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SUBRIEMANNIAN GEOMETRIES O N  §7 

AND SPECTRAL ANALYSIS 

W. BAUER 

ABSTRACT. This paper provides a short survey on the geometry and spectral anal-
ysis of four different subriemannian (SR) structures on §7. In two of those cases 
with defining distributions of rank four we discuss the nilpotentization, Popp's 
measure as well as the SR isometry group and we determine the intrinsic sub-
laplacians. As a result it is observed that these SR manifolds are neither locally 
isometric around any point nor isospectral in the sense of SR geometry. However, 
by changing the measure on §7 a spectral inclusion can be proven. 

1. INTRODUCTION 

This paper surveys results in [10, 11, 12] on the geometry and analysis of a family 

of subriemannian structures (SRS) defined on the 7-dimensional Euclidean sphere 

§7. In particular, we consider SR geometries induced by the Hopf fibration and 

quaternionic Hopf fibration on §7, respectively. Both constructions are rather stan-

dard in the literature and have been frequently studied under different aspects, see 

[6, 7, 21, 24, 25, 26]. We compare these examples with so-called trivializable SR 

geometries introduced and studied in [10]. Analogous constructions exit on the 3-

sphere §3 but essentially all of them coincide in this low dimensional setting, [24, 25]. 
However, on §7 most of the above mentioned geometries are non-isometric in the 

sense of subriemannian geometry and provide an interesting class of examples. 

To each of these SRS we can assign an intrinsic sublaplacian△sub, which oc-

casionally is also referred to as hypoelliptic Laplacian. In fact, this operator is 

subelliptic (therefore hypoelliptic) based on the bracket generating condition (a.k.a. 

即 rmandercondition) of the distribution defining the SR geometry (see [3] or Sec-

tion 2 for further details). In particular, it can be shown that△sub in each of the 

previously mentioned cases has discrete spectrum consisting of eigenvalues with fi-

nite multiplicities. Hence we can define the notion of isospectral regular SR manifolds 

with respect to their intrinsic sublaplacians in analogy to the case of a lliemannian 

manifold. 

Among our examples there are two SR structures with defining rank four bracket 

generating distributions訟Hand炉）， respectively.More precisely,訟Hisdcfincd 

as the horizontal space in the quaternionic Hopf fibration and加 isa trivial bundle 

spanned by four canonical vector fields on §7 (see [1, 10]). By restricting the standard 

Riemannian metric on the 7-sphere to VQH and加 weobtain two SR geometries 

on §7 which we denote by §細 and§ぶrespectively.
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The aim of the present paper is to compare §伽 and§ぶundergeometric and 

analytic aspects. We calculate the corresponding Popp measures and study prop-

erties of the nilpotent approximations at each point as well as the size of the SR 

isometry groups [26] in both cases. As a result it is observed that §知 and葛 are

locally non-isometric at any point in the sense of SR geometry [2, 5]. In the second 

part we discuss the spectra and heat invariants of the intrinsic sublaplacians §伽
and§ぶAlthoughsome relations between these objects exist we mention that both 

manifolds are not isospectral in a SR sense [12]. In conclusion, different from what 

was observed on§汽mostof the above SR structures on §7 are rather different from 

a geometric and analytic point of view. 

The structure of the paper is as follows. In Section 2 we recall the construction 

of four SR structures on §7 in [6, 7, 10, 26]. Some of these geometries are rather 

standard in the literature but the bracket generating property of the defining distri-

butions requires a proof (here we do not present the detailed arguments). Section 

3 recalls the notion of nilpotentization and SR isometry group. We mention Popp's 

measure and the construction of the intrinsic sublaplacian on a regular SR mani-

fold in [3]. In Section 4 we explicitly express these objects in case of §細 and§1. 

In particular, we observe that these SR structures are not locally isometric around 

any point. Finally, in Section 5 we compare the spectra and first heat invariants of 

S細and§ぶAsa result we conclude that both SR manifolds are not isospectral. 

However, by changing to the standard Riemannian measure onぎ incase of D(4) we 

obtain a spectral inclusion. The paper ends with some remarks on what is known 

about the heat kernel and spectra of the remaining two SR structures on §7 of rank 

5 and 6 that were introduced in Section 2. 

