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ABSTRACT. This manuscript is a résumé of the article [HT2], which is based on the talk in
the workshop “Geometric Structures and Differential Equations —Symmetry, Singularity, and
Quantization—". In [HT2], we give the Weitzenbock-type formulas among the geometric first
order differential operators on the spinor fields with spin j+1/2 over Riemannian spin manifolds
of constant curvature. Then we find an explicit factorization formula of the Laplace operator
raised to the power j + 1 and understand how the spinor fields with spin j + 1/2 are related to
the spinors with lower spin. As an application, we calculate the spectra of the operators on the
standard sphere and clarify the relation among the spinors from the viewpoint of representation
theory. Next we discuss the spinor fields coupled with differential forms and give a kind of
Hodge-de Rham decomposition on spaces of constant curvature. Lastly we study the case of
trace-free symmetric tensor fields with an application to Killing tensor fields.

1. WHAT IS HIGHER SPIN DIRAC OPERATORS

Higher spin Dirac operators are a generalization of the Dirac operator and the Rarita-
Schwinger operator. These operators appear in the following context:

e Dirac operator: to describe spin 1/2 fermion (electron)
keywords: index theorem, spin geometry

e Rarita-Schwinger operator: to describe spin 3/2 fermion (ex. gravitino)
keywords: deformation theory, PSU(3)-structure

e higher spin Dirac operator: to describe spin j + 1/2 fermion
keywords: Clifford analysis (on Euclidean space)

2. NOTATION OF Spin(n)-REPRESENTATION

Let R™ be an n-dimensional Euclidean space and (,) be a standard inner product on R", {e;}
be the standard basis of R"™.
Then

A%(R™) 2 s0(n); (uAv)(w) = (u, w)v — (v, w)u,
where so(n) is the Lie algebra of the special orthogonal group SO(n) or the spin group Spin(n).
Let {e;j =e; Aej | 1 <i<j<n} bea basis of A2(R") 2 s0(n).
We choose a Cartan subalgebra
t =spanp{eap_19r | 1 <k <m=|n/2|}
of so(n) and a basis of the dual of the Cartan subalgebra t* as {€1,€a,...,¢,} with
er(eak—1,26) = Opi-
We regard it* as the m-dimensional Euclidean space and the basis {e, = iey} as
er=(0,...,0,1,0,...,0).
R

There is one-to-one correspondence between finite dimensional irreducible unitary represen-
tation (7, V) of Spin(n) and A = >, Nie; = (A1, A9, ..., Ap) In Z™ or (Z + 1/2)™ with the
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dominant condition,
)\12)\22"‘2>\m_12‘Am‘ forn:2m,
M>X> > 1> A, >0 for n = 2m + 1.
We call A the highest weight of V' and write the irreducible unitary representation with highest
weight A as (my, V3).
For example, the highest weight of AP(R") ® C is
(1,...,1,0,...0).
——
P
and the spinor representation is the irreducible representation with highest weight
(1/2,1/2,...,1/2) for n = 2m + 1,
or the direct sum of the irreducible representations with highest weights
(1/2,1/2,...,1/2,1/2) and (1/2,1/2,...,1/2,—1/2) for n = 2m.

3. THE DIRAC OPERATOR

Let (M, g) be an n-dimimensional spin manifold (oriented Riemannian manifold with wy (M) =
0).
A spin structure on M is a principal Spin(n)-bundle Spin(M) which satisfies the following dia-
gram.

Spin(M) x Spin(n) 2224 SO(M) x SO(n)

| |

Spin(M) ——2— SO(M)

| |

M — M

The spinor space is
Wo = Viiy2,1/2,..0/2) for m:odd,
Viuy2,/2,..0/2,172) D Viaeaye,..1/2,-1/2) for n:even.

The spinor bundle is
So = Spin(]V[) XSpin(n) Wg.
The Dirac operator is defined by

D:=Y e~ Ve :T(So) = I'(So)
i=1

where {e;} is a local o.n.f. and e;- is the Clifford multiplication.
Remark 3.1. The Dirac operator is a formally self-adjoint elliptic first order differential operator.

The Dirac operator satisfies the Lichnerowicz formula
Scal Scal
D? = V'V 4 25 = Mg+ 2,

where A is the standard (Lichnerowicz) Laplacian. This leads a vanishing theorem:

compact and Scal > 0 = Ker D = {0}.



4. THE STANDARD LAPLACIAN

The standard Laplacian is a generalization of the Laplacian on the associated vector bundle
with SO(M) or Spin(M):
A =V'V+q(R),
where ¢(R) = % >ij(ei Nej)«(R(ei,e5))«. For example,

A =di+od
on A*(M),
A=V*"V+ %
on Sy,

A = (Casimir operator)

on a homogeneous vector bundle over a Riemannian symmetric space.

