposed of as time passes after arrival. Such costs of product value 
depletion are also included in h.

When the lot size is Q, the frequency of ordering is D/Q per unit time. Therefore, the 
ordering cost per unit time is expressed as DS/Q. As confirmed from Fig. 4, the long-
term average number of inventory items held by a chain store is Q∕2 + ss . Therefore, 
the inventory holding cost per unit time is hQ∕2 + h ⋅ ss . The sum of the ordering cost 
per unit of time and the inventory holding cost per unit of time is

The lot size Q∗ (EOQ) that minimizes Eq. (6) is

(6)
DS

Q
+

hQ

2
+ h ⋅ ss
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EOQ is the efficient lot size that balances the cost of ordering goods and the cost of 
holding inventory. EOQ decreases monotonically with the inventory holding cost h. 
That is, it is efficient to reduce the lot size of products with high inventory holding 
costs and order more frequently to increase the inventory turnover rate in the store. 
Substituting Q∗ into Eq. (6), we obtain the sum of ordering cost and inventory hold-
ing cost per unit time borne by one chain store as

2.3.3  Safety stock model

The safety stock model is used to obtain the safety stock ss. A chain store places an 
order for an item when the number of items in stock falls below a certain threshold 
(ROP). This threshold is represented by the variable ROP, and L is the lead time from 
the time a chain store orders a product until the product arrives at the chain store. Dur-
ing this lead time, demand averages LD. Therefore, the expected value of the number of 
items in stock immediately before the stock is replenished (safety stock) can be approx-
imated by the following equation:

During lead times, greater than average demand might occur. Safety stock is the 
inventory held to prevent consumers from encountering shortages in such a situation 
(see Fig. 4). However, stock-outs can occur even when safety stock is held.

The probability that no stock-outs occur during the lead time is equal to the proba-
bility that the demand that occurs during the lead time is less than the ROP. If the vari-
ance per unit time of the demand for a product in the trade area served by one chain of 
stores is �2

D
 , the variance of the demand that occurs during the lead time is L�2

D
 . If the 

demand of individual consumers follows a Poisson distribution, the demand that occurs 
during the lead time can be approximated as following a normal distribution with mean 
LD and variance L�2

D
 . Using this approximation, we obtain the probability of no stock-

outs occurring during the lead time as

The cumulative distribution function of the standard normal distribution is expressed 
as where Φ is the cumulative distribution function of the standard normal distribu-
tion. The chain store determines ss so that this probability matches the exogenous 
target value � (e.g. 0.95)

(7)Q∗ =

√
2DS

h

(8)
√
2hDS + h ⋅ ss

(9)ss = ROP − LD

(10)Φ

�
ROP − LD√

L�D

�
= Φ

�
ss√
L�D

�

(11)ss =
√
L�DΦ

−1(�)
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where Φ−1 is the inverse function of Φ . Equation (11) shows that the burden of safety 
stock for chain stores increases in an environment with a long lead time L. Because 
the cost of holding safety stock is h ⋅ ss , if the inventory holding cost h of the prod-
ucts handled by the chain store is high, shortening the lead time can reduce the cost 
burden on the chain store.

Strictly speaking, Eq. (9) is an approximation and underestimates the safety stock 
because it ignores the fact that the number of inventories cannot be negative. If the 
demand generated during the lead time exceeds the ROP, the inventory count imme-
diately before the inventory is replenished will be zero. Thus, strictly speaking, the 
safety stock will be larger than ROP − LD and its exact level ss′ is

where fN(x,�, �2) is the probability density function of normal distribution N(�, �2) . 
However, the long-term average of the number of stocks held by a chain of stores 
cannot be expressed exactly using ss′ . The exact long-run average of the number 
of stocks will be larger than Q∕2 + ss and smaller than Q∕2 + ss� because using 
Q∕2 + ss� is equivalent to assuming that stock-outs occur at the same time as the 
arrival of goods (i.e. that inventory runs out before goods arrive and inventory never 
remains at zero). The above approximation errors are often ignored in textbooks and 
literature dealing with inventory control models. To investigate the magnitude of 
these approximation errors, the present study performs Monte-Carlo experiments as 
shown in Appendix A. The result suggests that the approximation errors are gener-
ally not very large, although the analysis is carried out under limited parameters. 
The qualitative properties of ss expressed by Eq. (9) are similar to the exact long-run 
average of the safety stock. The present study therefore gives priority to theoretical 
research and ease of analytical treatment and uses Eq. (9) for the evaluation of safety 
stock.

2.3.4  Chain store inventory management costs and travel time on the road

The EOQ and safety stock models require the expected value D and variance �2

D
 

of the demand for a product per unit time for a single chain store. These values 
are obtained as a result of consumer purchase behaviour. The expected value and 
variance of the demand per unit of time for a single consumer living a distance l 
to the nearest chain store are both �(l) . If the individual consumer’s demand for 
a product follows an independent Poisson process, the expected value and vari-
ance of the sum of demands can be expressed as the sum of the expected value 
and variance of the individual demands. Therefore, the expected value D and 
variance �2

D
 of the demand per unit time in the trade area served by one chain of 

stores are

(12)ss� = ∫
ROP

−∞

(ROP − x)fN(x, LD, L�
2

D
)dx
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Substituting Eqs. (11) and (13) into Eq. (6) gives the sum of the ordering cost and 
inventory holding cost per unit time incurred by one chain store, CI(S, L) (hereinafter 
referred to as inventory management cost). The inventory management cost for a 
chain store depends on the ordering cost S and the lead time L and is expressed as

The order cost S includes the cost of truck transportation, and the lead time L 
includes the travel time on the road. Therefore, if the travel time on the radial logis-
tics-only road shown in Fig. 3 is reduced, S and L are expected to decrease. In the 
following, we explicitly model this relationship. Because S and L are the ordering 
cost and lead time for the chain to order goods upstream, respectively, these values 
differ when there is no upstream DC and when there is an upstream DC. The values 
of S and L when there is no DC are denoted by SN and LN , and the values when there 
is a DC are denoted by SW and LW , respectively. These variables are formulated as 
follows: 

 where S0 and L0 are the logistics costs and transport times, respectively, from the 
extra-city supplier to the city’s logistics gateway district, and T is the one-way travel 
time on a dedicated logistics road in Fig. 3. The � is the coefficient that converts 
the travel time to logistics cost. If there is a DC, L0 is not included in the lead time. 
Instead, the lead time L0 occurs when the DC purchases goods from suppliers out-
side the city.

