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Abstract The spatiotemporal distribution of Total Electron Content (TEC) in ionosphere determines the
refractive index of electromagnetic wave leading to the radio signal scintillation and deterioration. Thanks to the
development of machine learning for video prediction, spatiotemporal predictive models are applied on the
future TEC map prediction based on the graphic features of past frames. However, output result of graphic
prediction is unable to properly respond to the external factor variations such as solar or geomagnetic activity.
Meanwhile, there is still neither standard data ‐set nor comprehensive evaluation framework for spatiotemporal
predictive learning of TEC map sequences leading to the comparisons unfair and insights inconclusive. In this
research, a new feature‐level multimodal fusion method named as channel mixer layer for machine reasoning is
proposed that can be embedded into the existing advanced spatiotemporal sequence prediction models.
Meanwhile, all performance benchmarks are accomplished on the same running environment and newly
proposed largest scale data set. Experiment results suggest that the multimodal fusion prediction of existing
model backbones by proposed method improves the prediction accuracy up to 15% with almost the same
computational complexity compared to that of graphic prediction without auxiliary factors input, having the
real‐time inference speed of 34 frames/second and minimum mean absolute error of 0.94/2.63 TEC unit during
low/high solar activity period respectively. The channel mixer layer embedded models can respond to the
variations of auxiliary external factors more correctly than previous multimodal fusion methods such as
concatenation and arithmetic, which is regarded as the evidence of state‐of‐the‐art machine reasoning ability.

Plain Language Summary Total Electron Content (TEC) refers to the total number of free electrons
along the electromagnetic wave path while penetrating ionosphere. The remote sensing of ionospheric TEC is
accomplished by calculating the group delays (phase advances) of radio signal between satellites and ground
receivers. Recently the prediction of global TEC maps has been the research highlights due to its great
significance for the satellite communication improvement. However, the spatiotemporal sequence prediction
models used in previous researches are not state‐of‐the‐art without focusing on the modeling of multimodal
fusion due to the input of different kinds of external factor data such as solar and geomagnetic activity indices. In
this research, a new multimodal fusion method named as channel mixer layer for machine reasoning is proposed
that can be embedded into the existing advanced spatiotemporal sequence prediction models while inputting
auxiliary data. Experiment results under the same newly proposed data ‐set and software suggest that the
proposed multimodal fusion method improves the prediction accuracy dramatically compared to the graphic
prediction without auxiliary data input. Channel mixer layer shows the best machine reasoning ability by
correctly responding to the variations of auxiliary factors under different external conditions.

1. Introduction
Ionosphere is the upper atmosphere from 60 to 1,000 km altitude where neutral particles are partially ionized as
plasma by solar radiation. The electromagnetic wave refraction in the ionosphere caused by charged particles is
one of the main reasons for the satellite signal scintillation and radio quality deterioration. The Total Electron
Content (TEC) between a pair of radio transmitter and receiver is defined as the total number of free electrons
(TEC Unit: 1 TECU = 1016 electrons/m2) contained in a cylinder (1 m2 cross section) linking them (H. Wang
et al., 2024). The remote sensing of ionospheric TEC has been carried on since 1995 by calculating the group
delays (phase advances) of radio signal between Global Positioning System (GPS) satellites and hundreds of
worldwide ground receivers (J. Liu et al., 2011). However, considering some technical problems such as the
incomplete data due to observation interruptions before 1998 (Z. Wang, Wu, et al., 2023), sampling time shifting
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from odd to even hours in 2002 (Ren et al., 2022) and the change of sampling interval from two to 1 hour in 2014
(Luo et al., 2023), the data sets of global TEC maps are partially and differently used in previous researches. In
this research, a standard data set with the largest scale is released where the global TEC maps and their corre-
sponding external factors for diurnal, seasonal, spatial, solar and geomagnetic activity dependence are packaged
together after removing the redundant descriptions in origin text data files.

The prediction models for global ionosphere TEC can be roughly divided into two categories: physical and
empirical models (Shi et al., 2022). In terms of physical models, the fully coupled momentum, energy, and
continuity equations for both neutral and ion particles are solved to derived the global TEC maps (Codrescu
et al., 2012). However, all physical prediction models are established based on the first principles that assume the
steady states for physics and chemistry ignoring the complex variations in ionosphere (Ridley et al., 2006). Thus,
there is bias error that overestimates or underestimates the TEC predictions (Perlongo et al., 2018). Empirical
models can also be divided into two categories: function‐based and learning‐based models. Function‐based
models such as International Reference Ionosphere (IRI, Rawer et al. (1978)) and NeQuick (Nava et al., 2008)
always fit the spatiotemporal distribution of ionospheric parameters with the complex functions. The predictions
of these models are significantly lower than observations due to the exclusion of plasmaspheric TEC contribution
(Bilitza et al., 2022). Recently, learning‐based models have been the research highlights due to the merits of high
accuracy and real‐time speed. However, the spatiotemporal sequence prediction models used in previous re-
searches are not state‐of‐the‐art (Ruwali et al., 2021; Z. Chen et al., 2022). Meanwhile, the accuracy comparison
of different models in previous researches may be unfair due to the different computational consumption (Xiong
et al., 2021). In this research, the TEC prediction performances of 11 advanced models in machine learning
research field are evaluated under the same modular and extensible framework with the comparable model
configuration.