5. THE RARITA-SCHWINGER OPERATOR
Let TM¢ be the complexified tangent bundle. Then, by the action of Spin(n),
SO ®TMC = SO @Sh

where S1 = Spin(M) X gpin(n) W1 is the associated vector bundle of Spin(M) by the representation
with highest weight (3/2,1/2,...,1/2).

This decomposition realized as follows;
1
it 8= SoRTM ¢ —= Y e pR e,
"5

HZS()@TMC%S(); ¢®Xl—>X-¢,

and 57 := Ker i lead
So R TM® = Z(So) P S1.

Dry = > (e - ®id) o Ve, : T'(Sp ® TM€) — T'(Sp ® TM€): the twisted Dirac operator on
So ® TMe.
Along the decomposition Sy ® T'M¢ = Sy & Sp, the twisted Dirac operator is decomposed as

the 2 x 2-matrix
b <2n"D 2P*>
TM — 2 )
P Q

where P: I'(Sp) — I'(S1) is the twistor (Penrose) operator.
Definition 1. @ : I'(S;) — I'(S)) is called the Rarita-Schwinger (RS) operator.
Remark 5.1. The Rarita-Schwinger operator is a formally self-adjoint elliptic first order differ-

ential operator.

6. RESULTS OF HOMMA-SEMMELMANN [HS]

Let (M, g) be a compact Einstein spin manifolds. The (twisted) Lichnerowicz formula

Scal .
D2, = Asyerie + =5~ — s, ® Ric.
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gives that
(22)?p2 4 Aprp 220 ppr i oprQ
( 22 pp 4+ 2QP Q*+2pp )
_ (Ag, + Sl _ Sl 0
B ( 0 A + % - %) '

Since the twistor operator P: I'(Sy) — I'(S1) is an overdetermined elliptic operator, the
following decomposition holds;
I'(S1) = Ker P* @ Im P,

and @ and A preserves the above decomposition.

Proposition 2 (Homma-Semmelmann [HS]). Let (M, g) be an Einstein spin manifolds, then
-2 -2
QoP=""2poD, PoQ=""2Dop*
n n

AgyoD=DoAg,, Ag,oP"=P'olg,
Ag, o P=PoAg,, Ag 0Q=QoAg,.
Proposition 3 (Homma-Semmelmann [HS]). Let (M, g) be an compact Einstein spin manifolds,
then
o Q*=Ag +8Scal  on Ker P,
o )’ = (”T*Z)Z(Agl + 8y on Im P.

7. THE HIGHER SPIN DIRAC OPERATOR

Let (M, g) be an n-dimimensional spin manifold, Sy be the spinor bundle, and Sym% be the
primitive irreducible component of the j-th symmetric tensor product of T'M¢ with highest
weight (4,0,...,0).

Then, by the action of Spin(n),

So ® Sym{) = Sj_1 © Sj,
where the spin j + 1/2 bundle S; = Spin(M) Xguinm) Wj is the associated vector bundle of
Spin(n) by the representation with highest weight (j +1/2,1/2,...,1/2)
or the direct sum of the representations with highest weights (j + 1/2,1/2,...,1/2,1/2) and
(G+1/2.1/2,...,1/2,-1/2).

Let D(j): T'(So ® Sym%) - T(So® Sym%) be the twisted Dirac operator. Along the decom-
position Sp ® Sym)) = S;_1 & S, the twisted Dirac operator D(j) is considered as 2 x 2-matrix

D, T,
D(j)_( o )
T; D,

D;: I'(S5) — I'(S;) is called the higher spin Dirac (HSD) operator.

Remark 7.1. Dj is a formally self-adjoint elliptic first order differential operator.

Remark 7.2. T]tl :I(Sj-1) = I'(S)) satisfies (Tjtl)* =T;.

Remark 7.3. When j = 1, Dj is the constant multiple of the Dirac operator, D; is the Rarita-
Schwinger operator, TO7L is the constant multiple of the twistor operator P.

In Bures-Sommen-Soucek-Lancker [BSSL1],[BSSL2], they considered to generalize spherical
harmonic analysis on Euclidean space to spinor fields with higher spin;

e Polynomial solutions (called monogenic function),
e Clifford Cauchy kernel,



e Factorization formula
that is to constitute the fundamental solution of the HSD operator. On R", D; is the
factor of A;H, i.e. by using a (2j+1)-st order differential operator Asji1,
-
A; = DJ o A2j+1.
By the (twisted) Lichnerowicz formula

Scal 1

N

Symy)’
we obtain various formulas on spaces of constant curvature.

