

Fig. S1. Imaging profiles associated with morphological changes in cells during the execution phase of apoptosis.

Serial fluorescence images of HeLa cells expressing fluorescent proteins, RFP in the plasma membrane (upper) and EGFP in the nucleus (lower) were are displayed from top left to bottom right in chronological order. The resolution of these images was 348×260 . Ttransfected cells was were treated with anti-Fas antibody and cycloheximide (CHX) and fluorescence images were captured every 30 sec for 30 min under a fluorescencet microscope using a CCD camera. Numbers indicate times after taking the first image. Scale bars indicate 10 μ m.

Β

Phosphorylation of a FRET-based CRCit biosensor in transfected cells was monitored during apoptosis. Transfected cells expressing CRCit were treated with an anti-Fas antibody and CHX, and fluorescence images were captured every 1 min for 60 min under a fluorescence microscope using a CCD camera through the specified filters (Excitation 425 nm/Emission 480 nm for ECFP and Excitation 425 nm/Emission 535 nm for ECFP \rightarrow Citrine). (**A**, **B**) The serial CFP fluorescence images (A) and pseudo- colored images correlated with FRET ratios (B) are displayed. Numbers indicate the time (minutes) after taking the first image. Zero indicates the starting point of the observation of blebbing. Four membrane regions were chosen from the upper cell as (a) to (d) and marked in a red circle. Enlarged views were shown in Fig. 2C. Scale bars indicate 10 μ m.

Α

1	0 20	30	40	50	60	70	80	90	100
MSAAKENPC	RKFQANIFNKS	KCONCFKPRES	SHLLNDEDLT	<u>DAK<mark>PIYGGWL</mark>I</u>	LLAPDGTDFD	PVHRSRKWQF	REFILYENG	LLRYALDEMP:	TLPQGTINM
11	0 120	130	140	150	160	170	180	190	200
NOCT <u>DVVD</u> GI	EGRTGQKFSLC	ILTPEKEHFII	RAETKEIVSG	VLEMLMVYPR	<mark>'n</mark> kqnq kkkri	VEPPTPQEP	GPAKVAVTSS:	SSSSSSSSSI	PSAEKVPTTK
21	0 220	230	240	250	260	270	280	290	300
STLWOEEMR'	<u>TKDQPD</u> GSSLS	PAQSPSQSQPI	PAASSLREPGI	LESKEEESA <u>M</u>	SSD RMDCGRKV	/RVESGYFSLE	EKTKQDLKAEI	EQQLPPPLSPI	PSPSTPNHRR
31	0 320	330	340	350	360	370	380	390	400
SQVIEKFEA	LDIEKAEHMET	NAVGPSQSSD	FRQGRSEKRAI	FPRKRPDLLNI	- <mark>KKGWLTKQYI</mark>	DGQWKKHWFV	/LADQSLRYY	RDSVAEEAADI	LDGEIDLSAC
41	0 420	430	440	450	460	470	480	490	500
YDVTEYPVQI	RNYGFQIHTKE	GEFTLSAMTS	GIRRNWIQTI	<mark>MKHVHPTTA</mark> PI	OVTSSLPEEKN	IKSSCSFETCE	PRPTEKQEAE	LGEPDPEQKR	SRARERRREG
51	0 520	530	540	550	560	570	580	590	600
RSKTFDWA <u>E</u>	FRPIOOALAOE	RVGGVGPADTH	HEPLRPEAEPO	GELERERARRE	REERRKRFGMI	DATDGPGTEI	DAALRMEVDR	SPGLPMSDLK'	<u> THNVHVEIEQ</u>
61	0 620	630	640	650	660	670	680	690	700
RWHOVETTP:	LREEKOVPIAP'	VHL SSED GGDH	RLST <mark>HE<i>LTSL</i></mark>	l eke l eqsqki	EASDLLEQNRI	LQDQLRVAL	GREQSAREGY	VLQATCERGF	AAMEETHQKK
71	0 720	730	740	750	760	770	780	790	800
IEDLOROHO	RELEKLREEKD	RLLAEETAATI	<u>ISAIEAMKNA</u>	HREEMERELEH	KSORSOISSVN	ISDVEALRROY	LEELOSVOR	<u>ELEVL</u> SEQYS	QKCLENAHLA
81	0 820	830	840	850	860	870	880	890	900
QALEAERQA:	LRQCQRENQELI	NAHNQELNNRI	LAAEITRLRTI	LTGDGGGEA	FGSPLAQGKDA	Y <mark>ELEVLLRVP</mark>	KESEIQYLKQI	EISSLKDELQ	FALRDKKYAS
91	0 920	930	940	950	960	970	980	990	1000
DKYKDIYTE	LSIAKAKADCD	ISRLKEQLKA	ATEALGE KSPI	DSATVSGYDI	AKSKSNPDFLH	KKDRSCVTRQI	RNIRSKSLK	EGLTVQERLKI	LFESRDLKKD