Unlike the previous researches which propose the whole model completely (Srivani et al., 2019), this research
focuses on improving the existing mature models by the multimodal fusion between predictive channel (global
TEC maps) and auxiliary channel (external factors). Without the appropriate multimodal fusion methods, the
model prediction accuracy may degrade with more auxiliary channels input according to the experiment results.
The existing multimodal fusion methods can be roughly categorized as feature‐level (or early) fusion and
decision‐level (or late) fusion (Baltrušaitis et al., 2019). In terms of decision‐level fusion, several submodels are
trained with the classified data separately under different conditions such as different time and solar activity. The
prediction results of different trained submodels are selected to make the final decision according to a certain
criterion including voting scheme (Nigusie et al., 2024), maximum likelihood (Li et al., 2024), bayes theorem
(Karatay & Gul, 2023) and ensemble learning (such as Gradient Boosting algorithm, Zhou et al. (2024)).
However, The prediction speed is slow due to the large model size and repetitive iteration. Meanwhile, the as-
sociation between different single submodels is ignored so that it is unsuitable for TEC prediction where the
external factors have strong correlation. In terms of feature‐level fusion, the common implementations is applying
arithmetic (e.g., weighted sum (L. Liu et al., 2020) and multiplication (Y. Wang, Wu, et al., 2023)) or concat-
enation (Xu et al., 2024) operation on the extracted features of predictive and auxiliary channels. These methods
can be regarded as the multimodal fusion after the feature extraction. In this research, a new fusion‐before‐
extraction multimodal fusion framework named as channel mixer layer for machine reasoning is proposed that
can be embedded into the existing advanced spatiotemporal sequence prediction models.

2. Data Set
Since 1995, the global TEC maps have been provided by the Center for Orbit Determination in Europe (CODE)
based on the signal delay between the globally distributed ground receivers and satellites (Dow et al., 2009).
However, the start time of observation changed fromUniversal Time (UT) 1:00 to 00:00 on 3 November 2002 and
the sampling interval of observation data changed from two hours to one hour on 19 October 2014, which makes
previous researches cannot make full use of observation data (Ren et al., 2022). In this research, the observation
TEC maps of each day since 19 October 2014 are divided into odd and even universal time groups to ensure all
sequences have the same two‐hour interval so that the data‐set can cover the longest time span. Meanwhile, The
TEC maps are resized from 73 × 71 to 72 × 72 pixel resolution with a spatial resolution of 5° and 2.5° for
longitude and latitude at 450 km ionospheric mapping shell altitude (Fu et al., 2022), because existing spatio-
temporal predictive models in machine learning generally requires that the sequence frames have the same width
and height size. The detailed approaches include removing the right edge column because both it and left edge
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column are the same data for the TEC at 180° longitude repeatedly, meanwhile adding a new zero‐padding bottom
edge row without changing the original data.

There is still no standard data set for spatiotemporal predictive learning of TEC map sequences leading to the
comparisons unfair and insights inconclusive. In this research, a new standard data set with the largest scale,
named as IonoElectron, is released where the global TEC maps and their corresponding external factors for
diurnal, seasonal, spatial, solar and geomagnetic activity dependence provided by OMNI data set are packaged
together and saved in the specified format of machine learning software for the high speed accessing. Meanwhile,
to prevent the model over‐fitting caused by insufficient data, the sequence quantity augmentation method as
shown in Figure 1 is applied where the sequences to be input are automatically selected by a sliding window along
the observation samples. Supposing the total number of the ionospheric TEC maps is N = 141,360 frames from
1997 to 2022 and the time interval (time resolution) between two contiguous frames is Ti = 2 hours, the sampling
period Ts = 480 hours refers to the longest sequence duration that can be sampled due to the observation
interruption, variable Tw = 120 hours (0< Tw ≤ Ts) refers to the time length of sliding window. Then augmented
sequence quantity S = 106,609 can be calculated by Formula 1, which is much more than that
S = (N ⋅Ti)/Tw = 2356 without applying sequence quantity augmentation method and is the largest scale
compared to the similar researches until now.

S =
N
Ts
(Ts − Tw + Ti) (1)

With the aforementioned data processing approach, each sequence for the spatiotemporal sequence prediction can
be regarded as a 5‐dimension tensor of [batch, time, channel, height, width], where the batch dimension refers to
the sequence quantity that parallel processed by the model and the channel dimension is composed of predictive

Figure 1. The sequence quantity augmentation method is used to generate the 5‐dimension data for prediction models where the sequences are automatically selected by
a sliding window along the observation samples.
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and auxiliary channels. Each individual data in the sequence can be located by the 5‐dimension coordinate system
within the range as shown in Figure 1.

The sequences obtained by sequence quantity augmentation are separated into training, validation and test data
sets according to the different observation time with a number portion ratio of 3:1:1. The cross validation strategy
is adopted for training and validation data sets. The test data set is further grouped as the low (annually averaged
F10.7 < 80 sfu) or high (annually averaged F10.7 > 130 sfu) solar activity periods. Due to the positive correlation
between solar and geomagnetic activities (P. Liu et al., 2022), this categorization can also reflect the performance
of the model under different geomagnetic activity conditions.

3. Methodology
3.1. Network Architecture

This research aims to enhance the machine reasoning ability of models for the relation between predictive and
auxiliary channels through the multimodal fusion. To this end, we outline the development background of
technical features of existing sequence prediction models, which can be roughly categorized as Recurrent Neural
Networks (RNN, Elman (1990)), Convolutional Neural Networks (CNN, LeCun et al. (1989)) and Transformer
(Vaswani et al., 2017). Two branches of RNN models, Long‐Short Term Memory (LSTM, Hochreiter and
Schmidhuber (1997)) and Gated Recurrent Unit (GRU, Chung et al. (2014)) were proposed to solve the gradient
vanishing/exploding problems in simple RNN model. These models were mainly applied in temporal sequence
prediction tasks such as natural language processing in the early stage. By switching from fully connected op-
erations of LSTM model to convolutional operations to preserve spatial features, Convolutional LSTM
(ConvLSTM) established spatiotemporal sequence prediction research field (SHI et al., 2015). Another seminal
research, Predictive RNN (PredRNN), used different modules to learn spatial and temporal features separately (Y.
Wang et al., 2017). Based on aforementioned principles, further improvements have been made by the subsequent
researches, such as PredRNN++ (Y. Wang et al., 2018), PredRNNv2 (Y. Wang, Wu, et al., 2023), Memory in
Memory (MIM, Y. Wang, Zhang, et al. (2019)) and Eidetic 3‐dimensional LSTM (E3D‐LSTM, Y. Wang, Jiang,
et al. (2019)). Besides the Recurrent‐based models, the recurrent‐free model based on CNN is also proposed such
as Simple Video Prediction (SimVP, Gao et al. (2022)). Considering the success of the attention module, recent
researches such as Temporal Attention Unit (TAU, Tan et al. (2023)) and Motion Aware Unit (MAU, Chang
et al. (2021)) combine the merits of Transformer and other models. These models are used as the prediction
network backbone for the multimodal fusion framework proposed in this research. The detailed properties of the
most diverse types of data channels and model backbones used in this research (Tang et al., 2024) are shown in
Table 1.

