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Microlocal analysis of d-plane transform on the Euclidean space 
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This is a short summary of our recently published paper [l] (SIAM J. Math. Anal., 2022). 

We study the basic properties of d-plane transform on the Euclidean space as a Fourier integral 

operator, and its application to the microlocal analysis of streaking artifacts in its filtered back-

projection. The d-plane transform is defined by integrals of functions on the n-dimensional 

Euclidean space over all the d-dimensional planes, where O < d < n. Our results are related 
to the metal streaking artifacts of CT images, and some generalization of recent results of Park-

Choi-Seo [15] (Comm. Pure Appl. Math., 2017) and Palacios-Uhlmann-Wang [14] (SIAM J. 

Math. Anal., 2018) for the X-ray transform on the plane. 
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1 X-ray transform on the plane, CT scanners, and artifacts 

This note is based on the basic theory of microlocal analysis. See Hormander's four volumes of 

textbooks [9], [10], [11], [12], and the textbooks [2] and [5] on Fourier integral operators. 

1.1 CT scanners and X-ray transform 

We consider two-dimensional CT scanners for cross-sections, and explain that the X-ray trans-

form is considered to be the measurement of CT scanners. In this subsection we assume that the 

X-ray beam has no width, and traverses the object along a line, say'Y below. Let (x, y) E記
and let f(x, y) be a compactly supported function describing the attenuation coefficient distri-

bution of the section of an object. We denote by 10 and by I the intensities of the beam before 
and after passing through the object respectively. 

ー

I。
Figure 1. X-ray beam passing though an object 
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It is well-known that the Beer-Lambert law obtains 

log（り）＝ ［f (1) 

We observe an artificial example of a grayscale image of a cross section, its X-ray transform, 
the unfiltered back-projection, and the filtered back-projection by using the Julia Programming 
Language. We introduce the standard coordinates of the space of all the planar lines. For an 

arbitrary line社n配， thereexists a p血 (0,t)E [0,21r) X 股suchthat 

1 = L(0, t) = {(x, y) E恥2I xcos0 + ysin0 = t} 

= {(x,y) E配 |cos0(x-tcos0) + sin0(y-tsin0) = O} 

= {(tcos0-ssin0,tsin0+scos0) Is E股｝．

SeeFigure2below. WeremarkthatL(0,t) = L(0士1r,-t) and [O, 21r) x罠isa double covering 

of the space of all the planar lines. 

y s 
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X 

Figure 2. Parametrization (0, t) of the space of all the lines in配

For an appropriate function f(x, y), the X-ray transform冗 f(,)is given by 

00 

幻 (7)＝幻(0,t) := 1 f = 1: f(tcos0-ssin0, tsin0 + scos0)ds. 
-oo 

Then we have R1(0, t) = Rif(0士1r,-t). We have only to consider the coordinates (0, t) E 

[O, 1r) X 股． Theformal adjoint Ri is given by 

1 
訂 (x,y)＝石121[F(0,xcos0+ysin0)d0 = ~ 11[ F(0,xcos0+ysin0)d0 

2T [ 

for a function F(0, t) with F(0, t) = F(0土1r,-t). It is well-known that we have the inversion 
formula 

f(x, y) = (-a; -a;)1f2R,「R匂f(x,y)= R~ （一8;)1/27ふf(x,y). 

The adjoint Ri and (-8;-8り1/2囮 ＝ 附(-8;)1/2r)1/i are said to be the unfiltered back-projection 
and the filtered back-projection respectively. Here is an artificial example of the set of four 

grayscale images. 
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Original Grayscale Image Sinogram: X-ray transform 

｀ 0 [radl 

Unfiltered Back-Projection Filtered Back-Projection 

Figure 3. An original gray scale image, its X-ray transform, 
the unfiltered back-projection, and the filtered back-projection 

Here we explain how to see these images. 

• Northwest A grayscale image is a matrix whose entries are real numbers belonging 

to the closed interval [O, 1]. An element with value O expresses a black pixel, an element 

with value 1 expresses a white pixel, and an element with intermediate value between 0 

and 1 expresses an pixel with corresponding gray color. 

• Northeast This is the heat map of Rif(0, t), that is, the value of each entry of the 

"matrix" Rif is expressed by the sequential color scale indicated in the color bar. The 
heat map of X-ray transform is called a sinogram. 

• Southwest This is the unfiltered back-projection R;'1ふf.More precisely, this is the 
grayscale image given by a matrix with modified entries defined by 

冗訂ふf-minR虚lf
max冗次,if-minR戊lf'

whose entries are in the interval [O, 1]. The grayscale image ofR霊ifis blurred. 

