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WKB and microlocal approach to various 

Bohr-Sommerfeld quantization rules 

Setsuro恥 jiie(Ritsumeikan University) 

The well-known Bohr-Sommerfeld quantization rule is the condition for an 
energy入tobe an eigenvalue of a lD Schrodinger operator P = -h公＋V(x)
with a simple well potential V(x). It is an equation with respect to the 

spectral parameter z of the form 

-e iS(z)/h = 1, 

where S(z) = J,y(z) ~dx is the action along the periodic classical trajectory 
,(z) in the phase space T屯～比 X 恥 associatedwith the simple well. 
A root of this equation gives an'approximation'of an eigenvalue when the 

semiclassical parameter h is small. 
This fact can be justified rigorously in various mathematical methods 

using WKB method. In this report, we propose a method based on the 

microlocal analysis. The advantages of this method are the followings: 

• We construct solutions only along the periodic curve 1（入） inthe phase 
space. 

• We do not need to care about the divergence of the microlocal WKB 
expansion. 

• This approach is in line of the intuitive interpretation of the rule that 
the quantum wave should coincide after a tour around 1（入） withthe 

original wave. 

• This method is naturally adapted to the quantization of quantum res-
onances in multi-dimension or for systems. 

We explain this microlocal method with emphasis on the above features 
and with some recent applications. 
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1 Review of the Bohr-Sommerfeld rule 

Let us consider the eigenvalue problem 

Pu= zu, 

for the lD Schrodinger operator 

h2 
d2 

P=Ph= — +V(x), 
dx2 

(1) 

where V (x) is a multiplication operator by a function called potential. Here, 

by convention, the mass m of the particle is 1/2 and the Planck constant 
Ii is replaced with h that we regard as small parameter, called semiclassical 

parameter. We want to study the asymptotic distribution of eigenvalues near 

a prescribed real energy level z。ash→+0. 
On the potential V and the fixed energy z0 E良 weassume a simple well 

condition : V is a smooth real-valued function on恥 andthere exist a く (3

such that the condition 
V(x) -z。

>0 
(x -a)(x -/3) 

(2) 

holds for all x E股． Thuscondition means that V has two turning points 

(zeros of V(x) -z0) a,{3，which are both simple and that the interval [a,{3] 
is classically allowed (i.e. V(x)~ z0) while the complement is classically 

forbidden (V(x)：：：：：： Zo)． 

Let ~ denote the momentum variable. The phase space is the product 
space氏 X恥． Theunderlying classical mechanics is described by the classical 
Hamiltonian 

p(x,＜)＝ぐ＋V(x)

corresponding to P defined by (1) and its Hamiltonian vector field 

H 
opo opo M-a 

p・ ・= 
淡ox ox洸

= 2~ 
枷

V'(x) 
0 
淡・

The integral curves of Hp are called classical trajectories. The value of p is 

invariant along the classical trajectories (energy conservation). 
The simple well condition (2) implies that Hp has one and only one pe-

riodic classical trajectory,(z) on the hypersurface p―1 (z0). This property 

holds for z E股 closeenough to z。.Wefix such an interval J. For z in I, we 
define the action integral by the following line integral: 

S(z) := 1(z) ~dx. 
'Y(z) 
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This is the volume of the domain bounded by,(z). 
In addition to the simple-well condition, we assume 

lim_inf V(x)>supJ. 
国→00

(3) 

Then the spectrum of the self-adjoint operator P consists of eigenvalues in I 

for all h > 0. 
It is known as Bohr-Sommerfeld quantization rule (we will write simply 

BS rule below) that the eigenvalues near z。are'approximated'bythe roots 

of the equation 
eiS(z)/h + l = O, 

or equivalently, 

S(z) = (2k + l)1rh, k E Z, 

(4) 

(5) 

when h is small. Since S(z) is smooth near z = z。andS'(z0), the period 
of the classical trajectory 1(z0), is positive, the roots｛zk} of (5) make an 
increasing sequence of real numbers with Zk -Zk-l ~ 21rh/S'(z0) near z。•

In the particular case where V(x)＝丑 (harmonicoscillator), the simple 
well condition is satisfied for all positive z. The periodic classical trajectory 

and the action integral are given by 

,(z) =｛丑＋ぐ＝ z}, S(z) = 1rz. 