Pleckst	in Homology	(PH)	domain	1:	PIYRTN	(44-152
Pleckst	in Homology	(PH)	domain :	2:	KKG <mark>TTA</mark>	(352-449)
	Coiled Coil	(CC)	domain	1:	HELVAL	(634-670)
	Coiled Coil	(CC)	domain 3	2:	AAMRTL	(691-841)
	Coiled Coil	(CC)	domain	3:	ELELGE	(863-937)
	F-actin-	n:	MSARTK	(1-211		
	RhoA-	n:	EFREVL	(509-785)		
	MYPT1-	bindin	g regio	n:	EQYRTL	(787-841)
Nuclear	localizatio	n sign	al (NLS):	KKKRK	(157-161)
	Leuc	ine-ri	ch moti	f:	L TS LL EKE I	(637-645)

Fig. S3. Amino acid sequence of human MPRIP.

The amino acid sequence of human MPRIP used in this study is identical to the isoform CRA_d registered in GenBank (EAW55724). It comprises 1000 amino acid residues. Two pleckstrin homology (PH) domains and three coiled-coil (CC) domains are highlighted. The regions interacting with either F-actin, RhoA, or MYPT1 are underlined. The NLS sequence "KKKRK" (purple font) and a weak NES sequence "LTSLLLEKEL" (italicized) are shown.

Fig. S4. Co-immunoprecipitation and immunoblot analysis.

HEK293T cells were transfected with either pCI/Flag-MPRIP Δ N-seCFP or pCI/Flag-MPRIP Δ N[II]-seCFP in conjunction with either an empty plasmid control or pEFBOS/HA-RhoA. 48 h after transfection, cells were lysed, and Flag-tagged proteins were immunoprecipitated with an anti-Flag antibody. Whole cell lysates and immunoprecipitates were analyzed by immunoblotting with anti-GFP and anti-HA antibodies. The asterisk indicates the light chain of an antibody.

Fig. S5. Microscopic observation of HeLa cells exposed to apoptotic stimuli.

Cells were treated with a mixture of anti-Fas antibody and CHX for 3 h. For detecting CASP3 activity in dying cells, a fluorescent substrate, 4 μ M NucView®530 was added to the medium 30 min before observation. The images were displayed by capturing through a bright-field channel (a) and a red fluorescent channel (b) and by merging (c). Scale bar indicates 100 μ m.

Supplementary Movie

Movie S1. A series of spatiotemporal images of RFP- and EGFPlabeled cells undergoing apoptosis.

Fluorescence images of a HeLa cell expressing fluorescent proteins, RFP (plasma membrane) and EGFP (nucleus), as shown in Fig. S1, follow the progression of apoptosis.

Movie S2. Real-time movies with a FRET-based biosensor, CRCit.

Both CFP images (A) and FRET ratio images (B) of HeLa cells expressing CRCit, as shown in Fig. S2, are continuously displayed as Movie S2A and S2B, respectively.