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calculus. We establish solvability and the existence of a bounded H00-calculus. As 
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1 Introduction and Presentation of the Results 

In the sequel, (X, g) will denote a smooth n-dimensional Riema圧nianmanifold with 
boundary of bounded geometry, smoothly embedded in a manifold (X, g) without bound-
ary of the same dimension and bounded geometry with恥＝ g.See Section 2 for more 

一 n
details. For example, we could choose X =町 withthe euclidean metric and X =股十9
the upper half space { Xn ? 0}, we could take for X the closure of a bounded domain 
with smooth boundary in X =町or(X, g) a smooth compact Riemannian manifold with 

boundary in its double (X, g). 
On X we consider an elliptic second order differential operator A that, in local coor-
dinates, is of the form 

A=A(x,D) = t臼）D凸＋tも（叫＋c(x)
J,k=l J=l 

Here, Dj = -i尻 thecoefficients ajk belong to the Holder space CT for some T > 0 and 
the bj and c are £00 functions. We assume that there exists a sector均。， 0：：：：： O。<1r,in 
the complex plane, 

均。＝ ｛z EC: z = re叩，r：：：： o, lcpl ::=:: e。},

and a constant CA> 0 such that, for all (x,t) E T*X, 

t ajk(x)廷 EI:。。 withIt 凸）ど]品|~c犀＞〇
j,k=l j,k=l 

(1.1) 

(1.2) 
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In the first part of this article we will endow the operator A with the boundary operator 

T given by 

T = cp。rO+'Plrl・ 
Here, 10 denotes the evaluation of a function at the boundary and 11 that of its exterior 

normal derivative. Moreover, cp。and四 aretwo non-negative functions satisfying 

やo+凸ミ c'P> 0. 

We will assume that either 

砂 'P1E cb(ax) 

(Cb (8X) is the space of all smooth functions on 8X that are bounded together with all 
their derivatives) or that 

咋＝ 1and cp1＝厨 forsome cp E C2十T(ax),T> o. 

For the choice cp。=1and臼＝ 0we obtain the Dirichlet problem, for cp。=0and 
臼＝ 1the Neumann problems. For cp1 bounded away from zero, we have a Robin problem. 

All these are elliptic boundary problems and well-studied, at least for the case when X is 
compact. The Laplacian with Dirichlet boundary conditions on manifolds with boundary 

and bounded geometry has been treated only some years ago by Ammann, Grof3e and 

Nistor [3]. 
However, when cp1 is not zero but vanishes on some part of 8X, then the order of the 

boundary condition varies between zero and one, and thus A with the boundary condition 

T is not elliptic in the sense of Lopatinski and Shapiro and cannot be treated by standard 

methods. This is the case we are mainly interested in. 

Under the stronger assumption that X is compact and that the coefficients of A and 
the functions cp。andcp1 are smooth, this problem has been studied -among others -by 
Egorov and Kondratev [9], Kannai [14] (also in the context of the degenerate oblique 
derivative problem), and, quite extensively, by Taira starting with [26]; see e.g. [27] and 
the references therein for subsequent developments. An important point here is to show 
that the C00 regularity assumptions can be relaxed significantly. 
The boundary condition T can be viewed as a'smoothed'version of the Zaremba 

boundary condition. Indeed, suppose that 

8X = Yo LJ Z LJ Yi 

consists of two open subsets Yo and Y1 and their common boundary Z, which is assumed 
to be a smooth submanifold of 8X. For the Zaremba problem one imposes Dirichlet 

conditions on Yo and Neumann conditions on Y1. This corresponds to taking for'Po and 
切1the characteristic functions of Yo and Yi, respectively. The two problems are, however, 
quite different in spirit. As analyzed by Seeley in [23], the Zaremba problem is basically 

an edge problem, where Z is the edge and therefore has to be treated by corresponding 
methods, see e.g. the approach by Dines, Harutyunyan and Schulze in [7]. 

Let us now look at the results. 
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Bounded H00-calculus and Applications: We will start by studying theに

realization Ar of the operator A with the boundary condition T, that is the operator 
acting like A on the domain 

ク（ふ）＝ ｛uE虎(X):Tu= O}, 

and its resolvent. For the definition of虎(X)we refer to Grof3e and Schneider [11]. 
We recall two important notions: sectoriality and bounded H00-calculus. For more 
information on these subjects see e.g. Denk, Hieber and Pri.iss'monograph [6]. 