Hence the BS rule gives 

咋＝（2k+ l)h. 
This exactly coincides with the eigenvalues of the harmonic oscillator. 

In the general case, the BS rule does not give the exact eigenvalues, but 
give the eigenvalues modulo a small error in h. This fact has been proven in 
various ways in the history. In this report, we present a recently developed 

approach using the microlocal analysis. 

Let 
BSパI):= {z EI; eiS(z)/h + 1 = O}, 

be the set of energies satisfying the BS rule and 

EVパI)：＝びdisc(Pi砂nJ

the set of eigenvalues of P = Ph in J. 

Theorem 1. 1. It holds that 

dist(BSh(J),EVh(J)) = o(h) ash→0. 

More precisely, for any zh E EV h(I), there exists多hE BSh (I) such that 

|初-互|＝ o(h),and for anyゑhE BS h (I), there exists zh E EV h (I) such that 
似ー加＝ o(h).
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2 Variations in resonance quantization 

Let us modify our simple well potential V outside a large enough compact 

set so that it decays at infinity, keeping the simple well condition for z E I. 
If the energies z in the interval I are positive, the Hamiltonian flow consists 
of a periodic trajectory,(z) and'non-trapping'ones. In such a setting, we 
have the following spectral property of the operator P: 

• The spectrum of P on I is essential: I C CYess(P). There exists no 
eigenvalue in I. 

• The cutoff resolvent x(x)(P -z)-1x(x) has a meromorphic extension 

from CC+ to (C_ across正， andits poles in (C_ appear near the roots 
of the BS rule. 

• The poles are characterized as eigenvalues of P0 := Ui。PU01,where Ui。
is a complex dilation (U0f)(x) := f(e叫）．

These poles are called resonances. The imaginary part of resonances (some-

times called width of resonance) describes the exponential decay rate of the 
quantum state. In fact, if we formally replace the operator P with a reso-
nance z =研一切 inthe time evolution operator e―itP/h, we have 

le―itz/hl = e―z1t/h. 

2.1 General facts on the semiclassical resonances in 

relation with the classical trapped set 

Here we consider the general Schrodinger operator 

P=-h公＋ V(x)

in the multidimensional Euclidean space即． Thereal-valued smooth poten-

tial V (x) is supposed to decay at infinity, and analytic in sectorial domains 
near infinity. This last assumption is used to define resonances by a complex 

dilation. For the purpose of this report, it is enough to consider compactly 
supported smooth potentials. 

The underlying classical Hamiltonian is 

n 

p(x, ~) =|＜門＋V(x)＝こぢ＋V(x).
j=l 

For each z E良 wedefine the trapped set on the energy hypersurface: 

K(z) := {(x, ~) E p―1(z);t→expt凡(x,~) is bounded}. 
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A fundamental fact in the semiclassical theory of resonances is the follow-

ing theorems which suggest the close relation between the trapped set K(z0) 

and the asymptotic distribution of resonances in the semiclassical limit near 

a real energy z0. 

Theorem 2.1. (/7}, {12}) There is no resonance'near'non-trapping ener-

gies z (i.e. K(z) = 0). 

More precisely, Helffer and Sjostrand proved the non-existence of reso-

nance in a neighborhood of size('.)（1) of a non-trapping energy under the 

global analyticity condition on the potential, whereas Martinez proved the 

same statement in a neighbor hood of size('.)（hi log hi) under the analyticity 
condition only near infinity (which is our setting). 

Another fundamental fact is that the resonant states are "concentrated on 

the trapped set". In order to state this fact, we should introduce semiclassical 

and microlocal terminologies. 

