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on lens spaces 
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Abstract 

The Rumin complex is the Bernstein-Gelfand-Gelfand complex (BGG complex) 
of the twisted de Rham complex of a flat vector bundle with respect to contact 
manifolds. As a typical theorem, the cohomology of the BGG complex coincides 
with the cohomology of the de Rham complex of a flat vector bundle. Moreover, 
the Rumin complex arises when we take the sub-Riemannian limit. 

Let us consider what happens when we replace a concept defined using the de 
Rham complex with the Rumin complex. In this talk, we adapt this idea to analytic 
torsion. On flat vector bundles with a unitary holonomy over lens spaces, we express 
explicitly the analytic torsion functions associated with the Rumin complex in terms 
of the Hurwitz zeta function. In particular, we determine the analytic torsions, and 
it is written using the Betti numbers and the Ray-Singer torsion. 

1 What is the Rumin complex? 

1.1 Bernstein-Gelfand-Gelfand complex 

The Bernstein-Gelfand-Gelfand sequence (BGG sequence) (£:(M, E), D) is defined for 

parabolic geometry on the twisted de Rham complex due to Cap-Slovak-Soucek [5] and 

Calderbank-Dimer [4]. Rumin has also introduced a non G-invariant version in the context 

of sub-Riemannian geometry [21], which coincides with the Rumin complex [20] on contact 
manifolds (e.g. [23, §5.3], [7, §4]). Dave and Haller generalized the differential operator 

on filtered vector bundle with codifferentials of Kostant type [7]. If the BGG sequence is 

complex, we call it the BGG complex. As a typical theorem, on flat vector bundles, the 

cohomology of the BGG complex coincides with the cohomology of the de Rham complex 

of a flat vector bundle [5, Theorem 4.13], [4, Theorem 3.6], [7, Corollary 4.20]. This claim 
is a generalization of the result of the Rumin complex [20]. 

A filtered manifold is a smooth manifold M whose tangent bundle comes equipped 

with a filtration by smooth subbundles, 

TM=T-rMつ・・・っ戸M □T-1M □T0M = {O}, 

which is compatible with the Lie bracket in the following sense: if X E C00(M, TP M) 

and YE C00(M,TqM), then [X,Y] E C00(M,TP+qM). We call aturple (M,g,{T•M}) a 

filtered Riemannian manifold if (M, g) is a Riemannian manifold which has a filtrattion 
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{T• M}, and there exist subbundles {tP M} C T M  which satisfy 

p 

戸M= 〶t―iM and g(tiM，ゼM)= {O} for iヂj.

i=l 

Since for all X E C00 (M, TP M) and Y E C00 (M, Tq M) and f E C00 (M), 

[f X, Y] = f[X, Y] + (Yf)X = f[X, Y] mod C00(M, TP+qM), 

the bracket on TM  induces the smooth bracket [, ]o on冗M for x E M such that 

[X, Y]o = [X, Y] mod C00(M, Tp+q M). 

A filtered vector bundle over a filtered manifold M is a vector bundle E over M which 
comes equipped with a filtration by smooth subbundles, 

E=E→1っE→1+1つ...つ g1= {O}. 

We call▽:C00(M, E)→ 炉(M,E) a filtration preserving connection on a filtered vector 
bundle E over a filtered manifold M if▽xc/> E C00(M, EP+q) for all X E C00(M, TP M) 

and ¢ E C00(M, Eq). Let 9E be a metric of E. We set 

grp(E) := EP n (EP+l)_j_9 

grP (/¥kTvM 0 E):＝ ④  臼 M A. ・ •八曰MR grPk+1 E, 
Pl+…十Pk-Pk+1=-p

訳(/¥竹VM0E)．＝④grq(/¥kTvM0E). 
q：：：p 

LetgrP: l¥kTvM@E→grP (l¥kTv M@  E) be the fiberwise orthogonal projecti erwise orthogonal projection with 

respect to the metrics g and gE. For all linear operator A: n•(M, E)→O"(M, E), we 
set grp(A)：＝江叫＋qoA o grq, and A is called filtration preserving if Agrq O"(M, E) c 
grqげ (M,E). We set 

d閤：＝ gr。(d▽)．
By Leibniz'rule, for f E C00(M), u E gr詞 (M,E)), 

d閤f¢ = grp(df /¥ ¢ + fd氾） ＝fd謬

It means that dri is a smooth bundle map. Henceforth, we assume that dri is locally 
constant rank. 