Figure 2 shows the prediction process of the different kinds of neural networks for the predictive channel
(ionospheric TEC map) with/without inputting the auxiliary channels (external factors). The aforementioned
models for spatiotemporal sequence prediction require that the channel number of the input and output data
should be equivalent by default because the prediction based on graphic features does not need the extra auxiliary
input. In this research, we extend the functionality of input layers in the existing models to make them support any
number of channels. When the machine reasoning from the auxiliary to predictive channels is enabled, the data of
the predictive and auxiliary channels is fused by the multimodal fusion method before inputting into prediction
network backbone. In terms of the recurrent‐based models like RNN, the data of auxiliary channels at the current
time step needs to be copied and put together with the prediction result at the last time step to ensure the con-
sistency of the input. Whereas such an operation is not needed for the recurrent‐free models like CNN or
Transformer where all of the prediction results are output for once.

The mathematical expression of spatiotemporal sequence predictive learning can be summarized by Formula 2,
where Xin = {xt− Tin+1,… ,xt} and Yout = {yt+1,… ,yt+Tout} refer to the input and output sequences consisting of
the frames of x and y during time length Tin and Tout respectively. The goal of learning procedure is to find the

optimized network parameters for graphic prediction ŶCpred
out = f (XCpred

in ) and multimodal fusion prediction

ŶCpred
out = f (XCpred

in ,XCaux
in ) minimizing the loss function result L(output, truth), where Cpred and Caux refer to the

number of predictive and auxiliary channels.

SpaceWeather 10.1029/2024SW004121

LIU ET AL. 4 of 19

 15427390, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024SW

004121 by C
ochrane Japan, W

iley O
nline L

ibrary on [18/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



min
f
∑
batch

L( ŶCpred
out = f (Xin),Y

Cpred
out ) (2)

3.2. Multimodal Fusion

Traditional spatiotemporal predictive learning always focuses on predicting the future frames only according to
the graphic features of past frames. However, the spatiotemporal sequences of ionospheric TECmaps have strong
correlation with external factors, which represents as the diurnal, seasonal, spatial, solar and geomagnetic activity
dependence (P. Liu et al., 2022). The prediction accuracy is expect to be further improved with the machine
reasoning, where the relations between the predictive channel (ionospheric TEC map) and the auxiliary channels
(external factors) are learned by neural networks with the suitable multimodal fusion method.

Figure 3a shows the processing flowchart of the previous multimodal fusion methods. All of the input data are
normalized within the range of (0,1) due to the activation functions in neural networks. The learning process of
one parameter in a certain layer of the neural network is emphasized where the calculation result of convolution or
attention operation between this parameter and the input data are regarded as the extracted feature then passed to
the next layer. The parameter sharing is a fundamental technique in neural networks which means that the same
parameter scans over different regions and different channels instead of using different parameters. Therefore,
there are dramatic gaps for the extracted features and learned parameters of different channels represented as
different colors leading to informatics loss and learning unstable.

Existing multimodal fusion methods such as arithmetic and concatenation are applied on the extracted features of
different channels. In terms of the arithmetic methods such as weighted sum and multiplication, the result of
weighted sum method may exceed the range within (0,1). Multiplication method makes the result closer to zero
when more channels are input, leading to the vanishing gradient problem. To solve these problems, normalization
layers are applied so that the parameter number of the neural network increases dramatically. Meanwhile, the
weight of each channel Wi is difficult to be determined for the weighted sum method. In machine learning re-
searches, multiplication method may have the different name such as action‐conditioned PredRNN (Y. Wang,
Wu, et al., 2023) but essentially is same. In terms of concatenation method, extracted features of different
channels are put together without extra operation. All of the relations between the predictive and auxiliary
channels are determined by the neural network backbone. The original codes of model backbones that only

Table 1
The Detailed Properties of the 16‐Channel Predictive or Auxiliary Data and 12‐Kind Temporal or Spatiotemporal Model
Backbones Used in This Research

No. Channel Dependence Model Category Structure

1 TEC map – Temporal

2 Longitude Spatial Prediction:

3 Latitude Spatial LSTM RNN Fully connected LSTM cell

4 Year Seasonal GRU RNN Fully connected GRU cell

5 Day Seasonal Transformer Transformer Attention

6 Month Seasonal Spatiotemporal

7 Hour Diurnal Prediction:

8 F10.7 Solar ConvLSTM RNN Convolutional LSTM cell

9 Sunspot Solar E3D‐LSTM RNN 3‐Dimensional ConvLSTM cell

10 Kp Geomagnetic MAU RNN + Transformer Recurrent + Attention

11 Ap Geomagnetic PredRNN RNN Spatiotemporal ConvLSTM cell

12 Dst Geomagnetic PredRNN++ RNN Deeper PredRNN + Highway

13 AE Geomagnetic PredRNNv2 RNN PredRNN + Decoupled memory

14 ΣB Geomagnetic MIM RNN Differential PredRNN

15 Average|B| Geomagnetic SimVP CNN Encoder + Inception + Decoder

16 PlasmaSpeed Geomagnetic TAU CNN + Transformer Encoder + Attention + Decoder
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support the graphic prediction are modified and upgraded to the multimodal fusion prediction with the concat-
enation method in this research.