The semiclassical Fourier transform and its inverse are defined respec-

tively with a small parameter h by 

1 
ぽJ)（く） ：＝ （2社）号J艮ne―ix-E,/h f (x)dx, 

ぽ喜）（X):= ~ 1n eix-E,/h 
(2叶）］即

g(~)df 

Definition 1. Let u(x, h) be anび functionin町 dependingon h with 

llullさ1for all small h > 0. We write 

u = 0 at (xo,fo) E股2n,

if there exist Xi (x) E C,訳（賊門 withx1(xo) = 1 and x2(~) E C,炉（政門 with

x(fo) = 1 such that 

llx2況X1ull£2 = O(h00). (6) 

Remark that the left hand side of (6) is equal to||びいx2:fhX1ullL2 thanks 
to the unitarity of the Fourier transform, and 

1 
町X2ザhXlu = ~ J J ei(x-y){/hXl (y)ゅ（珈(y)dxd(

This is a particular form of the so-called semiclassical pseudo-d~汀'erential

operator. Let x(x, () be a smooth function defined in the phase space. 

The semiclassical pseudo-differential operator called Weyl quantization xw 

of x(x, () is the operator defined by the integral 

x叫＝ 1 ）-;;; ff ei(x-y){fhx (~,() u(y)dxd( 
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In fact the above notion'microlocally zero'is us叫 lydefined by using the 
semiclassical pseudo-differential operator and rather called microlocaly in-

finitely small (see [6], [11]). 
The second fundamental fact is the following assertion on the resonant 

state (or quasi-mode): 

Theorem 2.2. (/2)) If u = u(x, h) EL噂） satifies

{ ||（Po -z)u|| ＝ 0(h°°)， 

u三 0 microlocally on K (z) 

then llull = O(h00). 

In the case of the lD eigenvalue problem, this theorem can be replaced by 
a simpler fact that the eigenfunction (or quasi-mode) cannot be microlocally 

zero along the characteristic set,(z). This fact will be used in the proof of 
Theorem 1.1 given in section 3.3. 

2.2 Semi emiclassical resonance distribution created by a 

trapped trajectory 

After the discovery of Theorem 2.1, we have been interested in the resonance 
asymptotics near a trapping energy. In particular, the precise asymptotic 
distribution have been studied for trapped sets with simple geometrical struc-

ture such as a periodic trajectory, hyperbolic fixed point and homoclinic or 
heteroclinic trajectory etc. Here we quickly review some of them. Here we 

are interested in the BS rules and do not specify the rigorous meaning of the 
'approximation'for simplicity. 

2.2.1 Hyperbolic closed trajectory 

Suppose that the trapped set K(z0) consists of a hyperbolic closed trajectory. 

This is the case when for example the potential V(x) consists of two suitably 
shaped bumps like 

V(x) = !(Ix -al)+ g(lx + al), (7) 

where J(r) and g(r) are strictly decreasing functions on股十 withcompact 
support on [O, 1) such that their extensions to股 aseven functions are smooth. 

If a = (a1, 0,..., 0) with a1 > 1 and O < z。<min(f (O), g(O)), the trapped 
set K(z0) consists of a unique closed trajectory whose x-space projection is 

an interval on the xi-axis contained in (-a, a). 
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This periodic trajectory is hyperbolic. Let｛化（z）｝］二f,｛化(z)-1}］二fbe the 
eigenvalues with l0j(z)I > 1 of the linearized Poincare map associated with 
this hyperbolic closed trajectory. Then we have the following result about 
the asymptotic distribution of resonances. This is a potential scattering 

version of the famous paper by Ikawa [10] on the resonance distribution for 
the obstacle scattering. 

Theorem 2.3. (/5)) There exists an analyticfunctionp(z) satisfying lp(z)I = 

101 (z) ・ ・ ・ 0n-1 (z)|―互 suchthat the resonances closest to the real axis'near'z。
are'approximated'by the roots of the BS rule 

p(z)e iS(z)/h = 1. 