We set 

□。:=dri忍＋dri濡． □：＝ d▽忍＋裔＊衣，

where * is adjoint with respect to the metric g and 9E・ Since dri is locally constant rank, 
we define a subbundle of /¥kTv M REby for x EM, 

が (tM181 E)x := Ker（口。： /¥k冗M ⑧ Ex→/¥kT:MREx), 

and the fiberwise smooth projection IIt::/¥k『 M@E→が(tM⑧ E)is defined. We set 

[k(M, E) := C00(M，が（tMR E)). 
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p roposition 1.1. ([7, Lemma 4.4, Proposition 4.5]) 
Let V be a fiat filtration preserving connection on a filtrated vector bundle E with a 

metric 9E over a filtered Riemannian manifold (M, g, {T• M}). Assume that d~ is locally 
constant rank. 

Then, there exists a unique filtration preserving diff er-ential operator P: n• (M, E)→ 
n•(M, E) such that P2 = P, P□ ＝ □P, gr0(P)＝恥．

In [11, page 29], Haller pointed out P coincides with IIE in [21, Theorem 1, Lemma 
1]. We set 

叫：＝｛d；口訊 on Imd。,
0, otherwise, 

and the nilpotent operator N := d訊衣— d~). The operator Pis given by 

P = ld-(Id+N)一叩d▽ ＿び（ld+N)-1dふ

We define the operator L by 

L := PIIs + (1 -P)(l -IIs). 

We define the Bernstein-Gelfand-Gelfand operator (BGG operator) D by 

D := IlsいがLIIs・

Proposition 1.2. ([7, Proposition 4.5, Corollary 4.20]) 

(1.1) 

Let▽ be a fiat filtration preserving connection on a filtrated vector bundle E with a 
metric gE over a filtered Riemannian manifold (M, g, {T" M}). Assume that d閤islocally 
constant rank. 

Then D2 = 0 and L: £"(M, E)→S1"(M, E) provides a chain map, d立＝ LD,
inducing an isomorphism between the cohomologies of (S1"(M, E), d) and (£"(M, E), D). 

The complex (£"(M, E), D) is called the Bernstein-Gelfand-Gelfand complex (BGG 
complex) of (S1"(M, E)，枢）．

Remark 1.3. In [21], Rumin constructed the EGG complex on Carnot-Caratheodry man-

ifolds. However, to adapt this construction in [21] to filtered manifolds, we can extend the 
EGG complex on filtered manifolds. 

Proposition 1.4. Let▽ be a fiat filtration preserving connection on a filtrated vector 
bundle E with a metric gE over a filtered Riemannian manifold (M, g, {T" M}). Assume 
that d~ is locally constant rank. 

Then, the EGG sequence (£"(M, E), D) of the sequence (S1"(M, E), d▽)is given by for 
1:::; p::; r, 

DP := grp(D) =恥 L (-l/grP1間）心grp2間）・・・心grP£（が）IIg
Pl+…十四＝P

Proof. We set 
L':= LIIt:, 

The operator L'has 

d閤＊L'=0, 裔＊dL'=0, and II凶＝ Idon &•(M, E), (1.2) 
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where IIKerd名＊ isthe projection to Ker d閤＊， see[7, Proposition 4.10]. The third equation 

of (1.2) follows that 
H』 =Idon E•(M, E), 

that is, 
恥＝ L-1on LC(M, E). (1.3) 

From (1.1), (1.3), and Proposition 1.2, the operator Dis given by 

D=IIt:衣(Id＋忍（d▽＿ dri))-1IIt:・

Since忍(d▽ ＿嬬） isnilpotent, 

00 

D=  LII間 (-1げ（忍(d▽ ＿嬬））PJIE.

