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Abstract
Numerical experiments are performed on three-dimensional thermal convec-
tion between parallel plates in a rotating system with a larger horizontal region
than in previous studies. It is confirmed that a large-scale vortex (LSV) with
positive vorticity (cyclonic) is formed over a significant part of the region and
its horizontal size increases if the horizontal region is extended. The correlation
analysis in the vertical direction shows that the small-scale motion has a typical
structure of the baroclinic vortex of thermal convection in the rotating system,
whereas the large-scale motion is a barotropic vortex that is not associated with
thermal convection. A horizontal spectral analysis of the individual terms in
the kinetic energy equation reveals that the nonlinear effect of the small-scale
vortex motion caused by the buoyancy force induces a large-scale toroidal
component, and that the LSV is maintained by the balance between the non-
linear effect and the viscous dissipation of the large-scale motion. The results
of this analysis indicate the importance of kinetic energy damping mechanism
for the appearance of LSVs. When weak damping operates at larger scales, it is
expected that the maximum extent of the vortex appears even if the horizontal
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region is extended further. On the other hand, the emergence of LSVs will be
prevented when strong enough damping is effective at larger scales.

Keywords: rotating fluid, thermal convection, coherent vortex

1. Introduction

The problem of thermal convection in rotating systems has been studied for a long time in con-
nection with fluid phenomena on and within the surfaces of stars and planets, including met-
eorological and oceanic phenomena. The problem of Rayleigh–Bénard convection between
parallel plates in a rotating system is one of the most fundamental model setups. The clas-
sical linear stability theory shows that the horizontal scale of the thermal convective motion
becomes smaller, and the structure elongated in the direction of the rotation axis becomes
dominant as the angular velocity of the rotating system increases (e.g. Chandrasekhar 1961).
On the other hand, numerical calculations of three-dimensional finite amplitude thermal con-
vection showed that horizontally large-scale vortices (LSVs) emerge in rapidly rotating cases
(Julien et al 2012, Favier et al 2014, Guervilly et al 2014). This phenomenon had already been
found in earlier studies on compressible convection (Chan 2007, Käpylä et al 2011). Since
the emergence of the coherent large-scale structure excited by small-scale thermal convection
seems to be related to the formation of large-scale vortices in the planetary atmospheres such
as Jupiter’s Great Red Spot (e.g. Chan and Mayr 2013), the phenomenon has attracted the
interest of researchers, and has continued to be studied intensively.

For LSVs to emerge, the Rossby number must be small so that the effect of rotation is
sufficient to influence convective motion. LSVs do not form when the Rayleigh number is too
large (Favier et al 2014). Spectral analysis, which separates the kinetic energy from horizontal
fluid motion and that from vertical fluid motion, suggested that the contribution of non-local
energy transport due to non-linear effects of small-scale horizontal motion is significant, rather
than an inverse cascade observed in two-dimensional turbulence (Favier et al 2014, Guervilly
et al 2014). Favier et al (2019) performed numerical experiments taking a strong large-scale
vortex as initial conditions, and showed that the formation of LSVs is subcritical and also
confirmed the importance of energy transport by the non-local large-scale field. de Wit et al
(2022) performed numerical experiments varying the Rayleigh number and found that there
exists hysteresis and discontinuity in the transition to the LSV emergent state.

A reduced system derived by taking the limit of very rapid rotation (so called non-
hydrostatic quasi-geostrophic equations; NH-QGEs) has also been proposed (Julien et al 1998,
Julien and Knobloch 2007) and the behaviors of the solutions of the system are discussed based
on numerical experiments (e.g. Sprague et al 2006, Julien et al 2012, 2018, Rubio et al 2014,
Maffei et al 2021). Julien et al (2012) performed numerical experiments varying the Rayleigh
number and the Prandtl number. They carried out detailed statistical analysis to characterize
the flow in each regime, and LSVs are observed in the geostrophic turbulence regime of the
experiments. Rubio et al (2014) has performed numerical experiments over a larger computa-
tional domain in the horizontal direction, observed the emergence of large-scale vortices, and
argued that emergence of LSVs is due to positive feedback between large-scale barotropic vor-
tices and small scale convective eddies. Julien et al (2018) performed numerical experiments
for the case where the computational domain is a horizontally elongated rectangular area, and
found a solution where the square regions of positive and negative vorticity are aligned hori-
zontally. Maffei et al (2021) investigate the inverse cascade and scaling properties in the limit
of vanishing Rossby number with much higher resolution.
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These studies have examined the conditions for the formation of LSVs using horizontal
spectral decomposition. However, the following points have not yet been clarified with regard
to the appearance of LSVs. The spectral analysis carried out so far has only been focused on
the energy transport due to the non-linear term from the point of view of whether or not it
resembles two-dimensional turbulent behavior, while little attention has been paid to the role
of the Coriolis and viscous terms. Large eddies are likely to have different properties with their
sign. While the asymmetry of the amplitudes has been analyzed statistically (Favier et al 2014,
Guervilly et al 2014), the horizontal scale difference has not been quantitatively investigated.
In contrast, the reduced system produces positive-negative symmetric large eddies (e.g. Rubio
et al 2014). It is also not certain whether the LSV alwayswill extend to the entire computational
domain or not. Spectral analysis of the motion of small-scale fields has been performed, but
less attention has been paid to their properties in real space.

Therefore, in this study, we follow-up numerical simulations of three-dimensional
Rayleigh-Bénard thermal convection between parallel horizontal plates in a rotating system,
and investigate the formation and maintenance mechanism of LSVs. We conduct numerical
experiments in which the horizontal range is larger than that of the numerical experiment by
Guervilly et al (2014), and perform a detailed statistical analysis of LSVs and convective
motion. Specifically, we decompose the velocity field into large and small scale components
for both toroidal and poloidal velocities, and study the kinetic energy exchange between these
components. In addition, we characterize the structure of fluid motion in the large and small
scale fields by correlation analysis in the vertical direction. In the following, the model and
numerical experiment are described in section 2. Section 3 presents the numerical results using
the energy spectrum analysis and the correlation analysis. Based on these results, we present in
section 4 a linear analysis that includes the effect of large-scale vorticity, and we discuss quant-
itatively the dependence of the small-scale convection on the sign of the large-scale vorticity.
We also construct a model to interpret the parameter dependence of the toroidal energy con-
centrated in the large-scale vorticity, and support the proposed mechanism for the generation
of LSVs in section 3. Section 5 is the summary.

