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SURJECTIVITY OF CONVOLUTION OPERATORS 

TOMOYUKI KAKEHI 

ABSTRACT. In this article, we will explain the surjectivity of convolution operators on 
Euclidean spaces and on noncompact symmetric spaces. We will also give an application 
of our main result to PDE theory. Basically, this article is a brief summary of the 
joint work with Jens Christensen, Fulton Gonzalez, and Jue Wang. (See [CG Kl 7] and 
[GWK21].) 

1. INTRODUCTION 

Let us start with a convolution operator on the Euclidean space. Let μ E £'（町） bea 
compactly supported distribution on町． Thena convolution operator Cμ : C00国） → 
COO（町） isdefined by 

(1.1) C』(x):= f * μ(x) = 1n f(x -y)dμ(y), for f E C00（町）．
即

We see easily that Cμ is well-defined as a continuous linear operator from C00国） to
itself. The following are important examples of convolution operators. 

Example 1.1 (Mean value operators Mr on記）． Forr > 0, we define the mean value 
operator Mr on C00（町） by

1 
(1.2) Mr J(x) := Vol（ふ）［ESr f(x + y) dSr(Y), for f E C00（町），
where Sr = {y E町 IIYI = r} and dSr(Y) denotes the canonical measure on Sr. If we 

1 
takeμ= 姪， thenwe see easily that Mr f is rewritten as Mr f = f * μ = C,』＝ 

Vol(Sr) 
（他 denotesthe delta density whose support is Sr.) 

Example 1.2 (Solution operator of the wave equation on艮門． LetEbe the solution to 
the wave equation 

(1.3) 冴u―△U=0, u(O, x) = 0,叫0,x) = 5(x), 
8 

where Ot = ~ and 8 denotes the delta density. Then the solution to the wave equation at 
(1.4) o;u―△u=O, u(O,x)=f(x)，叫0,x) = g(x), 

is given by 

(1.5) u(t, x) = OtE(t, ・) * J(x) + E(t, ・) * g（砂
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Here we note that 

(1.6) 
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SuppE(t, ・) C {x E罠nI lxl：：：：： |ti}, 

for each t E罠． Therefore,E(t, •) E £'（町）． Inparticular, if n ~ 3 is odd and f = 0, then 
the solution operator is given by 

n-3 

1 1 2 

(1.7) u(t, x) = E(t, ・) * g(x) = n (i at)~ { tn-2 Mltlg(x) }. 

We also note that the mean value operator defined by (1.2) appears in the R.H.S. of (1.7). 

Let us now consider the following. 

~- When is the convolution operator Cμ surjective? 

The difficulty lies in the fact that we can no longer consider Cμ to be a Fourier multiplier. 
—ー一―→ ^ 

In other words, the equality f * μ = f μ does no longer hold for a general f E C00（恥門．
Ehrenpreis solved the above problem in [Ehr60]. From now on, we introduce a certain 
condition on entire functions on (C叫andstate the main theorem of [Ehr60]. 

Definition 1.3. An entire function F on en is said to be slowly decreasing provided that 
there exist constants A, B, C, D > 0 such that 

(1.8) sup{ IF(()I; I(-~I< A log(2 + IW} ~ B(C + 1w-D 
for any point ~ E町．

Then Ehrenpreis proved the following. 

Theorem 1.4.([Ehr60]; see also [Hor05], Chapter XVI.} Let μ E汐＇（町）． Thenthe 
following two conditions on μ are equivalent: 

(a) The convolution operator Cμ: C00（町）→COO（町） issurjective. 
(b} The Fourier-Laplace transformμ is slowly decreasing. 

In the above theorem, the Fourier-Laplace transformμ is given by 

(1.9) 叩）＝ J e―i(-x dμ(x), 
股n

for (E <Cn. 

As an application of Theorem 1.4, K. Lim showed the surjectivity of the mean value 
operator Mr of Example 1.1 in his Ph. D. thesis [Lim12]. Following Lim's idea, we will 
prove that Mr is surjective. 