p=O 

Let gr. act on both sides, we obtain Proposition 1.4. 
仁l

1.2 Rumin complex 

Let (M, H) be a compact contact manifold of dimension 2n + 1 and Ebe the flat vector 
bundle with a unitary holonomy on M. Rumin [20] introduced a complex (£•(M, E), D•), 
which is a subquotient of the de Rham complex of E. This complex is the BGG complex 

with respect to contact manifolds. The operator d。,gr1(d),gr2(d) are given by 

d。=IntTd0/¥，gr2(d) = 0 /¥,Cゎ

and gr1(d)0 = 0 and for¢ E C00 (M, I\• い）

gr1(d)¢ = d¢-0/¥ （Int戸加）．

Here In匂 isthe interior product andら isthe Reeb vector field with respect to T. From 

definition of the BGG complex 

び(M)：＝{｛の EC00(M,NHV) (d0A)＊¢= 0}， 

¢ E 0 I¥ C00 (M, I¥ k-l Hv) I d0 I¥ ¢. = 0}, 

and Proposition 1.4, the Rumin complex is given by 

D1 = Ile gr1(d)IIふ

k :a::; n, 

k ~ n+ 1, 

D2 = Ile伍(d)-gr1(d)dbgr1(d)) Ile= Ile0 I\ （ら— gr1(d)(d0八）― 1 gr 1 (d)) Ile・

A specific feature of the complex is that the operator Dn = D2: En(M, E)→£n+l(M,E) 
in'middle degree'is a second-order, while Dk= D1: £k(M, E)→£k+l(M, E) forkヂn

are first order which are induced by the exterior derivatives. 

Let ak = l/ J!n=kT for kヂnand an= l. Then, (£•(M, E), de), where dJ = akD尺
is also a complex. We call (£•(M, E), de) the Rumin complex. In virtue of the rescaling, 
de satisfies K沿hler-typeidentities on Sasakian manifolds [22, (34)], which include the case 
of lens spaces. 
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2 Harmonic forms and the Rumin complex on Sasakian 

manifolds 

Let 0 be a contact form of Hand J be an almost complex structure on H. Then we may 
define a Riemannian metric g0,J on TM  by 

90,J(X, Y) := d0(X, JY) + 0(X)0(Y) for X, Y E T M  

Following [20], we define the Rumin Laplacians△t: associated with (£•(M, E), de) and 
the metric 90,J by 

(dt:必＊）2+ (dt:*dぴ， k-=J n, n + 1, 

△と：＝｛（d心＊戸＋ D；D2, K = n, 
D辺；＋ （dt:*dt:)叫 k=n+l.

Rumin showed that今 hasdiscrete eigenvalues with finite multiplicities. 
Rumin [20] showed that Ker（ふ） isisomorphic to Hk (M). As a natural question, 

what is the difference between Ker（△dR) and Ker（ふ） inset? The following theorem 
answers this question. 

Theorem 2.1. ([16, Theorem 1.1]) Let (M, H, 0, J) be a compact Sasakian manifold 
of dimension 2n + 1. Then, the kernel of the Rumin Laplacian agrees with that of the 
Hodge-de Rham Laplacian, that is, 

Ker（△dR:炉（M）→炉(M))= Ker（ふ： [k(M)→[k(M)).

Recently, Case showed that by [6, Proposition 12.10], for a compact Sasakian manifold 
M, 

Ker（△£: [k(M)→[k(M)) 

i,j 

會 kker（△£:[k(M)→[k(M)) n C00 (M,い），（2.1)

where 

i,J 

八か：＝八{cp E Hv I J cp = ✓可¢}®八{¢ E Hv I Jcp =-《可¢}.

Using (2.1), he [6] recovered a topological obstruction [3, 10] to the existence of Sasakian 
structure on a given manifold in terms of its Betti numbers. 

From Theorem 2.1 and (2.1), we give another proof of the following corollary: 

Corollary 2.2. ([26, Theorems 7.1, 8.1], [10, Corollary 4.2]) In the setting of Theorem 

2.1, for cp E Ker（△dR:炉（M）→炉(M)),

(1) if k :<::; n, we have Intr ¢ = 0, (d0/¥)*cp = 0, 

(2) if k 2: n + l, we have 0 I¥ cp = 0, d0八cp= 0, 

(3) we have Jcp E Ker（△叫， thatis, J cp is also a harmonic form, 
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where lntr is the inteけorproduct with respect to T. 

We recall Proposition 1.2. The cohomology of the BGG complex coincides with that 

of the de Rham complex. To the author's knowledge, the Sasakian manifolds are the only 

cases when the kernel of D + D* agrees with the harmonic space. It is an interesting 

question: whether on the filtered manifolds the kernel of D + D* coincides with the 

harmonic space or not. 