2.4  Firm’s profit

A monopolist operating a chain of stores has three decision-making targets: whether 
to locate its DC in a distribution gateway district, the number of chain stores in the 
city n and the price of the product p. Firms make decisions so as to maximize their 
profits. In the following, we formulate the profit of the firms in two cases: the case 

(13)
D =𝜎2

D
= 2∫

R

2n

0

e𝜆(l)dl

=
eR(�̄� − ap)

n
−

ea𝜏R2

4n2

(14)
CI(S, L) =

√
2hDS + h

√
L�DΦ

−1(�)

=
√
D
�√

2hS + h
√
LΦ−1(�)

�

(15a)SN = S0 + �T

(15b)LN = L0 + T

(15c)SW = �T

(15d)LW = T
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where the logistics centre is not located in a distribution gateway district and the 
case where the logistics centre is located in a distribution gateway district.

2.4.1  If the distribution centre is not located in a distribution gateway district

We denote the profit of the firm per unit time without locating the DC by �N(n, p,T) , 
and the equation is

where c is the various variable costs required to sell one unit of the product, nD is 
the total sales of the product in the chain and F is the fixed costs required to locate 
and operate a chain of stores.

Notably, Eq. (16) does not consider the drop in sales when consumers face 
stock-outs. Realistically, if consumers face stock-outs, they will either give up 
purchasing the product or visit the chain store again after the product is in stock. 
In the former case, part of the demand will not be realized. That is, strictly speak-
ing, the total sales of a product must be expressed as p�nD using the variable 
� that represents "the fraction of demand nD that does not face stock-outs". In 
addition, if the impact of � on consumer demand D and consumer surplus CS is 
modelled, the social cost caused by consumer demand uncertainty (demand risk) 
can be evaluated more accurately. However, because such a model is difficult to 
handle analytically, this study proceeds with the analysis under the assumption 
that � ≃ 1 . Even under the simplification adopted in the present study, the basic 
property of social costs caused by demand risk can be expressed (i.e. that social 
costs can be reduced by consolidating demand risk in one place); thus, the theo-
retical discussion is more prospective. In addition, the Monte Carlo experiments 
in Appendix A analyses the relationship between � and � . The result suggests 
that the approximation error of � ≃ 1 is generally not so large if � is sufficiently 
large, although the analysis is performed under limited parameters.

(16)

𝜋N(n, p,T)

= (p − c)nD − n[CI(SN , LN) + F]

=

�
eR(�̄� − ap) −

ea𝜏R2

4n

�
(p − c) − Fn −

�
neR(�̄� − ap) −

ea𝜏R2

4

⋅

�√
2h(S0 + 𝛽T) + hΦ−1(𝛼)

√
L0 + T

�



1449On the relation between urban road network and distribution…

2.4.2  When locating a distribution centre in a distribution gateway district

When a DC is located in a city, the DC must also manage inventory. The DC pur-
chases goods from suppliers located outside the city. The DC can always monitor 
the inventory status of each chain store through the POS system. In this case, the 
expected value per unit time of demand for goods ordered from chain stores to the 
DC, DW , and the variance, �2

DW
 , are

(In the absence of a POS system, �2

DW
 is considered to be larger than the value 

expressed by Eq. (17) because of increased uncertainty due to the inventory status 
of chain stores being unobservable.) The DC is also considered to manage inventory 
according to the EOQ model and the safety stock model. Using Eqs. (8), (11) and 
(17), the inventory management cost for the DC is

However, S0 and L0 are the ordering cost and lead time for the DC to purchase goods 
from suppliers outside the city, respectively. The inventory holding cost h and the 
target value of the probability of running out of stock during the lead time � are 
assumed to be the same between the chain stores and the DC.

Using the inventory management cost CW of the DC, the profit of the firm per unit 
time �W (n, p,T) for locating the DC can be expressed as

However, FW is the fixed cost of locating and operating the DC.

2.4.3  Firm’s decision‑making

The firm’s decision is made as follows. First, the intra-city transport time T is given 
exogenously. Next, the firm optimizes �N(n, p,T) and �W (n, p,T) for (hypothetically) 

(17)DW = 𝜎2

DW
= nD = eR(�̄� − ap) −

ea𝜏R2

4n

(18)
CW =

√
2h ⋅ DW ⋅ S0 + h

√
L0Φ

−1(𝛼W )𝜎DW

=

�
eR(�̄� − ap) −

ea𝜏R2

4n
⋅

�√
2hS0 + hΦ−1(𝛼)

√
L0
�

(19)

𝜋W (n, p,T) =(p − c)nD − n[CI(SW ,NW ) + F] − [CW + FW ]

=

�
eR(�̄� − ap) −

ea𝜏R2

4n

�
(p − c) − Fn − FW

−

�
neR(�̄� − ap) −

ea𝜏R2

4

�√
2h𝛽T + hΦ−1(𝛼)

√
T
�

−

�
eR(�̄� − ap) −

ea𝜏R2

4n

�√
2hS0 + hΦ−1(𝛼)

√
L0
�
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n and p under the given T to determine the optimal number of chain stores and product 
prices in each case when the DC is not located and when it is located. The solution of 
the optimization problem for �N(n, p,T) is denoted by nN(T) and pN(T) , and that for 
�W (n, p,T) by nW(T) and pW (T) . Finally, the firm compares �N(nN(T), pN(T), T) and 
�W (nW (T), pW (T), T) . If the former is larger than the latter, the firm does not locate the 
DC. That is, the following equation holds:

3  Comparative static analysis

In this section, we apply analytical and numerical comparative statics analysis 
to the model formulated in 3. To analyse the effects of facilitating logistics by 
improving intra-urban roads on encouraging retailers to locate intra-urban DCs 
and on improving shopping convenience for consumers. Specifically, we analyse 
the effect of a reduction in intra-urban transportation time T on firms’ decision-
making. We also analyse the effect of this change in firms’ decision-making on 
consumer surplus.