• Southeast This is the filtered back-projection (-8~ -8~)112 t)112RiRif. Roughly speak-

ing, the first derivative of the unfiltered back-projection is clear and gives the reconstruc-

tion of f from the measurement冗 f.The relationship between unfiltered and filtered 
back-projections is similar to that of the rectified linear unit (ReLU) and the Heaviside 

function on政． Ifwe set 

ReLU(s) = { ~ ~:：闊： Y(s)={~ ~:：仇
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then we have 
d 
__::__ReLU=Y 
ds 

in the sense of distributions. The Heaviside function Y (s) describes the step difference at 

s = 0 clearly, and the ReLU does not. 

1.2 Metal streaking artifacts 

There are some factors causing artifacts in CT images: beam width, partial volume effect, beam 

hardening, noise in measurements, numerical errors, and etc. See, e.g., Epstein's celebrated 

textbook on medical imaging [3]. In this note we study the beam hardening effect causing 

metal streaking artifacts. It is known that this phenomenon occurs for the CT images of human 

bodies containing metal regions such as implants, stents, metal bones and etc. 

In the formulation of (1), the X-ray is supposed to be monochromatic with a fixed energy, 

say E。>0.Actually, however, the X-ray beam has a wide range of energy E E [O, oo), and the 
attenuation coefficient distribution fE depends on E. This is described by the spectral function 

p(E) which is a probability density function of E E [O, oo). In this case the formulation of the 
measurements P of CT scanners becomes 

P := log（グ）＝ーlog{ 1=  p(E) exp（一鱈）dE}

If fE is independent of E, i.e., fE = fE。,then

log（り）＝ーlog{1= p(E)dE. exp(-R心｝
= -log{exp（一冗f叫｝ ＝ R心。．

Recently, the beam hardening effect and metal streaking artifacts were studied from the 

viewpoint of rnicrolocal analysis. Let D be a metal region in記 Considera simple model of 

spectral function and beam hardening effect of the form 

p(E) =歪X[Eo-s,Eo+s](E), 

f瓜x)＝ fE。(x)+ a(E -E。)XD(x),
where fE。isan attenuation coefficient distribution of normal human tissue, s and a are small 

positive constants, and D is a metal region which is a disjoint union of finitely many strictly 

convex bounded domains with smooth boundaries. Then the measurement P becomes 

P-R1fE0 = -log{ 
sinh(asR贔）

00 

疇 XD}＝区A凸疇）2k.

k=l 

This means that P consists of the normal tissue part and the beam hardening part, and that the 

latter part is a (formal) power series of (Rゅ）2.The main object is the filtered back-projection 

of the power series. Here are pioneering works on the microlocal analysis of metal streaking 

artifacts for this simple model. 
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• Park, Choi, and Seo ([15] Comm. Pure Appl. Math., 2017) proved that the metal streaking 
artifacts are propagation of WF(xv) along the union of the common tangential lines,C 

of metal domains. 

• Palacios, Uhlmann, and Wang ([14] SIAM J. Math. Anal., 2018) proved that the streak-
ing artifacts are conormal distributions supported by £. 

The following figure illustrates a grayscale image of two disks of metal regions with differ-

ent radii, its X-ray transform, the filtered back-projection, and the filtered back projection of 

偉⑫）2,which is the principal part of the beam hardening effect. The southeast image illus-

trates the streaking artifacts of four common tangential lines of the two disks. 

Original Grayscale Image Sinogram X-ray transform 
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Filtered Back-Projection Streaking artifacts 

"" 999 0 

．． ロ
Figure 4. Two disks, the sinogram, the standard FBP, and the FBP of (R1xv) ~. 
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In this note we study the higher dimensional generalization of [14]. 

2 d-plane transform 

In this section we introduce the d-plane transform on the n-dimensional Euclidean space, and 

review the basic facts about CT scanners. Let n = 2, 3, 4,..., and let d = l,..., n -l. We 

denote by G d,n the Grassmannian which is the set of all d-dimensional vector subspaces of 

町． Itis well-known that dim G d,n = d(n -d). The affine Grassmannian is the set of all 

d-dimensional planes in町， thatis, 

G(d,n)={x"+u:び EGd,n,X11 Eび_j_}，

where u_j_is the orthogonal complement of u in町． Set

N(d, n) := dim G(d, n) = (d + l)(n -d) 
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for short. We use notation x" +a= (a, x"). 
We fix arbitrary a E Gd,n, and divide x E町 asx=x'+x"Ea①叶＝町． Thed-plane 

transform of a function f (x) = f (x'+ x") = 0(〈x〉-d-c)is defined by 

応 f(a,x") := 1,,--1--,, f = 1 f(x'+ x")dx', (2) 
””+6 6 

where〈x〉=《「二圧戸anddx'is the Lebesgue measure on rJ. In particular Rd is called the 
X-ray transform off, and R正 ifis called the Radon transform off. 