Let (M, g) be Riemannian manifold of constant sectional curvature K = ¢ with a spin struc-
ture, A; be the standard Laplacian on I'(.S}).

Proposition 4.

D} 4+ T (T ) = Ay — (i(n+j —2) -

(T T+ (D)) = Ay = (o + = 2) = e,
(Tjtﬂ*Dj + D,;—I(Tj+—1)* =0, DjTjt1 + Tij—lD;'—l =0.
Proposition 5.

AjDj = DjAj, AT, =T Ajy, ATy =T A,

Jj =J
8. GENERALIZED GRADIENTS
Composing V and the projection
I : S ® TM® — S},
we have so-called the higher spin Dirac operator,
D; =10V, I(S;) % I(S; @ TM) 55 1(S;).

In this manner we construct four generalized gradients on I'(S;) and name them as follows;

T;r :I(Sj) = T'(Sj+1) the (first) twistor operator,
U; :T(S;5) = T'(Sj1) the (second) twistor operator,
1~)j :I'(S5) = I'(S)) the higher spin Dirac opeator,
ff :I(S;) = I'(Sj-1) the co-twistor opeator.

By using Weitzenbdck foumula for the generalized gradients {ﬁj7 fj_, Tjtp Bj,l},

M+2))(n—2)~g 4n+7—2) . ur
D? T-VT = A,
nt2y 2 DT ey g )T = Ay,

J
45 ~ ~ (n+25 —4)(n—2)
A g A L A
n+2j—2(]_1) 1 n+2j—2

(f)]',l)z =A;_1 + curv.

Proposition 6.

(n+2j)(n—2)
n+2j—2

D; = ﬁj, D;,

1:\/(n+2(j—1)—2)(n—2)l~)

n+2(j—-1) gt
Proposition 7.

D =

nt2-2,
J n+2j

-

167



168

9. FACTORIZATION FORMULA

Theorem 8 (Factorization formula). On a spin manifold (M, g) of constant sectional curvature

R:c’
J n+2s—2)2 ln—

a=
This formula is a generalization of the factorization formula on R"™.

Remark 9.1. When j = 0, Theorem 8 is the Lichnerowicz formula

p? =gl
8
Sketch proof. Let

B(s:j) ;:Dﬁ-%(@— (mw-m-@)c).

We prove the theorem by induction for j. We start from the equation for 7 = 0,

(n—1)

0
[ B(s:0) = B(0;0) = D — (A + © —0)=0.
s=0

Sandwich by T;r and (T;)*, and we obtain

it jB.' e 2 (”+2j)2B.~ + (%
0 =T} };[0 (s54) (Tj) - g(n+2j—2)2 (s;7+1) T; (T])
(n+25)20+D) ! . : .
SRS o .7 R B(s;j+1)| B +1;j+1).
EET T ];[0 (s55+1) ) BG+1j+1)
Thus we have proved theorem holds for j + 1. a

10. THE MEANING OF THE FACTORIZATION FORMULA
We assume that the manifold is compact. We put

B(m):p?—%(&—(s(n+s—2)—@)c)7

then we obtain the filtration

j
Fj=Ker B(j;j) C -+ C Fy = Ker [ [ B(s;4) C -+ € Fo =I'(S)).
s=k
Furthermore, we put

Ty T (0(S0),  s=0,

Ws= T} - T (KerTy), 1<s<j—1,
Ker Tf, s =7,
then we get the direct sum decomposition from the filtration {F}},
I(S) =@ W,, Fe=W,0Fy4 (0<s<j).
0<s<j
In the case of the sphere,

VJ(S)/ = @ Vj(k, S)/ = @V(k-&-j+1/2,s+1/2,1/2,...,1/2)‘
k>0 k>0
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LX(Sj-1) = V;(0) @& V(-1 & {0}

o TR PO

LX(S) = V00 e--e V,i-1)' o V() @ {0}

+ + +
Tj“JlTj Tj+1JlTJ THI\J‘LTj THlT

L*(Sjr) = Via(0) @& V(-1 @ Via() e Via(+1)

11. SPECTRA OF THE HSD OPERATOR ON THE SPHERE
By the factorization formula, we get spectra of the HSD operator on the sphere

Theorem 9 (Branson [Bra]). The eigenvalues of the square of the higher spin Dirac operator
on the sphere S™ = Spin(n + 1)/Spin(n) are

(n+25—2)2(

AN )
m k+]+—) (s=0,...,5, k=0,1,...).

2

Our method would be easier to understand than in [Bra].