3.1  Impact of road improvements on the location of distribution centres

We analyse the effect of shorter intra-city transport time T on the location of DCs. 
First, we compare �W (n, p,T) and �N(n, p,T) under given n and p. The n and p are 
endogenous variables determined by the firms and depend on T and the location 
of the DC. However, for clarity, we assume that n and p can be treated as fixed 
values like exogenous variables. Under this assumption, the difference between 
�W (n, p,T) and �N(n, p,T) is

(20)
{

No distribution centre is located

�N(nN(T), pN(T), T) ≥ �W (nW (T), pW (T), T)

(21)
{

Distribution centre is located

𝜋N(nN(T), pN(T), T) < 𝜋W (nW (T), pW (T), T)

(22)

𝜋W (n, p,T) − 𝜋N(n, p,T) =

�
eR(�̄� − ap)

n
−

ea𝜏R2

4n2

⋅

�
hΦ−1(𝛼)

�
n
√
L0 + T + n

√
S0 + 𝛽T

�

−
√
2h

�
n
√
T +

√
nL0 + n

√
𝛽T +

√
nS0

��
− FW

=𝜎DhΦ
−1(𝛼)

�
n
√
L0 + T − n

√
T −

√
nL0

�

+ D
√
2h
�
n
√
S0 + 𝛽T − n

√
𝛽T −

√
nS0

�
− FW
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The resultant value represents the amount of increase in profit that a firm without 
a DC would gain by locating a DC under a given n and p. To analyse the impact of 
shortening T on this amount, partial differentiation of both sides of Eq. (22) with 
respect to T yields

From Eq. (23), if n and p are given exogenously, we can confirm that the profit 
increase due to the location of DCs expands as T shortens.

To examine the benefits of locating a DC, we consider an extreme situation 
in which the intra-city transport time is T = 0 . In this case, chain stores can 
purchase goods instantaneously from the DC without incurring ordering costs, 
thereby eliminating the need to hold inventory. The value of Eq. (22) is

In general, n ≥ 1 . Eq. (24) implies that the location of a DC will always increase the 
profit of a firm if there is no fixed cost FW of the DC. The first term on the right-
hand side of Eq. (24) represents the benefit of the DC’s function of "assuming the 
aggregate inventory holding risk of downstream chain stores," as described in 2. (2). 
The �D is the standard deviation of the demand for goods from individual chain 
stores. From Eq. (11), when chain stores individually hold safety stock, each chain 
store must hold 

�
�2

D
Φ−1(�)

√
L0 of safety stock. Because there are n chain stores, 

the total amount of safety stock held by the company is n times this amount. How-
ever, if the DC holds an intensive inventory, the variance of its demand for the prod-
uct is n�2

D
 . Thus, the total amount of safety stock held by the company is �

n�2

D
Φ−1(�)

√
L0 . Thus, by assuming the inventory holding risk of multiple chain 

stores in one lump sum, the DC can reduce the inventory holding risk as a whole 
and the total amount of safety stock. That is, the first term on the right-hand side of 
Eq. (24) represents the benefit of reducing safety stock.

Another benefit of locating a DC is represented by the second term on the right 
side of Eq. (24). This benefit is the effect of reducing ordering costs (logistics costs) 
by taking advantage of economies of scale by increasing the lot size at the time of 
purchase through the joint purchase of goods by multiple chain stores. This effect 
has been considered a benefit of DC location in previous studies on the facility 
location model (Melo et al. 2009). Thus, by introducing an inventory management 
model, as introduced in the present study, the benefit of a DC can be expressed as 
the sum of the benefit of a larger lot size and the benefit of reduced safety stock.

The benefit of the DC expressed in Eq. (24) assumes an ideal environment (when 
T = 0 ) where the intra-city transit time is negligible. When the intra-city transport 

(23)

𝜕

𝜕T
[𝜋W (n, p,T) − 𝜋N(n, p,T)]

= −𝜎DhΦ
−1(𝛼)n

�
1

2
√
T
−

1

2
√
L0 + T

�
− D

√
2hn

�
𝛽

2
√
𝛽T

−
𝛽

2
√
S0 + 𝛽T

�
< 0

(24)
�W (n, p, 0) − �N(n, p, 0)

=
�
n −

√
n
�
�DhΦ

−1(�)
√
L0 +

�
n −

√
n
�
D
√
2hS0 − FW
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time cannot be ignored ( T > 0 ), each chain store must hold safety stock even if 
a DC is located in the city. In this situation, the benefit of reducing safety stock 
because of the location of the DC is expressed by the first term on the right-hand 
side of the second equality in Eq. (22). The total amount of safety stock without a 
DC is �DΦ−1(�)n

√
L0 + T  . However, the total amount of safety stock when a DC 

is located is �DΦ−1(�)
�
n
√
T +

√
nL0

�
 . As evident from Eq. (23), the difference 

between the two decreases with increasing T; in particular, the limit of T → ∞ is

That is, when T is very large, the location of a DC inversely increases the total 
amount of safety stock, independent of the values of n and p. When T is large, even 
if the DC is located, the chain must hold a large amount of safety stock to prepare 
for long lead times. In addition, the DC must also hold safety stock and the location 
of the DC ultimately increases the burden of safety stock. The results of Eqs. (23) 
and (25) indicate that DCs need to improve intra-city transport times to fulfil their 
function of increasing the intra-city logistics efficiency.