Definition 1.1. A closed, densely defined linear operator B : ~(B) = E1 ~ E。→ E。in
a Banach space E。thatis injective with dense range is called sectorial of type w < 1r, if 
for every w < 0 < 1r 

u(B) C均 andII入（B-入）―1||グ(Eo)さCefor all入EC＼喜

Here均＝ ｛入＝ rei'PE (C : r 2'.'. 0, lcpl :::; 0} is the sector of angle 0 about the positive real 
axis. 

To the sector均 inDefinition 1.1 we associate the space H00⑨0) of all bounded 
holomorphic functions in the interior of the sector均 andthe subspace H図均） ofall 
functions f with If（入）I-s C（|入「+|入|-0)-1for suitable C, c > 0. This is a dense subspace 
with respect to the topology of uniform convergence on compact sets. 
Given a sectorial operator B of type w, 0'E ]w, 0[ and f EH戸(Ae)let 

i 
f(B) =云し，f（入）（B-入）―1d入Eダ (E。)． (1.3) 

The integral exists in view of the sectoriality of B and the decay of the functions in 

H?°（畠）． ByCauchy's integral theorem it is independent of the choice of 0'. 
Given J E H00(I;0), we can approximate J by a sequence Un) CH汽畠） anddefine 

J(B)x := limfn(B)x for x E ~(B) n im(B). 

It can be shown that ~(B) n im(B) is dense in E。andthat the above equation defines a 
closable operator. The closure is again denoted by J(B). 

Definition 1.2. We say that a sectorial operator B of type w admits a bounded H00 

calculus of angle w, if for any w < 0 < 1r there exists a constant C,。>0,such that 
IIJ(B)llc(E) ~ Cellflloo, f E H°"(I:0)- (1.4) 

The principle of uniform boundedness implies that it is su缶cientto verify estimate 

(1.4) for all f E H戸（畠）．

The notion of bounded H00-calculus goes back to McIntosh [20]. It has become an 
indispensable tool in the modern theory of evolution equations. 

Theorem 1.4 in [18] states: 

Theorem 1. 1. For eve内°三 0。<0< 1r a constant v 2'. 0 exists such that Ar + v has a 
bounded H00 -calculus inら(X).
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Here 0。isopening angle in (1.1). The constant v depends on the norms of the coef-
ficients of A in the respective spaces and the seminorms of rp。and凸 inC『(8X)or, in 
caseや0= 1, on the norm of rp1 in c2+T(8X) as well as the lower bounds CA and c'P. 

Corollary 1.2. Theorem 1.1 implies the invertibility of Ar +入 for入EC＼均， 0＞ 0。,
when|入|islarge and hence the unique solvability of the semihomogeneous boundary value 
problem 

(A —入）u = fin X 

Tu = 0 on 8X 

for J EL噸X)by a suitable element u E虎(X).

One is also interested in the fully inhomogeneous problem. We shall see that its 
unique solvability can be derived rather easily from Theorem 1.1. Since the problem is 

not elliptic, we will need a special space for the boundary values. The IJ'-Besov space 

況(8X):=叩（8X),s E JR, 1 < p < oo has been introduced in [11]. Moreover, [11, 
Theorem 4.10] states that, as in the case of compact manifolds with boundary, B;-l/pりX)
is the space of restrictions of functions in H;(x), s > l/p. 

Definition 1.3. With the boundary condition T (and hence the functions rp0 and叫 we
associate the space 

B;;rl-l/p (ax) = { V ='Po Vo +叩1: Vo E B;-lfp(ax)，附 EB;-l-l/P(8X)} 

for s > l -l/p and l < p < oo. 

The following theorem is well known for compact manifolds with boundary. In the 

case of manifolds with boundary of bounded geometry, it can be shown by modifying the 

proof of [11, Theorem 4.10] in the spirit of the proof of Theorem 2.9.2 in Triebel [28]. 

Theorem 1.3. Givens> l + 1/p, v0 EB s-1/p 1 1/p ;-J_;p(8X) and v1 E B;-J_-J_1P(8X), there exists 

u E H;(x) such that 10u = v0 and研＝V1・

From this we infer: 

Theorem 1.4. For rp0, rp1 EC『(8X),the boundary map 

T: H;(x)→尻，:rl-1/p(8X)

is continuous and surjective for all s > l + 1/p and l < p < oo. For rp0 = 1 and 
臼 Ec2+T(8X), T > 0, the same holds provided l + l/p < s < 2 + T. 