This is a natural extension of the BS rule (4) for eigenvalues to the 
higher dimension. We have p(z) instead of -1. We easily see by taking 
the modulus of this rule that any real z can no longer be a root, since 

lp(z)I = l01(z) ・ ・ ・ 0n-1(z)I 方 <1.The above BS rule is equivalent to 

S(z) = 2k叶＋ihlogp(z), k E Z, 

h and the width of these resonances is approximated by-%区J.log化(z0).The 
resonance width is smaller when 0/s are smaller. In other words, the life 
time is longer when the trap is stronger. 

In the paper [5], the authors give not only the closest resonances to the 

real axis but also all the resonances which make a lattice structure. 

2.2.2 H ・・omoclinic trajectory 

In the above example (7), suppose that f(O) < g(O). Then the trapped set 
K(z0) for z。=f(O)consists of a fixed point (a, 0) and a homoclinic trajectory 
which tends to (a, 0) as t tends to +oo and -oo. 

We may expect that the asymptotic distribution of resonances strongly 

depends on the geometry near the fixed point since the classical particles on 
the trapped set spend infinite time at these points. In the case where the 

fixed points are hyperbolic, we have the following results. 

Suppose that (a, 0) is a hyperbolic fixed point with exponents土入1,...，土入m

This is the case when the potential has a non-degenerate maximum at x = a 

and the Hessian V" (a) at this point has negative eigenvalues-入i/2,...，ー況／2.
Let入1is the smallest among allふ's.

We assume that K (z0) consists of this hyperbolic fixed point and an 

associated homoclinic orbit,. Let ((z) be a linear function of z defined by 

(（z) ＝ i (；言心一tz-hZo) 
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Theorem 2.4. (/2)) There exists an h-independent function q(() such that 
the resonances closest to the real axis near z。are'approximated'bythe roots 

of the BS rule 
hく(z)eiS(zo)/hq(((z)) = 1. 

The above BS rule is equivalent to 

2k叶ー S(z0) . { h.;-
Z = Zo ＋入1 |logh| -t （エふーi入llogq(〈（z))

h 

J=2 | log h|） • 
We see from this formula that the width of resonances closest to the real 

axis is of order h, or more precisely ~ ~区?=2 ふ， if n 2:: 2, but it is of 
order h/1 log hi, infinitely smaller than h if n = 1. We also see that the 

distance of neighboring resonances is of order h/1 log hi. Compared with the 
usual eigenvalue or resonance distribution, we observe a densification at a 

homoclinic level. 

2.2.3 Energy-level crossing 

Let'.Pbe a lD matrix Schrodinger operator 

P=（贔閃），
where Pi and P2 are semiclassical Schrodinger operators with real valued 
smooth potentials Vi and怜：

h2 
d2 

pj =-— +vj(x) , 
dx2 

and W is a first order differential operator 

d 
W = r0(x)十 r1(x)h+-

dx 

with real-valued smooth bounded coefficients r0(x) and r1(x). Such an op-
erator appears as a model of the Born-Oppenheimer approximation in the 
quantum chemistry, where the semiclassical parameter h comes from the ratio 

of the mass of electrons and the nuclei. 

We assume that Vi (x) is strictly increasing and怜(x)is strictly decreas-
ing. Then any energy z。isa non-trapping for both p1 and p2, the classical 

Hamiltonian associated with Pi and A respectively. Theorem 2.1 implies 
that the scalar operators Pi and P2 have no resonance near z0. 
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On the other hand, we also assume that the graphs of Vi and V2 cross 
at one point, say at the origin x = 0. Then, for energies z above Vi (0) = 
怜(0)=: Vo, the classical trajectories 11(t) for p1 and 12(t) for p2 on the energy 
surfaces p11(z) and p21(z) respectively cross at two points (0, J了＝冗） and

(0,-vz-=-Vo). More precisely,勺1(t)starting from (0, vz-=-Va) at time t = 0 
goes to the other crossing point (0,-vz-=-Va) at a positive time t1 and 12(t) 

starting from (0,-̀＝Vo) at time t1 goes to (0,` ＝間） attime t1 + t2 
with a positive t2. The union of these trajectories 

（且1l(t))u(t1<t旦1+t2訊t))

make a closed curve in the phase space. Let S(z) be the area of the domain 
bounded by this closed curve. Then we have the following theorem: 

Theorem 2.5. (/8}) There exists a non-zero constant q。suchthat the reso-

nances near z。are'approximated'bythe roots of the BS rule 

q。heiS(z)/h 

The above BS rule is equivalent to 

= 1. 