Different from traditional methods that extracts features before multimodal fusion, the proposed mixer layer is a
framework that extracts features after multimodal fusion as shown in Figure 3b. The original data of the same
position of the different channels are replaced nearby with each other into the same channel so that the distribution
differences between predictive and auxiliary channels can be eliminated. However, the mixer layer makes the
distance between the data of predictive channel

̅̅̅̅
C

√
times larger, where C refers to the total number of channel,

leading to the decrease of the prediction accuracy. In order to maintain the same receptive field and kernel size
without increasing the trainable parameters of model, a feature extraction bypass for the predictive channel
without through mixer layer is set. All of the extracted features of different channels are concatenated together
then input into neural network backbone for the spatiotemporal prediction.

The traditional mixer layers proposed for the object recognition (Y. Wang, Sun, et al., 2023) and temporal
sequence prediction (Tolstikhin et al., 2021) contain the fully connected operations, which are superseded in the
existing spatiotemporal predictive models due to the spatial feature loss. However, our mixer layer is essentially a
new data transformation without the trainable parameter or fully connected operation so that it can be flexibly
integrated into the existing model backbones.

Figure 2. The flowchart of different models and different prediction categories. The difference between graphic prediction and multimodal fusion prediction is whether
the auxiliary channel data is input or not. The recurrent‐based models predict step by step whereas others output the prediction sequence for once.

SpaceWeather 10.1029/2024SW004121

LIU ET AL. 6 of 19

 15427390, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024SW

004121 by C
ochrane Japan, W

iley O
nline L

ibrary on [18/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 4 shows the detailed implementation process of the proposed mixer layer. First, The input channels (Ck)

are split along the height and width dimensions to get the individual data for all channels (SC). Then all of the
individual data are concatenated along the channel dimension to get the pre‐fusion channel (PC). Finally,
grouping the data of pre‐fusion channel and exchanging the positions of the specified adjacent groups, otherwise
there are distribution differences along the width dimension for the fusion result. The fusion result of mixer layer
is obtained after the size recovering for the fusion channel (FC). Here using the value assignment operation
FC[n ∗ i + k/n,n ∗ j + k%n] = Ck[i, j], where [ ] refers to height and width coordinates, n refers to the squared
total channel number and % is the remainder operation, to realize mixer layer is easier to understand. But such an
in‐place operation can cause gradient interruption in the neural network, which is prohibited by the machine
learning software (Bulò et al., 2018). In contrast, the proposed mixer layer only contains dimension

Figure 3. The flowchart of multimodal fusion methods for previous fusion‐after‐extraction approach (a) and our fusion‐before‐extraction approach (b).

Figure 4. The detailed implementation flowchart of the proposed channel mixer layer. There are four procedures to get the
final fusion result of the channel mixer layer which can eliminate the data distribution differences among channels: spatial
dimension split, channel dimension concatenation, adjacent data exchange and size recovering.
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transformations as shown by Formula 3, where all input and output data of each procedure are real values R with
the size of positive integers H,W,C ∈ Z+ for height, width and channel dimensions respectively.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SC∈R1,H,1,W,C = Split( input∈RH,W,C)

PC∈R1,1,H ∗W ∗C = Concatenate(SC)

FC∈RH ∗
̅̅̅
C

√
,
̅̅̅
C

√
,W/

̅̅̅
C

√
,
̅̅̅
C

√

= Exchange(PC)

output∈RH,W,C = Recover(FC)

(3)

4. Result
In order to make the performance comparisons between models fair and persuasive, all RNN backbones are set as
the same four stacked cell layers, there are 128 recurrent cells for each layer. All CNN backbones consist of the
same 4‐8‐4 block layers for encoder‐hidden‐decoder respectively. There are more than 100 layers with the
trainable parameters including the linear, normalization and convolution layers. All of the hyper‐parameters such
as filter size are set by default without changing. In terms of the training strategy, all models are trained in the
same environment. The training data set is traversed the same epoch = 10 times repeatedly during the training
phase. It takes about one day for the training of each model. After each training epoch is completed, the training
data set is randomly shuffled meanwhile the learning rate is optimized by the scheduler automatically. The
performance of different trained models in the test data set is evaluated from both quantitative and qualitative
aspects which is further illustrated in the following subsections.

4.1. Quantitative Evaluation

In order to evaluate the prediction accuracy of different models more accurately, two routine metrics for the
machine learning prediction are adopted in this research (Nigusie et al., 2024): Mean Squared Error (MSE), Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). The difference between them is that MSE is a
dimensionless indicator without physical meaning whereas MAE and RMSE has the same unit as the input data
that is TEC unit (TECU). These metrics can be calculated by Formula 4, where n refers to the total number of the
data samples, ŷi and yi are the prediction result and the ground truth, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MSE =
1
n
∑
n

i=1
( ŷi − yi)

2

MAE =
1
n
∑
n

i=1
| ŷi − yi|

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

i=1
( ŷi − yi)

2
√

(4)

Table 2 shows the quantitative performance evaluation including the computational complexity and the prediction
error for the different network backbones with the different multimodal fusion methods that fuses the different
input channel quantity (Cin) . The indicators for computational complexity consist of the trainable parameter
number (Param.), floating‐point operations per second (Flops) and the inference speed in a unit of frame per
second (fps). As for the indicators for the prediction error, the 4‐day averagedMSE is calculated for the whole test
data set then the zero‐near result is scaled 100 times larger, whereas the 4‐day averaged MAE is evaluated in the
low solar activity (LSA) and high solar activity (HSA) periods, respectively. A model with more trainable pa-
rameters always has a higher accuracy so that the computational complexity of the different models is also shown
in Table 2. Compared with the recurrent‐free models like SimVP and TAU, the recurrent‐based models always
has the fewer parameters due to the parameter sharing at the different prediction time but the too small parameter
number may also make the model unable to converge leading to under‐fitting, for this reason, the performance of
MAU backbone with the mixer layer is not listed in Table 2. However, the iterative prediction of recurrent
structure also increases the computational complexity (Flops) by more than 20 times compared with that of
recurrent‐free models with the similar parameter number. Due to the high computational complexity, recurrent‐
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Table 2
The Quantitative Performance Comparison for the Different Network Backbones, Multimodal Fusion Methods and Input
Channel Number Cin