:;1-1/pp (ax) Proof. Continuity follows from [11, Theorem 4.10]. Let v = rp0v0十'Pl釘 EBp,T 
with Vo E B;-l/p(8X)，釘 EB;-l-l/p(8X). According to Theorem 1.4 we find u。墨1E 

均(X)with訊 o= Vo, r直0= 0 and 10附＝o,,山＝v1.Then T(u0 + u1) = v. ロ

With this at hand, it is easy to prove the unique solvability of the fully inhomogeneous 

problem. 
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Theorem 1.5. For every 0。<0< 1r the operator 

(AT—入）岡(X) →ら：X）
B此~/P(fJX)

(1.5) 

is a topological isomorphism for入EI;。,|入|sufficientlylarge. 
1-1/p Proof. Given f Eら(X)and v E B~,;,11P(fJX), we first fix w0 E虎(X)with Tw。=V.p,T 

By Theorem 1.1, the problem (A —入）w = f-(A —入）w0, Tu = 0 has a unique solution 

WE虎(X).Then u = w + w0 is the (unique) solution to (A —入）u = f, Tu= v. Hence 
(1.5) is a bijection. As it is continuous, it is a topological isomorphism in view of the 
closed graph theorem. ロ

Theorem 1.1 is a very useful result: According to a theorem by Dore and Venni [8], 
the existence of a bounded H00-calculus for an operator B : ~(B) = E1 ~ E。→ E。in
a sector均 withO < 0 < 7r /2 implies maximal Lq-regularity, 1 < qく oo,of B in the 
associated evolution equation, i.e., for f E Lq([O, Tl), E0) and u。inthe real interpolation 
space (E1, E。)I/q,q,the initial value problem 

如＋Bu= f, u(O) = u。
has a unique solution 

uEび((0,T), Eリnwq1((o, T), E。)

depending continuously on f and u。.
This can be used to deduce the short time existence of quasilinear parabolic equations 
of the form 

心十A(u)u= g(t, u) + h(t), 0 < t < t。, ult=O = ua, t E (1.6) 

as a consequence of the following theorem of Clement and Li [5]: 

Theorem 1.6. Let E1→ E。beBanach spaces, 1 < qく (X).(1.6)has a sho仕 time
solution on an interval (0, t*) with O < t* :S t0: 

u E Lq((O, t*), E1) n W,』((0,t*), Eo), 

provided A(u0) has maximal regularity and there exists a neighborhood U of u。inE1-I/q = 
(E1,E。)1/q,qwith 
(Hl) u c-+ A(u) E Lip(U;.2(X1, X。)），

(H2) (t, u)→g(t, u) E Lip([O, t0] x U, E。)， and

(H3) h(t) Eい((0,to),X。)

In that case, u E C([O, t*], E1_1;q). 

In fact, the following variant of this theorem is more useful, since it covers additional 
time dependence of A. It goes back to Pri.iss; in the present, slightly extended variant, it 
is Theorem 6.1 in [18]. With the above notation consider 

u(t) + A(t, u(t))u(t) = F(t, u(t)), t E ]O, t0[, u(O) = 0. (1.7) 
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Theorem 1.7. Assume A : [O, t0] x Eq→.C(E1,E。)iscontinuous, A。=A(O,u0) has 
maximal Lq_regularity, F(・, u) is measurable for each u E Eq, F(t, ・) is continuous for a.a. 
t E [O, t0], and f(・) := F(・, 0) E Lq([O, t。];E。)． Moreover,suppose that there is an R* > 0 
such that 

(A) For each RE (0, R*) there is a constant C = C(R) such that 

IIA(t, u)v -A(t, u)vllE。さ Cllu-・ullEq llvllE,, t E [O, to], ・u, u E B(O, R), v E E1・

(F) For each RE (0, R*) there is a function向 ELq(J0) such that 

IIF(t,u) -F(t,u)IIE。さ心R(t)llu-ullEq, a.a. t E [O, to], u, u E B(O, R). 

Then there exists at* > 0 such that (1.7) has a unique solution u in W,』((0,t*); E0) n 
い((O,t*);E1).