Next, one can view the Rumin complex as arising naturally the sub-Riemannian limit 

of△dR induced by the filtration H C TM  [22]. An analytic approach to sub-Riemannian 

limit, for fiber bundles, was developed by Mazzeo and Melrose [17], and, for Riemann 

foliations, was by Forman [8]. On contact manifolds, Albin-Quan solved the asymptotical 

equation of△dR, which was introduced by Forman [8], and its asymptotic behavior can 

be explicitly written by the Rumin complex [1]. 
Let t E [O, oo). We set 

dt := d。+tgr1(d)+ t2 gr2(d). 

Let X := M x [O, oo) and ふ：＝疇＋ d閏： n•(M) → n•(M) fort E [O, oo), where d; is 
the formal adjoint of dt for the L2-inner product on n•(M). We define the space of the 

sub-Riemannian limit differential forms by 

sR炉(X)

:= {uo + t附＋・・・＋t国 E炉(X)I Uj E炉(M),q E Z;:::o, t 2: O}, 

and set 

i以△リ：＝ ｛uEげ(M)IヨuE sR炉(X)s.t. ult=O = u,△ふ＝ 0（ザ）｝，

for pミ0.In [1, p. 18], Albin-Quan showed that 

内（△リ＝ Ker（ふ： £k(M)→Ek(M))

クt（△t)= Ker（ふ： Ek(M)→£k(M))

By Corollary 2.2, we obtain the following: 

forkヂn,n+1, 

for k = n, n + 1. 

Corollary 2.3. ([16, Corollary 1.3]) In the setting of Theorem 2.1, 

Ker（鱗）＝ nKer（ふ）．
t>O 

By Theorem 2.1 and [1, p. 18], we have 

Corollary 2.4. ([16, Corollary 1.4]) In the setting of Theorem 2.1, 

クt（ふ）＝ nKer心：炉(M)→炉(M)) forkヂn,n+l,
t>O 

因（ふ）＝ nKer（△t：炉(M)→炉(M)) for k = n, n + l. 
t>O 

It means that for "kヂn,n+land u E因（ふ）”or"k = n, n + l and u E汽（ふ）”，
taking u = u, we see 

△tu = 0 for t > 0. 

In [1], on compact contact manifolds, for u E Ker（△£) Albin-Quan constructed u such 

that "for kヂn,n+ l,△tu= 0（惑）’＇ and"for k = n, n + l,△ふ＝ O(sり’'byusing 
d。,db,dr, On compact Sasakian manifolds, we give a simple construction of五．
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3 The eigenvalue of the Rumin Laplacian on the stan-

dard CR sphere 

In this section, we see the result [14] of the eigenvalues of△£ on the trivial bundle ~ 
over the standard CR spheres s2n+1 C (Cn+l. Here the standard CR sphere is the triple 

(S2n+1, 0, J), where 0 is given the contact form by 0 = ✓コ~(8-8)lzl2 and J is an almost 
complex structure J induced from the complex structure of (Cn+l. To state our result 

we need to introduce notation for highest weight representations of the unitary group 
U (n + 1) which acts on s2n+1. The irreducible representations of U (n + 1) are classified 
by the highest weights入＝ （入1,ふ，．．．，入n+1);th ; the corresponding representation will be 
denoted by V（入）． Julgand Kasparov [12] showed that the complexification of £k(s2n+1), 

as a U(n + 1)-module, is decomposed into the irreducible of the form 

叱q,j,i,p):= V(q,_1,..., 1,, 0,..., 0,_-1 
ヽ

,...,-1,-p). 
‘v‘  

J times i times 

Sinceふ commuteswith the U(n + 1)-action, it acts as a scalar on each叱q,j,i,p)・

Theorem 3.1. ([14, Theorem 0.1]) Let s2n+1 be the standard CR sphere with the contact 

from 0 = ✓可(8 -8)lzl2. Then, on the subspaces of the complexification of £•(s2n+1) 
corresponding to the representations叱q,j,i,p),the eigenvalue of△Eis 

((p + i)(q + n -i) + (q + j)(p + n -j))2 

4(n -i -j)2 

This theorem claims that the eigenvalues of△E are determined by the highest weight. 