In the above discussion, for clarity, we treated n and p as fixed values. In 
reality, these variables depend on T and the location of the DC, as described in 
3. (4). In the following discussions, we conduct a comparative statics analysis 
assuming the general situation where n and p are endogenous variables. In such a 
situation, a firm decides the location of its DC by comparing �N(nN(T), pN(T), T) 
and �W (nW (T), pW (T), T) . Here, we define a function that expresses the location 
benefit of a DC given an intra-city transport time T, as follows:

Analytically guaranteeing the monotonicity of the function f(T) is difficult. For this 
reason, we discuss the qualitative properties of the function f(T) using Eqs. (24) and 
(25). From Eq. (25), the following equation holds: 

 Therefore, limT→∞ f (T) < 0 holds. Next, from Eq. (24), the following equation 
holds: 

 Therefore, if nN(0) ≥ 1 and FW is sufficiently small, then f (0) > 0 holds. From the 
above result and the fact that f(T) is continuous, the following proposition holds:

(25)
lim
T→∞

�W (n, p,T) − �N(n, p,T)

= −�DhΦ
−1(�)

√
nL0 − D

√
2h
√
nS0 − FW

(26)f (T) =�W (nW (T), pW (T), T) − �N(nN(T), pN(T), T)

(27a)lim
T→∞

𝜋W (nW (T), pW (T), T) − 𝜋N(nW (T), pW (T), T) < 0

(27b)�N(nN(T), pN(T), T) ≥ �N(nW (T), pW (T), T)

(28a)
𝜋W (nN(0), pN(0), 0) − 𝜋N(nN(0), pN(0), 0) > 0 (if nN(0) ≥ 1 andFW ≃ 0)

(28b)�W (nW (0), pW (0), 0) ≥ �W (nN(0), pN(0), 0)
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Proposition 1 When nN(0) ≥ 1 and FW is sufficiently small, there exists a threshold 
T̃ > 0 satisfying Eqs. (29a), (29b). 

That is, if 0 ≤ T < T̃  holds, then the location of a DC generates a profit. This 
means that a firm will locate a DC if the intra-city transport time T is reduced 
below a certain level T̃  . The possibility that there are multiple T satisfying 
f (T) = 0 has not been eliminated; however, in the event of multiple such T, the 
smallest of them is T̃  . This relation can be derived from the continuity of f(T) 
and f (0) > 0.

3.2  Impact of road improvements on the number of chain stores and commodity 
prices

In the following, we analyse the effect of the shortening of T on the number of 
chain stores n and product price p determined by the firm. For this purpose, we 
apply comparative statics analysis to the first-order optimization conditions of the 
firm’s profit maximization problem. First, assuming a situation where no DC is 
located, the first-order optimization conditions of the maximization problem for n 
and p of the company’s profit �N(n, p,T) are 

Here, X(n, p) and ZN(T) are functions introduced to simplify the description and are 
defined as follows: 

 By partial differentiation of Eqs. (30a) and (30b) with respect to n, p and T, the 
equations of comparative statics analysis are derived as follows:

(29a)f (T̃) = 0

(29b)f (T) > 0 (0 ≤ T < T̃)

(30a)
𝜕𝜋N

𝜕n
(n, p,T) =

ea𝜏R2

4n2
(p − c) − F − (�̄� − ap)X(n, p)ZN(T) = 0

(30b)
𝜕𝜋N

𝜕p
(n, p,T) = eR(�̄� + ac − 2ap) −

ea𝜏R2

4n
+ anX(n, p)ZN(T) = 0

(31a)X(n, p) =
eR

2
√
neR(�̄� − ap) − ea𝜏R2∕4

(31b)ZN(T) =
√
2h(S0 + �T) + hΦ−1(�)

√
L0 + T
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Solving this equation for dn and dp , we obtain

From the second-order optimization condition of the profit maximization problem, 
the sign of the determinant on the right-hand side of Eq. (33) is positive. Therefore, 
we attempt to specify the sign of the remaining part of the right-hand side of Eq. 
(33). First, from Eqs. (30a) and (30b), the following equation is derived. 

 where Z′
N

 is the derivative of ZN , and Xn and Xp are the partial derivatives with 
respect to n and p of X, respectively. Function arguments are omitted. From Eqs. 
(34a)–(34e), the following equations are derived: 

(32)

⎛
⎜⎜⎜⎜⎜⎝

�2�N

�n2

�2�N

�n�p

�2�N

�n�p

�2�N

�p2

⎞
⎟⎟⎟⎟⎟⎠

�
dn

dp

�
= −

⎛
⎜⎜⎜⎜⎝

�2�N

�n�T

�2�N

�p�T

⎞
⎟⎟⎟⎟⎠
dT

(33)
�
dn

dp

�
=

⎧⎪⎪⎨⎪⎪⎩

det

�����������

�2�N

�n2

�2�N

�n�p

�2�N

�n�p

�2�N

�p2

�����������

⎫⎪⎪⎬⎪⎪⎭

−1 ⎛⎜⎜⎜⎜⎜⎝

�2�N

�p2
−
�2�N

�n�p

−
�2�N

�n�p

�2�N

�n2

⎞⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�2�N

�n�T

�2�N

�p�T

⎞
⎟⎟⎟⎟⎠
(−dT)

(34a)
𝜕2𝜋N

𝜕n2
= −

ea𝜏R2

2n3
(p − c) − (�̄� − ap)XnZN

(34b)
�2�N

�p2
= −2eaR + anXpZN

(34c)
𝜕2𝜋N

𝜕n𝜕p
=

ea𝜏R2

4n2
+ [aX − (�̄� − ap)Xp]ZN =

ea𝜏R2

4n2
+ [aX + anXn]ZN

(34d)
𝜕2𝜋N

𝜕n𝜕T
= −(�̄� − ap)XZ�

N

(34e)
�2�N

�p�T
= anXZ�

N

(35a)
𝜕2𝜋N

𝜕p2

𝜕2𝜋N

𝜕n𝜕T
−

𝜕2𝜋N

𝜕n𝜕p

𝜕2𝜋N

𝜕p𝜕T
= 2eaRXZ�

N

[
�̄� − a

(
p +

𝜏R

8n

)
−

anXZN

2eR
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Notably, we use the conclusion of Eq. (30b) in the optimal solution when 
deriving Eq. (35b). If the signs of Eqs. (35a) and (35b) can be specified, the signs 
of dn and dp can be specified. Analytical identification of the signs of Eqs. (35a) 
and (35b) is generally difficult; however, if the following conditions are satisfied 
in the optimal solution, then analytical identification becomes possible:

The numerator on the left side of this equation represents the total inventory man-
agement cost of the firm, nCI(SN , LN) . Because nD in the denominator is the total 
demand for the product, the left side represents the average inventory management 
cost per unit of demand. Equation (36) implies that this average cost is lower than 
�R∕2n (i.e. the transportation cost per shopping trip for consumers living in the most 
inconvenient location). When Eq. (36) holds for the optimal solution, the signs of 
Eqs. (35a) and (35b) can be specified. When Eq. (36) holds, the following inequality 
holds: 

 Using Eqs. (4), (37a), (37b) and Z′
N
> 0 , the sign of Eq. (35a) can be specified to be 

positive and that of Eq. (35b) negative. From the above, the following proposition is 
derived:

Proposition 2 When Eq. (36) holds in the optimal solution, a decrease in intra-city 
transport time T increases nN(T) and decreases pN(T).

Next, a comparative statics analysis is performed for the situation in which the 
DC is located. In this situation, the first-order optimality conditions of the maxi-
mization problem for n and p of the firm’s profit �N(n, p,T) are 

(35b)

−
𝜕2𝜋N

𝜕n𝜕p

𝜕2𝜋N

𝜕n𝜕T
+

𝜕2𝜋N

𝜕n2

𝜕2𝜋N

𝜕p𝜕T
= −

ea𝜏R2

4n2
XZ�

N

[
�̄� − a

(
p +

𝜏R

2n

)](
1 −

4n2XZN

e𝜏R2

)

(36)ZNn
√
D

nD
<

𝜏R

2n

(37a)
anXZN

2eR
<

a𝜏R

8n

(37b)
4n2XZN

e𝜏R2
< 1

(38a)

𝜕𝜋W

𝜕n
(n, p,T) =

ea𝜏R2

4n2
(p − c) − F − (�̄� − ap)X(n, p)

�
ZW (T) +

Z0√
n

�
−

eRZ0

4X(n, p)n
√
n
= 0

(38b)

𝜕𝜋W

𝜕p
(n, p,T) = eR(�̄� + ac − 2ap) −

ea𝜏R2

4n
+ anX(n, p)

�
ZW (T) +

Z0√
n
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= 0



1456 S. Segi et al.

 However, ZW (T) and Z0 are functions and variables introduced to simplify the 
description and are defined as follows: 

By partially differentiating Eqs. (38a) and (38b) with respect to n, p and T and 
solving for dn and dp , we derive the equations of comparative statics. The proof 
is given in Appendix B. Similar to the proof of Proposition 2, we can show that 
the signs of dn and dp can be specified analytically if the following conditions are 
satisfied in the optimal solution:

The numerator on the left side of this equation represents the total inventory man-
agement cost of the firm, nCI(SW , LW ) + CW , and the entire left side represents the 
average inventory management cost per unit of demand. Equation (40) means that 
this average cost must be below a certain level. When Eq. (40) holds for the opti-
mal solution, the signs of dn and dp can be specified and the following proposition 
follows:

Proposition 3 When Eq. (40) holds in the optimal solution, a decrease in intra-city 
transport time T increases nW(T) and decreases pW (T).

Whether the preconditions of Proposition 2 and  Proposition 3 always hold irre-
spective of the exogenous parameters is unclear. Therefore, in addition to the analyt-
ical comparative statics analysis, we perform a numerical comparative statics analy-
sis in Subsect. 3.4. Within the range of numerical examples presented in section 4, 
the preconditions of Proposition 2 and Proposition 3 are confirmed to be satisfied.

Proposition  2 and Proposition 3 show that a reduction in intra-city transport 
time T has the effect of increasing the number of chain stores n and lowering com-
modity prices p. To examine the mechanism that led to this result, we focus on the 
Eq. (14) that represents the inventory management cost for individual chain stores. 
This equation shows that inventory management costs are subject to economies of 
scale with respect to product demand D. The average inventory management cost 
per unit of product demand is

We can confirm that the value of D is monotonically decreasing for D. The reason 
for this behaviour is that the larger the demand for the commodity, the lower the risk 
of holding safety stock. As expressed in Eq. (13), there is a proportional relationship 

(39a)ZW (T) =
√
2h�T + hΦ−1(�)

√
T

(39b)Z0 =
√
2hS0 + hΦ−1(�)

√
L0

(40)
ZWn

√
D + Z0

√
nD

nD
<

𝜏R

2n
−

Z0

√
nD

nD

�̄� − ap −
3a𝜏R

8n

�̄� − ap −
a𝜏R

2n

(41)
CI

D
=

1√
D

�√
2hS + h

√
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between the expected value of product demand and variance. Therefore, the safety 
stock that each chain store should hold can be expressed as 

√
DΦ−1(�)

√
L when the 

lead time is L, implying that the greater the demand for the commodity, the smaller 
the safety stock per consumer. Another reason why the right-hand side of Eq. (41) 
monotonically decreases with respect to D is that the larger the demand for a prod-
uct, the larger the lot size at the time of purchase can be made to take advantage of 
economies of scale and reduce ordering costs. For the above reasons, reducing the 
number of chain stores n in order to reduce inventory management costs is desirable 
because an increase in the number of chain stores causes the demand for the product 
to be divided among the chain stores. The above effects are stronger when the lead 
time L and ordering cost S are large. Conversely, the optimal number of chain stores 
increases as L and S decrease because chain stores can order products from the DC 
in small quantities, reducing the burden of inventory management costs and allow-
ing operation even if the demand per chain store is small. This relationship is why 
a decrease in T leads to an increase in n. The reason why an increase in T leads to a 
decrease in p is that a decrease in the marginal cost of inventory management costs 
(the derivative of CI with respect to D) allows room for price reductions.