In addition to the above assumptions on A suppose that the matrix (a叫此＝1，…，n
formed by the coefficients of the principal part of A is positive definite -this is the ca起
e.g. when A is the Laplace-Beltrami operator今 withrespect to the metric g on X. 
Then we can choose 0。=0in (1.1). Combining Theorem 1.1 and the cited theorem of 
Dore and Venni, we see that△g,T, the realization of今 withrespect to T has maximal 
regularity. 
We will consider the porous medium equation with the boundary condition T. Recall 
that the porous medium equation 

如ー今訂＝ 0 

with m > 0, is a nonlinear generalization of the heat equation. We obtain the following 
result: 

Theorem 1.8. Let 1 < p,q < oo, n/p+2/q < 1, m > 0, v0 EH以X)with v゚：：：：： C> 0, 
and ¢ E C1(.li。;B贔~!P(fJX)) satisfying the compatibility condition ¢(0) = Tv0. Here 
J。=［0, t0] with t。>0.Then the system 
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(1.8) 

has a unique short time solution of maximal regularity, i.e. there exists an interval J = 
[O, t*] with t* > 0 and a unique solution 

VEび（J;虎(X))n WJ(.J; Lp(X)). 

A Quasi-stationary Stefan Problem. As it turns out, the boundary value problem 
（△，T) also appears in a different context. The following project arose in discussions 
with Joachim Escher (Hannover). It is a quasi-stationary Stefan problem modeling the 
melting/solidification process of ice in water of constant temperature zero (one therefore 
often speaks of a one phase problem, even though there are actually two phases). 
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Considering t as a time parameter, denote by X(t) the volume filled by the ice at 
time t. Here we can assume X(t) to be the closure of a bounded domain in町． The
evolution of X(t) in time is determined by the temperature u(x, t) in x at time t, the 
exterior normal derivative 8四 (x,t) at the boundary, the normal velocity V(x, t) of 8X(t) 
and the mean curvature K(x, t) of 8X(t) in x. The process is modeled by the system of 
equations 

△u = 0 in X(t) 

v+a四＝ 0 on ax(t) 

μV +"' u on 8X(t) 

X(O) X。at t = 0. 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

The first equation is derived from the heat equation, assuming stationarity, i.e. 8四＝
0. The second states that the velocity with which the ice expands in the normal direction 
is given by -8vu, as one would expect, and the final equation fixes the initial form of the 
volume covered by the ice. 
The interesting equation is the third. From a naive point of view, one might ask that 
叩 x= 0, as the surrounding temperature is zero. However, this immediately implies that 
u三 O;hence this boundary condition does not model the observed natural phenomenon. 
One standard assumption, motivated by physical considerations at the interface, is the 
Gibbs-Thomson condition 

u = ut,, on 8X(t), 

whereび＞ 0is the surface tension coefficient. Another is the condition of kinetic under-
cooling: 

u=aV 

with a positive constant a. 

Here we will consider a mixture of the two cases with a function μ ~ 0 that may 
vanish on some parts of the boundary. The boundary condition V + t,, = u was treated by 
Kneisel [15]. For the case where μ V + t,, = u with μ smooth and bounded away from zero 
an attempt was made by Lukarevski [19]. For simplicity we assume that μ E C'.『（町）
is a nonnegative function with a (possibly) non-empty zero set. We next partly follow a 
strategy used by Escher and Simonett [10] and Kneisel in [15]. 

We choose a smoothly bounded domain D and suppose that there exists a smooth 
vector field "f/ that is nowhere tangent to 8D and outward pointing with respect to D. 
The flow F of "f/ therefore provides a diffeomorphism from ] -a, a[ x 8D, a > 0, to a 
neighborhood冗 of8D which we assume to contain 8X。.Wewrite F(s; y) for the point 
x reached by the flow line starting in y E 8D after'time's E] -a, a[. Conversely, we call 
(say) the flow coordinates of x. 
Let 

M = {pEび (fJD): IIPlloo < b} (1.13) 

for some b < a and T > 2. We assume that 8X。isa graph over oD; i.e. there exists a 
function p。inM such that oX。=｛F(p0(x), x) : x E 8D}. 
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More generally, for pin M, the image of the map 0P : 8D→R,x→F(p(x), x) is a 
hypersurface in町． Usingthe so-called Hanzawa transform we will now extend 0 P to a 
er -diffeomorphism 8 P :町→町． Tothis end we note that we may assume without loss 
of generality that O < b < a/4. We next choose cp E C00（股，［0,1]) with 

cp(r) = l; lrl < b 
cp(r) = O; lrl ~ 3b 

l</>'(r)I さ 1/b.