Fusion‐(Backbone) Cin Param/M Flops/G Speed/fps MSE

MAE/TECU

RMSE (Gain)LSA HSA

(LSTM) 1 283.6 5,035 5 374.11 2.16 5.18 3.76 (+0%)

(GRU) 1 212.7 3,786 7 361.36 1.97 5.06 3.69 (+0%)

(E3D‐LSTM) 1 53.15 301 22 173.51 1.11 3.54 2.56 (+0%)

(MAU) 1 4.72 67.13 242 153.97 1.10 3.28 2.41 (+0%)

Concatenate‐ 4 4.72 67.19 235 152.55 1.12 3.27 2.40 (+0.4%)

Concatenate‐ 9 4.72 67.28 215 139.90 1.08 3.11 2.30 (+4.6%)

Concatenate‐ 16 4.72 67.42 188 120.78 1.05 2.86 2.14 (+11.2%)

(PredRNN) 1 23.84 456 65 152.59 1.10 3.26 2.40 (+0%)

Action‐ 4 24.16 461 64 198.29 1.25 3.82 2.74 (− 14.2%)

Concatenate‐ 4 24.92 476 62 172.22 1.21 3.49 2.55 (− 6.3%)

Mixer‐ 4 25.27 483 61 160.18 1.15 3.35 2.46 (−2.5%)

Action‐ 9 24.51 468 64 277.31 1.47 4.17 3.24 (− 35.0%)

Concatenate‐ 9 26.71 511 58 157.43 1.16 3.37 2.44 (− 1.7%)

Mixer‐ 9 27.06 518 57 155.98 1.16 3.32 2.43 (−1.3%)

Action‐ 16 25.06 482 61 403.47 2.06 5.51 3.91 (− 62.9%)

Concatenate‐ 16 29.22 558 53 138.65 1.11 3.10 2.29 (+4.6%)

Mixer‐ 16 29.57 565 52 133.43 1.05 2.98 2.24 (+6.7%)

(TAU) 1 48.24 22.54 341 151.06 1.09 3.26 2.39 (+0%)

Concatenate‐ 4 48.24 22.61 331 150.04 1.12 3.23 2.38 (+0.4%)

Mixer‐ 4 48.24 22.61 326 148.83 1.11 3.20 2.37 (+0.8%)

Concatenate‐ 9 48.24 22.83 302 142.98 1.04 3.18 2.33 (+2.5%)

Mixer‐ 9 48.24 22.83 296 139.03 1.05 3.11 2.29 (+4.2%)

Concatenate‐ 16 48.25 23.08 264 126.33 1.02 2.96 2.19 (+8.4%)

Mixer‐ 16 48.25 23.11 254 121.54 0.99 2.89 2.14 (+10.5%)

(SimVP) 1 50.53 23.32 335 149.51 1.05 3.24 2.38 (+0%)

Concatenate‐ 4 50.53 23.43 327 153.37 1.12 3.29 2.41 (− 1.3%)

Mixer‐ 4 50.53 23.46 322 152.96 1.11 3.28 2.40 (−0.8%)

Concatenate‐ 9 50.53 23.61 298 145.15 1.08 3.19 2.34 (+1.7%)

Mixer‐ 9 50.53 23.64 291 141.52 1.05 3.14 2.31 (+2.9%)

Concatenate‐ 16 50.54 23.86 253 125.16 1.00 2.94 2.18 (+8.4%)

Mixer‐ 16 50.54 23.90 241 120.74 0.98 2.90 2.13 (+10.5%)

(ConvLSTM) 1 15.08 223 136 194.81 1.25 3.75 2.71 (+0%)

Concatenate‐ 4 15.70 235 132 199.78 1.28 3.79 2.75 (− 1.5%)

Mixer‐ 4 15.90 239 130 174.78 1.10 3.51 2.57 (+5.2%)

Concatenate‐ 9 16.72 255 121 166.25 1.12 3.37 2.51 (+7.4%)

Mixer‐ 9 16.93 258 118 165.87 1.09 3.38 2.50 (+7.8%)

Concatenate‐ 16 18.16 282 105 147.21 1.08 3.20 2.36 (+12.9%)

Mixer‐ 16 18.36 286 101 135.12 1.02 3.03 2.26 (+16.6%)

(PredRNNv2) 1 23.86 458 63 152.01 1.07 3.25 2.40 (+0%)

Action‐ 4 24.18 463 62 167.69 1.15 3.34 2.52 (− 5.0%)

Concatenate‐ 4 24.93 479 60 156.59 1.10 3.35 2.43 (− 1.3%)
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based models is slower than the recurrent‐free models but all models are real‐time with the inference speed of at
least 40 fps when the batch = 1 sequence is input into the trained models serially on one NVIDIA A100 GPU
device.

From the crosswise comparisons for the different network backbones in Table 2, it is obvious that the prediction
accuracy of the spatiotemporal predictive models outperform the temporal predictive models such as LSTM and
GRU. Moreover, the prediction error of ConvLSTM model is larger than other spatiotemporal predictive models
proposed recently. From the longitudinal comparisons for the same network backbone in Table 2, as the number
of input channel (Cin) increases, the prediction error of both concatenation and mixer multimodal fusion methods
decreases, but that of the arithmetic multimodal fusion methods such as the weighted sum and multiplication
(action‐conditioned) increases on the contrary. The possible explanation is that these arithmetic methods
essentially compress the number of the input channels to match the channel number of the TECmaps so that there
is information loss in this procedure. In terms of the fusion methods without channel compression, compared with
the graphic prediction when only global TECmap is input, the prediction error in MSE for both concatenation and
mixer is almost same when four channels including the global TEC map and the spatial coordinates are input,
possibly because the latitude and longitude channels cannot provide extra information due to the spatial learning
ability that these backbones already have. The data distribution differences of concatenation method brings
disadvantages in the learning procedure so that its performance is worse than that of mixer layer. Meanwhile, the
performance of mixer layer has the lowest prediction error evaluated by MSE with a maximum improvement of
about 15% (ConvLSTM and PredRNN++) with the 16‐channel multimodal fusion prediction compared with that
of one channel graphic prediction. During the LSA and HSA periods, the best accuracy of PredRNN++ backbone