In the above discussion, we analysed the shortening effect of T given the presence 
or absence of a DC. As shown in the previous section, when T is shortened across the 
threshold T̃ , a change occurs from a state in which no DC is located to a state in which 
a DC is located. In this case, the number of chain stores and product prices change 
discontinuously from (nN(T) , pN(T)) to (nW (T) , pW (T)) because of the change in cost 
structure associated with the location of DCs. We here analyse the direction of this dis-
continuous change.

First, (nN(T) , pN(T)) satisfies the Eqs. (30a) and (30b); thus, two conditional 
expressions for (nN(T) , pN(T)) are obtained. Substituting these expressions into the 
partial derivatives of �W , we obtain the following two expressions: 

(42a)

𝜕𝜋W

𝜕n
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⋅
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Here, Y(n, p) is a function introduced to simplify the description and is defined as 
follows:

Because the demand D in Eq. (13) is positive, Y(n, p) always takes a value between 
1 and 2. The signs of equations (42a) and (42b) indicate the direction in which n and 
p should be moved for the firm to increase its profit when the firm’s cost structure 
changes with the location of the DC.

We now consider the signs of these equations. We can confirm that [ ] in Eqs. 
(42a) and (42b) are positive if nN(T) is greater than a certain value. From Y(n, p) ≥ 1 , 
the inside of [ ] in Eqs. (42a) and (42b) is positive if the following two conditions are 
satisfied: 

 Eqs. (44a) and (44b) are more easily satisfied when T is small. For example, 
when T∕L0 = 1 and �T∕S0 = 1 , from Y(n, p) < 2 , nN(T) > 23.3 is required for Eqs. 
(44a) and (44b) to hold. However, when T∕L0 = 0.1 and �T∕S0 = 0.1 , Eqs. (44a) 
and (44b) are satisfied if nN(T) > 7.5 . This property will be discussed again in the 
numerical comparative statics analysis in section 4. From the above analysis, the fol-
lowing proposition is derived:

Proposition 4 When a new location of a distribution centre is realized, if Eqs. 
(44a) and (44b) are satisfied, in the neighbourhood of (nN(T) , pN(T)) , the firm can 
increase its profit by increasing n and reducing p.

Proposition 4 shows that if the intra-city transport time T is sufficiently short, 
then firms will increase the number of chain stores n and reduce the price of 
goods p by locating new DCs. The mechanism by which this result arises is simi-
lar to that of Proposition 2 and Proposition 3. That is, the lead time for chain 
stores decreases from L0 + T  to T when the DC is located. As a result, the disad-
vantage of splitting the product demand is mitigated, leading to an increase in the 
optimal number of chain stores and a decrease in the marginal cost of inventory 
management. As a result, prices decrease.

Proposition 4 does not necessarily imply that nN(T) < nW (T) or pN(T) > pW (T) 
because the sign of the derivative of �W can change in the process from (nN(T) , 
pN(T)) to (nW (T) , pW (T)) . However, if (nN(T) , pN(T)) is sufficiently close to 
(nW (T) , pW (T)) , we can at least say from Proposition  4 that nN(T) < nW (T) and 
pN(T) > pW (T)).

(43)Y(n, p) = 2 −
ea𝜏R2

4neR(�̄� − ap)

(44a)
√
nN(T)

Y(nN(T), pN(T))
>

�
T

L0
+

�
1 +

T

L0

(44b)

√
nN(T)

Y(nN(T), pN(T))
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�
𝛽T
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+
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3.3  Impact of road maintenance on consumer surplus

The analysis in the previous subsection shows that, if the average inventory man-
agement cost is sufficiently small, a reduction in intra-city transportation time T 
leads to an increase in n and a decrease in p. The analysis also shows that, if the 
intra-city transport time T is sufficiently short, the shortening of T leads to an 
increase in n and a decrease in p when a new DC is located in the city. As already 
confirmed in Subsect. 3.2, the consumer surplus CS in the city increases mono-
tonically for n and decreases monotonically for p. Therefore, the following propo-
sition follows from Proposition 2–Proposition 4:

Proposition 5 

• When no distribution centre is located and Eq. (36) holds, a decrease in T 
increases consumer surplus CS.

• When distribution centres are located and Eq. (40) holds, a decrease in T 
increases consumer surplus CS.

• When a new location of a distribution centre is realized, consumer surplus CS 
increases if Eqs. (44a) and (44b) are satisfied and (nN(T) , pN(T)) is sufficiently 
close to (nW (T) , pW (T)).

This proposition shows that a reduction in intra-city transportation time T not 
only increases firms’ profits but also improves consumer surplus. With the change in 
firms’ decision-making due to shorter T, consumers benefit from lower commodity 
prices and lower shopping transportation costs.

3.4  Numerical analysis

In the above, we have shown that Proposition 1–Proposition 5 are true by analyti-
cal comparative statics analysis. However, each proposition is valid only if the pre-
conditions are satisfied and it is not clear whether it is valid for arbitrary exogenous 
parameter values. Therefore, in this section, a numerical comparative statics analy-
sis is performed to confirm the validity of the propositions and their preconditions, 
albeit within a limited parameter range.