We then define, using the flow coordinates (y, s) of x ER, 

知）＝｛:(s+ cp(s)p(y); y); : ; : 
x; X足冗．

Going even further, consider functions p(t) depending on a variable t in an interval 

Jc恥 sayp EC尺J,C(8D))nC(J, M). For every p(t) we obtain a diffeomorphism 8p(t)・ 
We let Xμ(tl =釘（t)(D).Our aim now is to find X(t) as Xp(t) for a suitable function p on 
8D. 
To this end we transform the system under the diffeomorphism 8p(t))・ A computation 
leads to the equations 

A(p)v 

8tp+ LpDav 

,av+,o(μDav) 

p(O) 

0 inJxD 

0 on J x fJD 

H(p) on J x fJD 

p。onfJD. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

Here, A(p) is a second order strongly elliptic differential operator. If p(t) is ofregularity 
CT, then the top order coefficients of A are cT-1, the lower oder coefficients are cT-2. 

Moreover, Da and H(p) are the expressions for the normal derivative and the mean 
curvature, respectively, in the new coordinates, and Lp is a strictly positive function. 
We observe that equations (1.14) and (1.16) furnish a boundary value problem with 
a degenerate boundary condition similar to that studied above. The difference is that 
instead of the normal derivative we here have the non-tangential derivative Dか
The strategy now is to first solve this boundary value problem in dependence of p. 
Inserting the result into (1.15) we obtain an evolution equation for p with initial value 
given by (1.17). In fact, this evolution equation is quasilinear. To see this, we decompose 

H(p) = P(p) + Q(p) (1.18) 

into a second order strongly elliptic differential operator P(p) and a remainder Q(p), see 

e.g. [10, Lemma 3.1] for details. The goal then is to establish the existence of a short time 
solution to this quasilinear equation using continuous maximal regularity and a result of 
Simonett [25, Theorem 3.1]. For more details see below. 

2 Background and Ideas for the Proofs 

2.1 Manifolds with Boundary and Bounded Geometry 

The notion of manifolds with boundary and bounded geometry goes back to Schick [24]; 
it was taken up by Ammann, Grof3e and Nistor [3]. We recall the important ideas. 
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Definition 2.1. (a) A Riemannian manifold (X, g) is said to have bounded geometry, 
if it has positive injectivity radius and all covariant derivatives of the curvature R 
are bounded: Denoting by▽the Levi-Civita connection, one asks that 

II▽kRIIL疇）く 00.

(b) Let (X, g) be of bounded geometry and let Y be a hypersurface with unit normal 
vector field v. 

One identifies the normal bundle of Y in X with Y x罠 usingv. Hence the second 

fundamental form of Y is simply a smooth family of symmetric bilinear maps Ily : 

TyY X刀Y→政， yE Y. In particular, II defines a smooth tensor. 

Y is said to be a bounded geometry hypersurface, if the following conditions are 

fulfilled: 

(i) Y is a closed subset of X 

(ii) (Y飢y)is a manifold of bounded geometry 

(iii) The second fundamental form II of Y in X and all its covariant derivatives 

along Y are bounded, i.e., 

||（炉）勺Illoo::::; ck for all k E N。

(iv) There is a t5 > 0 such that exp.l :y X l -t5, t5[→X is injective. 

(c) A Riemannian manifold (X, g) with (smooth) boundary has bounded geometry, if 

there is a Riemannian manifold (X, g) with bounded geometry satisfying 

(i) dimX = dimX 

(ii) Xis contained in X, in the sense that there is an isometric embedding (X, g)→ 
(X,g) 

(iii) ax is a bounded geome切 hypersurfacein X. 

2.2 The P arametrix Construction 

We first consider the model case, where X＝配 andthe coefficients of A and the functions 
'Po and cp1 belong to C『（町）． Inorder to cover the parameter入EI;。weuse Agmon's 
trick [2] of introducing an additional variable. We write入＝ l.¥.lei¢ and consider, instead 
of the operator A —入， the operator 

心＝A＋臼D;,

where z E恥 isan artificial additional variable. The symbol of A¢ is 

u(A¢,)((x, z), ((,く）） ＝u(A)(x, () + ei¢(2. 