2. SUBRIEMANNIAN STRUCTURES ON §7 

A subriemannian (SR) manifold is a triple (Mの，g),where Mis a smooth, ori-

entable manifold without boundary and dim M ：：：：： ＆ 匝re'Ddenotes a vector 

distribution inside the tangent bundle TM  which is bracket generating. By this we 

mean that the Lie hull of all vector fields X taking values inside'D evaluated at 

any point p E M coincides with the full tangent space⑰M at p. We call X a 

horizontal vector field. Moreover, g = gP denotes a family of inner products (called 

subriemannian met加） on巧 smoothlyvarying with the base point p EM. 

In this paper we fix M to be the Euclidean unit sphere M =ぎ embeddedinto 

酎 inthe usual way. The metric g is defined as the restriction to'D of the standard 

Riemannian metric on the sphere. Hence different choices of a bracket generating 

distribution'D will lead to a class of subriemannian structures onぎ．

(Q uaternionic) Hopf fibration: By IHI = { q = x0＋叫＋叫＋x3k: Xj E JR} we 
denote the quaterionic numbers. We may choose'D as the horizontal space in the 

Hopf fibration §1→ S7 → C野 orthe quaterionic Hopffibration SU(2)→ぎ→璽丸
respectively. In the latter case we realize SU(2) as the group of unit quaternions 

SU(2)竺 {qE IHI : llqll2 := Lぢ＝ 1}疇，
J=O 

which acts diagonally by left-multiplication on IHI x IHI竺股8::i §7 leavingぎ invariant.

More precisely, the horizontal distribution in each of the cases is the family of vector 
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subspaces orthogonal to the fibers. In the following we denote these distributions 

as叫 andVQH, respectively. 
Lemma 2.1 below is well-known. A short proof in case of the quaternionic Hopf 

fibration can be found in [8], see also [24, 25, 26]. 

Lemma 2.1. The distributions加 and訟 H are bracket generating and of step-

two, i.e. horizontal vector fields X, Y together with their Lie brackets [X, Y] span 
the tangent space at any point q E §7. 

Trivializable subriemannian structures: We define a second pair of SR struc-

tures onぎ whichhave been introduced in [10]. They were called trivializable since 

the defining distributions are trivial as vector bundles. Let叡 denotethe Euclidean 

sphere of dimension n and recall the following result, [1]: 

Theorem 2.2 (J.F. Adams). The maximal dimension,(n) of a trivial subbundle 
of the tangent bundle T§n is given by: 

1(n) = 2a + 8b -l, 

where O ~ a < 4 and O ~ b are determined through the relation n + l = 2a+4b x [ od叫

A set {X1,...,X-y(n)} of linear vector fields Xj on町＋1つ叡 thatrestrict to 

vector fields on §n orthonormal at each point with respect to the induced standard 

Riemannian metric can be obtained as follows: consider a set of skew-symmetric 
matrices Aa E応＋l)x(n+l),a = 1,...,,(n) that fulfill the Clifford relations: 

(2.1) A砂fl+Af!Aa = -2<5af!I, a, /3 = l,..., 1(n). 

With the standard coordinates (xい...Xn+1) of町＋1we put 

n+l n+l 

゜(2.2) ふ：＝区La0xj~, where Aa := (a0) E股(n+l)x(n+l)

i=l j=l 

and we call Xa a canonical vector field. A direct calculation based on the Clifford 

relations (2.1) shows that iterated Lie brackets of canonical vector fields can be 

expressed by the canonical vector fields and their brackets of length two. More 

precisely, 

(2.3) ［ふ［ふ［ふ・・-]]] E span｛ぷ［xj,xk]:i,j,k=l,••·,,(n)}=x. 

Let 2 ~ m ~ 1(n) and consider the trivial bundle 

臼：＝ span{Xい...,Xm}c T§7. 

According to (2.3) above a necessary condition for v(m) being bracket generating is 

p(m) := IXI = m+  (;) ~ n. 
In the case m =,(n) a complete list of dimensions n EN such that p := p(m) ~ n 

is given by the following table: 

nE-P 
~＇ [ I [I 2~8 | [： I玄： I：）:I>2
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If v(m) is bracket generating, then we call the induced SR structure on叡 trivializ-

able. According to the above observation such structures can only exit in dimensions 

n = 3, 7, 15, 23, 31, 63. Moreover, in some cases the condition p(m) 2'. n could be 

fulfilled even if m < 1(n). A classification of all spheres carrying a trivializable 

subriemannian structure via the above construction can be found in [10]. We recall 

the result: 

Theorem 2.3 (W. Bauer, K. Furutani, C. Iwasaki). Trivializable SR structures on 

叡 viaa Clifford module structure on町＋1 only exist in dimensions n = 3, 7, 15. 
On §7 the distributions v(m) are bracket generating if and only if m = 4, 5, 6, 7. 