This phenomenon also appears in the case of the Hodge-de Rham Laplacian△dR on 

symmetric spaces G/K. Ikeda and Taniguchi [13] showed that on the subspaces of k-
forms of G / K corresponding to V（入）， theeigenvalue of△dR is determined by入． Itis a 

natural question to ask whether the eigenvalues of△E on a contact homogeneous space 

G / K are determined by the highest weight of G. 
Theorem 3.1 unifies the following results on the eigenvalues of Rumin Laplacians on 

the spheres. Julg and Kasparov [12] determined the eigenvalues of D;D2. Folland [9] 
calculated the eigenvalue of the sub-Laplacianふ， whichagrees with△E on £D(52n+1). 
Seshadri [25] determined the eigenvalues of dEde on £1(s2n+1) in the case S3. 0rsted 

and Zhang [18] determined eigenvalues of the Laplacian of the holomorphic and anti-

holomorphic part of D except for the ones containing D2. 

Note that 0rsted and Zhang used Din place of dE. As a result, the eigenvalues of the 

Laplacian in their paper are not determined by the highest weights. This also explains 

the importance the scaling factor ak. 

4 Ray-Singer torsion and the Rumin Laplacian on 

lens spaces 

We introduce the analytic torsion and metric of the Rumin complex (£•(M, E), de) by 
following [2, 14, 24]. We define the contact analytic torsion function associated with 



133

(£•(M, E), de) by 

n 

屁(M,E,g0,J)(s) ：＝応—l)k+l(n+ 1-k)〈（△い(s), (4.1) 
k=O 

where (（△を）（s)is the spectral zeta function of△も andthe contact analytic torsion Tt: 
by 

2logTt:(M,E,g0,J) =,.,,t:(M,E,g0,J)'(O). 

Let H•(&-, de) be the cohomology of the Rumin complex. We define the contact metric 
on det H•(£•碍） by

II lle(M,E,g0,J)＝万(M,E,g0,J)I IL2(t:•), 

where the metric I I い (t:•) is induced byび metricon £• (M, E) via identification of the 
cohomology classes by the harmonic forms on £• (M, E). 

Rumin and Seshadri [24] defined another analytic torsion function,.,,R from 
(£•(M, E), D•), which is different from,.,,E except in dimension 3. 

Proposition 4.1. ([24]) 

(1) In dimension 3,紐（M,E, g0,J)(0) is a contact invariant, that is, independent of the 

metric g0,J・

(2) For fiat bundles E with a unitary holonomy on 3-dimensional Sasakian manifolds 
with S1 action, 

紐 (M,E,90,J)(O)=0, Tt:(M,E,90,J) =T<lR(M,E,90,J). 

To extend Proposition 4.1 (2) on the standard CR sphere s2n+1, with dt: instead of 

D, the author [14] showed the following: 

p roposition 4.2. ([14, Theorem 0.2, Corollary 0.1]) On trivial line bundle~ over the 
standard CR spheres S2n+1 (C <Cn+l), we have 

紐(S2n+1,~,g0,J)(O) = 0, Tt:(S加＋1,~'g0,J) = n!TdR (S2n+l, ~'g0,J). 

Moreover, Albin and Quan [1] showed the difference between the Ray-Singer torsion 

and the contact analytic torsion is given by some integrals of universal polynomials in the 
local invariants of the metric on contact manifolds: 

Proposition 4.3. ([1, Corollary 3 and (4)]) Let M be the compact contact manifold with 
dimension 2n + 1. for all unitary holonomy a: 1r1(M)→V(r), we have 

logTt:(K, Ea, g0,J) -logTctR(K, Ea, g0,J) 

= Jヨuniversalpolynomials in the local invariants of g0,J・

M 

In this section, we extend this coincidence on lens spaces and determine explicitly the 
analytic torsion functions associated with the Rumin complex in terms of the Hurwitz 
zeta function. Let gstd be the standard metric on s2n+1 and we note that g0,J = 4gstd• 
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Letμ,巧，．．．，Vn+lbe integers such that the vi are coprime to μ. Let r be the subgroup 
of (Sりn+lgenerated by 

1=（冗・・・,in+1) := (exp(27r¥／コ乃／μ),• • •, exp(21r,／二llln+i/μ)).

We denote the lens space by 
K := s2n+1/r. 