Since 1¢1 :S: 0 < 0。,theestimates in (1.2) also hold for A¢, uniformly in ¢. The basic 
observation is that solving the problem for A¢ is equivalent to solving the parameter-
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dependent problem for A. Note, however, that we have replaced|入|by（生 thishas to be 
taken into account when considering e.g. sectoriality. (In case X is a compact manifold 
with boundary, one may apply the same trick with z E §1, thus avoiding non-compactness 

of the underlying domain.) 
We will next construct a parametrix for Ac/> relying on (an extension of) Boutet de 
Monvel's calculus; see [4], the monographs [21] or [12] or the short introduction [22] for 
details on the (classical version of the) calculus. 
The Dirichlet problem（勺 forAc/> is an elliptic problem in the Boutet de Monvel ,o 
calculus. Hence there exists a paraJnetrix 

げ）―＃＝((A;#)++Gf Kf). 

Here. A -# ・ , A;# is a parametrix to A¢ on町， and(A;#)+ denotes its truncation to配， i.e.
the operator 

(A;り＋＝戸A;#e+,
where e+ denotes the extension by zero of functions on記 tofunctions on町 andr+ 
denotes the restriction ()f functions/distributions on町 to賊i-Moreover, G5} is a singular 
Green operato! and K[/ is a Poisson type operator. 
Since 10K[/ ~ I, where'~'here and in the following considerations denotes equality 
up to smoothing operators, we obtain 

TKf = ('Po,o +'P111)Kf =やo＋白恥＝： Sか

where恥＝/1鱈 isthe Dirichlet-to-Neumann operator for (~t). Hence 

(~)((A;#)++ G~ Kf) ~ (T((A;#~+ + Gf) ;</>) 

Supposing that we can construct a parametrix芯＃ toSq,, we can find a parametrix to 

the triangular matrix on the right and therefore a parametrix（拿）―＃ to（匁）， namely

（デ）―＃ ～ （（A;#)++ ci-Kf s:;#r((A;#)+ + ai) K応り．

In the sequel, we will be interested in a parametrix (A</>)□to the realization (A¢)T of 
A</> with respect to the boundary condition T. That is given by the left entry in the row 
matrix on the right hand side. Summing up, we have shown the following result: 

p -# roposition 2.1. Suppose that the operator S </> has a parametrix s:;'IF. Then the realiza-¢ 

tion (A</>)r has the parametrix 

(A<t>)r# ~ (A;#)++ ci -Kf S互＃T((A冨#)++Gi)

じnlessや1三 0or切（x)ヂ0for all x, the operator S</> will not be elliptic. However, as 
has been observed early on in the study of this problem: 
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＃ Lemma 2.2. Sq, has a parametrix S― with a symbol in the Hormander class ¢) 

Proof. Sep is a classical element in the Hormander class Si,o・ Its symbol is 

び(S¢)= cp。+cp位 (II¢)．

S° 1,1/2 ・ 

The symbol of 11¢ is known to be elliptic with values in the sector I:。0. In view of 
the fact that cp。＋臼 2".c'P > 0, the symbol of Sq, is bounded away from zero. A 
short computation shows that its inverse belongs to S~,112. Then a standard parametrix 
construction completes the argument. ロ

While the term (A;#)+＋虐inthe parametrix of (Aふ belongsto Boutet de Monvel's 
calculus, the second term, i.e. Kf宕行((A;#)++Gf)does not unless cp1三 0or叫X)2': 
c > 0 for all x. We study it more closely and observe that, since 10((A;#)+ + Gク）～o, 

K;j s;#T((A;#)+ + G~) ~ K;j s;#cpo1((A;#)+ + G~)-

Here Kf; and州(A―#¢ ;rr)+ + Gf) are elements in the standard Boutet de Monvel calculus. 