Throughout the paper we will focus on the SR manifold §る＝ （訊V,g)where 

the bracket generating distribution V is chosen from 

(2.4) ｛叫，訟Hの(4)，炉｝．

In fact, it can be seen that割Iand炉） essentiallyinduce the same SR geometry on 

ぎ． Moreover，加＝ T§7yields the standard Riemannian structure on §7. Hence 

we have excluded the cases m = 6, 7 from the above list (2.4). We aim to compare 

two among the SR manifolds §1 under geometric and spectral theoretical aspects. 

The detailed proofs and calculations will be omitted and can be found in [11, 12, 14]. 

3. NILPOTENTIZATION AND INTRINSIC SUBLAPLACIAN 

To a (regular) SR manifold (M,'D, h) we can associate a sheaf of graded nilpotent 

Lie algebras Gr(1沿 whereq E M with Lie brackets induced by the brackets of 

vector fields. The Lie group芯＝ exp(Gr('D)q)corresponding to Gr('D)q is called 

the nilpotentization at q E M and it carries a naturally induced SR structure. In an 

appropriate sense Nq may be interpreted as a local model to the SR manifold M, 

see [26] for more details. Important information on the SR geometric structure of 

M can be obtained by determining this family of groups (Nq)qEM・

We shortly recall the construction of Nq in [26]. We may think of'D as a sheaf of 

smooth horizontal (= tangent to'D) vector fields. Let r E N and inductively define 

が：＝ 'D and 臼：＝が＋span{[x,Y] :XE'D,YEが｝．

One obtains a flag of sheafs of vector fields 

'D=か cザ C...Cが c'Dr+lc... cTM. 

We write冗forthe evaluation of'Di at the point q E M. The bracket generating 

condition on'D means that for each q E M there is r = rq E N, called the step of 
nonholonomy, such that切＝九M.If all the dimensions dim巧foreach i E N are 
constant under variation of the base point q E M we call the SR manifold regular. 

In particular, in case of a regular SR manifold M, the step of holonomy rq does not 

depend on q EM. Consider the vector space: 

(3.1) Gr(V)q = Vq①巧／Vq①.．・ ①巧／巧―1.

A Lie bracket on Gr(V)q for each q E M is defined via brackets of vector fields 

on M and induces a graded Lie algebra structure. Identifying the first layer Vq 

of Gr(V)q with a space of left-invariant vector fields the corresponding Lie group 

Nq = exp(Gr(V)q) is equipped with a left-invariant bracket generating distribution 
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and a metric h = h. Hence to each point q E M we have assigned a graded nilpotent 

Lie group equipped with an induced SR structure, namely (Gr(V)q, Vq, h砂

Definition 3.1 (see [2, 5]). Let (Mの，h)be a regular SR manifold. A di廿eomor-

phism <p: M →M is called a SR isometry if its differential'P• preserves the SR 

structure, i.e. for all q E M: 

(a)叫 叩＝応q)

(b) h<p(q)にX乎＊Y))= hq(X, Y) for all X, YE Vq. 

The collection Iso(M) of all SR isometries forms a subgroup of the diffeomorphism 

group which we call SR isometry group. Ylore generally, we may define SR isometries 

between different SR manifolds and in an obvious way one defines the notion of 

isometric or locally isometric SR manifolds. 

Proposition 3.2 ([5]). If Iso(M) acts transitively on M, then there is a unique (up 

to multiplication by scalars) smooth measure μ on M such that 

(3.2) <p*μ = μ for all <p E Iso(M). 

In other words: each <p E Iso(M) is volume preserving. 

The existence of a smooth measureμ with (3.2) does not require the group Iso(M) 

to act transitively on M. A construction of suchμ called Popp's measure is based on 

the bracket generating property of V as well as the regularity of the SR structure. 

Explicit formulas of Popp's measure in some cases can be found in [2, 5, 9, 26]. We 

recall that all SR structures on M =ぎ consideredin this paper are in fact regular 

so that the Popp measure exists (although the SR isometry group Iso(§りdoesnot 

act transitively in all cases). 