For numerical calculations, the exogenous parameters are set as follows. The pop-
ulation of the city is assumed to be 100,000; in addition, e = 1000 and R = 100 . The 
unit time is set to one day. The daily per capita demand for a product is assumed to 
be at most 0.1 units, and �̄� = 0.1 , a = 0.05 , � = 0.1 and c = 1 under the assumption 
of a highly elastic demand situation. Fixed costs per day for chain stores and DCs 
are set to F = 10 and FW = 100 , respectively. The lead time from outside the city to 
the city is assumed to be one day; in addition, L0 = 1 , � = 10 and S0 = 10 . The cost 
of holding inventory per day and per unit is set to h = 0.1 , and the target probabil-
ity of no stock-out during the lead time is set to � = 0.95 . Under these settings, the 
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price of the product set by the firm is approximately p = 1.45 , so the inventory hold-
ing cost of h = 0.1 means that the value of the product is assumed to be zero in 15 
days. Under these settings, T is varied from 1 (day) to 0 (day) and the accompanying 
changes in each variable are analysed. 

Figure 5 shows the relationship between the intra-city transport time T and the 
profit � of the firms. The solid line shows the case where a DC is located ( �W ), and 
the dashed line shows the case where no DC is located ( �N ). In the other graphs, the 
solid and dashed lines correspond to the presence or absence of a DC. As shown 
in Proposition 1, we can confirm that there exists a threshold T̃  at which profit is 
higher if a DC is located. Under the parameter settings in this section, T̃ = 0.26 , 
Fig. 6 shows the relationship between the intra-city transport time T and the total 
inventory management cost nCI + CW of the firm. The results confirm that the reduc-
tion in inventory management cost, which is a benefit of locating a DC, becomes 
stronger as T is shortened.
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The relationship between intra-city transport time T and the number of chain 
stores n, commodity price p and consumer surplus CS is shown in Fig.  7, Fig.  8 
and Fig. 9, respectively. As shown in Proposition 2, Proposition 3 and Proposition 
5, given the location of the DC, the shortening of T leads to an increase in n and a 
decrease in p, increasing CS.

The preconditions for Proposition 2 and Proposition 3, Eqs. (36) and (40), hold 
for all numerical cases used to create the graphs in Fig. 5 and Fig. 6. Figure 10 is a 
graph showing the relationship between T and the value of the left-hand side of Eq. 
(36) divided by the right-hand side of Eq. (40). The results confirm that the left-
hand side is smaller than the right-hand side for all T. Because the unit inventory 
management cost increases with increasing length of T, both graphs in Fig. 10 are 
monotonically increasing with increasing T. The unit inventory management cost at 
T = 1 is 0.197 when the DC is not located in the city and 0.174 when it is located 
in the city, which are 13.5% and 12.0% of the commodity price, respectively. This 
result illustrates that the assumptions of Proposition 2 and Proposition 3 are satis-
fied when inventory management costs are not extremely large.

Focusing on the point T = 0.26 , which is the threshold at which a DC is located, 
we can confirm that the location of a DC leads to an increase in n and a decrease in 
p, which is the result expected under Proposition 4. However, the number of chain 
stores is smaller when the DC is located in the range of T ≥ 0.64 . If a new DC is 
located in a situation where the fixed cost of locating a DC is low and T is long, the 
number of chain stores will decrease, contrary to the prediction of Proposition 4. 
Thus, the assumption of Proposition 4 holds only when T is sufficiently short. Irre-
spective of the length of T, p is lower and CS is higher when a DC is located.

Finally, we consider the effect of the location of DCs on consumer surplus. When 
T is long, the change in the number of chain stores associated with the location of 
a DC is small and the benefit to consumers is primarily in the form of lower prod-
uct prices. However, as T becomes shorter, the increase in the number of chain 
stores associated with the location of the DC increases and the savings in shopping 

Fig. 10  Relationship between T and the value of the left-hand side divided by the right-hand side of Eqs. 
(36) and (40)
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transportation costs contribute to consumer surplus. This property is confirmed by 
the graph in Fig. 11. This graph shows the reduction in transportation cost per pur-
chase �R∕(4n) and product price p associated with the location of a DC. The trans-
portation costs are those of an average consumer. These graphs confirm that as T 
becomes shorter, the savings in shopping transportation costs is the main benefit that 
DCs bring to consumers. The reason for this result is that, as discussed in Eq. (41), 
when T is short, chain stores can order products from the DC in smaller quantities, 
reducing the burden of inventory management costs and enabling them to operate 
with smaller demand per store.

3.5  Policy implications

The results of the above analysis lead to several policy implications regarding the 
impact of intra-urban road development on the location patterns of DCs and chain 
stores in the city. First, even if intra-city road improvements contribute only to 
logistics facilitation, they improve consumer shopping convenience and increase 
consumer surplus by increasing the number of chain stores in the city. Second, 
the location of DCs in a city increases the number of chain stores within the city 
and improves consumer shopping convenience, provided that intra-city transport 
times are sufficiently short. Therefore, the location of logistics centres in a city 
leads to an increase in consumer surplus. The necessary conditions to realize 
such an environment include the development of logistics districts; however, a 
particularly important condition is suggested to be the shortening of transporta-
tion time through the development of intra-city roads. The strategy of consoli-
dating inventory holding risks from downstream chain stores to upstream DCs is 
adopted by many modern retailers such as supermarkets and convenience stores, 
and the development of inner-city roads contributes to the establishment of such 
a strategy. Third, the reorganization of DCs and chain stores within a city due to 
the construction of intra-city roads can lead to changes in consumers’ shopping 
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transportation behaviour. As the number of chain stores increases, consumers will 
purchase goods closer to where they live, increasing the number of short-distance 
shopping trips. Thus, changes in logistics might indirectly affect consumers’ pri-
vate trips.

Note that, for the sake of analysis, the present study completely distinguishes 
between roads used by logistics and roads used by consumers. Although a detailed 
analysis is omitted for reasons of space, the number of chain stores n determined by 
the firm decreases when � , which represents the consumer’s shopping transportation 
cost per unit distance, is reduced in this study’s model. This result is easily con-
firmed by substituting � = 0 into the �N and �W expressions into Eqs. (16) and (19). 
When � = 0 , the firm’s profit decreases monotonically for n; thus, it is optimal for 
the firm to set the number of chain stores to n = 1 . In this case, the profit is higher if 
the DC is not located in the city. The reason for this result is that reducing the num-
ber of chain stores and taking advantage of economies of scale is a more efficient 
approach if consumers can travel to distant locations with low transportation costs. 
In real cities, transportation infrastructure has been developed to lower consumers’ 
shopping transportation costs. Nevertheless, the strategy of locating a large number 
of small chain stores  is adopted by many retailers. This can reflect an increase in 
consumers’ value of time, in addition to the development of an inner-city environ-
ment conducive to the location of DCs in the city.