2. Model and setup for numerical experiments

We consider Boussinesq fluid sandwiched between parallel horizontal square plates rotating
at an angular velocity of Ω as shown in figure 1. The temperature of the bottom plate is ∆T
higher than than the top plate. The non-dimensionalized equations are as follows.

∇· u= 0, (1)

∂u
∂t

+u ·∇u+ ez×u=−∇p+ RE2

P
θez+E∇2u, (2)

∂θ

∂t
+u ·∇θ− uz =

E
P
∇2θ. (3)

These equations are non-dimensionalized by choosing the length scale as the width between
the plates d, the time scale as 1/2Ω, and the temperature scale as ∆T. Here, u= (ux,uy,uz),
p and θ are velocity, pressure, and temperature disturbance. The non-dimensional numbers
appearing in the equations are the Rayleigh number R, Ekman number E, and Prandtl number
P, which are respectively defined as follows:

R=
αg∆Td3

κν
, E=

ν

2Ωd2
, P=

ν

κ
, (4)
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Figure 1. The domain for the rotating thermal convection problem.

where α, g, κ and ν are thermal expansion coefficient, gravity, thermal diffusivity and kin-
ematic viscosity, respectively. The horizontal boundary condition is periodic. The vertical
boundary conditions are fixed temperature, non-permeable, and free-slip.

θ = 0,
∂ux
∂z

=
∂uy
∂z

= uz = 0 at z= 0,1, (5)

From the equation of continuity (1), we can express the velocity field by mean flow U(z, t),
toroidal and poloidal potentials ψ(x,y,z, t) and ϕ(x,y,z, t).

u= U+∇× (ψ ez)+∇×∇× (ϕez) . (6)

Substituting (6) into (1) and averaging in the horizontal direction, we have,

∂Uz

∂z
= 0. (7)

Then, we can find Uz = 0 due to the vertical boundary condition (5), and U=
(Ux(z, t),Uy(z, t),0). Substituting (6) into (2) and averaging in the horizontal direction, we
have,

∂Ux

∂t
+
∂

∂z
(uxuz)−Uy = E

∂2Ux

∂z2
,

∂Uy

∂t
+
∂

∂z
(uyuz)+Ux = E

∂2Uy

∂z2
. (8)

Here, (.) means horizontal average, and the horizontally averaged pressure gradient vanishes
due to periodicity.

By operating ez ·∇×, ez ·∇×∇× to (2), we obtain the equations for the toroidal and pol-
oidal potentials.

∂

∂t
∇2
Hψ+ ez ·∇× (u×ω)− ∂

∂z
∇2
Hϕ= E∇2

H∇2ψ,

∂

∂t
∇2
H∇2ϕ− ez ·∇×∇× (u×ω)+

∂

∂z
∇2
Hψ (9)

=−RE2

P
∇2
Hθ+E∇2

H∇2∇2ϕ, (10)

where∇2
H ≡ ∂2

∂x2
+
∂2

∂y2
, andω = (ωx,ωy,ωz) =∇× u is the vorticity. By expressing the tem-

perature equation (3) with the poloidal potential, we have,

∂θ

∂t
+u ·∇θ+∇2

Hϕ =
E
P
∇2θ. (11)

The vertical boundary conditions (5) become,

4



Fluid Dyn. Res. 56 (2024) 035504 H Sasaki et al

θ =
∂ψ

∂z
= ϕ =

∂2ϕ

∂z2
at z= 0,1. (12)

The initial condition for the numerical experiments is the state at rest with the diffusive
temperature field superposed by a small pointwise temperature disturbance. The values of the
non-dimensional parameters are given as P= 1,E= 10−4, R̃≡ RE4/3 = 37 by following the
experiments S1-S3 in Guervilly et al (2014). The horizontal extent of the domain (aspect ratio)
λ is varied with 1,2,4 and 8, while Guervilly et al (2014) performed the cases with λ⩽ 4.

For the numerical calculations, (8)–(12) are spatially descretised by a spectral method. The
physical variables are expressed by the double Fourier series in the horizontal directions and by
the Chebyshev polynomials in the vertical directions. The numbers of the grid points are 64×
λ and 64 in each horizontal direction and the vertical direction, respectively. The truncated
horizontal wavenumber is ±64×λ/3 to avoid aliasing errors, while Chebyshev polynomials
are calculated up to 64 degrees. For numerical time integrations, the Crank-Nicolson scheme
is adopted for the viscous and diffusion terms and the second order Adams-Bashforth scheme
is used for other terms. A spectral transformation library ‘ISPACK’ (www.gfd-dennou.org/
library/ispack/) and its Fortran90 wrapper library ‘SPMODEL library’ (www.gfd-dennou.org/
library/spmodel/) are used to realize numerical calculations.

3. Results

3.1. Horizontal domain dependence

Figure 2 shows the distributions of the vertical vorticity ωz at the beginning and end of the
calculations for different horizontal extents λ of the domain. Note that positive and negative
ωz indicate cyclonic and anti-cyclonic vortices, respectively. In all cases, small-scale vortices
are randomly distributed in the initial stage. In the case of λ= 1, the vorticity distribution
is similar to the initial state at the final time. There is no difference in the characteristics of
the vorticity distribution between its signs. As the aspect ratio increases with λ= 2,4 and
8, a large positive vorticity region (cyclonic LSV) becomes apparent, occupying about 1/4
of the domain at the final time. In the regions where positive vorticity dominates, a large-
scale coherent structure is evident while small-scale positive eddies coexist in the interior. The
characteristic time of development of the LSV appears roughly proportional to λ2, which will
be discussed in section 4.2 below.

Figure 3 shows the time evolution of the averaged kinetic energy K̄, and its toroidal and
poloidal components, K̄T and K̄P. Here, the averaged kinetic energy and its components are
defined as follows.