Moreover, the compositions;＃cp1 is better than expected, namely: 

Lemma 2.3. s;＃cp1 has a symbol in Sふ・

In [18] an extension of Boutet de Monvel's calculus has been worked out with symbols 
modeled on the Hormander classes of type (1, 5), 0 :; J < 1. (A similar calculus was 
devised by Krainer in the edge calculus setting in [16].) It was then shown: 

Theorem 2.4. The parametrix 

(A¢)"i,# ~ (A;#)+ + G~ -K、)(s;#cp1h1((A;#)++ cい
is an operator of order -2 and class zero in the extended Boutet de Monvel calculus. As 
a consequence, the symbol seminorms of (A¢)"i,# as a zero order element are 0(〈（〉-2)as 
（→ ＋00. 

2.3 Sectoriality and H00-calculus 

With this at hand we go back to the original operatorふ inび（町）． Theabove parametrix 
construction implies that 

Corollary 2.5. 

（ふ—ぐ臼）（A<P)戸＝ I+Rぷ），

where R<P（く），＜ 2".0, is a family of smoothing operators for which the operator norms in 
ダ（び（記）） tendto zero rapidly asく→ oo,uniformly in cp for|</JI 2". 0. In particular, 
there exists a C 2". 0 such that Arーぐeゆ isinvertible for〈22". C, uniformly in cp, and 

||AT -（％叫l2(LP（即）） ＝ 0（〈＜戸）．

Hence we obtain the sectoriality of Ar+ v in ~0 for v ~ C. 
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Idea for the proof of Theorem 1.1. In order to obtain the existence of a bounded H竺
calculus, we first consider the case where <po and凸 aresmooth and A only consists of the 

-n, 
leading part and has constant coefficients in艮． Inorder to obtain the required estimate 

(1.4) for the Dunford integral (1.3), here applied to the case where B =Ar+ v, we note 
that in (1.3) we can replace the resolvent by a suitable parameter-dependent parametrix. 
As a consequence of the calculus, all terms in the parametrix -apart from the contribution 
of the leading symbol -will be 0(〈入〉ー312),so that the estimate (1.4) trivially holds. The 
contribution of the leading symbol, however, can be computed explicitly and the estimate 
can be checked directly. Hence we obtain the existence of a bounded H竺 calculusfor this 

situation. 
It remains to cover the case, where A only consists of the principal part, but has 
variable coefficients in C八T > 0, and finally the general case, where A also has lower 
order terms and variable coefficients. The existence of a bounded H竺 calculusthen follows 
from the two perturbation results, below: 

Theorem 2.6. Let A have a bounded H=-calculus in the UMD Banach space E and 
0 E p(A). Suppose that Bis a linear operator in E with ~(B) ;;;:i ~(A). 
(a) Same order perturbations. Let IE (0, 1), C:::,. 0, with 

B(~(A1+1)) こ ~(A1) and IIA1BullE'.S CIIA1+1ullE, u E ~(A1+1). 

Then A+  B has a bounded H00―calculus, provided 

IIBullE :S sllAullE, u E !≫(A) 

for suitably smalls > 0. 
(b) Lower order perturbations. Assume'YE (0, 1), C 2:: 0 with 

IIBullE :S CIIA1-1ullE, u E !≫(A). 

Then v + A + B has a bounded H00 -calculus for v sufficiently large. 

Finally, to treat the case where X is a manifold with boundary and bounded geometry, 
we use a patching procedure, see [18, Section 4.3] for details. This concludes the argument 
for the case where cp。andcp1 are smooth. 
The case where cp。=1and切＝厨 forsome cp E 02十7(X)requires a more elaborate 
parametrix construction for the operator S呼1above, using symbol smoothing and [1]. 
Details can be found in [18, Section 5]．ロ

2.4 Application to the Porous Medium Equation 

For the proof of Theorem 1.8 we start with the following observation, see [18, Lemma 
6.2]: 

Lemma2.7. Given¢ E C1(.li。 ;B~,;,11P(8X)) andv0 E H;(X) there exists aw E C1(.li。;H;(X)),
such that Tw = cf> and w(O) = v0. 
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Letting u := v -w we consider the problem: 

u(t) —• g(u(t) + w(t)r =一心(t)

Tu(t) = 0 

u(O) = 0. 

Obviously, v solves (1.8) if and only if u solves this system. Now 

今(u+w沖＝m(u+wr-1△四

Let 

+ m(m -l)(u + wr-21v(u + w)I; + m((u + w))m-l△,w. 

A(t, u(t)) 

F(t, u(t)) 

-m(u(t) + w(t)r-1今 and

m(m -l)(u(t) + w(t)r-21▽(u(t) + w(t))I; 

+m((u(t) + w(t))r-1今w(t)一む(t).