Next we explain the inversion formula of応． Roughlyspeaking, the formal adjoint of応 is
given as integrals of functions over the set of all d-planes passing through arbitrary fixed point 
XE町． Moreprecisely 

脳 (x):= ~ jBEG(d,n):x嚢｝ ¢（三）dμ（三）

1 
= C(d,n) ！O(n) ¢(x + k ・ 6)dK, 

where cp E C(G(d, n)), C(G(d, n)) is the set of all continuous functions on G(d, n), C(d, n) = 

(47「)d/2f(n/2)/r((n-1)/2),r(-) is the gamma function, O(n) is the orthogonal group, dμ and 
dk are the normalized measures which are invariant under rotations, andび EGd,n is arbitrary. 
The inversion formula of冗dis given as follows. 

Proposition 1 ([8, Theorem 6.2]). For f (x) = 0(〈x〉-d-c)

f= （ー今）d/2囮応f ＝囮（—△が')d/2応f,

where —• X =-82 _．．．-
の1

陀 and―△x"is the Laplacian on叶．
Xn 

Operators陀 and(—ふ）d/2囮＝図(―△x")d/2 are said to be the unfiltered back-projection 
operator and the filtered back-projection operator respectively. 

3 Conormal distributions 

Comparing unfiltered and filtered back projections, one can understand that singularities are 
the essential part of information contained in imaging data. In this note we quantitatively deal 
with generalized functions or the distribution kernels of linear operators. So we use the clas-

sifications of Schwartz distributions based on singular supports, singular directions, and the 
order of singularities. These are called the classes of Lagrangian distributions. This section 
provides preliminaries. we mainly pick up conormal distributions, which are simple examples 
of Lagrangian distributions. 

Definition 2 (Conormal distributions). Let X be an N-dim manifold, and let Y be a closed 

submanifold of X. A Schwartz distribution u E ~'(X) is said to be conormal with respect to 
Y of degree m if 

L1・ ・ ・LMu E勺 f/'::'m-N/4)(X)

forall M = 0, 1, 2,... and all vector fields £1,..., LM tangentialto Y. Denote by I叫X;N*Y),
the set of all distributions on X conormal with respect to Y of degree m. 
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Note that N;Y := r;x/T;Y for any y E Y, and 

||u||°°H(s)（か） ：＝ J=悶，（JA3〈(〉囁（叩）12dく）1／2 

A。:＝ ｛|ll < 1}, Aj := {2j-l ;£ Ill＜が｝，j= 1, 2, 3,.... 

Roughly speaking, a conormal distribution u E I叫X;N*Y) is a distribution on X such that 
u E C00(X¥Y), that is, singsupp u c Y, and the microlocal singularities of u on Y are limited 

to the normal directions of Y. If u E I叫X;N*Y), then WF(u) c N*Y ¥ 0. It is very 
interesting that conormal distributions can be characterized by oscillatory integrals locally. 

Proposition 3 ([11, Theorem 18.2.8]). Let x = (x', x") E酎 x股N-kand let Y = {O} x 
隠N-k= {x'= O}. Then u E ~＇（記） belongs to Jm+k/2-N/4（記；N*Y)if and only if there 
exists an amplitude a(x", t') E S叫]RN-kX記） suchthat 

叫）＝ J げ€'a(x",()d(. 
記

Here S叫]RN-kX記） isthe standard symbol class, that is, we say that a smooth function 
a(x", t') belongs to S呵良N-kx記） iffor any compact set K C股N-kand for any multi-indices 

a'and(3”,there exists a constant C(K, a,(3） ＞0 such that 

18クar,'a(x"，()I;£ C(K,a,(3)〈C'〉m-la'I, (x", ()EK x阻夜

We can replace the conormal bundle N*Y by more general conic Lagrangian submanifold A. 

The elements of I叫X;A) is said to be Lagrangian distributions on X. These are characterized 
as oscillatory integrals with more general phase functions of the form: 

叫）＝Ji1>(x,O)a(x, 0)d0. 

The distribution kernels of Fourier integral operators are Lagrangian distributions. 

We now see typical examples of conormal distributions. 

Example 4 (A characteristic funtion of a smooth domain). If D be a domain in町 withsmooth 
boundary, then the characteristic function Xv of D belongs to 1-1/2-n/4（町；N*8D).