Generalizing the Laplacian in Riemannian geometry we aim to assign a geometric 

operator△sub to a SR manifold in an intrinsic way, i.e. only depending on the 

distribution V and the chosen SR metric h. The operator△sub frequently is referred 

to as sublaplacian or hypoelliptic Laplacian. Here we recall the construction based 

on Popp's measure, see [3, 5] for further details. 

Let w and X be a smooth volume form and a vector field on M, respectively. 

Consider thew-divergence divw and the horizontal gradient gradv which are defined 

through the following relations: 

£心＝ divw(X)w, 

加(gradv位），v)= d<p(v), for all v E Vq 

together with the horizontality condition gradv（<p) E Vq. If Mis regular with Popp 

measure w = μ, then the intrinsic sublaplacian on M is defined by 

(3.3) △sub = -divμ o gradv・

Let [X1,..., Xm] with m = rank(V) be a local orthonormal frame of V. Locally 

we can express△sub as the sum of a sum-of-squares of vector fields and a first order 

operator, which depends on the measureμ: 

(3.4) △sub＝一言因＋divμ(Xi)Xi). 

Note that△sub is a positive, second order differential operator onび(M,μ).The 

bracket generating condition on V (also called Hormander condition) combined with 
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the representation (3.4) and a classical result by L. Hormander in [22] implies hy-

poellipticity of the sublaplacian△sub・ Consider the heat operator Pin SR geometry: 

8 
P:＝一

8t 
＋△sub on 恥 xM,

where t E恥． Anotherapplication of [22] proves hypoellipticity of P on股十 xM

and the existence of a smooth SR heat kernel K (= fundamental solution of P) is 
guaranteed. More precisely: 

(3.5) K(t,x,y)：股十 xMxM→ 股

is a smooth function with: 

{PK(t,•,y) = 0, foT all t > 0, y E M 

limt↓0K(t,x,•) ＝ら in the sense of distributions. 

The SR heat kernel is of interest to us, since an explicit formula or its asymptotic 

properties as t↓0 provides important information on the spectrum of • sub• It 

provides a link between geometric and analytic objects on M, see [4, 13, 15, 16, 23]. 

4. RANK-4 SR GEOMETRIES ON §7 

In this section we compare the rank-4 SR structures onぎ inducedby応Hand

加， respectively.Recall that VQH is the horizontal distribution in the quaternionic 

Hopf fibration whereas炉） istrivial邸 avector bundle and spanned by globally 

define canonical vector fields. 

Theorem 4.1 (Corollary 3.4 in [11]). The distribution応Hon §7 does not admit 

a nowhere vanishing and globally defined vector field (section of the bundle). In 

particular,応His not trivial as a vector bundle. 

The SR manifolds §細：＝ （訊応H,g) and葛：＝ （訊炉））, g) are not isometric 

in the sense of Definition 3.1. Below we will state an even stronger result. In [11] 

Popp's measures μQH and μT have been derived explicitly in case of §畑 and§},

respectively. The calculation is b邸 edon a formula in [5] and in both cases Popp's 

me邸 ureμ. h邸 theform 

(4.1) 
1 

μ.(q) = 
VdetB.（q) 

dCJ(q), q E §7, 

where如 denotesthe standard Riemannian volume form on §7 and B. is a certain 

matrix-valued function on §7 encoding the SR structure of§伽 and§~, respectively. 

We state the result: 

Lemma 4.2 (Lemma 5.2 in [11]). With respect to the standard inclusion §7 c配

we split the coordinates q = (x, y) E尉 x尉っ §7.Then 

1 
匹 H(q)= -i;:dr7(q), 

16 

方

四 (q)= (16(1-2||州 ||YIIり）曲(q),

where llxll2 = ~い x; denotes the square of the Euclidean norm of x E記
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It can be seen that the SR isometry group Iso(§細） actstransitively on §7 and by 

a standard argument (s. [11, Lemma 5.1]) it follows that μT and d!J are equal up to a 

constant factor入＞ 0.The proof of Lemma 4.2 shows that this factor is入＝轟． On

the other hand, since μQH(q) = p(q)d1J(q), where p(q) is the non-constant function 
specified in Lemma 4.2, it follows: 

Corollary 4.3. The SR isometry group Iso（葛） doesnot act transitively on §7. 

Next, we consider the nilpotentizations of§伽and§ぶInboth cases Gr(D)q with 

DE｛訟Hの叫 isa graded nilpotent Lie algebra of step two, i.e. 