Table 2
Continued

Fusion‐(Backbone) Cin Param/M Flops/G Speed/fps MSE

MAE/TECU

RMSE (Gain)LSA HSA

Mixer‐ 4 25.29 486 59 153.11 1.11 3.31 2.41 (−0.4%)

Action‐ 9 24.53 470 61 237.44 1.36 3.92 2.99 (− 24.6%)

Concatenate‐ 9 26.72 513 56 151.19 1.12 3.25 2.39 (+0.4%)

Mixer‐ 9 27.08 520 54 150.28 1.10 3.23 2.38 (+0.8%)

Action‐ 16 25.08 485 59 318.57 1.67 4.46 3.47 (− 44.6%)

Concatenate‐ 16 29.23 561 51 122.86 1.01 2.88 2.16 (10.0%)

Mixer‐ 16 29.59 568 51 118.83 0.99 2.83 2.12 (+11.7%)

(MIM) 1 38.20 711 43 158.97 1.12 3.32 2.45 (+0%)

Concatenate‐ 4 39.28 731 42 158.27 1.11 3.32 2.45 (+0%)

Mixer‐ 4 39.63 738 41 158.76 1.14 3.30 2.45 (+0%)

Concatenate‐ 9 41.07 766 38 148.57 1.09 3.19 2.37 (+3.3%)

Mixer‐ 9 41.42 773 37 145.33 1.08 3.18 2.34 (4.5%)

Concatenate‐ 16 43.58 814 34 126.37 1.01 2.93 2.19 (+10.6%)

Mixer‐ 16 43.93 821 32 118.72 0.98 2.90 2.12 (+13.5%)

(PredRNN++) 1 38.58 675 46 153.12 1.05 3.26 2.41 (+0%)

Concatenate‐ 4 39.66 695 44 150.21 1.05 3.24 2.38 (+1.2%)

Mixer‐ 4 40.01 702 43 148.83 1.10 3.21 2.37 (+1.7%)

Concatenate‐ 9 41.45 730 41 144.20 1.11 3.16 2.34 (+2.9%)

Mixer‐ 9 41.81 737 40 141.22 1.05 3.12 2.31 (+4.1%)

Concatenate‐ 16 43.96 778 35 118.45 0.97 2.74 2.12 (+12.0%)

Mixer‐ 16 44.32 785 34 111.68 0.94 2.63 2.05 (+14.9%)

Note. The computational complexity is evaluated by parameter number (Param), Floating‐point Operations Per Second
(Flops) and inference speed in frame per second (fps). The prediction accuracy is evaluated by Mean Squared Error (MSE),
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) during low/high solar activity (LSA/HSA) periods.
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with mixer layer reaches 0.94 and 2.63 TECU evaluated by MAE, respectively. All of the above evidence
suggests that the our mixer layer has the best machine reasoning ability compared to the traditional multimodal
fusion methods.

4.2. Qualitative Evaluation

Figure 5 shows the global TEC prediction examples in 96 hr of the different model backbones with/without the
mixer multimodal fusion method during the high solar activity period from UT7:00, DOY067 to UT5:00,
DOY072 in 2002. The left part in Figure 5 presents the results for the graphic prediction when inputting one
channel of global TEC map and the multimodal fusion prediction using mixer layer when inputting Cin = 16
channels, respectively. Compared with the ground truth, it is obvious that the prediction result of multimodal
fusion is closer to the ground truth, which is also proved by the error heatmaps ( prediction − truth) as shown in
the right part of Figure 5 with MAE error annotations more intuitively. With the prediction time passes by, the
error between prediction results and ground truth becomes larger and larger for all models as shown by the thicker
color in the error heatmaps. Different from other spatiotemporal sequence data sets, global TEC maps of two
continuous days almost remain the same when the solar and geomagnetic conditions are similar. Although the
prediction accuracy of different models during the solar and geomagnetic storms varies a lot as the detailed
demonstration in Section 5, considering the low occurrence of these occasional events, the overall prediction
results of different models are close in Figure 5.

Figure 6 is plotted to clarify the performance degradation of the different network backbones at each prediction
timestamp (2≤ T ≤ 96 hours) evaluated by MAE metric, the solid and dashed lines represent the test data ‐set
grouped during high and low solar activity periods respectively. Compared with the graphic prediction (red line)

Figure 5. The qualitative performance comparison of prediction results (left) and error heatmaps (right) for the 1‐channel graphic prediction and 16‐channel mixer layer
embedded multimodal fusion prediction of different model backbones.
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with only previous global TECmaps input, the prediction accuracy of the machine reasoning prediction with four,
nine and 16 channels (orange, green and blue lines) input into network backbones based on the mixer multimodal
fusion method increases progressively. Different from previous researches (Ren et al., 2023) that aims to find out
the external factor with the largest accuracy improvement contribution for a certain dependence, the framework
proposed in this research makes it possible to input all relative auxiliary channels simultaneously so that models
can make a more comprehensive decision by themselves. The mixer‐PredRNN++ model trained with 16 input
channels has the lowest MAE of 0.88/2.39, 0.94/2.59, 0.96/2.73 and 0.97/2.84 TECU during low/high solar
activity period for the first, second, third and fourth day in advance respectively. For the features that all models

share in common, the degradation of prediction accuracy turns from rapidly to
slowly at about the tenth hour in advance.