Then it can be checked that the conditions of Theorem 1. 7 are fulfilled, and we obtain 
the assertion. 

2.5 The Stefan Problem 

This is joint work in progress with J. Seiler, Turin. 
For the analysis of the Stefan problem, we work in Zygmund and little Holder spaces. 
Recall that we now assume X to be compact and that the boundary condition is given 
on 8D by 

T =,o +μ,oD8 (2.1) 

with Da expressing the normal derivative in the flow coordinates; in particular, Da is 
non-tangential. 

Definition 2.2. Denote by心(D)and C!(8D) the Zygmund spaces of orders E瞑 onD 
and 8D, respectively, and by C!,r(8D) the space 

C!,r(8D) = {uo + μ附： uoE c:+1(8D)，柘 Ec:(aD)}. 

Recall that for s > 0, s (/_ N, the Zygmund spaces coincide with the usual Holder 
spaces and that cs <;;;;臼 forsミ0.
We have the following analog of Theorem 1.3: 

Theorem 2.8. Givens > l, v0 E C!(8D) and v1 E c:-1(8D), there exists u E C!(D) 
such that 10u = v。and,1u= v1・
Proof. For a compact manifold D with boundary, it is shown in [12, Lemma 1.6.4] that 
there exists a potential operator in Boutet de Monvel's calculus which is a right inverse to 

the restriction operator (10,...，叫： H出(D)→IT7=□H;-i-ll2(aD) for s -k -1/2 > 0. 
According to [13, Theorem 1.1] this operator moreover acts continuously on the Zygmund 
spaces and therefore provides a right inverse also there. ロ



160

Proposition 2.9. Let T > 2 be the regularity index in (1.13) The boundary condition T 
in (2.1) provides a surjective map 

T:ば（D）→ C;；1(OD)． 

Proof. Obviously, T mapsば(D)to c;,r1(8D). So suppose we are given v。€ば(DD)
and V1 E c;-1(8D). We decompose Da = Dtan +成 witha tangential part Dtan and a 
normal partびOvwithび nowherevanishing so that 

T ='Yo+ μ"(o(Dtan + !J幻．

Since we assume that p Eび (8D)for T > 2, we will have (J E cT-1(8D). We choose u。
such that "(oUo = Vo, "(1U。=0and u1 such that'Yo附＝ 0and "(1附＝ （釘一 "(oDtanUo)/iJ
and let u = u0 + u1. Then u E c;(D) and, since u1 = 0 on 8D, 

"(oU + μ"(o(DtanU +成い） ＝Vo+ μ"(oDtanUo + μ釘ーμ"(oDtanUo= Vo + μv1・

Hence u is a preimage to v0 + μv1 under T. 仁l

Corollary 2.10. The unique solvability of the semi-homogeneous problem Au= f, Tu= 
0 for given f E C戸(D)with u E c;(D) is equivalent to the unique solvability of Au= 0, 
Tu = g for given g E Cば(fJD)with u E C;(D). 

Proposition 2.11. Assume the Dirichlet problem for A(p) in (1.14) is uniquely solvable, 
and K{; is the associated Poisson operator. Then the solution u to the boundary problem 

A(p)u = 0, Tu= g for A(p) is given by 

u=Kf(I+μ恥 Kf)-lg・

Proof. This follows from the fact that A(p)K{; is zero and "(oK{; = I whenever the 
Dirichlet problem is uniquely solvable. ロ

Theorem 2.12. Assume the Dirichlet problem for A(p) in (1.14) is uniquely solvable, K{; 
is the associated Poisson operator, and P(p), Q(p) are as in (1.18). Then the solution 
to the system (1.14), (1.15),(1.16) and (1.17) is given by the solution to the quasilinear 
evolution equation 

如＋C(p)p= F(p), p(O) = Po, 

where C(p) = LpD8K{;(I + μ恥K{;)-1P(p) and F(p) = -LpD8K{;(I + μD8K{;)-1Q(p). 

Remark 2.1. We have not specified the spaces in which this is to be solved as they 
are not determined yet. In fact, this is a rather delicate issue. The goal is to apply 
continuous maximal regularity on suitable interpolation spaces of little Holder spaces, 
using the results of Simonett [25]. These are topics presently under investigation. 
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