1 
Let us putμ= 

Vol（ふ）
姪． Thenthe Fourier-Laplace transform μ is given by 

叩）＝
1 
Vol（ふ）［ESr e―i(・x dSr(x) 
1 

= Vol(Sn-1) JWESn-l e―ir(-w dS(w) = j½n-l(rは言），
(1.10) 

where Jv(z) denotes the normalized Bessel function defined by 

(1.11) ju(z) ＝叩＋ 1）と (-l)k (Z¥2k 

k=O 
K!r(K + U + 1）し）．
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Here we note that in the R.H.S. of (1.10)か （八凡で） isa holomorphic function ofぐく＝引,-1

江＝1(J. Making use of the equalityじ）］（z)= r(v + l)J,,(z) and the asymptotic 
2 

expansion formula for Bessel function J,,(z), we have 

(1.12) j,,(z)～喜四(v+ 1) lz|―"¥ cos(z一竺＿匹） as lzl→oo, 'Tr--,. -i,-, ---,- 2 4 

which means that μ(() has a polynomial decay at infinity. In particular, μ(() is slowly 
decreasing. Hence, by Theorem 1.4, we have 

Theorem 1.5 ([Lim12]). The mean value operator Mr : C00（恥門→ COO（町） issurjective. 

Remark 1.6. K. Lim also obtains the surjectivity of the mean value operator on the 3-
dimensional hyperbolic space lHI3 in his thesis [Lim12]. 

We will explain one more application of Theorem 1.4. Let P(() be a nonzero polynomial 
of (E en and let P(D) be the corresponding constant coefficient differential operator on 

町． HereD = -=-( 
1 8 8 

i 8五 '8xれ
• • •, -i-). Then it was a famous but very difficult problem to show 

the surjectivity of P(D) : C00（町） → COO国）， andfinally Ehrenpreis and Malgrange 
solved the problem at the same time. (See [Ehr54], [Ehr56] and [Mal54].) If we use 
Theorem 1.4, then this problem is solved in the following way. Let μ = P(D)5 E £'（町），
then we see that P(D) is written as the convolution operator Cμ,-In addition, the Fourier-
Laplace transformμ(() ofμ is given by the polynomial P((), which is obviously slowly 
decreasing. Thus by Theorem 1.4, P(D) : C00国） → COO（町） issurjective. In fact, after 
Ehrenpreis proved the surjectivity of P(D), he continued his research on this subject, and 
finally he obtained Theorem 1.4. 

2. CONVOLUTION OPERATORS ON THE POINCAR丘DISK

In the introduction, we explained the problem of surjectivity for convolution operators 
on町． Weconsider the same problem for convolution operators on general noncompact 
symmetric spaces. However, for the sake of simplicity, we first deal with the case of the 
Poincare disk. 
Let D be the Poincare disk, namely, the unit disk { z E CI lzl < 1} with the Poincare 
metric d茫＝ （1-x2 -yい（d呼＋耐）， wherez = x + iy E'D. Let r = dist(z1,む） for
Zぃ砂 E'D.Then r is given explicitly by the formula 

(2.1) 
因―⇔|
~ = tanh r. 
叫

Let 

(2.2) G=SU(l,1)={ (i ~) la,bEC,lal2-lbl2=1 }, 
(2.3) K = S(U(l) x U(l)) = { (~ ~) I lal = 1} ・ 

As is easily seen, G acts transitively on V by 

(2.4) 
az + b.  (a b 

g ・ z = ~ft for g = (E ~) E G, z EV. 
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and K is the stabilizer of the origin o. Therefore, we can identify V with the quotient 
space G / K, which turns out to be a noncompact symmetric space. Here we note that in 
(2.4) the map Vぅz→g-z EV  is an isometry. Now we define a convolution on V. Using 
the action of G on V, a function on V can be viewed as a funtion on G. More precisely, 
we correspond a function f on V to a function g→f(g ・ o) on G. (In other words, the 
function g→f(g ・ o) is the pull back off by the canonical projection G→G/K = V.) 
Using the above identification and the convolution on G, we define the convolution Ji* h 
of f1, f2 E C岱(V)by 