The prediction accuracy of 16‐channel mixer‐PredRNN++ model that is
trained with the different sequence length of input and output is shown as
Figure 7. The total sequence length derived by the sliding window is fixed as
5 days to maintain the same data set, the portion ratios of the input and output
sequence length are set as 4:1, 3:2, 2:3 and 1:4 as shown by the red, orange,
green and blue curves respectively. It is obvious that the longer input length
and shorter output length can lead to the higher prediction accuracy.
Considering that the prediction error curves for different portion ratios only
differ in quantity, the 1‐day input and 4‐day output strategy is adopted by
default to be comparable with the similar researches that always predict more
than future 3 days (Xia et al., 2022).

5. Discussion
The external dependence of global TEC and its prediction is discussed using
mixer‐PredRNN++ model with 16‐channel input because it has the best
performance as shown in last section. The detailed information is illustrated

Figure 6. The accuracy degradation of the 1‐channel graphic prediction and the 4/9/16‐channel mixer layer embedded multimodal fusion prediction for six network
backbones at each prediction timestamp during low/high solar activity periods.

Figure 7. The prediction performance of the 16‐channel mixer‐PredRNN++
model with the different sequence length ratios of input and output.
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as the following subsections from the aspects of spatial, seasonal, diurnal, solar and geomagnetic activity
dependence, respectively.

5.1. Spatial Dependence

Figure 8a, 8c and 8b, 8d show the spatial distribution of the averaged TEC observation ground truth (model
prediction result) with the peak values of 16.85 (16.93) and 49.63 (49.14) TECU during the low and high solar
activity periods respectively. Figures 8e and 8f show the spatial distribution of the averaged prediction error of the
16‐channel mixer‐PredRNN++ model evaluated by MAE metric with the peak values of 2.37 and 6.34 TECU
during the low and high solar activity periods respectively. The north/south poles and equator in geomagnetic
coordinate are also annotated by the green/red dots and dashed line in Figure 8. It is obvious that the spatial
distribution of both observation ground truth and prediction error are symmetric about the geomagnetic equator,
which is regarded as the evidence of the inter‐hemispheric geomagnetic conjugate mechanism. Due to the Earth's
rotation, the spatial distribution of global TEC is almost identical at the same latitude but different longitudes in
geomagnetic coordinate. Notably, due to the lack of ground receiver, there is larger systematic error for the
observation ground truth of about 5 TECU over the oceanic region (J. Chen et al., 2020).

5.2. Seasonal Dependence

Figure 9a, 9c and 9b, 9d show the seasonal dependence of the averaged TEC observation ground truth (model
prediction result) at each latitude and day of year during the low and high solar activity periods respectively.
Figures 9e and 9f show the seasonal dependence of the averaged TEC prediction error of the 16‐channel mixer‐
PredRNN++ model at each latitude and day of year evaluated by MAE metric during the low and high solar
activity periods respectively. It is obvious that both observation truth and prediction error reach to maximum at
March and September equinox for the low latitude region, meanwhile, TEC reaches to maximum at June
(December) solstice for the mid/high latitude of Northern (Southern) Hemisphere. The variation of solar zenith
angle leads to the seasonal dependence of TEC.

5.3. Diurnal Dependence

Figure 10a, 10c and 10b, 10d show the diurnal dependence of the averaged TEC observation ground truth (model
prediction result) at each universal time and longitude during the low and high solar activity periods respectively.
Figures 10e and 10f show the diurnal dependence of the averaged TEC prediction error of the 16‐channel mixer‐
PredRNN++model at each universal time and longitude evaluated by MAE metric during the low and high solar

Figure 8. The spatial dependence of ionospheric total electron content during low (upper) and high (lower) solar activity. The north/south poles and equator in
geomagnetic coordinate are annotated by the green/red dots and dashed line.
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activity periods respectively. It is obvious that the local time (LT) at each longitude can be divided into diurnal or
nocturnal time. TEC reaches to minimum at midnight LT 0 and maximum at midday LT 12. The neutral particles
of upper atmosphere are ionized by the energy of sunlight, which is the most intense at the subsolar point leading
to this diurnal dependence. Meanwhile, the TEC is higher at odd number hours during high solar activity period as
shown by the horizontal stripes with the thicker color in three bottom subplots of Figure 10, that is because the
observation before 2014 is only carried at odd number hours of universal time. The lack of observation TEC data
at even number hours during higher solar activity period from 2000 to 2003 results in this difference.

5.4. Solar Activity Dependence

The more accurate prediction when more auxiliary channel input is only a necessary but insufficient condition for
the assertion that the proposed mixer layer has the machine reasoning ability because the higher computational
complexity may also lead to the accuracy improvement. The machine reasoning ability requires the model to
correctly mine physical laws from data. Although aforementioned chapters qualitatively demonstrate that the
model with mixer layer can learn the positive correlation between global TEC and solar activity, the quantitative
experiment as shown in Figure 11 is still needed to prove the effectiveness of the proposed multimodal fusion
method. The dependence analysis is illustrated by the linear regression fitting ŷi and correlation coefficient R2 as
shown by Formula 5.

⎧⎪⎪⎨

⎪⎪⎩

ŷi = kxi + b

R2 = 1 −
∑n

i=1( yi − ŷi)
2

∑n
i=1( yi − ȳi)

2

(5)

The vertical and horizontal coordinates of each scatter point ( xi,yi) in Figure 11a represent the daily averaged
observation ground truth of global mean TEC and solar activity F10.7 index (left) or sunspot number (right) from
1997 to 2022. Regression lines L1 and L2 are drawn based on the least squares method where the slope

Figure 9. The seasonal dependence of ionospheric total electron content during low (upper) and high (lower) solar activity.
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k = Δyi/Δxi refers to the TEC variation caused by the solar activity variation. R2 = 0.78 (0.69) are regarded as
the ground truth correlation coefficients of physical laws between global mean TEC and solar activity F10.7
(sunspot) index respectively. Figure 11b shows how the 9‐channel mixer‐PredRNN++ (black) and concatenate‐
PredRNN++ (orange) model predictions respond to the manually decreased/increased solar activity indices
input. The red cross on vertical axis ȳi = 14.93 and Horizontal axis origin x̄i = 57.3 (103.3) refers to the average
TEC and solar activity F10.7 (sunspot) index of all points in Figure 11a. The scatter distribution in Figure 11a
becomes more divergent during higher solar activity, indicating that the correlation is less significant. This also
explains why the increasing speed of the model prediction results in Figure 11b decreases as the increase of solar
activity. Compared to concatenate‐PredRNN++ model L4, the regression line slope of mixer‐PredRNN++
model L3 during lower solar activity is closer to observation ground truth. The correlation coefficients R2 = 0.61
(0.53) between TEC and solar activity F10.7 (sunspot) index calculated by regression line L3 of mixer‐Pre-
dRNN++ model for all scatter points in Figure 11a are also closer to ground truth compared with that R2 = 0.25
(0.48) of concatenate‐PredRNN++ model.