Figure 5. A bounded domain with smooth boundary, and smooth and singular directions 
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Example 5 (The distribution kernal of a pseudodifferential operator). Set 

△ = ｛(x心） ：XE良N},

which is the diagonal part of良NX恥N_lfa(x,~) ES呵記 x酎）， then

K(x, y) = 1N ei(x-y)·€a（パ）d~ EI叫酎 x酎；N＊△），
]RN 

N＊△ ＝ ｛（x,x；ふ弐） : x,~ E酎｝．

y 
x=y 

I 
I 
I 
I 
I 

（ふー~):

X 

Figure 6. The singular support of the distribution kernel of a pseudodijferential operator 

4 Main Theorem 

In this section we state our main theorem of this note, and explain its meaning using some 
figures. Firstly we state our assumption about the metal region, and set some notation. 

A is supposed to be a disjoint union of finitely many ssumption. The metal region D c股nis supposed to be a disjoi 
Dj (j = l,..., J) which are simply connected, strictly convex, and bounded with smooth 
b oundaries ~. := 8D,. Set~ :=8D. 

Denote by v(yj) the unit outer normal vector of ~j at yj E ~j- We consider the set of pairs 
(yj, y砂E~j X江 suchas 

M位):= ｛（y心） E~j X 以： Yj+Ty凸 ＝ Yk+ TYk喜嘔） ＝士v（狐）｝．

We can confirm that this is an (n -2)-dimensional submanifold of ~j x喜 Usingthis we can 
introduce the set of lines 

心：＝ ｛Yj + t(yk -Yj) : (yj血） EM;;l, t E股｝，

（土）Then £)t becomes a cylindrical surface or a cone which is tangent to沈atyj and to泣 atYk 

for all (yj,肌） EM;;l. Setら：＝ば U犀 and,C:= LJら・
j<k 
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Figure 7. 喜畠，£い， and£い

We set the notation for the CT image corresponding to the beam hardening effect as a formal 

series of the form 
00 

fMA :＝ feT -fE。=〉出(as)2k囮(-ふ）d/2[（応籾）叫，
k=l 

where Ak (k = 1, 2, 3,...), a, ands are real-valued constants. We now state our main theorem. 

Theorem 6. Away from瓦

fMA E J-(d+2+n/4)+d(n-d)/2（町；N*ダ）．

The principal symbol of the FBP of（応XD戸doesnot vanish. 

All the known results related to our main theorem are limited to the case (n, d) = (2, 1). 

• Park, Choi, and Seo ([15], 2017) proved that WF(JMA) c N＊ダ．

• Palacios, Uhlmann, and Wang ([14], 2018) proved Theorem 6. 

• Wang and Zou ([16], 2021) studied the studied the case that Dい・ •.,DJ are not neces-
sarily convex. This is difficult setting, and they obtained some results. 

We explain what Theorem 6 says. 

• Type A. If ~i and江 havea common tangential hyperplane, then the common conor-

mal singularity propagates all over the line connecting the tangential points. This is the 

true identity of the metal streaking artifacts. 
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Figure 8. The case that there exists a common hyperplane passing through yj and Yk 
（土）

for（約珈） EM';;¥that is, v（か＝疇） orv(yj) = -v（狐）．
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• Type B. If ~j and江 havea common tangential plane of codimension two, then the 

normal directions at the tangential points are different and no singularity propagates along 

the connecting line. 

ryk 口{
 

一i:
 

一

Figure 9. The case that there is not a common hyperplane passing through Yi and Yk 
（士）

for (Yi, yりEM沐， thatis, v(yi)ヂ嘔） and嘔）ヂ―v(y砂

Finally we state the keys of the proof of Theorem 6. 

Outline of the Proof of Theorem 6. The main part of the beam hardening effect f MA  is the 

FBP of the power series of（冗ゅ）竺 Sowe check the microlocal singularities arising from the 

interaction of nonlinearities, and compute the composition of the canonical relation of R;j and 
the microlocal singularities of the interactions. Roughly speaking the interaction of（応籾）2

is the existence of common tangential lines of Type A or Type B. The canonical relation of囮
accepts all the Type A interactions, and rejects all the Type B interactions. This is the outline of 

the proof of Theorem 6. For this purpose we need to do the following. 

• We could not find the concrete expression of the canonical relation of the d-plane trans-

form except for d = n-1. So we introduce our original local coordinates of T* (G (d, n)), 
• ( 

which are convementto deal withthe canonicalrelation of応 1nT*（町xG(d,n)）¥］, 
and we compute the canonical relation concretely. 

• We investigate the microlocal interactions using paired Lagrangian distributions, which 

was developed in Melrose and Uhlmann [13], and Greenleaf and Uhlmann [4]. 

The latter one is basically the same as the planar case [14]. 口
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