(2.5) f1 * f2(z) ＝/ fl(h. o)f2(h―1g-o)dh, for z=g・o. 
hEG 

Here we note that the equality f1 * h = h * Ji no longer holds for general f 1, h E C,『(V)
due to the fact that G is non-commutative. 
In a similar way to (2.5), for f E C00(V) and a compactly supported distribution 
μ E £'(V), we define the convolution f * μ. Finally, we define the convolution operator 
Cμ: c00(v)→c00(V) by c』=f* μ. 
As an important example of the convolution operator on V, we consider the mean value 
operator. For a fixed r > 0, let 

1 
(2.6) Mr J(z) = ~ 1Eふ(z)f(w) dSr(w), for z EV, f E C00(V), 
where Sr(z) = {w E Vldist(w,z) = r} and dSr(w) denotes the canonical measure on 
ふ(z). Then Mr is defined as a continuous linear operator on C00(V). Here we take 
μ = Vol(Sr(o)）―15ふ(o)E £'(V), where 6sr(o) denotes the delta density whose support is 
ふ(o).Then we see easily that Mr f = Cμf. Moreover, we have the following. 

Theorem 2.1 ([CG Kl 7]). Mr : C00(V)→C00(V) is SUガective.
The above theorem is a special case of the main result of our paper [CGK17]. See 
Theorem 3.1 below. 

3. FOURIER-LAPLACE TRANSFORM ON THE POINCARE DISK 

In this section, we introduce the Fourier-Laplace transform on the Poincare disk'D in 
order to state the surjectivity theorem for convolution operators on D. 
For z E'D and b E 8D竺 S1,we define〈z,b〉by

2(z,b〉 1-|z|2 
e = 
lz -bl2. 

(3.1) 

We note that〈z,b〉isconstant on a given horocycle tangent to b E a'D. For this reason, 
the function'Dぅ z→ eい＋1）〈z,b)can be regarded as a plane wave on'D for入E股．
As is well known, a plane wave ffi.nぅ x→eirw-x (r E股，wE gn-1) on町 satisfies
△J?.n eirw-x = -r2eirw-x. Similarly a plane wave on'D satisfies 

(3.2) △ve（ハ＋1）〈z,b〉=-（入2+ 1) e（込＋1）〈z,b〉

where△v denotes the Laplace-Beltrami operator on'D corresponding to the Poincare 
metric. Using the above Poincare disk analogue of plane waves, for f E C0('D), we 
define a function町（入，b)of（入，b)E股xゆ by

(3.3) 町（入，b)= l e(-i入＋1）〈z,b〉f(z)dm(z), 
t) 
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where dm(z) = (1-lzl2)-2dxdy is the canonical measure on V. We call the above defined 
function Ff on JR X av the Fourier transform of f. 
For f E C00(V) and g E G, we put p9f (z) := f(g―1 • z). We say f is K-invariant if 
pkf = f for any k E K. If f E C,岱(V)is K-invariant, we see that Ff is also K-invariant 
in the sense that Ff（入，k・ b)＝町（入，b)for any k EK  and for any（入，b)E股x8V. In 
other words, if f E C,『(V)is K-invariant, Ff（入，b)is independent of b. So for simplicity, 
for a K-invariant function f E C0(V), we write the Fourier transform off as Ff（入）．
Thus for a K-invariant function f E C,デ(V),Ff（入） isextended to an entire function 
of入EC, which we call the Fourier-Laplace transform of f. In the same way, a K-
invariant distribution on V is defined. In addition, ifμ E £'(V) is K-invariant, then the 
Fourier-Laplace transformのμ（入） issimilarly defined as an entire function of入EC. 
Let us now state the following. 

Theorem 3.1. For a K-invariant distributionμ E £'(V), the convolution operator Cμ: 
C00(V)→C00(V) is surjective if and only if和（入） isslowly decreasing. 
The above theorem is a special case of the results of [CGK17] and [GWK21]. See 
Theorem 4.1 below. In particular, as a corollary of Theorem 3.1, we obtain Theorem 2.1. 
For the detail of the proof, see [CG Kl 7]. 