K̄(t) =
1
2λ2

ˆ
V
|u|2dV, (13)

K̄T (t) =
1
2λ2

ˆ
V
|uT|2dV, K̄P (t) =

1
2λ2

ˆ
V
|uP|2dV, (14)

uT =∇× (ψ ez) , uP =∇×∇× (ϕez) , (15)
ˆ
V
dV=

ˆ 1

0
dz
ˆ λ

0
dy
ˆ λ

0
dx= λ2, (16)

where V indicate the volume of the computational domain. Note that K̄(t) = K̄T(t)+ K̄P(t)
since the integral of uT ·uP over the domain vanishes. In the case of λ= 1, the field reaches a
steady state without significant change after the initial development settles down. On the other
hand, when λ is greater than 2, after the initial development, the kinetic energy continues to

5

https://www.gfd-dennou.org/library/ispack/
https://www.gfd-dennou.org/library/ispack/
https://www.gfd-dennou.org/library/spmodel/
https://www.gfd-dennou.org/library/spmodel/


Fluid Dyn. Res. 56 (2024) 035504 H Sasaki et al

Figure 2. Snapshots of vertical vorticity ωz at z= 0.25 in the transient (upper panels,
t= 1000) and final stages (lower panels). Note that positive and negative ωz indicate
cyclonic and anti-cyclonic vortices, respectively. Times of the final stages are t= 30000,
30000, 50000, and 52000, respectively. P= 1,E= 10−4, R̃= 37.

increase for a long time until the field reaches the equilibrium states. The development time of
the kinetic energy becomes longer and the kinetic energy at equilibrium state becomes larger
as the horizontal scale of the computational domain increases. The increase in kinetic energy
over a long period is due to the contribution of the toroidal component. On the other hand, the
poloidal energy reaches a steady state soon after the initial development in all cases.

The values of the saturated poloidal kinetic energy are almost independent of λ. This is
consistent with previous analyses based on the decomposition of the kinetic energy into the
horizontal and the vertical velocity contributions (Favier et al 2014, Guervilly et al 2014).
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Figure 3. Time development of total, toroidal and poloidal kinetic energy, K̄, K̄T and K̄P.
P= 1,E= 10−4, R̃= 37. Black solid, red broken, and blue dotted lines indicate total,
toroidal and poloidal kinetic energy, respectively.

Figure 4 shows the time variation of positive and negative vortex sizes at λ= 4. Here, the
vortex size is defined as the number of grid points when adjacent grid points with the same sign
of vertical vorticity are connected. This figure reveals asymmetric characteristics depending
on the sign of the vorticity. From t= 5000 to 10000, positive vortices develop and become
larger, which corresponds to the period where the rapid increase of kinetic energy is observed
in the case of λ= 4 in figure 3. In contrast, the size of the negative vortices does not change
from the initial state. Such horizontal scale difference between positive and negative vortices
has not received much attention, and no quantitative analysis has been performed.

The amplitudes of the horizontally averaged horizontal velocity components Ux(z, t) and
Uy(z, t) excited in the final state are about 10−3 instantaneously and about 10−4 in time aver-
age, which is negligibly small compared to the typical magnitudes of the horizontal velocity
components ux and uy, O(10−1).
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Figure 4. Time variation of the size of vortices estimated from the vertical vorticity
field at z= 0.25 for the case with λ= 4, P= 1,E= 10−4 and R̃= 37. Orange and cyan
indicate the number of grid points that are connected with regions ωz > 0 and ωz < 0
respectively.

3.2. Rayleigh number dependence

Figure 5 shows the vertical vorticity distributions at the initial and final stages for various
values of the Rayleigh number in the case of λ= 4. Initially, as R̃ increases, stronger small-
scale vortices are generated, where their distributions appear to have symmetric property with
respect to the sign of the vorticity. In the case of R̃/37= 0.6, the vortex distribution has the
same tendency as that of the initial state, and no LSV is observed. In the case of R̃/37= 0.7, we
can distinguish between positive and negative LSVs, which occupy approximately 1/4 of the
domain, where the distribution is well biased by the sign of the vorticity. With further increases
in R̃, LSV becomes more distinct, and the coherent vortex structure becomes apparent only in
the positive vorticity regions. Such asymmetric development of positive and negative vorticity
has been observed in previous studies. Favier et al (2014) examined PDFs for the intensity
of vertical vorticity, and statistically showed a predominance of the positive vortices, similar
to the results of the previous studies (e.g. Julien et al 1996). They also examined the vertical
distributions of the skewness of the vertical vorticity, and found that the asymmetry is strong
at the upper and lower boundaries, suggesting that the asymmetry reflects the characteristics
of thermal convection rather than LSVs. Guervilly et al (2014) discussed that, as the Rayleigh
number increases, the skewness takes O(1) positive values because of the emergence of LSV.
They also showed that the asymmetry does not depend on the initial conditions by performing
time integrations starting from the initial conditions where the asymmetry is removed.

Figure 6 shows the time variation of each kinetic energy K̄, K̄T, and K̄P for various Rayleigh
numbers in the case of λ= 4. It can be observed that the increase in kinetic energy over a long
period of time after the initial linear is suppressed as the Rayleigh number decreases.

The time to reach equilibrium increases with decreasing the Rayleigh number. In particular,
for R̃/37= 0.7, the gradual increase in kinetic energy stops at about t= 2× 104, but a rapid
increase of kinetic energy is observed again at t= 2× 105. We confirm that LSV is formed up
to R̃= 37× 0.7= 25.9 by integrating further than t= 3× 105. This is about three times larger
than the critical Rayleigh number R̃c = 8.80. In all cases, the kinetic energy is dominated by
the contribution of the toroidal component while the poloidal energy reaches a steady state
soon after the initial development. The values of the poloidal kinetic energy in the statistically
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Figure 5. Snapshots of vertical vorticity at z= 0.25 in the transient (upper panels,
t= 1000) and the final stages (lower panels). Times of the final stage are t= 80000,
220000, 50000, 50000, and 30000, respectively. P= 1,E= 10−4.
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Figure 6. Time development of total, toroidal and poloidal kinetic energy, K̄, K̄T, and
K̄P for λ= 4. Black solid, red broken, and blue dotted lines indicate total, toroidal and
poloidal kinetic energy, respectively.

equilibrium states increase with increasing the Rayleigh number. The weakening of the dom-
inance of the toroidal kinetic energy with decreasing the Rayleigh number is consistent with
the kinetic energy analysis of Guervilly et al (2014).

3.3. Energy spectral analysis

In this section we investigate quantitatively the formation and maintenance mechanism of
LSVs through horizontal spectral analysis of kinetic energy.

Multiplying (9) by ψ and integrating over the whole domain, we obtain an expression for
the time variation of the toroidal kinetic energy.

− d
dt

ˆ
V
dV

1
2
|∇Hψ|2 +

ˆ
V
dVψ ez ·∇× (u×ω)−

ˆ
V
dVψ (ez ·∇)∇2

Hϕ

= E
ˆ
V
dVψ∇2

H∇2ψ. (17)

Similarly, multiplying (10) by ϕ and integrating over the whole domain we obtain the expres-
sion for the time variation of poloidal kinetic energy.