1 
S(z) = 2k1rh -ihlog ~ + ihlogq。・

h 

We see that the imaginary part the roots is of order hi log hi. This model 
supplies us with an interesting feature of matrix Schrodinger operators. Such 
a matrix valued operator has multiple classical dynamics. Even though each 
dynamical system is non-trapping at an energy, this example says that there 

may be resonances near this energy created by a generalized closed trajectory 
made by a combination of different systems. 

Remark that, even in the case where both Vi and怜 arestrictly increasing 
(or decreasing), the classical trajectories may make a bounded domain but 

such a domain does not create resonances with width of order hi log hi. In 
fact the two classical trajectories do not make a closed curve if the orientation 
is taken into account. 

3 Microlocal approach 

There are various methods to derive the Bohr-Sommerfeld quantization con-
dition of eigenvalues or resonances but they are usually based on the con-
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struction of WKB solutions, which are the power series solutions to the semi-
classical Schrodinger equation with respect to the small parameter h: 

00 
u(x, h) = eゆ（x)/hL叫x)が． (8) 

k=O 

The main difficulty consists in the divergence of this infinite series. This is 

due to the fact that the small parameter is multiplied to the principal term 
(i.e. the Laplacian) of the differential equation. This results not only in the 

divergence of the series but also in the singularities of the phase <fa(x) and 
the symbols ak(x) at the turning points or at the caustics. Thus, we need 

to give a meaning (asymptotic expansion, resummation, etc.) to such formal 
solutions away from the singularities, and to study the Stokes phenomena, 
namely the discontinuous change of asymptotic form, which occur at the 

singularities. 
The microlocal approach to the eigenvalue or resonance asymptotics cre-

ated by a closed trajectory I consists in the study of the eigenfunctions or 

resonant state along I in the phase space. More precisely, we construct a 
microlocal solution at a point p0 E 1, and continue it along,. Then the 
matching condition at p。ofthe initial microlocal solution and the final one 

after the tour along,(z) gives the Bohr-Sommerfeld quantization rule. We 
justify this formal procedure by contradiction arguments. 

The advantages of this method are the followings: 

1. We have only to construct solutions along the periodic curve,(z). This 
is due to the fact that the normalized eigenfunctions are microlocally 
concentrated on 1(z) in the semiclassical limit. More precisely, an 

eigenfunction'microlocally zero'on the trapped set,(z) is globally 
identically zero (see Theorem 2.2 and the remark after this theorem). 

2. We need not to care about the divergence of the microlocal WKB ex-
pansion. Microlocal solutions are defined modulo('.)（h00), and hence a 

Borel resummation of a divergent WKB series gives a microlocal so-
lution and it is a generator of the one-dimensional microlocal solution 
space associated with a Lagrangian submanifold in the energy surface. 

3. This method is naturally adapted to the quantization of quantum res-

onances in multi-dimension or for systems. In fact, this fact has first 
been established for a problem of resonances in higher dimension cre-

ated by a homoclinic trajectory ([2]). It is also used in the quantization 
of eigenvalues and resonances for matrix Schrodinger operators ([8]). 
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3.1 Microlocal WKB construction 

Let A be a Lagrangian submanifold in p―1 (z) (recall p(x,〈） ＝ |tl2+ V(x)) and 
p0 = (x0, fo) a point on A near which the projection A→匹 isdiffeomorphic. 
Then one can construct a formal solution of the form (8), where ¢ is a 

generating function of A: 

A={(x,~);~=8凸(x)},

and ak(x) are determined inductively solving the transport equations along 
the classical trajectories: 

28x¢ ・ 0辺 K+（△cp) ak = i△ak-1・

The power series区こ。ak(x)が isdivergent, but it suffices to take a Borel's 
resummation a(x, h), which satisfies, locally near x0, 

(P -z) (a(x, h)eゆ(x)/h)= ('.)(hoo). 