(4.2) Gr(V)q = Vq①巧／Vq

has two levels for each q E訊 (see(2.3) in case of the trivializable SR structure 

葛） Incase of§細thenilpotentization (4.2) at each point can be identified with 

the quaterionic Heisenberg Lie algebra of dimension seven, see [23, 20]. 

To analyze the nilpotentization Gr（加）qwe now introduce the notion of a singu-

lar Carnot algebra. Consider a Carnot algebra (g, [・, •D of step 2. This means that 

g can be expressed as a direct sum g = g1 EB g2 such that 

[91, 91] = 92 and [91,恥l= {O}. 

Let <•, •> denote an inner product on the first level 91. Every element Zin the dual 

space 9; induces a representation map 

Jz: 91→91 defined by 〈JzX,Y〉:＝ Z([X,Yl), X, YE  91・

Definition 4.4. The Lie algebra (9, [・,・Dis called non-singular, if for all Z E 9;¥{0} 

the induced map Jz is invertible. Otherwise 9 is called singular. 

It has been shown in [11]: 

Proposition 4.5 (Lernrna 6.3 in [11]). Let q = (x,y) E §7 c配竺配 x酎． Then

the nilpotentization Gr(V(4l)q at q is non-singular if and only if llxll c/||釘|．

Since the property of being non-singular is preserved under isometric Lie algebra 

isomorphisms and since the quaterionic Heisenberg Lie algebra is non-singular it 

follows that §伽 and§1 are not locally isometric as SR manifolds at q = (x, y) E §7 

with||叫|= ||YII-By refined arguments we can prove a stronger result: 

Theorem 4.6 (Theorem 6.4 in [11]). The SR manifolds§伽and§1 are not locally 

isometric around any point q E §7. 

5. SPECTRUM AND FIRST HEAT INVARIANTS 

Now we determi ow we determine the intrinsic sublaplacians△ 
QH 
sub and △贔 onS細andSf and 

we compare their spectra u（△図） andu（△Jub), respectively. Since both manifolds 

are compact and based on subelliptic estimates it can be shown that both spectra 

consist of eigenvalues of finite multiplicities. Moreover, •~'~ commutes with the sub 

Laplacian△炉 andtherefore leaves△s1-eigenspaces invariant. 

Definition 5.1. We call two regular and compact SR manifolds isospectral if they 

have the same sets of eigenvalues of their intrinsic sublaplacian, when those are 

counted with multiplicities. 
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As was already mentioned a useful tool in the spectral analysis on a SR manifold 

is the small time asymptotic behaviour of the corresponding SR heat kernels. 

In the first step we calculate the divergence divμ,. for the Popp measures μqH and 

四 OnS細and§~, respectively. In case of a volume form μ(q) = p(q)diJ(q) and 

jj E C00(§りwithp > 0 we have: 

divp(X) = diva(X) + X(logp). 

First we consider μT in Lemma 4.2. Since the canonical vector fieldsふ in(2.2) are 

Killing vector fields and henceびーdivergencefree we conclude that 

divμT(Xa) = X心） with cp(q) :=-~log (1 -2llxll2IIYll2). 

According to (3.4) it follows that the intrinsic sublaplacian on §~ has a non-trivial 

first order term and it is given by: 

4 

(5.1) △sub=△］ゅ＝ー〉こ（沢＋xi（ゃ）凡）．
i=l 

Remark: By Xi, i = 1,..., 4 we denote canonical vector fields that are induced 

via (2.2) from a set of skew symmetric matrices A1,..., A4. Moreover Aj fulfill the 

Clifford relations (2.1) and加） ＝span{Xい...，ふ｝． Althoughthe operator△贔
in general depends on the choice of vector fields, its spectrum can be shown to be 

independent of the choice of Clifford generators A1,..., A4. 

The intrinsic sublaplacian of §伽— roughly speaking -has the form (see [11, 6]) 

△sub=△図＝苫＋X2+Y2+W汽

where X, Y, W are globally defined vector fields on §7 pairwise orthonormal at each 

point and tangent to the fibers of the quaternionic Hopf fibration. Here ~s1 >。
denotes the standard Laplace-Beltrami operator on §7. 

Let KT and KQH denote the SR heat kernels (3.5) on§~ and§畑 respectively.