10
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ˆ
V
dV

1
2
∂

∂t

[(
∇2
Hϕ

)2
+

∣∣∣∣∇H
∂ϕ

∂z

∣∣∣∣2
]

−
ˆ
V
dVϕez ·∇×∇× (u×ω)+

ˆ
V
dVϕ(ez ·∇)∇2

Hψ

=−
ˆ
V
dVϕ

RE2

P
∇2
Hθ+E

ˆ
V
dVϕ∇2

H∇2∇2ϕ, (18)

where the first term on the left hand side is the time variation of K̄P.We decompose the variables
in the horizontal direction as follows.

ψ =
∑
l,m

ψ̃l,m (z, t)e
2π i(lx+my)/λ, ϕ =

∑
l,m

ϕ̃l,m (z, t)e
2π i(lx+my)/λ, (19)

which lead to the equations for the time variations of toroidal and poloidal kinetic energy
spectra.

dKT

dt
= NT+CT+VT, (20)

dKP

dt
= NP+CP+VP+GP, (21)

where KT and KP are the toroidal and poloidal kinetic energy spectra. NT and NP are nonlinear
terms, CT and CP are Coriolis terms, and VT and VP are viscous terms which contribute to
time variations of toroidal and poloidal kinetic energy, respectively. GP is the poloidal kinetic
energy generation term due to buoyancy. These terms are expressed as follows.

KT (l,m, t) =
1
2

ˆ 1

0
dz

4π2

λ2
(
l2 +m2

)
|ψ̃l,m|2, (22)

KP (l,m, t) =
1
2

ˆ 1

0
dz

[
16π4

λ4

(
l2 +m2

)2
|ϕ̃l,m|2 +

4π2

λ2

(
l2 +m2

)∣∣∣∣∂ϕ̃l,m∂z

∣∣∣∣2
]
, (23)

NT (l,m, t) =
1
λ2

ˆ
V
dVψ̃−l,−me

−2π i(lx+my)/λez ·∇× (u×ω) (24)

CT (l,m, t) = − 1
λ2

ˆ
V
dVψ̃−l,−me

−2π i(lx+my)/λ (ez ·∇)∇2
Hϕ, (25)

VT (l,m, t) = − 1
λ2

ˆ
V
dVψ̃−l,−me

−2π i(lx+my)/λE∇2
H∇2ψ, (26)

NP (l,m, t) =
1
λ2

ˆ
V
dVϕ̃−l,−me

−2π i(lx+my)/λez ·∇×∇× (u×ω) , (27)

CP (l,m, t) = − 1
λ2

ˆ
V
dVϕ̃−l,−me

−2π i(lx+my)/λ (ez ·∇)∇2
Hψ, (28)

VP (l,m, t) =
1
λ2

ˆ
V
dVϕ̃−l,−me

−2π i(lx+my)/λE∇2
H∇2∇2ϕ, (29)

GP (l,m, t) = − 1
λ2

ˆ
V
dVϕ̃−l,−me

−2π i(lx+my)/λRE
2

P
∇2
Hθ. (30)

The total kinetic energy spectrum excluding mean flow contribution K(l,m, t) becomes,

K(l,m, t) = KT (l,m, t)+KP (l,m, t) . (31)

Figure 7 shows K, KT and KP for various values of λ as a function of the total horizontal
wavenumber k= 2π

√
l2 +m2/λ. In the case of λ= 1, there is no significant change in the

spectral distributions between the initial and final states. The energy of the lowest wavenumber
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Figure 7. The kinetic energy spectrum for various values of λ in the case of R̃= 37.
The upper and lower panels show the spectrum at t= 100 and in the final state. The
horizontal axis is the total horizontal wavenumber k= 2π

√
l2 +m2/λ. The solid black,

dashed red, and dotted blue lines are K(k, t), KT(k, t), and KP(k, t), respectively.
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component is already maximum in the initial state. The toroidal component dominates for low
wavenumbers k< 30, while the poloidal component dominates for high wavenumbers k> 30.
For λ= 2, there is an initial peak at around k= 10, while the energy is concentrated at the
lowest wavenumber due to the toroidal component in the final state. As the horizontal region
expands with increasing λ to 4 and 8, the peak at the initial wavenumber of about 10 becomes
more pronounced. In the final state, the energy at the lowest wavenumber is prominent, and
at lower wavenumbers up to about k< 20, the toroidal component dominates with similar
amplitudes (flat spectral curves) whereas at k> 20, the poloidal component dominates with
decreasing amplitude with a power law of −3 or steeper.

Figure 8 shows the balance of the kinetic energy spectrum for various values of λ. From
the lower panels of figure 8, we can see that the buoyancy force (green dotted line) generates
poloidal energy for small-scale convective motion centered at k= 20. It is then reduced by
viscous dissipation (red dashed line), and the remainder is converted into small-scale toroidal
energy by the Coriolis term (solid black line). Note that this reduction of the poloidal energy
by the Coriolis term corresponds to the increase in toroidal energy due to the Coriolis term in
the upper panels of figure 8.

Figure 9 shows the classification of the time variation of the toroidal energy spectrum by
the nonlinear term NT(k, t) for various λ at R̃/37= 1.0. The velocity and vorticity fields are
decomposed into toroidal and poloidal components and their nonlinear effects are shown. From
the classification of the non-linear term in λ= 4 and 8, we can find that the nonlinear term of
the toroidal velocity and toroidal vorticity field uT×ωT contributes to the enhancement of
the largest toroidal component. On the other hand, figure 10 shows the classification of the
nonlinear effect of the velocity and vorticity fields by their horizontal scales. Here the large
and small horizontal scales are separated at a horizontal wavenumber of 10, because the excited
small-scale convective motion is observed to have a component with a horizontal wavenumber
greater than 10. It can be seen that the non-linear effect of the the small scale velocity and
small scale vorticity fields contribute most to the excitation of the largest toroidal motion. This
is consistent with the suggestion from the horizontal spectral analysis in the previous studies
(Favier et al 2014, Guervilly et al 2014, Rubio et al 2014, Julien et al 2018).

3.4. Correlation analysis

In this subsection, we investigate the characteristics of thermal convection and large-scale
vortices by performing statistical correlation analysis between the large and small horizontal
scale components of the variables at different heights. As in the previous section, the large and
small horizontal scales are separated at the horizontal wavenumber of 10.