5.5. Geomagnetic Activity Dependence

Geomagnetic storm brings damage to human society leading to the electrical system disruption, satellite signal
scintillation and larger navigation error. Geomagnetic quiet period is characterized as the near zero Dst and Ap
geomagnetic activity indices (Ren et al., 2024). Figure 12a shows how Dst (blue solid line) and Ap (purple solid
line) indices fluctuated during eight geomagnetic storm events in the past two decades. Figure 12b shows the
global mean TEC of observation ground truth (black solid line) or prediction results of IRI2020 model (cyan
dotted line), 1‐channel graphic PredRNN++ model (green dashed line), 16‐channel concatenate‐PredRNN++
multimodal fusion model (orange dashed line) and 16‐channel mixer‐PredRNN++multimodal fusion model (red
dashed line). It is obvious that during both low (2017 of event 8) and high (others) solar activity years, the global
mean TEC of IRI2020 simulation is lower than that of observation ground truth due to the exclusion of

Figure 10. The diurnal dependence of ionospheric total electron content during low (upper) and high (lower) solar activity.
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plasmaspheric TEC contribution (Bilitza et al., 2022). Since unable to learn the geomagnetic activity feature, the
4‐day TEC prediction output of 1‐channel PredRNN++ model is roughly equivalent to the 1‐day global mean
TEC input, which cannot respond to the geomagnetic storm. Although both concatenate‐PredRNN++ and mixer‐
PredRNN++ models take geomagnetic activity into consideration, the prediction result of mixer‐PredRNN++
model proposed in this research is closer to ground truth.

6. Conclusion
In this research, a new multimodal fusion method named as channel mixer layer is proposed which can be
embedded into the existing advanced spatiotemporal sequence predictive models to improve the global TEC
prediction accuracy by inputting auxiliary channel data such as time and coordinates. The working principle of
channel mixer layer is eliminating the data distribution differences among different concatenated channels so that
the learned feature of the same model parameter can remain consistency while sliding across different channels
according to the parameter sharing of neural network. To achieve the best prediction performance, a new standard
data set consist of the largest sequence quantity of 106,609 are released where the global TEC maps and their

Figure 11. The machine reasoning performance from solar activity input to TEC prediction by different multimodal fusion
methods. The response regression line of proposed mixer layer is closer to observation ground truth.
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corresponding external factors are packaged together in the specified format of machine learning software for the
high speed accessing. With the same data set and running environment, the experiment result suggests that the
channel mixer layer embedded models that extract features after multimodal fusion outperforms other feature‐
level multimodal fusion methods that extract features before fusion such as concatenation and multiplication.
Meanwhile, more input data channel and larger sequence length ratio of input to output also contribute to the
prediction accuracy improvement. The best prediction performance of 16‐channel mixer‐PredRNN++ model
when 1‐day sequence input and 4‐day sequence output haves the minimum mean absolute error of 0.94 and 2.63
TEC unit during low and high solar activity period with the real‐time inference speed of 34 frames per second.

In this research, the external dependence of global TEC is illustrated from the spatial, seasonal, diurnal, solar and
geomagnetic activity aspects. The movement of subsolar point and geomagnetic conjugate mechanism are the
reasons for the spatial, seasonal and diurnal dependence of global TEC spatiotemporal distribution. To prove the
machine reasoning ability of channel mixer layer embedded models that can correctly mine physical laws from
data, a quantitative experiment that how model predictions respond to the manually decreased/increased solar
activity input indices is conducted where results suggest that the regression line slopes and correlation coefficients
between solar activity indices and global mean TEC predicted by mixer‐PredRNN++ model is closer to obser-
vation ground truth compared to that of concatenate‐PredRNN++ model. In terms of geomagnetic activity
dependence, the graphic prediction results of original PredRNN++ model without auxiliary data input cannot

Figure 12. The panel (a) shows the temporal fluctuation of geomagnetic activity Dst (blue solid line) and Ap (purple solid line) indices. The panel (b) shows the global
mean TEC of observation ground truth (black solid line) or prediction results of IRI2020 model (cyan dotted line), 1‐channel graphic PredRNN++model (green dashed
line), 16‐channel concatenate‐PredRNN++ multimodal fusion model (orange dashed line) and our 16‐channel mixer‐PredRNN++ multimodal fusion model (red
dashed line).
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respond to the geomagnetic storm, whereas the multimodal fusion prediction results of proposed mixer‐Pre-
dRNN++ model with auxiliary data input is closer to observation ground truth compared with other multimodal
fusion methods.

In the future, the proposed prediction framework is expected to integrate into the TEC observation system,
contributing to the economic and industrial development such as radio quality improvement and space weather
forecasting.

Data Availability Statement
The whole program of this research is open‐sourced at Github and Zenodo (P. Liu, 2024a). The IonoElectron data
set proposed in this research for the Tensorflow and Pytorch machine learning software is available at Zenodo (P.
Liu, 2024b), which is made by packaging the TEC map derived from Centre for Orbit Determination in Europe
(CODE): http://www.aiub.unibe.ch/download/CODE, together with the auxiliary factors such as solar and
geomagnetic activity indices derived from OMNI data set: https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_
omni/.
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