According to [15, 19] the existence of the small time asymptotic expansions (5.2) 

below is guaranteed at each point q Eぎ：

(5.2) 応 (t,q, q)＝訊婿(q)+ C『(q)t+ O(tり）， as t↓0, 

知 (t,q, q)＝］（峡(q)+ C偲(q)t+ O(tり）．

We remark that the kernel KQH has been calculated in [6] whereas no explicit ex-

pression of KT seems to be known. In the following the coefficients c'J(q) and c 
QH 
J (q) 

in the asymptotic expansion will be called (j + 1)-th SR heat invariants. The first 
QH 

heat invariants c;f (q) and c。(q)can be obtained from the nilpotentization of§ぶ
and s知atq, respectively, together with a well-known integral representation of 

the heat kernel for the sublaplacian on step-2 nilpotent Lie groups (see [16]). The 

explicit formulas below have been obtained in Theorem 8.6 and Corollary 8.9 of [11]. 

Let q = (x, y) E §7 C配 x配， then:

碍(q)＝ l f ||T|| （||x||2 -||y||2)||T|| 

(21r)5p(q) 艮asinh IITII sinh(llxll2 -IIYll2)IITII 
dT, 
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where 

p(q) = (16(1 -2llxll2IIYIIり） 2 

denotes the function in Lemma 4.2. We observe that c;f (q) may vary with the point 

q E §7. In case of §ら thesituation is different. Since the nilpotentization of §h is 

the same at each point we conclude that c杷(q)三 c杷isconstant onぎ withvalue 

亭＝（；：し(Sl；閏い）2dT 
The heat kernel and, in particular, the SR heat invariants provide important infor-

mation on the spectrum of both sublaplacians. Since the manifoldぎ iscompact we 

can form the heat trace and consider its asymptotic expansion: 
00 

1 
Lm炉内t=Tr(e―t△sub)～戸(a。＋叫＋ O(tり） as t↓0. 
j=l 

Here（ふ）戸 denotesthe set of distinct eigenvalues of△sub in incre邸 ingorder with 

corresponding multiplicities mi E N. 

The coefficients °'j, j = 0, 1,... in c邸 eof the SR manifolds葛 and§伽are
QH 

obtained by integrating the SR heat invariants cJ(q) and ct1(q) with respect to the 

corresponding Popp measures over the manifoli s7. It is interesting to note [11, 

Remark 8.8] that c QH 。solvesa minimization problem, namely: 

翌＝ inf{ c~ (q) : q Eざ｝．

Moreover, based on the explicit integral expressions of the first heat invariants above 

one can check: 

叫：＝ p(q)婿(q)-C杷：：：：： O 

and 1,, > 0 on an open subset of §7. In conclusion, the coefficients a。inthe heat 

trace expansions of the intrinsic sublaplacians on §f and §伽 donot coincide. 

Corollary 5.2 (Corollary 8.9 of [11]). §伽 and§f are not isospectral. 

More can be said if we replace Popp's measure on §f by the standard Riemannian 

me邸 ureび． Withour previous notation the corresponding (non-intrinsic) sublapla-

cian is given by: 

4 

(5.3) 泣贔＝ーdivao grad加） ＝一どx;.
J=l 

This operator and its spectrum have been studied earlier in [10, 11]. In particular, 

it was shown in [11, Theorem 9.3] that there is a (strict) spectral inclusion: 

(J（△悶） C (J（立贔）．

Based on an integral representation of the SR heat kernel K QH in [ 6] one can calculate 

(J（△ QH ~~) explicitly. However, the full spectrum of Li贔 andproperties of induced 

spectral functions (e.g. its spectral zeta function) seem to be unknown. 

Final remarks: In this paper we have not discussed more in detail the SR manifolds 

(S7，叫，g)and (§7, 1)(5), g) corresponding to the rank 6 and rank 5 distributions加

and 1)(5) in (2.4), respectively. We remark that in both cases the Popp measures 

are constant multiples of the standard volume form on §7 and the SR isometry 
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groups act transitively. Explicit integral representations of the corresponding SR 

heat kernels K have been obtained, see [7, 12, 21]. One method of constructing 

K uses a suitable decomposition of the sublaplacian into commuting operators and 

their geometric interpretation together with a change from real to complex variables. 

These ideas were established in [6, 7] in the case of§~ and §伽 andgeneralize to 

spheres of dimensions 2n + 1 and 4n + 3, n E N, respectively. As an application, 

such heat kernel expressions can be used to obtain a full spectral decomposition 

of the intrinsic sublaplacians and an exact form of the fundamental solution of the 

so-called conformal sublaplacians. Details of the calculation in the case of the rank 

5 trivializable case can be found in the forthcoming paper [12]. 
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