Figure 11 shows the horizontally large- and small-scale fields of vertical vorticity, vertical
velocity, and temperature disturbances in the case of λ= 4 and R̃/37= 1.0. It is found that the
amplitudes of small-scale vertical vorticity, vertical velocity, and temperature disturbance are
weakened in the region of positive LSV, while there is no correlation between large- and small-
scale fields except in the region of LSV. The asymmetry in the large-scale vertical vorticity with
respect to its sign is observed also, which is consistent with the previous studies performed so
far (e.g. Favier et al 2014, Guervilly et al 2014). The positive vorticity region has a strongly
coherent vortex structure, while the distribution of the negative vorticity region is dispersed.
This asymmetry may be related to the subcritical behavior of the LSV emergence found by
Favier et al (2019).

Figure 12 shows the correlations ⟨ω(z= 0.25),ω(z= 0.75)⟩ and ⟨uz(z= 0.25),uz(z=
0.75)⟩ of large-scale components (upper panels), and small-scale components (lower panels).
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Figure 8. The budget analysis of kinetic energy spectrum for various values of λ at
R̃/37= 1.0. Time averaged at statistical equilibrium near the final state. The horizontal
axis is the total horizontal wavenumber k= 2π

√
l2 +m2/λ. The solid black, dashed red,

dotted blue, and dotted green lines are the Coriolis term C∗(k), dissipative term V∗(k),
non-linear term N∗(k), and the generating term GP(k), where ∗ represents subscripts T
or P to indicate the the toroidal or poloidal terms at the same time. The upper and lower
panels show the toroidal and poloidal energy balance, respectively.
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Figure 9. Contribution of the nonlinear term to the time variation of toroidal energy
NT(k, t) is divided according to the combination of toroidal and poloidal fields for vari-
ous values of λ at R̃/37= 1.0. Time averaged values at statistical equilibrium near the
final state are shown. The contributions from uT×ωT,uP×ωP,uP×ωT, and uP×ωP

are drawn with a red solid, green broken, blue dotted, and magenta broken-dotted
lines, respectively, where the subscripts ()T and ()P indicate the toroidal and poloidal
components.

Here, ⟨f,g⟩ denotes the correlation coefficient between two horizontal distributions f(x,y) and
g(x,y) defined by

⟨f,g⟩= ( f,g)√
( f, f)(g,g)

, ( f,g) =
ˆ λ

0

ˆ λ

0
dxdyf(x,y)g(x,y) . (32)

At the large scale, the correlations of vertical vorticity and vertical velocity are positive
between z= 0.25 and z= 0.75. In particular, the correlation of vertical vorticity is stronger
than that of the vertical velocity at the time of LSV formation, suggesting that a barotropic
structure dominates in the LSV. On the other hand, at the small-scale, the vertical vorticity is
negatively correlated while the vertical velocity is positively correlated, indicating that their
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Figure 10. Contribution of the nonlinear term to the time variation of toroidal energy
NT(k, t) is divided according to the combination of large- and small-scale fields for vari-
ous values of λ at R̃/37= 1.0. Time averaged values at statistical equilibrium near the
final state are shown. The contributions from uL×ωL,uS×ωS,uS×ωL, and uL×ωS

are drawn with a red solid, green broken, blue dotted, and magenta broken-dotted lines,
respectively, where the subscripts ()L and ()S indicate the horizontally large- and small-
scale fields.

structure is dominated by baroclinic vortices. This is consistent with the structure of thermal
convection in the rotating system (e.g. Sakai 1997).

Figure 13 shows the time variation of the correlation between the positive and negative
large-scale vertical vorticity and the small-scale vertical velocity squared mean at z= 0.25.
The correlations with the positive and negative vorticity are similar in the initial period, while
the correlation with positive vorticity decreases over time. This reflects the suppression of
small-scale convective motion in the positive LSV.

Figures 14 and 15 show the correlation of the temperature field with the vertical velo-
city and with the vertical vorticity at several heights. The temperature fields are strongly
correlated with the small-scale vertical velocity and vertical vorticity at the same height,
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Figure 11. Horizontal distributions of various physical quantities separated by large and
small horizontal scales in the case of λ= 4 and R̃/37= 1.0. The upper and lower panels
are for large- and small-scale fields, respectively. From left to right, vertical vorticity ωz

at z= 0.75, vertical velocity uz at z= 0.5, and temperature disturbance θ at z= 0.5.

while their correlations at different heights are small. On the other hand, the correlations
between temperature and vertical velocity or vorticity on a large-scale are weak for all the
combinations.

From the above correlation analysis, it can be concluded that the small-scale field is char-
acterized by a positive correlation between vertical velocity and temperature and a baroclinic
vertical vorticity structure, which is consistent with the typical structure of small-scale con-
vection in the rotating system. On the other hand, the large-scale field is characterized by a
lack of correlation between vertical velocity and temperature and a barotropic vertical vorti-
city structure, meaning a two-dimensional vortex structure that has little to do with thermal
convection (bottom panel of figure 16).

4. Theoretical diagnoses

In this section, we make theoretical diagnoses for characteristics of small-scale convection and
LSVs revealed in section 3.
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Figure 12. Time variation of the vertical correlation of large- and small-scale ver-
tical vorticity and vertical velocity fields, ⟨ωz(z= 0.25),ωz(z= 0.75)⟩ and ⟨uz(z=
0.25),uz(z= 0.75)⟩, for λ= 4 and R̃/37= 1.0. Correlations for large- and small-scale
components are shown on the upper and lower panels, respectively. Orange and cyan
indicate ⟨ωz(z= 0.25),ωz(z= 0.75)⟩, and ⟨uz(z= 0.25),uz(z= 0.75)⟩, respectively.

Figure 13. Correlation between the large-scale components of the positive and
negative vertical vorticity and the small-scale vertical velocity strength ⟨ωL

z (z=
0.25),

√
(uSz )2(z= 0.25)⟩ for λ= 4 and R̃/37= 1.0. Orange and cyan colors indicate

the correlation with positive and negative vortices, respectively.