12. ON SPINOR FIELDS WITH DIFFERENTIAL FORMS
Let A7 = AJ(T*M¢) be the bundle of (complexified) differential forms with highest weights
(1,...,1,0,...,0).
H.,—/
J
Then, by the action of Spin(n),
So@MN2E;®@E;_1®- ® Ey

where Ej = Spin(M) Xgpin(n) W is the associated vector bundle of Spin(n) by the representation
with highest weight (3/2,...,3/2,1/2,...,1/2).
ﬁ.f—/
J
Let D(j): T'(So ® A7) — I'(Sp ® A7) be the twisted Dirac operator. Along the decomposition,
the twisted Dirac operator D(j) is considered as (j + 1) x (j + 1)-matrix

D@G); TG)j 0
T(); DGi-1r TG)j s
, 0 TGy DG TGy 0
D(j) =
0 0 0 D@ T(j)g
0 T()y Do

We write
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Let (M, g) be Riemannian manifold of constant sectional curvature K = ¢ with a spin struc-
ture, A; be the standard Laplacian on I'(E}).

Theorem 10 (Factorization formula). On a spin manifold (M, g) of constant sectional curvature

K=c,

x (DJQ- - (A]- - (j(n—j) - @) c)) —0.
Proposition 11. )
T+ o= "=2 o p
D]ijl T 2 + 2Tj71DJ*1’

+ ot - T = L =(T)
TiaTf =0, TL,Ty =0, T, = (5"

AjDj=DjA;, AT =T A0, AT =T; A

TjJr—2 Tjtl TJ’Jr Tjt—l

T T(Bj1) T T(E)) &2 T(Ej1) £ -

Tia U 7 ’U T ‘U Tite
D; 1 D; Dji1

Theorem 12. On a spin manifold (M,g) of constant sectional curvature K = ¢, we have the
Hodge-de Rham decomposition for spinor fields coupled with differential forms,

DBy = T3 (B 1)) & Ty (DB ) @ Ker(a, — "0,
Ker T = T" (U(Ej1)) & Ker(4A, — —n(ng+ Do),
Ker Ty =T, (D(Ej41)) @ Ker(4; — Ln; 1)c).

13. SPECTRA ON THE SPHERE

Theorem 13 (Branson [Bra]). The eigenvalues of DJQ- on the sphere S™ = Spin(n + 1)/Spin(n)
are

(1) on ImTj‘"_1 o KerTjﬂ

n—2j 2 n\2
- = k+ — k=1,2,...).
(n—2j+2> ( +2) ( 2500
(2) on KerT},

(z+1+g)2 (1=0,1,2,...).

14. GENERALIZED GRADIENTS ON SYMMETRIC TENSOR FIELDS

Let Sym% be the primitive irreducible component of the j-th symmetric tensor product of
TM.
By the action of Spin(n),

Sym% Q@ TM® = Sym%+1 $3) Sym%f1 $) Symé"1

where Symé’1 is an irreducible vector bundle with the highest weight (j,1,0,...,0).
We consider generalized gradients

T} T(Symj) > [(Symj @ T*M¢) = T'(Symj, @ TM®) "3 T'(Symj ™),



T, : T(Sym}) 5 T(Sym) ® T*M®) = T(Symj, © TM°) 3" T(Sym) 1),
Uj: T(Symd) 5 D(Symd o T*M¢) = T (Symy, ® TM®) "3 T'(Symdh).

Let (M, g) be Riemannian manifold of constant sectional curvature K = ¢ with a spin struc-
ture and A; be the standard Laplacian on I'(Symy).

Proposition 14.
Aj =G+ D)IT)T — (n+j = 3)(T; )T, +2j(n+j—2),
(n+j—2)(n+25) 7 7
Theorem 15 (Factorization formula). On a spin manifold (M, g) of constant sectional curvature
K=c,

J
[T (@) —ats: (A — bis:)e)) =0,
s=0

_ (st (ntj+s—2)

where a(s;j) = ER T b(s;j)=jn+j—1)+s(n+s—3).

Let K7(S™) be the space of the Killing tensor ficlds with degree j on the sphere and P7~2¢(S™)
be the space of the primitive Killing tensor fields with degree j on the sphere. By using the
factorization formula, we obtain the following result in a different way from original [Tak].

Theorem 16 (Takeuchi [Tak]).

KIS = € g PHE.
0<j<li/2]

15. FUTURE WORK

As a future work, we want to extend the factorization formula to Riemannian symmetric
spaces. If we obtain the factorization formula on Riemannian symmetric spaces, we can calculate
the eigenvalues of the higher spin Dirac operator not only the sphere but also many Riemannian
symmetric spaces by using the method in [HT1].
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