This means that u is a microlocal solution near p0. 

ion of microlocal solutions 3.2 Propagati 

Let p。andp1 be two points connected by a classical trajectory I of principal 

type. Let u(x, h) be a microlocal solution in a neighborhood of字

(P-z)u三 0 on 1. 

We consider a microlocal Cauchy problem: Does a microlocal datum in a 
neighborhood of p。determinesthe microlocal solution in a neigborhood of 

p1? The answer is yes. The following theorem implies the uniqueness of the 

microlocal Cauchy problem. 

Theorem 3.1. If u = 0 near p0, then u = 0 near P1・

This is nothing but the semiclassical version of the well known theorem 
of propagation of singularities due to Hormander (see [9]). 

Suppose that the projection of A to図 isdiffeomorphic at both p。and
p1. Then the microlocal solution at p1 is explicitly described modulo('.)（h) in 
terms of the initial datum at p0・

Theorem 3.2. If u is of WKB form microlocally near p0: 

u三 a(x,h)eゆ(x)/h near Po, 
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then it is als o of WKB form microlocally near p1 ・・

u = b(x, h)e炒(x)/h near Pt・

Moreover, the phaseゆisthe generating function of the evolution of A near 

p1, and there exists an integer v such that 

叫）＝¢（Xo)＋ JP1 tdx -四vh.
Po 

2 

The integer v is called M aslov index. 

The symbol b(x, h) is expressed in terms of a(z, h), but we omit this. 

3.3 Justification of the Bohr-Sommerfeld quantization 

condition 

Here we prove Theorem 1.1 on the simplest 1D eigenvalue problem using the 

contradiction arguments established in [2] for the justification of the BS rule 

for resonances (see Theorem 2.4). 
Let z = zh be in a complex neighborhood of I of size(')（h). The following 

proposition asserts the existence of elements of BSh(J) near each eigenvalue. 

Proposition 3.3. If there exists a positive h-independent constant C such 

that, for every small h, 

dist (z, BSパI))2: Ch, 

then z ~ EV h(I) for small enough h, and there exists NE  N such that 

(P-z)―1=('.)（h-N) ash→ +0. 

(9) 

Proof. If the conclusion were false, then there would exist u = u(x, h) E L2 

and z =外 satisfying(9) such that 

llull = 1, and (P -z)u =('.)（hoo). 

Let p。bea point on the periodic trajectory 1 =,(Re z) where the x-space 
projection is diffeomorphic. Microlocally near this point, u is of WKB form: 

u(x, h) = a(x, h)e砂(x)/h near Po, (10) 

where a(x, h) is a resummation of the infinite series江叫x)が． Weapply 

the theorems in the previous section to continue u along I from p。toPo, the 
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same point as p。butafter a tour along the periodic classical trajectory 1・

Then we obtain 
u三 aei(<f;+S(z))/h-m ＾ near p0, (11) 

because the Maslov index is v = 2 counted at two turning points on 1(z). The 
two expression (10) and (11) should coincide. This compatibility condition 
reads 

aeゆ／h(l+ eiS(z)/h)三 0 near Po• 

The condition (9) is equivalent to that 1 + eiS(z)/h is estimated from below 

by a positive constant. Hence the above identity implies 

u三 aeゆ／h三 0 near Po• 

It follows from the propagation of singularities (Theorem 3.1) that u is mi-

crolocally zero all along 1: 

u三 0 on,(z). 

Finally we apply Theorem 2.2 to conclude that u is globally infinitely small: 

llu||正(記)=('.)（hoo). 