4.1. Linear stability analysis

As seen in figure 11, there emerges active small-scale thermal convection in the large-scale
negative vortex region whereas small-scale thermal convection is suppressed in the large-scale
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Figure 14. Correlations of the temperature field θ with small-scale vertical velocity uz
and vertical vorticity ωz at each height for λ= 4 and R̃/37= 1.0. From top to bot-
tom, correlations for temperature fields at z= 0.75, 0.5, and 0.25 are shown. Cyan for
z= 0.25, grey for z= 0.5, and orange for z= 0.75.

positive vortex region. This feature is consistent with inhibition of heat transfer in LSV region,
possibly because the increase of the effective rotation in the positive vortex region leads sup-
pression of small scale convection (Guervilly et al 2014). We try to quantitatively explain
this antisymmetry by a linear stability analysis including a local effect of large-scale vortices.
Figure 17 compares the growth rates of the linear stability analysis for the stationary field,
including the effect of the local rotation of the LSVs. For P= 1, the growth rate σ for the most
unstable vertical mode is written as,

σ

E
=−

(
k2 +π2

)
+

√
R

k2

k2 +π2
− T̃a

π2

k2 +π2
, (33)
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Figure 15. Same as figure 14 but for correlations of the temperature field θ with large-
scale vertical velocity uz and vertical vorticity ωz.

where k= 2π
√
l2 +m2/λ is the total horizontal wavenumber (appendix A). T̃a is the Taylor

number which takes into account the local effect of large-scale barotropic vertical vorticity on
thermal convection by increasing or decreasing the angular velocity of rotation,

T̃a=
(1+Zb)

2

E2
, (34)

where Zb is a characteristic value of the large-scale vertical vorticity of LSVs in the region of
interest. Figure 17 shows the growth rates based on equation (33), where several values of Zb
are tested in order to assess the the effect of LSV on the small-scale convection.

First, we focus on the gross difference between positive and negative LSV regions. Let us
apply the average values of positive and negative vorticity of LSVs to Zb, which are 1.0 and
−0.5, respectively (figure 2). By comparing the growth rate curves for Zb = 0 and 1 (solid and
dashed lines in the left panel of figure 17), it is expected that small-scale convection with a
horizontal wavenumber around 20 is expected to be excited in the absence of the effect of local
vorticity, while in the region of LSV with positive vorticity, small-scale convection centered
around the horizontal wavenumber 30 will be excited, albeit weakly. On the other hand, the
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Figure 16. The upper panel shows energy flow obtained from energy spectrum balance
analysis. The large scale poloidal fields are not important for the generation and main-
tenance of LSVs, while they may affect the small-scale poloidal fields, which should be
investigated by classifying NP. The lower panels illustrate the vertical structure of large-
and small-fields obtained from correlation analysis. Note that the horizontal shapes of
the vortices are not necessarily coin-shaped.

growth rate curve with Zb =−0.5 (the broken-dashed line in the left panel of figure 17) indic-
ates that convection with a horizontal wavenumber of about 15 is most easily excited in the
negative vorticity region, and the horizontal scale of convection in the negative vorticity region
is expected to be larger than that in the positive vorticity region.

Next, we turn our attention to the central region of positive LSV. When we take the value
of Zb as the maximum vorticity of LSV, Zb = 2 (figure 2), the growth rate is negative for all
horizontal wavenumbers (the dotted line in the left panel of figure 17), meaning that thermal
convection is expected to be completely suppressed near the center of the positive LSV.

Comparing small-scale convective motions between the LSV with positive vorticity and
its outside shown in the small-scale vertical velocity distribution in figure 11, we can find
that the difference in the amplitudes and horizontal scales of convection is consistent with the
expectation from the linear stability above.

21



Fluid Dyn. Res. 56 (2024) 035504 H Sasaki et al

Figure 17. The growth rates of the linear stability analysis for stationary fields based
on equation (33). The left panel shows the growth rates for P= 1, R̃= 37 and λ= 4,
including the effect of vorticity of LSV on the rotating convection. The solid line is for
global rotation (Zb = 0) only, while the dashed line includes the effect of the average
positive vertical vorticity of LSV (Zb = 1), the dotted line includes the effect of the
maximum value of the positive vertical vorticity of LSV (Zb = 2.0), and the dash-dotted
line includes the effect of the average negative vertical vorticity (Zb =−0.5). The right
panel shows the Rayleigh number dependence of the growth rate for P= 1 and λ= 4.
The solid, dashed and dotted lines are for R̃/37= 1.0, 0.8, and 0.6, respectively.

While the linear stability analysis could capture the asymmetric emergence of small-scale
convection, it could not explain the preference for coherent structures in the form of positive
LSVs. This seems to be due to some non-linear process depending on the sign of vorticity of
LSV. Favier et al (2019) started the time integration from the initial field with identical positive
and negative LSVs, and found that only the positive LSV survived for a long time while the
negative LSV decayed.

4.2. Behavior of large scale barotropic toroidal components

In section 3, it is shown that the large-scale barotropic toroidal components are forced by the
nonlinear effect of the small-scale motion, and reach the equilibrium by viscous dissipation.
We give a simple physical explanation for the scaling properties of the barotropic toroidal
component below.

In order to quantitatively verify this mechanism, we consider the following ordinary differ-
ential equation based on the time variation of the toroidal potential (9) (appendix B).(

d
dt

+Eα2

)
ζ = f0 (α) , (35)

where ζ is the amplitude of the vertical vorticity with maximum wavelength component of
the system (wavenumber (l,m) = (1,0),(0,1)), and α is the horizontal wavenumber of LSV,
using the horizontal domain size λ, which is given by,

α2 =
4π2

λ2
. (36)
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Figure 18. Relaxation time versus domain size λ (left), toroidal kinetic energy versus
domain λ (center) and R−Rc (right). The left and center panels are for R̃a= 37 and
the right panel is for λ= 4. The black broken line in the left panel shows the viscous
time for the horizontally largest barotrpic vortices, (λ/2π)2/E. In the center and right,
the red solid line represents the toroidal energy, while the blue solid line is the poloidal
energy. The blue dotted line indicates the slope for the power of 2 and the green dashed
line in the rightmost panel is for the power of 1.

f 0 is the contribution of the nonlinear term ez ·∇× (u×ω) for the components with the
wavenumber α derived from equation (9). With the initial condition ζ(0) = 0, we obtain the
solution,

ζ =
f0 (α)
Eα2

(
1− e−Eα2t

)
. (37)

This approaches ζ(∞) = f0/(Eα2) as t→∞ with the time scale τ = 1/(Eα2) = λ2/(4π2E).
Then, the kinetic energy of the LSV, KLSV, becomes,

KLSV ∼ ψζ ∼ α−2ζ2 =
f20 (α)
E2α6

. (38)

Figure 18 shows the relaxation time estimated from the time variation of the toroidal energy
and the values of the toroidal and poloidal kinetic energy of the statistical equilibrium states
in the numerical calculations presented in section 3. From the left panel, we can see that the
relaxation time is almost proportional to λ2, while the middle panel indicates that the toroidal
energy is proportional to λ2. As the kinetic energy of LSV accounts for most of the toroidal
energy, this implies that the forcing term f 0 is proportional to α2. On the other hand, the pol-
oidal energy does not depend on λ, which again supports the α2 dependence of f 0 shown in
appendix B.2.