Let §;_ be the trivial line bundle on K. Fix u E Z and consider the unitary represen-

tation au: 1r1 (K) = r→U(l), defined by 

叫げ）：＝exp(21r✓可u£/µ) for£EZ. 

Let Ea be the flat vector bundle associated with the unitary representation a: 1r 1 (K) 

=r→U(r), and Eau = Eu, which can be considered as au-equivariant functions on 
s2n+1. 

Our main result is 

Theorem 4.4. ([15, Theorem 1.1]) Let K be the lens space with the contact form and 
the almost complex structure which are induced by the action r on the standard CR sphere 
52n+l. 

(1) The contact analytic torsion function of (K,~) is given by 

邸 (K,~'g0,J)(s) = -(n + l) (1 + 22s+l μ―2s((2s)), 

where (is the Riemann zeta function. In pa廿icular,we have 

屁(K,~,g0,J)(O) = 0, 

Tt:(K,~,g0,J) ＝（竺)n+l.
μ 

(4.2) 

、1
,

、1
,

3

4

 

4

4

 

'
ー
、
，
ー
、

(2) The contact analytic torsion function of (K, E』foruE {1,..., μ-1} is given by 

邸 (K,Eu, ge,J)(s) = -22" μ―2s苫(((2s,AパUTj)/μ)＋く(2s,AパーUTj)/μ)), (4.5) 

where ((s, a)：＝ L;,0(q + a)-• is the Hurwitz zeta function for O < a :S 1, A,,(w) is the 
integer between 1 andμ such that A,,(w)三w modμ and乃巧三 1mod μ. In particular, 
we have 

邸 (K,Eu,90,J)(O)= 0, 
n+1 

TE(K, Eu,90,J)＝リ凸□回／μ― 1I. 
、1
,

、1
,

6

7

 

．

．

 

4

4

 

ヽ

The equations (4.2) and (4.5) extend the following results of Kt: the spheres to on lens 
spaces. Rumin and Seshadri [24, Theorem 5.4] showed (4.2) in the case of 3-dimensional 
lens spaces. The author [14] showed (4.2) in the case of (S2n+1,~) for arbitrary n. 

From (4.3) and (4.6), we see that the metric II lie on (K,Eu,90,J) u, 90,J) is invariant under 
the constant rescaling 0→C0. The argument is exactly the s狙neas the one in [24]. 
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In the same way as [14], the fact that the representations determine the eigenvalues 
of△£ cause several cancellations in the linear combination (4.1), which significantly sim-
plifies the computation of邸 (s).We cannot get such a simple formula for the contact 
analytic torsion function紐 of(£•(M, E), D•) for dimensions higher than 3. 

Let us compare the contact analytic torsion with the Ray-Singer torsion on lens spaces. 
Ray [19] showed the following: 

Proposition4.5. ([19]) Foru(=l,...,μ-1), 

n+l 

店 (K,Eu, 4gstd) = II|戸ご巧/μ - 11. 
j=l 

Weng and You [27] calculate the Ray-Singer torsion on spheres: 

Proposition 4.6. ([27]) 
21rn+l 

TctR(S, !C, gstd) = ~
n! 

The author extended their results for the trivial bundle on lens spaces: 

Proposition 4. 7. ([15, Proposition 1.2]) In the setting of Theorem 4.4, we have 

TdR (K, ~'4gstd) = 
(47r)n+1 

n!μn+l ・ 

The metric 4gstd agrees with the metric g0,J defined from the contact form 0 = ✓コ(8-
8)lzl2, Since the cohomology of (£0(M,E),de) coincides with that of (fl"(M,E),d) (e.g. 
[20, p 286]), there is a natural isomorphism 
det H0(£0(M, E), de)竺 detH喩 (M,E), d), which turns out to be isometric for the L2 

metrics. Therefore (4.4) and (4.7) give 

Corollary 4.8. ([15, Corollary 1.3]) In the setting of Theorem 4.4, for all unitary holon-
omya:町（K)→U(r),we have 

Tt:(K,Ea,g0,J) = n!dimHo(K,Ea)麟 (K,E"" g0,J), 

II llt:(K,Ea,g0,J) = n!-dimHo(K,Ea)II lldR(K,Ea,g0,J), 

via the isomorphism det H如(M,Ea)碍）竺 detH•心(Mぶ）， d).
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