4. CONVOLUTION OPERATORS ON NONCOMPACT SYMMETRIC SPACES 

In this section, we will state our main theorem on the surjectivity of convolution oper-
ators on noncompact symmetric spaces. 
Let X = G / K be a noncom pact Riemannian symmetric space, where G is a noncom pact 
real semisimple Lie group and K is a maximal compact subgroup of G. Similarly as in 
the case of the Poincare disk, a function f on X can be regarded as a function on G. 
Then, for fぃf2E C『(X),the convolution f1 * h of f1 and h is defined by 

(4.1) f1 * f2(x) ＝ J fl(hK)f2(h―1gK) dh, for x = gK E G/K. 
hEG 

In the same manner as in (4.1), for a smooth function f on X and a compactly supported 
distributionμ on X, the convolution f * μ is defined and becomes a smooth function on 
X. So we define the convolution operator Cμ : C00(X)→C00(X) by f→f * μ. 
Next, we will briefly explain the Fourier-Laplace transform on X. Let G = N AK 
be the corresponding lwasawa decomposition, and let A = exp a. For each g E G, we 
accordingly write g = n(g)expA(g)k(g), where n(g) E N,A(g) E a,k(g) EK. Here we 
note that rankX = £ means a竺 a*竺尉 Soif we denote the complexification of a* by 
叱 thenac竺 ct.Next, let B = 8X be the boundary of X. For x EX  and b EB, we 
denote by A(x, b) Ea the "directed distance" from the origin of X to the horocycle which 
passes through x and is normal to b. Then for f E C0(X), the Fourier transform Ff of 
f is defined by 

(4.2) 町（入，b)= ix e（一込＋p)A(x,b)f(x) dx for （入，b)Ea* x B, 
X 

where p =いこ 叫 a.(We omit the definition of the root system of a symmtric a:positive root maa. ( 

space.) For the details on symmetric spaces, see Helgason's books, [Hel叫 [HelOO],and 
[He108]. For a compactly supported distributionμ, the Fourier transform Fμ is defined 
in the same manner. Let us denote the space of compactly supported and K-invariant 
distributions on X by £正(X).Ifμ E邸 (X),then F11, is al 1, is also K -invariant in the sense 



124

TOMOYUKI KAKEH! 

that Fμ（入，k・ b) = Fμ（入，b)for any k E K and any（入，b)E a* x B. Thus, Fμ（入，b)is 
independent of b and is regarded as a function of入． Solet us write F μ（入） forμ E邸 (X).
We see easily that F μ（入） isextended to an entire function of入Eac, which we call the 
Fourier-Laplace transform ofμ. 

Let us now state our main theorem. 

Theorem 4.1. [CGK17], [GWK21] Letμ E邸 (X).Then the following two conditions 
on μ are equivalent: 

(a) The convolution operator Cμ: C00(X)→C00(X) is surjective. 
(b} The Fourier-Laplace transform Fμ is slowly decreasing. 

Remark 4.2. Theorem 4.1 is a symmetric space analogue of Theorem 1.4. In Theorem 
4.1, the proof of (b)⇒ (a) is given in [CGK17], and the proof of (a)⇒ (b) is given in 
[GWK21]. 

As an application of Theorem 4.1, we have the following. 

Corollary 4.3. [Hel73] Let P（ヂ 0)be a G-invariant diffemtial operator on X. Then 
p: C00(X)→C00(X) is SUヮective.

This is one of the main results by Helgason [Hel73]. Let o denote the origin of X and <5。
denote the delta density with support o. Then Pf= f * (P似）． Inaddition, we see that 
凰 E踪 (X).On the other hand, as is well known in harmonic analysis on symmetric 
spaces, there exists a polynomial rP on ac such that F(P<5。)（入） ＝rp（入），（入 E吐）． In
particular, F(P<5。)isslowly decreasing, so Theorem 4.1 applies. 
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