We estimated the amplitude of f0(α) from the numerical results, and found that the values of
f0(α) at the final states are roughly in proportion to α2 although they increase with time (B.2).

Also, from the right panel of figure 18, the poloidal energy is mostly proportional to R−
Rc. This implies that the amplitude of convective motion on small scales is proportional to√
R−Rc. On the other hand, the toroidal energy is proportional to (R−Rc)2 which is similar

to the result of Maffei et al (2021) (figure 6c), where the barotropic energy is proportional
to R̃a to the power of about 2. This is consistent with the fact that large scale vortices are
directly generated by non-linear effects of vorticity and velocity of the small scale toroidal field
discussed in section 3. The small-scale toroidal motion is excited by the small-scale poloidal
motion through the Coriolis term, whose amplitude depends on

√
R−Rc. The amplitude of

the large scale vortex driven by its second order nonlinear effect, and then, is proportional to
R−Rc, resulting in the energy dependence of (R−Rc)2.
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5. Summary

Numerical experiments on three-dimensional Rayleigh–Bénard convection between parallel
plates in a rotating system are performed where the horizontal extent of the computational
domain is increased compared to those of previous studies. The results confirm the formation
of a large-scale vortex with a larger horizontal extent as the horizontal region is extended.
The analysis of the kinetic energy by dividing it into the toroidal and poloidal components
shows that when the horizontal width of the domain λ becomes larger, the toroidal kinetic
energy at statistical equilibrium also becomes larger in proportional to λ2, and the intensity
of LSV increases. On the other hand, the poloidal kinetic energy is smaller than the toroidal
kinetic energy and is independent of the horizontal size of the domain. The horizontal spectral
analysis of each term in the kinetic energy equation suggests the following mechanism of LSV
generation and maintenance. First, the poloidal energy of the small-scale poloidal motion is
generated by the buoyancy force, and the Coriolis term converts the energy into small-scale
toroidal kinetic energy. When the horizontal extent of the domain is large, the small-scale
toroidalmotion is converted into the large-scale toroidal component of the kinetic energy by the
nonlinear term. This is balanced by the viscous dissipation of the large-scale toroidal motion.
This mechanism is consistent with the diagnosis of the dependence of the toroidal kinetic
energy on the horizontal size of the domain by a simple model in section 4.2.

In our calculations, themaximally broadened LSV appears even forλ= 8. Our analysis sug-
gests that a maximally broadened LSV appears when the horizontal region is further extended
since the viscous dissipation for the largest vortex is so small that the realized kinetic energy is
proportional to λ2, and larger kinetic energy is expected for LSV of larger size. This is similar
to what is expected for an inverse cascade in the absence of any additional arrest mechanism.

Our results suggest that one of the key factors in the formation of LSVs is the weak damping
effect of viscosity at large scales. This means that, for example, if strong enough damping is
effective for larger scales, the emergence of LSVs will be prevented. Let us consider a simple
model where the Laplacian dissipation term with respect to vorticity is replaced by a linear
dissipation term, such that,(

d
dt

+ γ

)
ζ = f0 (α) . (39)

The solution of this equation becomes,

ζ =
f0 (α)
γ

(
1− e−γt

)
, (40)

and the asymptotic solution as t→∞ is ζ(∞) = f0/γ, whose kinetic energy KLSV is

KLSV ∼ ψζ ∼ α−2ζ2 =
f20

γ2α2
. (41)

If the α dependence of the forcing term is not significantly different from the Laplacian dis-
sipation case, f0(α)∝ α2 and,

KLSV ∼ α2 ∝ λ−2. (42)

Therefore, the kinetic energy decreases as the horizontal scale of the domain increases, imply-
ing inhibition of LSV appearance, which indicates the importance of kinetic energy damping
mechanism for the generation and maintenance of LSVs.

The analysis of vortex sizes shows that only the positive vortex increases in size, while
the size of the negative vortex does not change from the beginning. The vorticity distribu-
tion of the large scale field shows that the positive large-scale vortex has a coherent structure
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while the negative vorticity field shows no distinct coherent structure. While the linear stability
analysis performed in section 4.1 succeeded in qualitatively explaining the asymmetric emer-
gence of small-scale convection on the sign of large-scale vorticity, it is not sufficient for the
explanation of the prominence of coherent positive LSVs.We have to conduct finite-amplitude
stability analysis of LSVs in order to examine the asymmetric stability depending on the sign
of vorticity of the LSV.

In this study, we clarify the mechanism of LSV generation and maintenance. More spe-
cifically, we propose a model equation for the mechanism, and predicted the occurrence of
LSV for the change of domain. In order to verify these results numerical experiments over a
larger horizontal domain should be performed in the future. In addition, only the axisymmet-
ric vortices with the largest scale appear in the horizontally rectangular domain (Guervilly and
Hughes 2017). It will be interesting to extend the experimental framework with the horizontal
square box presented here to other horizontal shapes of the domain.
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Appendix A. Growth rate of linear stability problem

In the linear stability problem of rotating convection with respect to the quiescent conductive
state an analytical expression for the growth rate is obtained for P= 1. The linear disturbance
equations of (9)–(11) becomes as follows.