This is a contradiction against the assumption that u is of norm 1. I 

On the contrary, the following proposition asserts the existence of eigen-
values near BSh(J). This proposition with the previous one finishes the proof 

of Theorem 1.1. 

p roposition 3.4. Letゑ＝玩 EBSh(J). For any E > 0, there exists h。>O 
such that for any h < h。,onehas 

EVh(J) n (z -ch, z +ch)#-0. 

Proof. If this were false, then there would exist c > 0, a sequence h tending 

to O andゑ＝祝 EBSh(J) such that EV h(I) n （乏ー €h，ゑ十 ch) = 0. Since 
the eigenvalues are real, the interval （乏— ch, 乏十 ch) in this assertion can be 
replaced with the complex disk D(z, ch) centered at多withradius ch. 

Take z E 8D（ゑ， ch)and a point p。onI where the x-space projection is 
diffeomorphic. 

Let w(x, h) be a microlocal WKB solution to the homogenous equation 

(P -z)u = 0 near p0, and set 

v := xf [P, xf]w. 



53

Here xf and翡 arethe Weyl quantization of the symbols x1(x ,~), X2（パ）
satisfying the following properties: Xi is supported in a small neighborhood 

of p。andit is identically 1 in a smaller neighborhood of p0. Then▽X1 n, 
consists of two small connected curves; one is in the forward side of p。with
respect to the time parametrization of 1, and the other one is in the backward 

side. x2 is identically 1 on the curve in the backward side and supported 
nearby so that it vanishes on the forward side. 

The function v is inび（民） withbounded norm with respect to h. Since 

z is at a distance Eh from BSh, Proposition 3.3 permits us to define u := 
(P -z)-1v and guarantees that the norm of u is at most polynomial in h. 

Let us observe this function u microlocally along I from the initial point 
Po to the final point p。asin the proof of Proposition 3.3. 

Since v三 0microlocally near p0, u is a microlocal solution to the homo-

geneous equation (P -z)u = 0 there, and hence it is of WKB form: 

i<j,/h u = ae・ri ・・ near Po・ (12) 

We continue this along I in the direction of the time evolution of this classical 
trajectory. Let p1 be a point on this way outside the support of x1. It is still 
of WKB form since v三 0is valid from p。top1: 

u = ae iふ／h near p1・ (13) 

Now we compute the microlocal data of u at p0 continuing it from p1. We 

writeうthissub-curve from P1 to Po-u is the sum u = Uhom + Uinhom of the 
solutions to the following two'microlocal Cauchy problem': 

{ （P -z)uhom = Onearう，

Uhom 三 aeief,/h near pぃ

{ （P -z)uinhom 三 v nearぅ，

柘nhom = 0 near P1・

Just as in the proof of Proposition 9, we have 

Uhom三 ae鵡＋S(z))/h-irr near p0. 

On the other hand, Uinhom is explicitly given by 

w 
Uinhom = Xi W. 

In fact, we have 

(P -z)x『w三 [(P-z), xf]w = [P, xf]w三 xr[P,xf]w = v, 
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since x2 is identically 1 on the support of the symbol of [ P, xf] restricted 
onう， whichis equal to (supp▽x1) nう． Theinitial condition is also satisfied 

since p1 is outside the support of Xi・

Thus we have obtained 

u三 aei(¢+S(z))/h-i1r + w near p0, 

because Xi is identically 1 in a neighborhood of p0. 
Now the compatibility condition between (12) and (14) reads 

ae坤／h三ーeiS/hae坤／h+ w near p0, 

and, since u = aeゆ／hnear p0 and u = (P -z)-1v, we get 

(P-z)―lV = w 

1 + eiS/h 
near Po・

(14) 

We integrate this identity with respect to z along the boundary 8D（ゑ， €h）

laD(z,Eh) (P -z)―1vdz三 [D(2€h) 1 + e↑S(z)／hdz. 

The left hand side should be zero because there exists no eigenvalue in 

D（ゑ，Eh)by assumption. On the other hand, the right hand side does not 
vanish since乏isa unique zero of 1 + eiS(z)/h. This is a contradiction. I 
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