It is also undisputed that the findings of the present study are based on limited 
assumptions and are not generally valid. In addition, the study discards the prob-
lems of road congestion in the road network. To analyse the effect of the location of 
logistics centres and the development of intra-city road networks on the efficiency of 
intra-city logistics in a realistic city, it is essential to conduct an empirical analysis 
using a hybrid equilibrium model that simultaneously considers both the traffic equi-
librium model and the behaviour of intra-city logistics companies. Such an empiri-
cal study is left as a subject for future study.

4  Conclusion

We modelled the inventory management behaviour of franchise retailers by consid-
ering the consolidation of product inventory holding risk by DCs and the increase 
in lot size. We also analysed the effects of facilitating logistics through the develop-
ment of intra-urban roads on reorganizing the location patterns of chain stores and 
DCs in the city and on improving shopping convenience for consumers. The results 
show that the development of intra-urban roads and the facilitation of intra-urban 
logistics improve the efficiency of the supply chain of franchise retailers and, under 
certain conditions, lead to an increase in the number of chain store locations and 
a reduction in consumers’ shopping transportation costs. There are several issues 
that remain to be addressed in this study. First, the theoretical findings obtained in 
this study were derived for a circular city. For realistic location patterns of DCs and 
stores in a city, where the distribution of consumers’ residential areas and the shape 
of the road network are considered, it is essential to conduct an empirical analysis 
using a hybrid equilibrium model that simultaneously considers the behaviour of 
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logistics companies in the city as well as a traffic equilibrium model. Second, this 
study assumed a monopolistic market with a single franchise company; however, it 
is also necessary to analyse oligopolistic markets with multiple franchise companies 
competing or markets with monopolistic competition in which differentiated stores 
attempt to jointly transport goods. Third, consumers might change their inventory 
management in their homes depending on the location of convenience stores. Thus, 
there is a need for further theoretical and empirical research on inventory manage-
ment on the consumer side. Fourth, in the entire supply chain from producer to con-
sumer, road development might improve the overall social welfare by concentrating 
the inventory holding risk in consumers’ households and in chain stores and DCs 
at the upstream of the supply chain. Until now, the benefits of road development 
on freight transportation efficiency have been measured mainly in terms of driver 
time and vehicle depreciation costs. Inventory holding costs have also been partially 
measured in terms of inventory capital costs (interest rates) during transport time; 
however, these costs are extremely small. In future, it is necessary to understand the 
breakdown of inventory holding costs (h in this study) and their quantitative magni-
tude and to apply inventory management models such as the one used in this study 
to improve the efficiency of inventory management and better understand the ben-
efits related to changes in the location points of DCs. Finally, although this study 
was conducted for retailers, the analytical framework of this study can be extended 
to many other areas, such as analysis of the effects of logistics infrastructure (includ-
ing railroads and ports) on supply chains in the manufacturing industry.

Appendix A: Error evaluation by Monte Carlo experiments

Equations (9) and (12) for evaluating the safety stock are approximations; however, 
it is difficult to evaluate their errors analytically. Therefore, we evaluate the approxi-
mation error by conducting Monte Carlo experiments with specific parameters. The 
simulation was conducted for the number of inventory items in a single store. The 
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demand for goods in this store is assumed to occur according to a Poisson process 
with a frequency of occurrence of 25 per unit time. That is, the mean demand per 
unit time is 25 and the standard deviation is 5. Let the lot size of the order Q be 100 
and the lead time L be 2. The expected demand during the lead time is 50, which 
is 50% of the lot size, assuming an environment of high demand uncertainty and 
inventory turnover. We also assumed that consumers faced with out-of-stock condi-
tions would give up purchasing the product. Under these assumptions, the value of 
ROP was varied from 50 to 70 in increments of one; for each ROP, a one million 
hour simulation was conducted to calculate the long-term average number of inven-
tory items in the store.

Figure 12 shows a graph of the relationship between the target value � of the 
probability of no stock-outs during the lead time ( � corresponds one-to-one to 
ROP) and the long-term average number of stocks in the store (excluding the 
part with Q∕2 = 50 ). The solid graph shows the values evaluated using the sim-
ulation. However, because the number of inventories is always an integer in the 
simulation and the transition of the number of inventories is staircase-like, there 
is a difference of 0.5 from the case where the transition of the number of inven-
tories is linear, as in the case of Fig. 4. Therefore, we note that the solid line in 
Fig. 12 subtracts 0.5 from the long-term average value obtained from the simu-
lation. The same figure shows the relationship between ss, ss′ and � as dashed 
lines. Although ss underestimates the long-term average and ss′ overestimates 
it, the error is not large. For example, when � = 0.898 , the simulation result is 
9.15, ss is 9 and the error is 1.6%. When � = 0.802 , the simulation result is 6.35, 
ss is 6 and the error is 5.6%.

The fraction of demand that does not face stock-outs, � , can also be evaluated using 
simulations. Figure 13 shows the relationship between � and � . This graph shows that, 
if � is sufficiently large, the approximation error of � ≃ 1 is not so large. For example, 
when � = 0.898 , � = 0.996 . Even when � = 0.802 , � = 0.992.
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Appendix B: Proof of Proposition

The following equation is obtained by the same calculation as in the proof of 
Proposition 2. 

Note that, in the expansion of the above equation, we use equation (38b) and the fol-
lowing relation:

When Eq. (40) holds for the optimal solution, the following inequality holds: 

 Using the expressions (4), (B2a), (B2b) and Z′
W
> 0 , we can prove Proposition 3.
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