∂

∂t
∇2
Hψ− ∂

∂z
∇2
Hϕ= E∇2

H∇2ψ, (A.1)

∂

∂t
∇2
H∇2ϕ+

∂

∂z
∇2
Hψ =−RE2

P
∇2
Hθ+E∇2

H∇2∇2ϕ, (A.2)

∂θ

∂t
+∇2

Hϕ =
E
P
∇2θ. (A.3)

The boundary conditions are (12). The variables are expanded by the functional systems sat-
isfying boundary conditions, such that,

ψ =
∑
l,m,n

ψ̂l,m,ne
2π i(lx+my)/λ cos(nπ z)eσt, (A.4)

ϕ =
∑
l,m,n

ϕ̂l,m,ne
2π i(lx+my)/λ sin(nπ z)eσt, (A.5)

θ =
∑
l,m,n

θ̂l,m,ne
2π i(lx+my)/λ sin(nπ z)eσt. (A.6)
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where n is the vertical mode number and σ is the complex growth rate. Substituting these

expressions into (A.1)–(A.3), and operating
ˆ 1

0
dzcos(n ′π z) and

ˆ 1

0
dzsin(n ′π z), independ-

ent third-order eigenequations are obtained for each n.
σk2 +Ek2k2n −nπ k2 0

nπ k2 −σk2k2n−Ek2k4n −RE2

P
k2

0 k2 −σ− E
P
k2n


 ψ̂

ϕ̂

θ̂

= 0, (A.7)

where k= 2π
√
l2 +m2/λ is the total horizontal wavenumber, and k2n = k2 + n2π2 is the square

of the total wavenumber. For non-trivial solutions to exist, we have(
σ+Ek2n

)2(
σ+

E
P
k2n

)
+
(
σ+Ek2n

) n2π2

k2n
−
(
σ+

E
P
k2n

)
RE
P
k2

k2n
= 0. (A.8)

In particular, when P= 1,

σ

E
=−k2n, −k2n±

√
R
k2

k2n
− 1
E2

n2π2

k2n
. (A.9)

Rewriting n= 1, Ta= 1/E2 and choosing the solution that σ> 0, we obtain,

σ

E
=−k21 +

√
R
k2

k21
−Ta

π2

k21
. (A.10)

Replacing Ta by T̃a, which includes the effect of local vortex rotation, we obtain (33).

Appendix B. LSV model

B.1. Derivation of model

The governing equation for LSV model is based on the low wavenumber components of the

toroidal equation (9). By applying
ˆ 1

0
dz to (9) in order to extract the barotropic mode, the

contribution of the Coriolis term is eliminated with the boundary condition ϕ= 0 at z= 0,1,
and obtain,

∂

∂t
∇2
Hψ̄+ ez ·∇× (u×ω) = E∇2

H∇2ψ̄. (B.1)

where (̄ ) indicates vertically averaged quantity such that,

f̄(x,y, t) =
ˆ 1

0
f(x,y,z, t)dz. (B.2)

Further, as same as (19), the variables are expanded with the double Fourier series, we obtain,

∂

∂t
ζ̃k+E|k|2ζ̃k = Nk. (B.3)
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Here, k= (kx,ky) is the horizontal wavenumber vector, x= (x,y) is the horizontal position
vector, and,

Nk =− 1
4π2λ2

ˆ λ

0

ˆ λ

0
dxdy ez ·∇× (u×ω)e−ik·x. (B.4)

By integrating this expression along the circle of themaximum horizontal wavenumberα= |k|
in the wavenumber space, we obtain the LSV model equation (B.5).(

d
dt

+Eα2

)
ζ = f0, (B.5)

where,

ζ =

˛
αdθζk,|k|=α, f0 (α) =

˛
αdθNk,|k|=α. (B.6)

Here, (α,θ) is the polar coordinates of the wavenumber space so that kx = αcosθ and ky =
αsinθ.

B.2. Scaling of LSV

As discussed in section 4.2, the forcing term f0(α) must be proportional to α2 in order to
explain λ dependence of the toroidal and poloidal energies of the LSVmodel. This is consistent
with the fact that the poloidal energy is independent of λ, i.e. independent of the amplitude
of the small-scale thermal convection. Based on this fact, we evaluate the dependence of the
nonlinear effect of the two variables on λ associated with small-scale thermal convection. We
pay attention to the integrand of the representation of Nk in (B.4). This term is expressed as a
sum of the products of two variables whose spectral peaks are located at higher wavenumbers
compared to the horizontal wavenumbers of the LSV. Let their horizontal spectral distributions
be f̃(k) and g̃(k) such that,

f(x) =
∑
k1

f̃(k1)eik1·x, g(x) =
∑
k2

g̃(k2)eik2·x. (B.7)

Then, the contribution of each product Tk = f̃g(k) becomes,

Tk =
1

4π2λ2

ˆ λ

0

ˆ λ

0
dxdye−ik·x

∑
k1

f̃(k1)eik1·x
∑
k2

g̃(k2)eik2·x. (B.8)

Since this integral is only from the k1 + k2 − k= 0 components, we have,

Tk =
1

4π2l2

ˆ λ

0

ˆ λ

0
dxdy

∑
k1

f̃(k1) g̃(k− k1) . (B.9)

Since |k| ≪ |k1|, the wavenumbers are approximated as k− k1 ∼−k1, and then,

Tk ∼
1

4π2λ2

ˆ λ

0

ˆ λ

0
dxdy

∑
k1

f̃(k1) g̃(−k1) =
1

4π2

∑
k1

f̃(k1) g̃(−k1) . (B.10)

Because the small-scale thermal convection in the numerical simulations is assumed to have
a locally structure and amplitude are considered to be locally determined, the mean kinetic
energy EP does not change with λ, which can be confirmed from the middle panel of figure 18.
Then, since EP is expressed by the form of

∑
k |̃f(k)|2 and the number of sums for k is propor-

tional to λ2, |̃f(k)|2 must be proportional to λ−2 for EP to be independent of λ. Therefore, |̃f(k)|
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is proportional to λ−1. Considering that all small-scale convection-related spectral coefficients
are proportional to λ−1, the λ dependence of the nonlinear term Tk becomes,

Tk ∼
∑
k

f̃(k) g̃(−k)∝ λ2
(
λ−1

)2 ∼ const, (B.11)

which does not depend on the size λ or α. Thus, the small scale of u×ω is considered to be
independent of α. Evaluating the operator ez ·∇× in (B.4),Nk,|k|=α ∝ α, and then, from (B.6),
f0(α)∝ α2.

We estimated the amplitude of f0(α) by evaluating the contribution of the nonlinear term
to the smallest wavenumber components of toroidal kinetic energy, N̂T(α, t) = NT(0,±1, t)+
NT(±1,0, t), for the cases with lambda = 1,2,4 and 8, where NT(l,m, t) is defined by (24).
Although N̂T(α, t) increases with time, the values at the final state are roughly independent of
α, meaning that f0(α) is in proportion to α2. Nk,|k|=α in (B.6) can be evaluated by the relation,
N̂T(α, t)∼ ψ̃αNk,|k|=α. From λ dependence of toroidal kinetic energy, ψ̃2

α ∼ λ2 ∼ 1/α2, then
Nk,|k|=α ∼ α leading to f0(α)∼ α2 from (B.6).
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